
1 The conjecture

Let K/k be an abelian extension of number fields and let S be a finite set of places of k
containing the archimedean places and all the places that ramify in K. Set G = Gal(K/k)
and let χ ∈ Ĝ be a character. By class field theory, every unramified prime ideal p of k
induces a Frobenius Frobp ∈ G.

Definition 1. The Artin L-series LS(s,χ) is defined for <(s) > 1 by

LS(s,χ) =
∏
p/∈S

(1 − χ(Frobp)Nm p−s)−1.

We write χ = 1 for the trivial character of G.

Lemma 2. The function LS(s, 1) has a zero of order #S− 1 at s = 0.

Proof. By definition, LS(s, 1) is related to the usual Dedekind ζ-function

ζk(s,χ) =
∑
I⊂Ok

Nm I−s =
∏
p

(1 − Nm p−s)−1

through
LS(s, 1) = ζk(s,χ) ·

∏
p∈S

(1 − Nm p−s).

Each of the added factors has a simple zero at s = 0, whereas the Dedekind ζ-function has
a zero of order rk O×k . As such, LS(s, 1) has a zero of order

#Sfinite + rk O×k = #S− 1.

Note that we used that
rk O×k = #Archimedean places − 1,

which is Dirichlet’s unit theorem.

Let h(k) denote the class number of k and w(k) its number of roots of unity. We recall
the definition of the regulator R(k). Let {σ1, . . . ,σr+1} be a complete set of pairwise non-
conjugate archimedean places of k and let {u1, . . . ,ur} be a basis for O×k . Then

R(k) = |det(ni log |σi(uj)|
r
i,j=1)|,

where ni = 1 if σi is real and ni = 2 otherwise.

Corollary 3. The special value at s = 0 of LS(s, 1) is given by

lim
s→0

LS(s, 1)
s#S−1 = −

h(k)R(k)

w(k)
·
∏
p∈S

log(Nm p).

Proof. This follows from the identity

LS(s, 1)
s#S−1 =

ζk(s,χ)
s#Arch−1 ·

∏
p∈S

1 − Nm p−s

s
.

Namely, the Dedekind ζ-function has a residue as in the corollary and each of the factors
clearly has residue log(Nm p).
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Proposition 4. In general, LS(s,χ) has a zero at s = 0 of order the number of primes q ∈ S such
that χ restricted to the decomposition group of q is trivial.

We opt to omit the proof of this statement. One may wonder what the special value of
LS(s,χ) is in general. Let us consider the following situation: S is a set of places containing
all archimedean places, all places that ramify in K/k and one distinguished prime p that splits
completely in K/k that may itself be archimedian or ramified. The effect of the splitting
condition on p is that its decomposition group in G will be trivial and as such, by the
proposition above, LS(s,χ) will certainly vanish at s = 0. Let |− |P denote the standard
norm on the P-adic completion. Stark conjectures the following.

Conjecture 5. Let P be any prime of K above p. Then there is some ε ∈ K that is a unit at all
places of K not above S, such that

• for all characters χ of G,

L ′S(0,χ) = −
1

w(K)

∑
γ∈G

χ(γ) log |εγ|P;

• K(ε1/w(K)) is an abelian extension of k.

This conjecture is known for k = Q or k an imaginary quadratic number field, but it
is still open in this generality. One may next wonder what happens in case we choose not
only one distinguished prime, but instead two. This leads to the following question.

Question 6. Let S contain two distinguished primes and let P1 and P2 be two primes of K lying
over them. Do there exist ε1, ε2 ∈ K, units at all places of K not above S, such that

1
2
L ′′S(0,χ) = det

∑
γ∈G

χ(γ)

(
− 1
w(K) log |ε

γ
1 |P1 − 1

w(K) log |ε
γ
1 |P2

− 1
w(K) log |ε

γ
2 |P1 − 1

w(K) log |ε
γ
2 |P2

) ,

and such that K(ε1/w(K)
1 ) and K(ε1/w(K)

2 ) are abelian over k? Further, can one require these fields
to coincide, and that εγi OK = εiOK for all γ ∈ G and i ∈ {1, 2}?

There is reason to doubt that the first equality can always be made to hold. However,
we will work out an example that shows that it can at least sometimes hold. Before ending
this section, we will record one more fact about Artin L-series.

Proposition 7. The following equality holds:∏
χ∈Ĝ

LS(s,χ) = ζK(s,χ) ·
∏

P|p∈Sfinite

(1 − Nm P−s).

Proof. We may rewrite the left hand side like∏
χ∈Ĝ

LS(s,χ) =
∏
χ∈Ĝ

∏
p/∈S

(1 − χ(Frobp)Nm p−s)−1 =
∏
p/∈S

∏
χ∈Ĝ

(1 − χ(Frobp)Nm p−s)−1.
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We treat this prime by prime. Suppose first that p /∈ S. It now suffices to prove the equality∏
χ∈Ĝ

(1 − χ(Frobp)Nm p−s) =
∏
P|p

(1 − Nm P−s).

Let us write e for the number of primes above in K. Then the right hand side is simply
equal to

(1 − Nm p−fs)e,

where P has residue field degree f with respect to k. Also, Frobp will be of order f in G
and as such the values χ(Frobp) will simply range over the set {1, ζf, . . . , ζf−1

f } precisely e
times. Hence the left hand side becomes

f−1∏
k=0

(1 − ζkfNm p−s)e.

The desired conclusion now follows from the obvious identity

f−1∏
k=0

(1 − ζkfX) = 1 −Xf.

Finally, the finite primes p ∈ S are completely omitted from the left hand side, so we are
simply to cancel their contributions from the right hand side as well.

Disclaimer: This note is completely based on the 1997/1998 paper by David Grant, ti-
tled Units from 5-torsion on the Jacobian of y2 = x5 + 1/4 and the Conjectures of Stark and Rubin,
[2], which is in turn heavily supported by [1]. Almost no original work has been done by
yours truly in establishing this exposition. We provide many details for innocent looking
steps that Grant understood to be well known, but we will often omit parts of Grant’s im-
pressive calculations, as copying those will serve neither the enjoyment of the author of
this note, nor that of the reader. Suggestions to improve this note are most welcome and
can be sent to m.a.daas@math.leidenuniv.nl.

2 The fields k and K

This section is mainly devoted to introduction our notation, together with some amusing
calculations in the typical style of an introductory course in algebraic number theory.

• Let ζ denote a primitive fifth root of unity.

• Let k = Q(ζ) be the corresponding quatric cyclotomic extension.

• Set ε = −ζ2 − ζ3.

• Set λ = 1 − ζ.

We will start off with some very elementary properties.
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Lemma 8. The following statements are true.

• The ring of integers of k is given by Ok = Z[ζ]

• The number ε is equal to the golden ratio. As such, ε+ ε−1 = 2ε− 1 =
√

5.

• It is also a fundamental unit of k, and as such, R(k) = |2 log |ε||.

• The class number of k is h(k) = 1 and k contains 10 roots of unity, so w(k) = 10.

• The discriminant of k is D(k) = 53 and λ generates the only prime above 5 in k.

Proof. Since k is generated by Φ5(X) = X4 + X3 + X2 + X+ 1, which is quickly computed
to have discriminant 125, we need only check the prime 5 to use the Kummer-Dedekind
theorem to compute Ok. However, since 25 - 5 = Φ5(1), using that Φ5(X) = (X − 1)4

mod 5, it follows that Ok = Z[ζ]. This also shows that λ generates the only prime above 5
in k. We next compute that

(2ε− 1)2 = (2ζ−3 + 2ζ−2 + 1)2 = 4ζ−1 + 4ζ−4 + 1 + 4ζ−3 + 4ζ−2 + 8 = −4 + 1 + 8 = 5,

from which the claims about ε follow. Since (1, 1) is trivially the smallest solution to the
unit equation x2 + xy − y2 = 1, ε is a fundamental unit in Q(

√
5). Now if ε were not

fundamental in k as well, then it would be the nth power of some η ∈ k \ Q(
√

5). As such,
we would have k = Q(

√
5,η). Since this extension is Galois, it would contain all nth roots

of ε; in particular at least one real one, so we may choose η ∈ R. However, this would
yield a real embedding of k; a contradiction. For the class number of k, we compute its
Minkowski bound to be

Mk =

(
4
π

)2

· 4!
44 ·
√

125 < 2,

immediately yielding the claim. For its roots of unity, we observe µk is always cyclic and
generated by some ζn with ϕ(n) 6 [k : Q]. Since −ζ ∈ k, we know that 10 | n and
ϕ(n) 6 4. This forces n = 10.

Now we introduce the second player of our story. Define K = k(ε1/5).

Lemma 9. The following statements are true.

• k is its own ray class field of conductor λ3 and K is the ray class field of k of conductor λ4.

• The discriminant of K is D(K) = 531, the class number of K is h(K) = 1 and K contains
precisely 10 roots of unity.

We choose to omit the proof and leave it as an exercise to the reader who is willing to
take a deep dive into the computational side of class field theory and algebraic number
theory, as degree 20 extensions are simply too much for naive methods and require some
more background, e.g. the Odlyzko bound.

For the rest of this note, we set G = Gal(K/k) unless specified otherwise and we fix the
element σ ∈ G that satisfies σ(ε1/5) = ζ2ε1/5.
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3 The units of K

This section will contain all the geometry. Let C be the curve of genus 2 defined by

C : y2 = x5 + 1/4

over Q and let J be its Jacobian. The projective closure of C is given by the equation

C : y2z3 = x5 + z5/4

and from this it can be seen that C contains only one point at infinity, which we will denote
by∞ = [0 : 1 : 0]. There is an obvious automorphism [ζ] : C→ C given by (x,y) 7→ (ζx,y).
This map induces an automorphism of J as well and as such, we obtain a map

[−] : Ok = Z[ζ]→ End(J).

We will denote the kernel of the endomorphism [α] by J[α].
The idea is to use this Jacobian to construct units in K. As it is a totally imaginary

number field of degree 20 over Q, by Dirichlet’s unit theorem, its unit group will be of
rank 20/2 − 1 = 9 over Z. Computing a basis for such a huge group is generally a very
difficult problem, but using the geometry, we can actually manage.

Lemma 10. We have that K = k(J[λ4]).

Proof. Recall that as ideals, (λ)5 = (5). From Theorem 4 in [3] it follows that K = k(J[5]).
However, we will see shortly that λ4-torsion points are sufficient to generate a field of
degree 5 over k, ensuring equality.

From the above result, it is clear that our approach will be to produce λ4-torsion points
on J to obtain elements from K that will turn out to be units. For this, we will define a few
more special points on J. We set P = (0, 1/2) −∞ and Q = (1,

√
5/2) −∞. Finally, we let R

be any point such that [λ]R = Q.

Lemma 11. It holds that P ∈ J[λ] and [λ2]Q = P. As such, R ∈ J[λ4].

Proof. Since its x-coordinate is zero, it is clear that [ζ]P = P and as such, [λ]P = [1− ζ]P = 0;
this proves the first claim. For the second, we leave it to the reader to check that the
function

f = y− (ζ+ 1)x2 − ζ4x+ 1/2

satisfies the property that [1 − ζ]2Q = P + div(f), yielding equality on J. Finally, we see
that

[λ4]R = [λ3][λ]R = [λ][λ2]Q = [λ]P = 0,

completing the proof of the lemma.
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Given the equality K = k(J[λ4]), one may wonder what Galois elements, for instance
σ ∈ Gal(K/k), look like on the λ4-torsion of J. The following lemma establishes this.

Lemma 12. On J[λ4], the automorphism σ acts as translation by P, i.e. σ(R) = R+ P.

Proof. There seems to be no trick here; in [1], Grant basically produces an unfathomably
nasty function that after many arduous calculations comes up with the correct divisor to
relate σ(R) and R+ P. We will not copy these calcuations.

To produce units, we will define two functions ν, ξ ∈ k(J) that evaluated at R turn out
to produce units. To understand the language of Grant’s calculations, we will prove the
following results first.

Lemma 13. On C the canonical divisor is given by K = 2[∞].

Proof. Consider the differential ω = dy/x4. We compute its divisor. Indeed, as long as
x 6= 0, the function y is a uniformiser on C and as such the divisor of ω is not supported
here. Only the points (0, 1/2), (0,−1/2) and∞ remain. For the first two points, we must
compute that

2ydy = 5x4dx, and so ω =
5

2y
dx.

In these points, x is a uniformiser and as such, we find no zeroes or poles here either. Only
the point at infinity remains. For this, we look at the affine patch D(y) of C to find the
affine curve

z3 = x5 + z5/4.

At the origin, z has a 5-fold zero whereas x only has a triple zero, so w = x2/z is a uni-
formiser. We rewrite the equation to

xw = w4 + x5/4, on which (x− 4w3)dw = (w− 5x4/4)dx.

Now since x− 4w3 has a triple zero and w− 5x4/4 only has a simple zero, their quotient
will have a double zero. Hence so willω.

Lemma 14. The Jacobian J is birationally equivalent to the symmetric productC(2) = (C×C)/S2.

Proof. We apply the Riemann-Roch theorem to C, which states that for any divisorD on C,
we have that

`(D) − `(K−D) = deg(D) − 1,

where `(D) denotes the dimension of the space of functions f satisfying div(f) +D > 0.
Now let D be any degree 0 divisor on C and apply the above theorem to D+ 2[∞]. Then
the theorem says that

`(D+ 2[∞]) > 1.

In other words, there exists some function f ∈ k(C) such that div(f) +D+ 2[∞] > 0. Since
this divisor is of degree 2, we find P1,P2 ∈ C such that

div(f) +D+ 2[∞] = P1 + P2, i.e. D+ 2[∞] = P1 + P2 on J.
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This shows that every point of J is of the form P1 + P2 − 2[∞]. We now show that, away
from the origin, the choice of P1,P2 is unique up to interchanging these points. For this, it
suffices to show that the choice of f in the argument above was unique; i.e. that equality
holds in the inequality. So, we reduce to showing that `(−D) = `(K−D− 2[∞]) = 0, where
we used Lemma 13. Any function g in this space would satisfy div(g) −D > 0. However,
this divisor is of degree 0, so equality must hold. In other words,D = div(g), soD = 0 on J.
So unicity holds on all of J \ {0}. This yields an isomorphism between this open subvariety
and C(2), yielding the birational equivalence.

Corollary 15. The function field of J is isomorphic to the field of symmetric functions in pairs of
points Pi = (xi,yi), i ∈ {1, 2}, on C.

Proof. Birationally equivalent varieties have isomorphic function fields, and indeed the
functions on C(2) are as written in the corollary.

Now we can write down the expressions for ν and ξ. We set

ν = −ζx1x2, ξ =
(x1 + x2)(x1x2)

2 + 1/2 − 2y1y2

(2ζ2 + ζ+ 2)(x1 − x2)2 .

According to Grant, it is nothing but painful calculations to verify that ν(R) is a root of

X5 + 5X4 + 5X2 + 1,

and that ξ(R) is a root of
X5 + . . . + ε3,

where the dots omit four terms with particularly nasty coefficients. Regardless, the results
are two units ν(R) and ξ(R) in K. Their Galois conjugates are of course again units, giving
us 8 in total if we omit one because it is dependent on the others due to the norm relation.
Adding ε1/5 itself, we have found 9 units, as desired. One may wonder if they are a basis
for O×K . A numerical calculation shows that the regulator in this case is

R
(
ν(R),ν(R)σ,ν(R)σ

2
,ν(R)σ

3
, ξ(R), ξ(R)σ, ξ(R)σ

2
, ξ(R)σ

3
, ε1/5

)
≈ 7715.

Sadly, this turns out to be not quite minimal yet. Namely, another laborious calculation
shows that

ζ−1ν(R)(1−σ2)(1−σ3)(1−σ4) = µ5

for some µ ∈ O×K . This brings the value of the regulator to

R
(
µ,ν(R),ν(R)σ,ν(R)σ

2
, ξ(R), ξ(R)σ, ξ(R)σ

2
, ξ(R)σ

3
, ε1/5

)
≈ 7715/5 = 1543.

We will see in the next section that this is actually the correct regulator and as such, that
these units generate O×K .
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4 Computing L-series

Let S be the set containing the two archimedean places of k and the place λ above 5, so
#S = 3. Then S consists of precisely those places that ramify on K/k. We let the two
archimedian places play the role of the distinguished primes. By Corollary 3 and Lemma 8,
we have for the trivial character χ = 1 that

lim
s→0

LS(s, 1)
s2 = −

1 · |2 log |ε||

10
· log(5) = −

| log |ε|| log(5)
5

.

We also wish to analyse this value for the nontrivial characters χ of the group Gal(K/k) ∼=
Z/5Z. The key here is to observe that all non-trivial characters induce the same L-function.

We establish this through a group theoretical construction.

Lemma 16. Let G be an abelian normal subgroup of some finite group H. Then there is a homo-
morphism H/G→ Aut(G) by mapping any coset xG to the conjugation by x map cx ∈ Aut(G).

Proof. To see that the map H → Aut(G) is well defined, it suffices to note that G being
normal in H implies that it is mapped to itself under conjugation by any element of H. To
see that the homomorphism H/G → Aut(G) is also well defined, it suffices to show that
the image of the class G is trivial. This is clear, because this image is conjugation by some
g ∈ G and G is abelian.

Proposition 17. Suppose that G = Gal(L/M) ∼= Z/pZ and H = Gal(L/Q) for some tower of
Galois fields L/M/Q are such that the map from Lemma 16 above is surjective. Then LS(χ, s) is
independent of the character χ ∈ Ĝ \ {1}.

Proof. We start with the definition

LS(s,χ) =
∏
p/∈S

(1 − χ(Frobp)Nm p−s)−1.

This time, instead of looking prime by prime, we will consider H/G-orbits of primes p of
M. So, we consider the polynomials∏

(H/G)·p

(1 − χ(Frobp)X).

For this to be independent of χ, it suffices to show that the set {χ(Frobq) | q ∈ (H/G) · p}
is independent of the non-trivial character χ. For this, we observe that all the non-trivial
characters of G ∼= Z/pZ assume the same values, and of course they all assume the value
1 at the identity. So, it suffices to show that {Frobq | q ∈ (H/G) · p} = G \ {id}. To this end,
recall that for any σ ∈ H/G ∼= Gal(M/Q), we have that Frobσp = σFrobpσ

−1. In other
words, Frobq for q ∈ (H/G) · p ranges over the H/G-orbit of Frobp under the conjugation
action of H/G on G from above. By assumption, this is equal to the Aut(G)-orbit, and
because G ∼= Z/pZ, this is equal to G \ {id}.
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We now return to our setting from before.

Lemma 18. Let G = Gal(K/k) ∼= Z/5Z and H = Gal(K/Q). Then the map H/G→ Aut(G) is
well defined and surjective.

Proof. The map H/G → Aut(G) is well defined because G is abelian and normal, because
the extension k/Q is Galois. We then consider the automorphism ρ of k inH/G ∼= Gal(k/Q)
that maps ζ to ζ2, extended to K leaving ε1/5 invariant. We may conjugate the element
σ ∈ Gal(K/k) sending ε1/5 to ζ2ε1/5 with ρ to compute that

ρ ◦ σ ◦ ρ−1(ε1/5) = ζ4ε1/5 = σ2(ε1/5).

Since 〈σ〉 = G ∼= Z/5Z, it follows that the automorphism sending σ 7→ σ2 generates the
automorphism group, as claimed.

Corollary 19. The L-function LS(s,χ) is independent of the non-trivial character χ.

Proof. This follows directly from Proposition 17 and Lemma 18 above.

Proposition 20. Let χ be any non-trivial character of G. Then(
lim
s→0

LS(s,χ)
s2

)4

=
R(K)

2| log |ε||
.

Proof. Since all L-functions coming from non-trivial characters coincide, we find from
Proposition 7 that

L(s,χ)4 · L(s, 1) = ζK(s) · (1 − 5−s).

Hence we see that(
lim
s→0

LS(s,χ)
s2

)4

=
lims→0 ζK(s)/s

9 · lims→0(1 − 5−s)/s
lims→0 L(s, 1)/s2

=
−h(K)R(K)/w(K) · log(5)

−| log |ε|| log 5/5

=
1 · R(K)/10
| log |ε||/5

=
R(K)

2| log |ε||
.

Note that we used the residue of LS(s, 1) that we computed at the start of this section.

One may now numerically approximate the limiting value L ′′(0,χ) with one’s favourite
method to obtain information about the value of R(K). Computing the value of the L-
function at s = 0 forces us to remind ourselves how this value is defined in the first place.
Indeed, our infinite product expansion will never converge near s = 0, but it will always
converge near s = 1. We must make use of a functional equation that relates the values at
these two points; according to Grant, general theory provides us with the statement that
the slightly scaled completed L-function

Λ(s,χ) = (2π)−2sΓ(s)−2As/2L(s,χ),
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where Γ denotes the Gamma-function and A = Dk ·N(f(χ)) = 53 · 54 = 57, satisfies

Λ(s,χ) = w(χ)Λ(1 − s,χ),

where χ is the complex conjugate of χ. Here f(χ) denoted the conductor of the character
χ, which by Lemma 9 must necessarily be λ4. From the above, it follows that in our case
L(s,χ) = L(s,χ) and as such, Λ(s,χ) = Λ(s,χ). The root number w(χ) can be computed
locally, but this would take us too far afield at present. The result turns out to bew(χ) = 1,
so that

Λ(s,χ) = Λ(1 − s,χ)

is simply symmetric in the line <(s) = 1/2. Grant describes a way to evaluate Λ(0,χ)
directly using integrals of some Bessel function that we choose to not discuss here. We
content ourselves with the naive approach. Writing out the symmetry formula yields

(2π)−2sΓ(s)2As/2L(s,χ) = (π/2)2s−2Γ(1 − s)2A(1−s)/2L(1 − s,χ),

and as such,
L(s,χ) = (2π)4s−2Γ(s)−2Γ(1 − s)2A(1−2s)/2L(1 − s,χ).

Hence

lim
s→0

L(s,χ)
s2 = (2π)−2(lims→0 sΓ(s)

)−2
Γ(1)−2A1/2L(1,χ)

= (2π)−2 · 1 · 1 · 57/2 · L(1,χ).

Using the infinite product or series expansion of L(s,χ), one may numerically determine
that L(1,χ) ≈ 0.895. Hence L(1,χ)4 ≈ 0.64 and as such,(

lim
s→0

L(s,χ)
s2

)4

≈ 514 · 0.64/(2π)8 ≈ 1608.

Finally, we compute using Proposition 20 that

R(K) ≈ 1608 · 2| log |ε|| ≈ 1548.

Indeed, this matches our claimed regulator from the previous section, showing its correct-
ness up to numerical error analysis arguments that neither we nor the author of the paper
[2] in question could be bothered to provide.
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5 The key equality

Now that we know exactly what the units in K are, in addition to having an expression
for both LS(s, 1) and LS(s,χ) from Proposition 20, we are in a good position to attempt
to verify Stark’s Question 6. During this section, all our considerations are motivated by
our direct desire to carry out this verification. The reader should keep this in mind should
any concept feel arbitrary or unnatural; additionally, the author has attempted to stress
precisely when and where we are lead directly by this goal.

Recall first that we chose S = {λ, p1, p2}, where the pi are the two archimedian primes
of k. We may lift this set to K and call it Σ, which thus contains all the archimedian primes
and the single prime above λ of K.

Recall further Stark’s question concerns some choice of primes P1, P2 of K above the
two distinguished primes in S of k, that we took to be the two archimedian primes. To be
completely explicit, we let p1 send ζ to e2πi/5 and p2 sends it to e4πi/5. For now, we will
fix the primes Pi by requiring them to send the unit v(R), which had minimal polynomial
X5 + 5X4 + 5X2 + 1, to its unique real root near X ≈ −5.2. We will see in the next section
that making an explicit choice here will not harm our generality. Similarly, we take ε1/5 to
be the fifth root of ε that is real under both Pi.

Our main challenge is to relate the expression for LS(s,χ) from Proposition 20, which
features the regulator, the determininant of some 9× 9 matrix of units, to something more
innocent; the determinant of a sum of 2× 2-matrices. To this end, we will have to define a
few helpful quantities to ease the notation. Let us start with the following one that should
remind the reader strongly of Stark’s Question 6, and let us explore some of its properties.

Definition 21. Let u1,u2 ∈ K× and χ ∈ Ĝ. We then set

Rχ(u1 ∧ u2) := det

∑
γ∈G

χ(γ)

(
log |u

γ
1 |P1 log |u

γ
1 |P2

log |u
γ
2 |P1 log |u

γ
2 |P2

) .

Even though there is meaning to the usage of the wedge product in this definition, for
this note the reader can just think of it as a notational quirk, as we will not use wedge
products in any meaningful way. That said, with some basic knowledge of the properties
of wedge products, the following property should not come as a surprise.

Lemma 22. Let u1,u2,u3 ∈ K×. Then Rχ(u1 ∧ u2u3) = Rχ(u1 ∧ u2) + Rχ(u1 ∧ u3).

Proof. This is a direct consequence of the identity

det
(

a b

c+ c ′ d+ d ′

)
= det

(
a b

c d

)
+ det

(
a b

c ′ d ′

)
.

Indeed, a(d+ d ′) − b(c+ c ′) = (ad− bc) + (ad ′ − bc ′).

Since LS(s,χ) does not depend on the non-trivial character χ by Corollary 19, it will be
of interest to work out when Rχ(u1 ∧ u2) has this same property. A simple case is taken
care of by the following lemma, for which we recall our distinguished element σ ∈ G given
by σ(ε1/5) = ζ2ε1/5.
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Lemma 23. Let u1,u2 ∈ K×. If uσ−1
2 is a root of unity, then Rχ(u1 ∧u2) = 0 for any χ ∈ Ĝ \ {1}.

Proof. Explicitly, uσ−1
2 being a root of unity gives us that σ(u2) and u2 differ only up to a

root of unity. In other words, |σ(u2)|P = |u2|P for any archimedian place P, and since σ
generates G, we find |u

γ
2 |P = |u2|P for any γ ∈ G. Therefore, the bottom row of the matrix

will be constant, so summing them with weights χ(γ), which sum to zero, yields a matrix
with vanishing bottom row. Its determinant therefore vanishes.

There are also more subtle conditions, however. The following makes reference to the
Galois element τ that fixes v(R) but sends ζ to ζ2. Note that τ interchanges P1 and P2
because of its action on ζ.

Lemma 24. Let u1,u2 ∈ K×. Suppose that uτ−1
2 and uτ+1

1 are both roots of unity. Then the
quantity Rχ(u1 ∧ u2) is independent of the choice of χ ∈ Ĝ \ {1}.

Proof. Since mapping χ to χ2 is a transitive action on Ĝ \ {1}, it suffices to show that
Rχ2(u1 ∧ u2) = Rχ(u1 ∧ u2) under the assumptions from the lemma. It is easy to check
that τστ−1 = σ3, so this holds for any γ ∈ G. Starting with the definition of Rχ2(u1 ∧ u2),
we first replace γ by γ3 to change χ(γ2) to χ(γ). Subsequently, we replace γ3 by τγτ−1,
and finally note that

|u
τγτ−1

i |Pj = |u
τγ
i |P3−j =

{
|u

−γ
1 |P3−j if i = 1;

|u
γ
2 |P3−j if i = 2,

where first used that τ interchanges the Pj and subsequently the assumptions on the ui in
the same way as in the proof of the lemma above. After taking the logarithm, the minus
signs in the exponents will appear in front, after which multiplying the top row by −1 and
swapping the two columns yield two cancelling signs in the determinant and transform
our expression precisely into Rχ(u1 ∧u2), completing the proof. The author apologises for
the verbal treatment of this calculation, but the above should suffice for anyone who wants
to carry out the proof effortlessly by hand.

Now let φ = ε1/5 + ε−1/5, so that after a brief computation NmK/k(φ) =
√

5. In
particular, we see that φ is a Σ-unit of K. We set

φ1 = φ(1+σ+σ4)/λ,

which is also a Σ-unit of K. Further, we set

ω = v(R)2−σ−σ4
and φ2 = ε1/5ω2.

All calculations from this point onward serve to show that φ1 and φ2 will eventually turn
out to be the units we are after to positively answer Stark’s question. Indeed, these units
have the following Stark-y property with respect to the trivial character.
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Proposition 25. With all notation from above, we have the equality

1
2
L ′′S(0, 1) =

1
w(K)

det

∑
γ∈G

(
log |φ

γ
1 |P1 log |φ

γ
1 |P2

log |φ
γ
2 |P1 log |φ

γ
2 |P2

) .

Proof. We found at the beginning of Section 4 that

1
2
L ′′S(0, 1) = lim

s→0

LS(s, 1)
s2 = −

2| log |ε|| log(5)
10

.

It thus suffices to show that

det

∑
γ∈G

(
log |φ

γ
1 |P1 log |φ

γ
1 |P2

log |φ
γ
2 |P1 log |φ

γ
2 |P2

) = −2| log |ε|| log(5).

To this end, we note that for any x ∈ K,

∑
γ∈G

log |xγ|Pi = log
∣∣∣∣∏
γ∈G

xγ
∣∣∣∣
Pi

= log
∣∣NmKk (x)

∣∣
pi

,

because Pi and pi coincide on k. Using the above already eluded to computation

NmKk (φ) = NmKk (ε
1/5 + ε−1/5) = ε+ ε−1 =

√
5,

we may then compute that

R1(φ1 ∧φ2) = det

(
log
∣∣Nm K

k (φ1)
∣∣
p1

log
∣∣Nm K

k (φ1)
∣∣
p2

log
∣∣Nm K

k (φ2)
∣∣
p1

log
∣∣Nm K

k (φ2)
∣∣
p2

)

= det

(
log |
√

5
3
/λ5|p1 log |

√
5

3
/λ5|p2

log |ε|p1 log |ε|p1

)
.

Clearly we have |
√

5|pi = 5. To work out the bottom entries, we must recall that we chose
ε to satisfy 2ε− 1 =

√
5 and as such, using the definitions of the embeddings p1 and p2,

once may check that |ε|p1 = |ε|2, whereas |ε|p2 = 1/|ε|2. Plugging everything in and noting
that both diagonals yield very similar contributions to the determinant, we find that

R1(φ1 ∧φ2) = −2 log |ε|
(
6 log(5) − 5(log |λ|p1 + log |λ|p2)

)
.

Finally,
log(|λ|p1 + log(|λ|p2 = log(|λ|p1 |λ|p2) = log(Nm |λ|) = log(5).

So indeed, R1(φ1 ∧φ2) = −2 log |ε| log(5), as claimed.
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We also record here a property of the unit φ2 that will be useful later.

Lemma 26. The field extension K(φ1/10
2 )/K is abelian.

Proof. The Galois group of the compositum of the fields K(φ1/2
2 ) and K(φ1/5

2 ), which is
precisely K(φ1/10

2 ), must be abelian if both of these fields are. Indeed, we have an injective
map Gal(K(φ1/10

2 )/k) → Gal(K(φ1/5
2 )/k)×Gal(K(φ1/2

2 )/k) given by restriction, showing
the claim. Hence it suffices to show that these two groups are abelian. For the first, we note
thatφ1/2

2 = ε1/10ω so that K(φ1/2
2 ) = K(ε1/10). In Grant [2] it is shown thatω ∈ k(ε1/10), so

that even K(φ1/2
2 ) = k(ε1/10), completing the proof of this part because this is a Kummer

extension of k and as such abelian.
For the other, we note that [K(φ1/5

2 ) : k] | [K(φ
1/5
2 ) : K][K : k] = 52 and since all groups

dividing this order are abelian, it suffices to show normality. This in turn comes down to
proving that σ(φ2)/φ2 is a fifth power in K. Grant does this explicitly using his unit µ from
a while back that appeared in the regulator of K.

Now the L-functions LS(s,χ) displayed a striking independence from the choice of
χ ∈ Ĝ \ {1}. For a statement similar to the above for χ = 1 to generalise to all characters,
as Stark’s question asks, we would certainly require such an invariance for Rχ(φ1 ∧φ2) as
well. Fortunately, this turns out to be the case.

Proposition 27. The quantity Rχ(φ1 ∧φ2) is independent of the choice of χ ∈ Ĝ \ {1}.

Proof. We claim that

Rχ(φ1 ∧φ2) = Rχ(φ1 ∧ ε
1/5) + Rχ(φ

σ−σ2−σ3+σ4
∧ v(R)2).

With this claim, the proof is easy. Namely, by definition σ(ε1/5) and ε1/5 differ only up to
a root of unity, and as such, Lemma 23 tells us that the first term vanishes for all χ 6= 1. For
the second, a direct calculation reveals that

τ(φσ−σ
2−σ3+σ4

) = φ−σ+σ2+σ3−σ4
,

so that we may apply Lemma 24 to obtain the required independence after noting that,
since τ fixes v(R) by definition, we have v(R)τ−1 = 1. It remains to prove the claim. Us-
ing Lemma 22 and φ2 = ε1/5ω2, after cancelling a factor of 2 we immediately reduce to
showing that

Rχ(φ1 ∧ω) = Rχ(φ
σ−σ2−σ3+σ4

∧ v(R)).

Because they are the only quintic subextensions of Q that are real under both P1 and P2,
we must have that Q(v(R)) = Q(φ2). Therefore the above equality can be checked with
a finite amount of effort inside this quintic field. We leave the details to the reader, as
unfortunately neither we nor Grant seem willing to provide them.

All we need now is a way to relate regulators to sums of determinants of smaller ma-
trices. We will do this by first relating the usual regulator of the field K to a slight general-
isation of it.
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Definition 28. Let Σ be any set of places of K containing all the archimedian ones. Let
{u1, . . . ,ut−1} be any set of Σ-units, where t = #Σ. Then we define

RΣ,K(u1, . . . ,ut−1) = |det([log |ui|σj ]i,j)|,

where the σj range over all but one place of Σ. If we took a set of generators instead, we
obtain the Σ-regulator of K with respect to Σ, denoted RΣ,K.

It is not hard to see that in our case, where Σ consists of precisely all archimedian
primes and just one additional prime over λ in kwith absolute norm 5, we must have

RΣ,K = log(5)R(K).

Even though we have seemingly only increased the complexity, by going from a 9 × 9-
matrix to a 10× 10, there actually is a trick that allows us to compute this bigger determi-
nant more easily if we pick our units well. Namely, suppose we would be interested to
compute

R := RΣ,K

(
φ1,φσ1 ,φσ

2

1 ,φσ
3

1 ,φσ
4

1 ,φ2,φσ2 ,φσ
2

2 ,φσ
3

2 ,φσ
4

2

)
,

and we write, omitting the last finite prime when computing the regulator,

Σ =
{
P1,σ(P1),σ2(P1),σ3(P1),σ4(P1),P2,σ(P2),σ2(P2),σ3(P2),σ4(P4)

}
.

With this, we see that we can write

R = det
(
M11 M12
M21 M22

)
,

where
Mij = (log |φσ

k

i |σ`(Pj))k,` = (log |φσ
k−`

i |Pj)k,` = (ϕij(k− `))k,`,

where we set ϕij(a) = log |φσ
a

i |Pj as a complex valued function G → C. It is this precise
form that we relate to sums of 2× 2-matrices.

Proposition 29. With all notation from above, we have that

R =
∏
χ∈Ĝ

det

(∑
a∈G

χ(a)[ϕij(a)]i,j

)
.

Proof. Consider the 5-dimensional C-vector space Ω of complex valued functions G → C.
This vector space comes with two natural bases; the indicator functions {δb | b ∈ G} form
one, and the set Ĝ forms the other. The idea of the proof is as follows: we define a linear
operator onΩ2 whose matrix in the indicator basis is the matrix whose determinant defines
R and who at the same time leaves the spaces (Cχ× 0)⊕ (0×Cχ) invariant for any χ ∈ Ĝ.
This means that in the character basis,Mwill have 5 blocks of size 2× 2 on its diagonal, so
that its determinant will be the product of the smaller determinants, as desired.

To carry out this plan, for any ϕ ∈ Ω, we define ϕ(1) to be ϕ regarded as an element of
Ω× 0 ⊂ Ω2, and ϕ(2) as ϕ as an element of 0×Ω. For any a ∈ G, we have a natural linear
map onΩ given by

(Taϕ)(b) = ϕ(a+ b).
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It is easy to see that
Taδb = δb−a and Taχ = χ(a)χ.

Using our distinguished functions ϕij from above, this allows us to define a linear trans-
formation onΩ2 by extending the formula

T(ϕ(i)) =
∑
a∈G

∑
j=1,2

ϕij(a)(Taϕ)(j)

to all ofΩ2 by linearity. To see what this map looks like on the basis {δb | b ∈ G}, we write
that

T((δb)(i)) =
∑
a∈G

∑
j=1,2

ϕij(a)(δb−a)(j).

So indeed the (δc)(j) component of T((δb)(i)) is equal to ϕij(b− c). Hence the matrix of T
will in this basis coincide with the matrix whose determinant defines R.

On the other hand, we may compute that

T(χ(i)) =
∑
a∈G

∑
j=1,2

ϕij(a)χ(a)χ(j).

We see that the space Cχ(1) ⊕Cχ(2) is left invariant for any character χ, and it is clear that
its matrix entries are as described in the statement.

Indeed, the above argument is completely general and is in no way, shape or form
confined to our particular choices of G and matrix sizes. The author preferred to treat
the argument in a pragmatic way as presented above, and to leave the formulation of the
precise general statement about determinants to the reader; they should find the same as in
[2]. Further, the reader will have noticed that the expression that occurs on the right hand
side of the above theorem is precisely a product over all Rχ(φ1 ∧φ2). In other words, we
have shown that

R =
∏
χ∈Ĝ

Rχ(φ1 ∧φ2).

This is the key point. We are now merely left to precisely relate both sides of the equation
to what we are after. Let us start with R. As it is the Σ-regulator of some independent set of
Σ-units, it must be an integral multiple of

RΣ = log(5)R(K).

A quick numerical calculation shows this multiple to be precisely 104. Thus, we have

R = 104 log(5)R(K).

We can now finally state and prove what Grant calls the key equality.
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Theorem 30. With all notation from above, we have for all characters χ on G the equality

1
2
L ′′S(0,χ) =

1
w(K)

det

∑
γ∈G

χ(γ)

(
log |φ

γ
1 |P1 log |φ

γ
1 |P2

log |φ
γ
2 |P1 log |φ

γ
2 |P2

) .

Proof. The trivial character has already been dealt with in Proposition 25, so we may as-
sume that χ 6= 1. In this case, we get from Proposition 20 that(

1
2
L ′′S(0,χ)

)4

=

(
lim
s→0

LS(s,χ)
s2

)4

=
R(K)

2| log |ε||
=

1
104

R

2| log |ε|| log(5)
.

Making use of Proposition 27, we find that

R = R1(φ1 ∧φ2)
∏
χ 6=1

Rχ(φ1 ∧φ2) = R1(φ1 ∧φ2) · Rχ(φ1 ∧φ2)
4.

Again from Proposition 25 it follows that

R1(φ1 ∧φ2) = −2| log |ε|| log(5),

and as such, (
1
2
L ′′S(0,χ)

)4

=

(
Rχ(φ1 ∧φ2)

10

)4

.

Hence the numbers between the brackets must be equal up to a power of i. A brief numer-
ical calculation shows that equality in fact holds.

6 Verification of Stark’s question

With the key equality in hand, we may readily verify Stark’s question. Recall that we made
a choice for Pi at the start of the previous section. Fortunately, it turns out that we need
not worry about this all that much, as is provided by the following lemma.

Lemma 31. If Stark’s question has a positive answer for some choice of P1,P2, then it has a positive
answer for any such choice.

Proof. Suppose that the Σ-units ε1, ε2 positively answer Stark’s question for P1,P2. Note
that any other choice of primes can be written as ρ1(P1), ρ2(P2) for some ρ1, ρ2 ∈ G, be-
cause the Galois group G = Gal(K/k) acts transitively on the primes above a given prime.
Further note that

|x|ρ(P) = |(ρ(P))(x)| = |P(xρ
−1
)| = |xρ

−1
|P,

where the inverse only appears because we switch from a left- to a right-action. Taking x =
ερ shows that the choice of Σ-units ερ1

1 , ερ1
2 will work for our new choice of archimedian

primes, because the resulting matrices are the same. The follow-up questions in Question
6 are also still valid.
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We thus reduce to verifying Stark’s question for our particular choice of the Pi. Fortu-
nately, the key equality from Theorem 30 does most of the work.

Theorem 32. Stark’s Question 6 can be answered positively for the field extension K/k.

Proof. Indeed, by Theorem 30, the Σ-units φ10
1 and φ2 answer the first equality positively.

We only need to include this tenth power because of the appearance of an extra factor of
w(K) in the question compared to the key equality. In fact, because(

log |εa1 ε
b
2 |p1 log |εa1 ε

b
2 |p2

log |εc1ε
d
2 |p1 log |εc1ε

d
2 |p2

)
=

(
a log |ε1|p1 + b log |ε2|p1 a log |ε1|p2 + b log |ε2|p2

c log |ε1|p1 + d log |ε2|p1 c log |ε1|p2 + d log |ε2|p2

)
=

(
a b

c d

)(
log |ε1|p1 log |ε1|p2

log |ε2|p1 log |ε2|p2

)
,

it follows that for any choice of a,b, c,d such that ad − bc = 1, the units φ10a
1 φb2 and

φ10c
1 φd2 will also satisfy the first equation from Stark’s question. This is useful, because it

allows us to positively answer the follow-up questions as well.
Namely, by Lemma 26, the field extensions K(φa1 φ

b/10
2 )/k and K(φc1φ

d/10
2 )/k will al-

ways be abelian as they are subfields of K(φ1/10
2 ). To ensure equality here, it suffices to

choose c,d coprime with 10. One such choice is established with (a,b, c,d) = (1, 3, 2, 7).
Explicity, we thus choose ε1 = φ10

1 φ
3
2 and ε2 = φ20

1 φ
7
2.

Finally, we must show that we may ensure that εσi OK = εiOK for all σ ∈ G. In other
words, we want that εσi /ε ∈ O×K . Fortunately, this is easy; φ2 is a unit so we may ignore it
completely. Also, φσ1 /φ1 is a unit because it φ1 only had nonzero λ-adic valuation but this
prime, being the only one above 5, is fixed by σ.
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