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Memories from a distant past

I Recall that a site on a category C is a set Cov(C) consisting of
families of morphisms with fixed target {Ui → U} in C satisfying the
following three axioms:
I if V → U is an isomorphism, {V → U} ∈ Cov(C);
I if {Ui → U} ∈ Cov(C) and for all i , {Uij → Ui} ∈ Cov(C), then also
{Uij → U} ∈ Cov(C);

I if {Ui → U} ∈ Cov(C) and V → U, then {Ui ×U V → V } ∈ Cov(C).

I If P is a property of morphisms of schemes such that isomorphisms
have P and P is stable under composition and base change, we may
define the big P-site as the site defined by coverings {Ui → U} for
which every morphism has P and their images cover all of U.

I A presheaf on C is a functor Cop → Set. A presheaf F on a site is
called a sheaf if for all {Ui → U} ∈ Cov(C) the following diagram is
an equaliser:

F(U)→
∏
i

F(Ui )⇒
∏
i,j

F(Ui ×U Uj).



Memories from a distant past
I Recall that a site on a category C is a set Cov(C) consisting of

families of morphisms with fixed target {Ui → U} in C satisfying the
following three axioms:
I if V → U is an isomorphism, {V → U} ∈ Cov(C);
I if {Ui → U} ∈ Cov(C) and for all i , {Uij → Ui} ∈ Cov(C), then also
{Uij → U} ∈ Cov(C);

I if {Ui → U} ∈ Cov(C) and V → U, then {Ui ×U V → V } ∈ Cov(C).
I If P is a property1 of morphisms of schemes such that isomorphisms

have P and P is stable under composition and base change, we may
define the big P-site as the site defined by coverings {Ui → U} for
which every morphism has P and their images cover all of U.

I A presheaf on C is a functor Cop → Set. A presheaf F on a site is
called a sheaf if for all {Ui → U} ∈ Cov(C) the following diagram is
an equaliser:

F(U)→
∏
i

F(Ui )⇒
∏
i,j

F(Ui ×U Uj).

1We chose this letter for the sake of comedy.
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Why do we sometimes call a site a topology?
The set of coverings Cov(C)2 is called a Grothendieck pre-topology on C.
But what does this have to do with a topology in the classical sense?
Sure, we can define sheaves on sites, but can we also define a topology?

Definition
Let C be a category and U ∈ Ob(C). A sieve S on U comprises for every
T ∈ Ob(C) a subset S(T ) of all morphisms T → U satisfying that

T → U ∈ S(T ) and T ′ → T in C =⇒ T ′ → T → U ∈ S(T ′).

Given a sieve S on U and a morphism f : V → U, we may define the
pullback sieve S ×U V by

T → V ∈ (S ×U V )(T ) ⇐⇒ T → V → U ∈ S(T ).

A topology J on C comprises for every U ∈ Ob(C) a subset J(U) of the
set of all sieves on U, satisfying that Hom(−,U) ∈ J(U) for all U, that
S ×U V ∈ J(V ) for all S ∈ J(U) and f : V → U, and that

S ∈ J(U) and ∀f ∈ S(V ), S ′ ×U V ∈ J(V ) =⇒ S ′ ∈ J(U).

2Never call your category “id” in this context.
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More abstract nonsense

Another definition
Given {fi : Ui → U} there exists a smallest sieve on U containing all
these morphisms, given by

S(U) =
⋃
i

{fi ◦ g | g has target Ui }.

It is called the sieve generated by these morphisms.

The legend of sheaves
Let J be a topology on a category C and let F be a presheaf of sets. We
say that F is a sheaf on C if for every U ∈ Ob(C) and for every
S ∈ J(U), the canonical map

F(U) ∼= HomPSh(C)(hU ,F)→ HomPSh(C)(S ,F)

is a bijection.

All of this can be found in detail on Stacks 00YW.
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Connecting the dots

Theorem
Let C be a site. We can define a topology J on C by writing J(U) for the
set of sieves S on U with the property that there exists a covering
{Ui → U} so that the sieve generated by this covering is contained in S .
Furthermore, a presheaf is a sheaf for this topology if and only if it is a
sheaf on the site.

The proof is by pure abstract nonsense and can be found on Stacks
00ZB. We see that if two different sites generate the same topology, they
must have the same categories of sheaves, but more is true (00VS).

Refinement: the last definition
Let U = {Ui → U} and V = {Vj → U} be two families of morphisms
with fixed target. If for every i there is a j and a morphism Ui → Vj over
U, we say that U refines V.

Theorem
Let Cov1 and Cov2 define two sites on C. If for each U in Cov1 there
exists some V ∈ Cov2 such that V refines U , and vice versa, the
categories of sheaves of these sites are equal.
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A bestiary of topologies on Sch
How many topologies are there really? E. A. Berengoltz BSc. introduced
two already, and I will introduce some more. Do we know them all then?

A short game: dead Russian guy (R), French stuff (F) or English (E)?

I cdf = Completely decomposed finite topology. (E)

I nis = Nisnevich topology. (R)

I can = Canonical topology. (E)

I syn = Syntomic / Syntomique topology. (E/F)

I fpqc = Fidèlement plat quasi-compacte. (F)

I f = Finite topology. (E)

I h = ???
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I fpqc = Fidèlement plat quasi-compacte. (F)

I f =

Finite topology. (E)

I h = ???



A bestiary of topologies on Sch
How many topologies are there really? E. A. Berengoltz BSc. introduced
two already, and I will introduce some more. Do we know them all then?

A short game: dead Russian guy (R), French stuff (F) or English (E)?

I cdf = Completely decomposed finite topology. (E)

I nis = Nisnevich topology. (R)

I can = Canonical topology. (E)

I syn = Syntomic / Syntomique topology. (E/F)
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Smooth vs. étale

Recall that a morphism is étale if it is smooth of relative dimension 0. It
turns out that the smooth site and the étale site are very similar. Their
topologies are not the same, but we do have the following lemma (055S):

Lemma
Let X → S be a smooth morphism of schemes and let s ∈ S be in its
image. Then there exists an étale neighbourhood S ′ → S of s and an
S-morphism S ′ → X .

S ′ X

S
ét

sm

Corollary
Let U be a smooth covering of a scheme S . Then there exists an étale
covering V of S that refines U . Consequently, the categories of sheaves
defined by the smooth site and the étale site coincide.

Proof: Apply the proposition above to every s ∈ S .
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3Perhaps coinsite would have been more appropriate.



The long awaited fppf-site
Definition
An fppf covering of a scheme T is a family of morphisms {fi : Ti → T}
that are all flat and locally of finite presentation, and with the property
that T =

⋃
i fi (Ti ).

This defines a site. Note that a smooth covering is certainly an
fppf-covering, because smooth morphisms satisfy the above and
additionally that all fibres are smooth. We thus have

Zariski < étale < smooth < fppf.
Lemma
Flat morphisms that are locally of finite presentation are (universally)
open. (Stacks 01UA)

Examples

I Recall that Spec(K )→ Spec(k) is étale if and only if K/k is finite
and separable. For fppf we merely require finiteness.

I The map P1
k \ {(1 : 1)} → P1

k defined by (x : 1) 7→ (x2 : 1) and
(1 : 0) 7→ (1 : 0) is an fppf-cover of P1

k . Also just P1
k → P1

k .
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Splitting up the étale site
It can happen that you want to prove something for all covers in a given
site. Sometimes it is possible to reduce the problem to simpler coverings.

Proposition
Let {Ui → S} be an étale covering of S . Then there exist:

I a Zariski open covering {Vj → S};
I for each j a surjective, finite, locally free morphism Wj → Vj ;

I ...and a Zariski open covering {Wj,k →Wj},
such that {Wj,k → S} is a refinement of the covering {Ui → S}.

In other words, we can split up an étale covering into two Zariski
coverings and a surjecture finite locally free covering. This means that in
order to prove something about all étale coverings, it can be enough to
prove it for Zariski coverings and surj. fin. loc. free coveringsStacks
actually gives an example of someone who used this abstract trick to
prove something meaningful, which quite surprised me. Part of the
reason for this footnote is to fill up the slide some more, for it would have
been a little empty otherwise.. (Stacks 04HE)
This has an application to the fppf-site.
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Splitting up the fppf site

Proposition
Let {Si → S} be an fppf covering. Then there exist

I an étale covering {S ′a → S};
I for each a a surjective, finite, locally free morphism Va → S ′a,

such that {Va → S} is an fppf-covering that refines {Si → S}.

Corollary
Let {Si → S} be an fppf covering of S . Then there exist:

I a Zariski open covering {Uj → S};
I for each j a surjective, finite, locally free morphism Wj → Uj ;

I ...and a Zariski open covering {Wj,k →Wj};
I for each k a surjective, finite, locally free morphism Tj,k →Wj,k ,

such that {Tj,k → S} is an fppf cover that refines {Si → S}.
Proof: Apply the result of the previous slide to the étale covering from
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5Algebraic geometry used double team! Student hurt itself in confusion.



An example of this splitting process
Let k be algebraically closed. We consider the map

f : P1
k \ {(1 : 1)} → P1

k , (x : 1) 7→ (x2 : 1) and (1 : 0) 7→ (1 : 0)

that we discussed before. How can we refine this by two Zariski coverings
and two sets of surjective, finite, locally free morphisms?

I Step 1: clearly id : P1
k → P1

k is a Zariski covering.

I Step 2: the map P1
k → P1

k also defined by x 7→ x2 is surjective, finite
and locally free.

I Step 3: the maps
id: P1

k \ {(1 : 1)} → P1
k ,

id: P1
k \ {(1 : −1)} → P1

k

form a Zariski covering of P1
k .

I Step 4: simply take the identity again. This refines f by taking
id : P1

k \ {(1 : 1)} → P1
k \ {(1 : 1)} and the obvious map

−id : P1
k \ {(1 : −1)} → P1

k \ {(1 : 1)}. These are maps over P1
k .

Question: Is Spec(k[x , y ]/(y2 − x3))→ Spec(k) a smooth cover?
And is it maybe an fppf cover?
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The fabled fpqc-site

Definition
An fpqc covering {fi : Ti → T}i∈I of a scheme T consists of flat
morphisms fi such that for every affine open U ⊂ T , there exist a finite
subset J ⊂ I and affine opens Vj ⊂ Tj for all j ∈ J, such that⋃

fj(Vj) = U.

Lemma
An fppf covering is an fpqc covering.

Proof: Indeed all fi are flat, and by an earlier lemma, they are all open.
Let U ⊂ T be an affine open. Then we can write f −1

i (U) =
⋃
Uij as a

union of affine opens for each i . But then U =
⋃

i,j fi (Uij), and since
affine schemes are quasi-compact, we can find a finite subcover.
Now we have established

Zariski < étale < smooth < fppf < fpqc.

What this means for rings
A map Spec(B)→ Spec(A) is an fpqc covering if and only if A→ B is
faithfully flat.
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Examples of fpqc things

A nugatory warning
Thanks to set theory, the fpqc site is a bit poorly behaved. For example,
there does not exist a set A of fpqc coverings of T such that any fpqc
covering of T can be refined to one in A. This leads to pathological
presheaves that do not have sheafifications. A solution is to only consider
rings with a cardinality bounded by some strongly inaccessible cardinal. A
better solution is to simply forget about it. See Stacks 022A.

Two examples

I For any field k, the morphism
∐

x∈A1
k

Spec(OA1
k ,x

)→ A1
k may be flat

and surjective, but it is not quasi-compact. Hence this is not an
fpqc covering.

I The cover consisting of Spec(k)→ Spec(k[x ]), so {0} → A1
k , and

Spec(k[x , x−1])→ Spec(k[x ]), so A1
k \ {0} → A1

k , is fpqc.

I The infinite coproduct
∐

Spec(Q)→ Spec(Q) is an fpqc covering
that is clearly not quasi-compact.
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A short note about sheaves

We’re almost there

I Consider the presheaf F : (Sch/Fp)→ Ab that sends a scheme T
over Fp to Γ(T ,ΩT/Fp

). This is a sheaf on the Zariski site.
However, Spec(Fp[x ])→ Spec(Fp[y ]) mapping y to xp is an fpqc
covering, but on differentials it induces the zero map as
dy 7→ d(xp) = 0. As a result, the diagram

Fp · dy
0−→ Fp · dx ⇒ F

(
Spec(Fp[x ])⊗Spec(Fp [y ]) Spec(Fp[x ])

)
is not an equaliser. Hence this is not a sheaf on the fpqc site.

I Representable presheaves are always sheaves on the fpqc site. In
particular, F : Sch→ Ab that sends a scheme T to Γ(T ,OT ) is a
sheaf on the fpqc site.

Some more information on the fpqc site can be found at Stacks 03NV.
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