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Preface

We can change the world. Although the processes that determine life on earth
are not controllable, the impact of human kind is major. We have evolved to an
intelligent species that knows exactly how to employ nature as a provider for our
survival. Our natural thirst for knowledge has brought us an understanding of
many of nature’s processes and by virtue of that, prosperity. The population
thrives on our innovations and scientific development. In particular since the
18th century, science has flourished and has established to be a valued instrument
in the never-ending urge to improve our well-being. And it has been successful;
the average life expectancy of humans rises steadily. Scientific discoveries have
enabled us to combat diseases and to conquer natural disasters. Intelligent
constructing prevents buildings from collapsing during earthquakes, our ships
can overcome heavy storms, and, relying heavily on the quality of dykes and
levees, we can even live on land that is below sea level. But even on a smaller
scale, science delivers; through artificial fertilizer that enhances the growth of
our crops, and sunscreen that prevents our skins from the malignant effects of
the sun.

However, as beneficial as scientific innovations have been to the growth and
health of our population, the human impact on nature is also palpable from much
more alarming viewpoints. We arrogantly consider ourselves the most important
residents of our planet. To facilitate mass consumption in the world, territories
of other species are seized, driving them to extinction; the use of heavy chemicals
has contaminated soil, making it unfruitful and the fossil fuel industry that still
provides for most of our technology contributes heavily to global warming and
all its inherent issues. We seem to have forgotten that our relation to the planet
is in fact a symbiosis; the earth is essential to our existence.

The need for a transition of focus of the sciences is hence more urgent than
ever. In order to provide for our ever growing community, we need to aim for
sustainable development and choose to acknowledge our ‘Gaia’ as a whole instead
of focusing mostly on the people that occupy this planet. In this task there lies
an important role for the mathematician, being perhaps the most fundamental of



all scientists. Driven by questions that are posed by experts from ecology, biology
or other applied sciences, applied mathematicians identify in complex systems
the important mechanisms that are responsible for the process in question. These
types of processes frequently refer to, for example, growth or spread with a
certain regularity. While other applied scientists often contribute by observing a
phenomenon and describing it meticulously, applied mathematicians take another
approach. They are not bothered by the exact particulars that define the system,
but pay attention to the important driving forces. In many cases, it turns out that
the answer a mathematician finds to a specific question, is generally applicable
to a much wider range of problems. As an example, think of a meadow with
rabbits and foxes. Foxes eat rabbits, but rabbits reproduce faster, so an evident
question to ask is what will happen to both populations as time proceeds. To
study this, we design a phenomenological model that describes the change of
the populations per time unit using two equations; one for foxes and one for
rabbits. For the foxes, it incorporates how many foxes are born in that time
unit due to reproduction and a diet of fluffy rodents, and a negative term that
describes the natural death per time unit. For the rabbits, the equation includes
a growth term from reproduction and a negative term that describes not only
the natural death, but also death by fox per time unit1. One could wonder
whether the quality of the grass or the size of the meadow should not be taken
into the equation2, which exemplifies the nontriviality of modeling in the first
place. But even when we suppose that only reproduction and the foxes’ appetite
are of importance, several approaches to this problem are possible. One way is
to experimentally measure how many rabbits a fox eats, and what their average
life span is, in order to estimate all the numbers that make up the equations.
Next, a computer can use these equations to tell you exactly how many foxes
and rabbits will survive, given the exact number of both populations at a certain
starting point. A mathematician, however, will not be bothered by exactly how
many rabbits are born per time unit or how many rabbits are on a fox’s menu.
Instead, they label all those estimated numbers with a letter so that it becomes
a parameter; something that is still variable. Subsequently, we manipulate the
abstract equations and draw conclusions that depend on those parameters. Such
a conclusion might be that rabbits survive provided that their reproduction
rate is at least twice that of a fox. The beauty of this approach is that to a
mathematician the actual numbers do not matter. Moreover, a mathematician is
less susceptible to drawing biased conclusions because he/she is not troubled by
the exact interpretation of the parameters. Experimental data is prone to small

1This particular model from population dynamics is referred to as the Lotka-Volterra system,
proposed separately by Lotka and Volterra in the beginning of the 20th century, see [105, 162]

2pun intended
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errors, and a mathematician’s results are not affected by that. In fact, the results
are so general that they can be applied to any type of predator-prey interaction,
other than foxes and rabbits. Furthermore, a mathematician provides results
with a certain mathematical rigor. That means that within the laws of the
equations, the conclusions come with proofs and are not open to interpretation.

Of course there are disadvantages to this level of abstraction, too. In very
complex systems, it is sometimes hard to translate abstract results back to their
original application. Also, the rigorous analysis of a mathematician is often
nearly impossible in large scale systems with many interaction processes. An
essential step in the mathematical modeling of a natural phenomenon is therefore
to construct a model that is stripped down from all unnecessary intricacies so
that it is manageable, but remains to capture the determining processes. This
in itself is a nontrivial task, but there are some ideas to follow. First, we could
inspect for any large discrepancies between quantities in the system. Returning
to the fox-rabbit model, instead of using general parameters for the reproduction
rate of both species, we could include the fact that one is much faster than the
other. Such extra information can simplify the model significantly and makes it
more controllable. A second approach is to see whether there are some conserved
quantities in the system. This could be physical laws like conservation of mass or
energy, but it could also be less obvious. In general, any type of extra structure
that we lay upon or identify in the system, has the ability to simplify it.

The imperative problems that the expansion of our population brings are
obviously hard. The mere issue of prioritizing this large class of questions makes
starting to work on them nearly impossible; the diversity in scale and impact is
enormous. Not to mention the obstacles that one needs to overcome to model
these types of large scale systems. So even though a long history of innovation
provides enough confidence that we can indeed change the world and find a way
to sustain our planet, it is not going to be easy. The need for interdisciplinary
collaborations is evident and the role of an applied mathematician should not be
underestimated. Because even when at first sight a model may only bring utter
confusion and total chaos, the correct framework and a trained mathematician’s
eye can provide insight. After all, mathematicians even have a strict definition
for chaos.

vii
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1

Introduction

In this thesis, we study several systems with an application in nature. While
these applications (phytoplankton growth, tumor spread and vegetation patterns)
have little in common, the equations that describe their behavior have strikingly
similar features. The models studied in this thesis all comprise two or more
coupled differential equations. Differential equations in general are equations
that involve not only functions and variables, but also derivatives of functions;
they are equations that connect the change of a quantity to the quantity itself.
When the equations include derivatives with respect to more than one variable
(time, space) they are called partial differential equations. The partial differential
equations studied in this thesis are of reaction-diffusion type, which implies
that they describe the spread (diffusion) of some quantity over time, under the
influence of some interaction (reaction) with, usually, another quantity. Say we
label two quantities u and v that interact, and we measure the spread of those
quantities over a line segment – a spatial domain parametrized by x – over time
t. The equations that describe this may be written as

ut = uxx + f(u, v),

vt = vxx + g(u, v),
(1.1)

where the functions f and g describe exactly how u and v react to each other
and a subscript indicates taking the derivative with respect to that variable. The
second derivative with respect to the spatial variable models diffusion or natural
spreading of the quantities u and v in the absence of any other forces. Furthermore,
say we let x be bounded by 0 and 1, and t starts at t = 0 and may run up to
infinity. To make this system of equations well-posed for solving, we provide
boundary and/or initial conditions that prescribes the behavior of the solution
at t = 0 and at the boundaries of the domain. Also, the system may depend on



Introduction

parameters. Many types of questions may be posed associated to problems like
(1.1). Are there unique solutions to the system (well-posedness)? Could these
solutions be periodic in space or time (existence)? Does the character of a solution
change significantly under the influence of changing parameters (bifurcations)?
Are solutions resilient to small changes in the environment (stability)? In this
general form it is hard to answer those questions, because the functions f and g
may get very complex. But even in the case that f = av and g = bu, with a, b
parameters, studying existence of solutions, their bifurcations and their stability
is nontrivial.

Therefore, we need some additional information to simplify the general
reaction-diffusion model. The models studied in this thesis are all of reaction-
diffusion type, but there is more agreement among them. Inherent through the
applications, there is a clear separation of scales in all systems. The system is
therefore equipped with a special small parameter that we label ε with 0 < ε� 1.
It is for example the size of a phytoplankton colony divided by the depth of the
water column. This extra information is essential to the analysis that is presented
in this thesis. A system involving such a small parameter is called perturbed, and
if this small parameter multiplies the highest partial derivative of an equation,
we call this singularly perturbed. An example of a singularly perturbed reaction
diffusion system is

ut = uxx + f(u, v; ε),

vt = εvxx + g(u, v; ε).
(1.2)

The models studied in this thesis are all singularly perturbed, and the mathe-
matical tools that are used to analyze them exploit that perturbed character.
After all, if ε is so small, why not simply set it equal to zero? In singularly
perturbed problems, as is obvious in (1.2), simply equating ε = 0 drastically
changes the character of the v-equation. It is not even a partial differential
equation anymore. Therefore, the results that are derived using the limit problem
for ε = 0 need to be studied with care. The mathematical field that is associated
with these questions is usually referred to as asymptotic analysis or perturbation
analysis. The results that are derived in this field have a validity regime that can
be explicitly estimated in terms of the small parameter ε, as it asymptotically
approaches zero.

In this section, we will provide an overview of several techniques from asymp-
totic analysis that are used throughout this thesis. They can be thought of as the
prerequisites to the main part of this thesis, Chapters 2–5. The application of
the techniques is not limited to reaction-diffusion systems, but concerns integrals
or systems of ordinary differential equations with a small parameter ε. The
partial differential equations treated in this thesis are in most cases converted

10



1.1 Laplace’s method

into systems of ordinary differential equations (for example by introducing a
traveling wave coordinate), and after this reduction step, the techniques discussed
in this chapter are applied. The techniques discussed in the prerequisites covered
below, all define asymptotic results for ε approaching zero, and will in many
cases be leading order results in ε. In order to quantify exactly what leading
order means, we use the following definition.

Definition 1.0.1. Given two functions of a small parameter ε, f(ε) and φ(ε),
we say that

f(ε) = O(φ(ε)),

if there are constants k and ε̄, both independent of ε, for which holds

|f(ε)| ≤ k|φ(ε)|, for 0 < ε < ε̄.

We say that “f is big Oh of φ” or “f is of order φ” as ε approaches zero. In
particular, a result holds ‘to leading order in ε’ if the error term is ‘big Oh’ of a
positive power of ε, O(εp) with p > 0. Furthermore, we write f ∼ φ as ε ↓ 0 if

lim
ε↓0

f(ε)

φ(ε)
= 1.

These definitions are gained from [77].

1.1 Laplace’s method

The first technique that we discuss is one that is not necessarily related to
differential equations, but to an operation that is often used to solve them:
integrals. Laplace’s method is developed to approximate integrals of a product of
two functions, say f(t)h(t). Suppose that one of the factors of the product, h(t),
is localized; it has a well-defined maximum in the integration interval and the
decay away from that maximum is ‘fast’. Then, intuitively, one may expect that
the product of h(t) with f(t), which may not be localized, can be approximated
by using the value of f(t)h(t) at the location in the integration interval where
h(t) is maximal. This is exactly what Laplace’s method uses.

An example of a function with a particularly localized character is the ex-
ponential. Their growth rate is is fast, especially when the argument is very

large. A function h(t) = e
g(t)
ε , with g(t) some continuous, real-valued function,

is thus strongly localized because the exponent grows asymptotically large as
ε approaches zero. Laplace’s approximation concerns therefore integrals of the
form ∫ b

a

f(t)e
g(t)
ε dt,

11
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2

2

0

1

t

e
g(t)
ε

f(t)e
g(t)
ε

f(t)

g(t)

Figure 1.1: Illustration of localized function to which Laplace’s method can be
applied. Here, f(t) = t+ 1 and g(t) = −2(t− 1

2 )2 and ε = 0.1.

where f(t) and g(t) are continuous functions over the bounded interval [a, b] with
a < b. For an illustration of this intuition, see Figure 1.1. We follow the notation
from [77]. Laplace’s method states that if the maximum of g(t) in the interval
[a, b] is attained at some t0 ∈ (a, b) and f(t0) 6= 0, then it holds that

∫ b

a

f(t)e
g(t)
ε dt ∼ f(t0)

√
2πε

g′′(t0)
e
g(t0)
ε ,

as ε → 0. Note that the maximum value of f does not determine for the
approximation but the second derivative of g does. It carries information on the
steepness of the decay of g outside t0; it says something about how localized
the exponential function really is. This way, Laplace’s method provides a direct
asymptotic approximation for integrals in terms of local information that can
easily be determined.

Say that f(t) = t+ 1 and g(t) = −2(t− 1
2 )2. Then the maximum of g(t) is

attained at t0 = 1
2 , and the integral

∫ 1

0
f(t)e

g(t)
ε is approximated by 3

√
π

2
√

2

√
ε, as

ε→ 0. For ε = 0.1, the error that is made using Laplace’s method is −9.3 · 10−4,
which drops to 6.9 · 10−18 for ε = 0.001.

It may be the case that the maximum of g(t) is on one of the boundaries of
the integration interval. In this case, too, Laplace’s method provides estimates.
For example, when the maximum of g is attained at the right boundary and ,
t0 = b, and g′(b) 6= 0, we approximate∫ b

a

f(t)e
g(t)
ε dt ∼ −ε f(b)

g′(b)
e
g(b)
ε .

12



1.2 Center manifold reduction

An analogous result exists for a maximum at the left boundary, t0 = a, with a
change of sign. Moreover, this result can be extended using higher order estimates
if g′(b) = 0. Full proofs and higher order terms of this approximation can be
found in, for example, [174].

1.2 Center manifold reduction

Upon studying systems of ordinary differential equations, one of the first tech-
niques we learn is how to study the linear stability of fixed points in autonomous
systems. That is, in a system of the form

ẋ = f(x),

with ẋ = dx
dt and where x ∈ Rn and f(x) : Rn → Rn smooth enough. We learn

that the linear stability of a fixed point x∗ can be determined by linearizing the
function f , that is, studying the Jacobian, J(x). The behavior of the resulting
Jacobian evaluated at the fixed point returns the stability of the fixed point. If all
eigenvalues of J(x∗) have negative real part, i.e. there are only stable eigenvalues,
the fixed point is stable. If there is an eigenvalue with positive real part, i.e. an
unstable eigenvalue, the fixed point is unstable. If, however, any of the eigenvalues
has zero real part, a center eigenvalue, and there are no unstable eigenvalues, the
linear stability analysis is inconclusive. The only way to determine the stability
in that case is to do nonlinear stability analysis, and study the behavior of the
system using the center manifold theorem, Theorem 1.2.2. A detailed proof of
this theorem is given in [18], but we will explain the results here.

Suppose we are given a system of which the Jacobian at a fixed point only
has ns stable and nc center eigenvalues and no unstable eigenvalues. Without
loss of generality, we can then translate and rewrite the system in a normal form
with a slight abuse of notation like

ẋ = Ax+ f(x, y),

ẏ = By + g(x, y),
(1.3)

where x ∈ Rnc and y ∈ Rns . A and B are constant coefficient, square matrices
with dimensions nc and ns, respectively and the eigenvalues of A all have zero
real part, while the eigenvalues of B only have negative real part. Moreover, the
functions f and g are strictly nonlinear and smooth. In this normal form, the
fixed point is translated to (x, y) = (0, 0) and we have changed the coordinates
so that the center and stable behavior are clearly separated. Then, the center
manifold theorem states the following.

13
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h(x)

x

y

Figure 1.2: Illustration of a center manifold for system (1.3) in the case that
nc = ns = 1. The stable subspace coincides with the y-axis and the center
subspace with the x-axis.

Theorem 1.2.1 (Existence of a center manifold). The system (1.3) has a locally
defined, invariant manifold

W c = {(x, h(x)) : x ∈ Rnc , |x| < ε},

where ε > 0 is small enough and h(x) : Rnc → Rns satisfies

h(0) = 0, hx(0) = 0.

That is, there exists a manifold on which the behavior of (1.3) is locally
invariant (an initial point on the manifold that follows the flow induced by (1.3),
stays on the manifold for some time). This manifold has the dimension of the
number of center eigenvalues and is locally a graph over x. Moreover, the center
manifold is tangent to the center eigenspace of the fixed point. An illustration of
this idea with nc = ns = 1 is depicted in Figure 1.2

Additional to the existence of such a locally invariant manifold, there exists
a theorem that states that the stability of the fixed point (0, 0) of (1.3) can be
determined by studying the behavior on that center manifold.

Theorem 1.2.2 (Center manifold reduction theorem). Locally near (0, 0), the
system (1.3) is topologically conjugate to the system

ẋ = Ax+ f(x, h(x)),

ẏ = By.
(1.4)

Note that system (1.4) decouples, and for the stability of fixed point (0, 0)
it suffices to study the nc-dimensional system defined by ẋ = Ax + f(x, h(x)).
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1.3 WKB-method

That is a reduction of ns dimensions as opposed to the system (1.3)! Theorem
1.2.2 is a local result, which means that it is only valid if the behavior of matrix
B is significantly faster than that of A. That is, the eigenvalues of B must be
significantly larger than O(ε); there is a spectral gap between the center and
stable eigenvalues.

In a more general case, the system depends on parameters and only exhibits
center eigenvalues for certain parameter combinations. For those combinations,
the system changes stability; there is a bifurcation. Also in the case of a
bifurcation, center manifold reduction can be of help, via the following theorem.

Theorem 1.2.3 (Center manifold reduction with parameter dependence). Con-
sider the system

ẋ = A(µ)x+ f(x, y;µ),

ẏ = B(µ)y + g(x, y;µ),
(1.5)

with x ∈ Rnc and y ∈ Rns and µ ∈ Rk a parameter. Let A(0) be a constant coef-
ficient matrix of dimension nc with only center eigenvalues, and B(0) a constant
coefficient matrix of dimension ns with only stable eigenvalues. Furthermore, let
f and g be strictly nonlinear and smooth. Then, there exists a Rk-dimensional
family of locally invariant (i.e. for µ small enough) center manifolds

W c
µ = {(x, h(x;µ)) : x ∈ Rnc , |x| < ε},

and h(x; 0) = h(x) from Theorem 1.2.1. Furthermore, system (1.5) is topologically
conjugate with

ẋ = A(µ)x+ f(x, hµ(x);µ),

ẏ = B(µ)y.
(1.6)

This extension can be verified by adding to system (1.5) a auxiliary equation
µ̇ = 0, and applying Theorems 1.2.1 and 1.2.2. Again, this result is a local one;
the reduction only holds for those µ that make the real part of the eigenvalues
of B still significantly smaller than those of A. The perturbation by µ may not
violate the spectral gap condition. Center manifolds can be determined explicitly,
for more details on how to approach this, see for example [98].

1.3 WKB-method

The next perturbation method in this section of mathematical tools is one
that approximates solutions to second order, non-autonomous, linear, ordinary
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differential equations that are singularly perturbed. That is, differential equations
of the form

ε2yxx − q(x)y = 0, (1.7)

with x ∈ R with q(x) > 0. To gain some intuition, first consider the case that
q(x) = q0 > 0, a constant. In that case, equation (1.7) is simply a second order
differential equation with constant coefficients. It is solved by exponentials; the
general solution is

y(x) = c+e
√
q0
ε x + c−e

−
√
q0
ε x, (1.8)

where c± are two constants that depend on the initial conditions. The WKB-
method1 generalizes this idea of using exponentials for a q that depends explicitly
on x. Because of the singularly perturbed nature of (1.7), it is expected that
there is a separation of scales inherent to the equation. The specific assumption
of the WKB-method is that the fastest2 behavior is captured by an exponential
function as a factor of the solution. Specifically, we assume that the solution is
of the form

y(x) = e
θ(x)
ε

[
y0(x) + εy1(x) +O(ε2)

]
, (1.9)

where θ(x) and yi(x) are functions that need to be determined. Upon substituting
(1.9) in to (1.7) and collecting terms of the same order in ε, we can rewrite to
leading order

ε2

{
1

ε2
(θ′)2y0 +

1

ε

[
θ′′y0 + 2θ′y′0 + (θ′)2y1

]}
− q(x) (y0 + εy1) = 0, (1.10)

where ′ is the derivative with respect to x. The leading order terms of (1.10)
make up the O(1) equation,

(θ′)2 = q(x), (1.11)

which yields θ(x) = ±
∫ x√

q(s)ds. The next order equation of (1.10) is

θ′′y0 + 2θ′y′0 + (θ′)2y1 = q(x)y1, (1.12)

but using (1.11), this simplifies to θ′′y0 + 2θ′y′0 = 0, which has solution

y0(x) =
c√
θ′
,

1WKB stands for Wentzel, Kramers, and Brillouin who worked in the field of quantum
mechanics, and used this method to find approximate solutions to the Schrödinger equation.
There are, however, several other names for the same technique.

2Here, fast indicates a big change in y over a short x-interval.
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1.4 Geometric singular perturbation theory

where c is an integration constant. Now recall that there are two solutions
for θ(x). This is to be expected in a second order equation without initial
conditions; compare with the solution (1.8) which is also a linear combination of
two exponentials. Combining the results of the two orders of magnitude in this
method and making a linear combination of the two solutions for θ, we find a
leading order approximation to (1.7),

y(x) =
1

q
1
4 (x)

[
C+e

1
ε

∫ x√q(s)ds + C−e
− 1
ε

∫ x√q(s)ds] . (1.13)

To find higher order terms of this approximation, we can return to equation
(1.10) and collect the next order’s terms to solve y1 and continue. Note that the
solution for y(x) is not well-defined for values of x at which q(x) vanishes. In
this case, we speak of turning points, extra measures are needed and the solution
at those x-values is usually approximated using Airy functions. For more details,
see [77].

1.4 Geometric singular perturbation theory

In singular perturbed systems, often a separation in (time) scales can be observed.
For example, localized behavior of solutions, very steep transitions near bound-
aries, or oscillations with a fast and a slow part. Taking this type of information
into account improves the prospects of solving the system tremendously. By
considering both scales of a perturbed problem separately, we can usually derive
results much more easily. Moreover, the concatenation of the fast and slow
scale is shown to be a good (local) approximation of the original problem. The
question that remains is then how the two worlds meet. For at least a class of
singularly perturbed problems, geometric singular perturbation theory (GSPT)
provides the answer to just that. In this section the main results of the theory
are formulated and interpreted. We follow mainly the formulations from [73]
and [149], and conclude this subsection with an example where the results are
applied to the forced Van der Pol equations.

The focus to which we apply GSPT is a class of systems of ordinary differential
equations of the following form,

u̇ = f(u, v, ε),

v̇ = εg(u, v, ε),
(1.14)

where ˙ = d
dt , u ∈ Rk and v ∈ Rl with k, l ≥ 1. For the functions f and g we

will require them to be ‘smooth enough’ for the application of the theorems.
Furthermore, 0 < ε� 1 is, of course, a small parameter and f, g are O(1) with
respect to ε.
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Upon introducing a new time scale, τ = εt, we can rewrite system (1.14) into
an equivalent formulation thereof;

εu′ = f(u, v, ε),

v′ = g(u, v, ε),
(1.15)

where ′ = d
dτ . Since ε is small, τ is a much slower time scale compared to t.

Hence, we refer to (1.15) as the slow system, opposing the label ‘fast’ for system
(1.14). This is the setting to which GSPT applies.

1.4.1 Fenichel’s theorems

The two equivalent systems (1.14) and (1.15) describe the same behavior, but in
a different variable. One could say that the two systems argue from a different
viewpoint. Taking the limit ε→ 0 in (1.14) yields the so-called layer system,

u̇ = f(u, v, 0),

v̇ = 0,
(1.16)

and is not at all equivalent to the limiting system of (1.15), which we call the
reduced system,

0 = f(u, v, 0),

v′ = g(u, v, 0).
(1.17)

The layer system has trivial behavior in the v-components, making it significantly
easier to study, and the reduced system is a differential-algebriac system, where
the dynamics is restricted to the manifold on which f(u, v, 0) = 0. This generically
l-dimensional manifold, the critical manifold,

M = {(u, v) ∈ Rk+l : f(u, v, 0) = 0}, (1.18)

is, in turn, exactly the set of fixed points of the layer system. Hence, in terms
of the layer problem the only nontrivial behavior is in the u-direction, and its
direction generically reverts atM. On the other hand, the reduced problem only
takes place on the critical manifold, and the dynamic behavior is dictated by the
v-equation. And since (1.16) is associated with the fast, and (1.17) with the slow
coordinate, we can conclude that the fast behavior is to leading order trivial in
the v-direction and determined by u, while the leading order slow behavior takes
place in the lower dimensional state space defined by M and determined by v.

Definition 1.4.1. Let M0 ⊂ M be a compact subset of the critical manifold
corresponding to system (1.17). If the eigenvalues of the Jacobian ∂f

∂u (u, v, 0)|M0

are bounded away from the imaginary axis, then the critical manifold is normally
hyperbolic.
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1.4 Geometric singular perturbation theory

The evident question to ask now is how to make the results drawn from both
limiting systems compatible. This is established by Fenichel’s theory [49], and
will be explained according to two theorems and one corollary.

Theorem 1.4.1 (Fenichel’s first theorem). SupposeM0 is compact and normally
hyperbolic. Then, for ε > 0 and sufficiently small there exists a manifold Mε

which is O(ε) close to M0 and diffeomorphic to it. Moreover, Mε is locally
invariant under the flow of (1.14).

Like the center manifold in section 1.2, the persisting manifold Mε is locally
a graph over the v-coordinates, say u = h(v); this follows from the Implicit
Function Theorem and the fact that M0 is normally hyperbolic. Hence, we can
reduce the reduced system to

v′ = g(h(u), v, 0).

So, even for ε 6= 0 but small enough, the slow flow may be approximated by
(1.17). The slow flow takes place on the locally invariant slow manifold Mε. For
precise statements on the smoothness and invariance of Mε, see [82, 84].

It is noteworthy what happens when a critical manifold is not normally
hyperbolic. Say, for instance, that M is folded so the Jacobian has a zero
eigenvalue. In most cases, these folds are sets of jump points. At those points, the
flow starts to follow the fast vector field because that is then the dominant term.
However, one needs to be very careful with this assumption because if there is a
critical point of the slow flow near the fold, completely different mechanisms can
occur. This is further detailed in section 1.4.2 .

The interplay between the slow behavior and the fast phase space that
surrounds it, is defined by the stable and unstable manifolds of the points on the
critical manifold. Say these sets are W s,u(M0), then Fenichel’s second theorem
specifies their persistence if ε 6= 0.

Theorem 1.4.2 (Fenichel’s second theorem). Suppose M0 ⊂M is compact and
normally hyperbolic. Then for ε > 0 and sufficiently small, there exist manifolds
W s(Mε) and Wu(Mε) that are O(ε) close and diffeomorphic to W s(M0) and
Wu(M0), respectively. Moreover, these manifolds are locally invariant under the
flow of (1.14).

The stable and unstable manifolds of Mε decay to Mε with an exponential
rate. Often, bounded solutions to (1.14) start in a neighborhood of slow manifold
Mε, follow Wu(Mε) away from Mε and return to it via W s(Mε). Hence, the
intersection W s(Mε) ∩Wu(Mε) is in many cases a focus of study.

Fenichel’s first and second theorem already allow us to draw significant
conclusions. If, for example, M0 is purely attracting, studying the slow behavior
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γ(0, vε) γ(t, vε)

Γ(t) ⊂

fiber

flow

fiber

flowWs(γ(0, vε)) =: Γ(0) Ws(γ(t, vε))

Figure 1.3: Diagram corresponding to Fenichel’s third theorem. For vε ∈ Mε,
the set that results from flowing forward its fiber is a subset of the fiber of the
forward flown initial point vε.

on Mε may be enough, because all initial points will eventually be attracted to
Mε. The simple concatenation of pieces of fast and slow orbit for ε = 0 makes up
what we label a singular orbit. We say that a singular orbit persists for ε 6= 0, if
the construction of it is valid for any ε with 0 < ε < ε0. The proofs of persistence
of orbits often rely on the transverse intersections of manifolds, of which we know
they persist.

Fenichel’s second theorem guarantees persistence of the stable and unstable
manifolds of M0 as an analogous object. However, this does not imply the
persistence of the stable and unstable manifold of a specific point on M0. After
all, a critical point v0 on M0 does in general not even perturb to a fixed point
for ε 6= 0. Still, Fenichel’s third theorem explains that indeed W s,u(v0) perturb
to something analogous in an O(ε) neighborhood. As the exact statement of
this theorem requires quite some notation, we explain the correspondence using
Figure 1.3 and a corollary of the theorem.

Let vε be a point in Mε, then, by Fenichel’s first theorem, there exists a
v0 ∈M0 that can be associated with it in a natural way, and v0, being a fixed
point of the layer system (1.16), has stable and unstable manifolds W s,u(v0).
Then, Fenichel’s third theorem states that there exist manifolds Ws,u(vε) which
are diffeomorphic and O(ε) close to W s,u(v0), which we call fibers of vε. The
fibers Ws,u(vε) are not stable and unstable manifolds (since vε is not a fixed
point) nor are they invariant. There is, however, a weaker sense of invariance
available for the fibers, which is explained by Figure 1.3.

Denote any orbit of system (1.14) parametrized by t and with initial point
vε ∈Mε as γ(t; vε). Then, let the corresponding fiber Ws(vε) be the stable fiber
of vε. This fiber is in itself a set of initial conditions, say Γ(0), where

Γ(t) = {γ(t, x) : x ∈ Ws(vε)}.

Fenichel’s theorem states that the set Γ(t) is a subset of the fiber of γ(t, vε),
Ws(γ(t, vε)), see Figure 1.3.

From Fenichel’s third theorem, the corollary below follows.
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1.4 Geometric singular perturbation theory

Corollary 1.4.3. Suppose Mε is a slow manifold as defined in Fenichel’s first
theorem. Let γ(t, vε) ⊂ Mε be an orbit in the slow manifold with γ(0, vε) = x,
x ∈ Mε. Then there exists a base point v+

ε ∈ Mε and an orbit γ+(t, v+
ε ) with

γ+(0, v+
ε ) = v+

ε for which there exist constants C1, C2, k > 0 such that

||γ(t, vε)− γ+(t, v+
ε )|| ≤ C1e

−k/ε for t ≥ C2

ε
.

Hence, Fenichel’s theorems prescribe the behavior of singularly perturbed
systems like (1.14) to leading order. It provides insight in how slow and fast
limiting behavior can be ‘glued’ together. If normal hyperbolicity of the manifold
is lost, the theorems are unfortunately no longer applicable. In these cases, the
behavior requires canard theory.

1.4.2 Canard theory

When a critical manifold is not normally hyperbolic, see Definition 1.4.1, the
fast behavior generically takes over because this is the dominant mechanism. In
special cases, however, an orbit remains close to the critical manifold for an O(1)
time, even though it enters a repelling branch of the critical manifold. Such
orbits are the focus of study in canard theory. For a clear presentation of this
theory, we follow [149] and restrict to three dimensions in (1.14). In particular,
we say k = 1 and l = 2 and study

εu′ = f(u, v1, v2, ε),

v′1 = g1(u, v1, v2, ε),

v′2 = g2(u, v1, v2, ε),

(1.19)

where ′ = d
dτ . Canard theory applies to GSPT problems of at least dimension 3

in the case that the critical manifold loses normal hyperbolicity. To guarantee
that this happens in (1.19) close to the origin in a non-degenerate way, we assume

f(0, 0, 0, 0) = 0, fu(0, 0, 0, 0) = 0,

fv1
(0, 0, 0, 0) 6= 0, fuu(0, 0, 0, 0) 6= 0,

(1.20)

which are simply conditions on the critical manifoldM as defined in 1.4. Making
use of the Implicit Function Theorem, we can now parametrize a fold-curve F by
(h1(v2), h2(v2), v2) ∈ R3. Furthermore, we define a transversality criterion,

`(v2) :=

〈(
fv1

fv2

)
,

(
g1

g2

)〉∣∣∣∣
(h1(v2),h2(v2),v2,0)

, (1.21)

following [149]. This transversality criterion determines the behavior of the
reduced flow near the fold curve. In the case that `(0) 6= 0, the point on F is a
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v1
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Ma

v2

u

F

Figure 1.4: Schematic illustration of the folded critical manifold with repelling
and attracting branches Mr and Ma, and the fold curve F .

jump point, as was discussed in the previous paragraph. If, however `(0) = 0, it
is not, and these points are called canard points.

In the case that `(0) = 0 and (1.20) are satisfied, the system can be trans-
formed into a normal form by a smooth change of coordinates. This normal form
is

εu′ = u2 + v1 +O(εv1, εv2, εu, ε
2, v2

1u, u
3, v1v2u),

v′1 = au+ bv2 +O(v1, ε, v
2
2 , v2u, u

2),

v′2 = c +O(v, ε, v2, u),

(1.22)

where a, b, c ∈ R are explicitly computable. This transformation simply translates
F to the v2-axis, and uses the fact that the critical manifold is locally parabolic.
See a schematic representation in Figure 1.4. The error terms are quantified,
but since we work locally around the origin, we will say that (1.22) is to leading
order equal to

εu′ = u2 + v1,

v′1 = au+ bv2,

v′2 = c,

(1.23)
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1.4 Geometric singular perturbation theory

for a clear presentation. The critical manifold of (1.23) is

M = {u2 + v1 = 0} = {(u, v1(u, v2), v2) ∈ R3},

because it is a graph over (u, v2) with v1(u, v2) = −u2. Differentiating v1 with
respect to τ yields v′1 = −2uu′ and substituting this into (1.23) we reduce on M
to

−2uu′ = au+ bv2,

v′2 = c.
(1.24)

Which defines the reduced flow on M in the (u, v2) field, on which u = 0
coincides with the F . For u = 0, the system is singular; we desingularize it by
reparametrizing the orbits via the substitution ξ(τ) with dξ

dτ = 1
−2u , and obtain

the desingularized system

uξ = au+ bv2,

vξ = −2cu.
(1.25)

The phase portraits of (1.24) and (1.25) are equivalent, apart from the direction
of the orbits. If u > 0, the direction of orbits in (1.25) needs to be reversed
to represent those of (1.24), see Figure 1.5. Note that (0, 0) is an equilibrium
of (1.25), but not of (1.24). This defines (0, 0) to be a folded singularity in
(1.24). The character of the folded singularity is determined by the character
of the equilibrium of (1.25). The eigenvalues of the Jacobian of (1.25) at (0, 0)
are λ1,2 = 1

2 (a ±
√
a2 − 8bc). For now, we assume that bc < 0, so (0, 0) is a

saddle. Consequently, the point (0, 0) in (1.24) is a folded saddle. By scaling the
saddle back in the τ variable, we find that (0, 0) in fact admits two orbits passing
through the fold curve, see Figure 1.5. The solutions of the reduced problem
passing from the attracting to the repelling branch of the critical manifold are
called singular canards, while solutions of the reduced problem that pass from
the repelling part of the critical manifold to the attracting branch are singular
faux canards.

Using blow-up techniques, which are not within the scope of this thesis, it
can be shown that, in fact, near a folded saddle, the singular canard persists as a
solution of the full system (1.22), see [149]. The theory for three dimensions can
be generalized to n, see for example [166].

1.4.3 Example: The forced Van der Pol equations

In this section, we apply GSPT and Canard theory to the forced Van der Pol
equation, to exemplify the potential of the theory. It was originally proposed in
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Mr Mr

MaMa

ξ τ

Figure 1.5: Left: Saddle fixed point of the desingularized system (1.25)
parametrized by ξ. Right: The corresponding folded saddle of (1.24).

[158] and applies to electrical circuits employing vacuum tubes. Central to this
paragraph are thus,

u̇ = u− 1

3
u3 + v1,

v̇1 = ε(−u+
√

2 cos(v2)),

v̇2 = ε

(1.26)

where ˙ = d
dt . The system is equivalently posed in the slow time scale τ = εt.

εu′ = u− 1

3
u3 + v1,

v′1 = −u+
√

2 cos(v2),

v′2 = 1.

(1.27)

The limiting sytems are

u̇ = u− 1

3
u3 + v1, 0 = u− 1

3
u3 + v1,

v̇1 = 0, v′1 = −u+
√

2 cos(v2),

v̇2 = 0 v′2 = 1.

(1.28)

The critical manifold is defined by v1 = 1
3u

3 − u and has two fold curves at
u = ±1 which are parametrized by v2. The fast behavior is trivial in the v1

and v2 direction while u̇ changes sign exactly at the critical manifold. This is
depicted in the (u, v1)-plane in Figure 1.6. On the critical manifold, the singular
system that is obtained by differentiating v1 = 1

3u
3 − u defines the slow flow,

(u2 − 1)u′ = −u+
√

2 cos(v2),

v′2 = 1,
(1.29)
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u

v1

1−1

MrMa,1 Ma,2

Figure 1.6: Slow manifold and fast singular flow of (1.26) in the (u, v1) field,
for a fixed v2. The open circles are fold points of the critical manifold M =
Ma,1 ∪Mr ∪Ma,2.

which is desingularized by introducing ξ(τ) with dξ
dτ = 1

u2−1 , to obtain,

uξ = −u+
√

2 cos(v2),

v2,ξ = u2 − 1.
(1.30)

The desingularized system has equilibria

(u, v2) =
(

1,±π
4

+ 2kπ
)
, (u, v2) =

(
−1,±3π

4
+ 2kπ

)
for k ∈ Z.

where (1,−π4 + 2kπ) and (−1, 3π
4 + 2kπ) are of saddle type, and (1, π4 + 2kπ) and

(−1,− 3π
4 + 2kπ) are foci, see the phase portrait in Figure 1.7.

Changing the direction of the flow for u < −1 and u > 1 yields the phase
portrait of (1.29), where the foci and saddle equilibria turn into folded singularities.
Using Fenichel’s theorems, we know that M, as well as its stable and unstable
manifolds persist for ε 6= 0, away from the fold lines. Note that if the canard
point is a saddle, canard theory implies that a canard solution persists. Hence,
there is a canard solution that, for example, v2 = −π4 passes through the canard
point from the attracting to the repelling manifold. It then follows the repelling
manifold closely for an O(1) amount of time, before the fast field takes over and
sends it to the attracting manifold again. Because v2 does not change to leading
order in the fast behavior, it can even be shown that such a canard solution
can be periodic. Projected onto the (u, v1)-plane, such a solution is depicted in
Figure 1.8.
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v2

u

0 π/4−π/4

Figure 1.7: Phase portrait of (1.30). The blue closed circles denote foci, while
open circles are saddle equilibria. The dashed curve is a nullcline for u, and the
horizontals at u = ±1 are nullclines for v2.

u

v1

1−1

MrMa,1 Ma,2

Figure 1.8: Example of a canard solution of (1.26) projected onto the (u, v1)-plane,
which passes through the canard point (u, v1, v2) = (1,− 2

3 ,−π4 ).
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1.5 Outline of this thesis

1.5 Outline of this thesis

This thesis shows an omnibus of studies of singularly perturbed reaction-diffusion
systems with applications in various fields. Each system that is studied, requires
a different approach using appropriate mathematical tools. Primarily, this is
because the corresponding application describes a different type of solution
(stationary pulse, traveling front, traveling pulse). Another reason is of a more
practical nature; since the singularly perturbed character does not present itself
in the same way, not every perturbation technique can be applied effectively.
Roughly speaking, the models studied in this thesis have been motivated by three
natural phenomena, which we discuss successively.

1.5.1 Blooming phytoplankton

The natural phenomenon that is studied in Chapters 2 and 3 is the blooming of
phytoplankton. Among the plankton species, phytoplankton can be distinguished
by the feature that it performs photosynthesis; it is a plant in the ocean. It
forms the basis of the aquatic food chain and transports enormous amounts
of carbon dioxide into the deep ocean and produces oxygen in return. Hence,
phytoplankton populations may play a crucial role in understanding climate
change, see [47]. Furthermore, field observations describe that phytoplankton
colonies always choose a specifically preferred depth in the vertical water column.
The two processes that specify this depth are the availability of light and nutrient.
If there is an abundance of nutrients, the preferred depth is at the surface of
the water column, because it optimizes light, this pattern is called a surface
scum. If the water column is not very deep and light reaches all the way to
the bottom, the phytoplankton prefers to sit at the bottom because of the best
availability of nutrients, this state is a benthic layer. However, if the water
column is very deep and nutrients are limited as well, phytoplankton optimizes
its location somewhere in between and we label this a deep chlorophyll maximum,
[79, 89]. This localized structure, as well as the observation in [78] that deep
chlorophyll maxima often oscillate and may even exhibit chaotic behavior, were
the inspiration for mathematicians to work on the subject.

Central to Chapters 2 and 3 is a model that consists of two differential
equations for the concentration of phytoplankton and its nutrients, respectively.
Before the establishment of those chapters, the mathematical framework was laid
out in [176] and [177]. In [177], the linear stability of the so-called background
state, where there is no phytoplankton and a constant nutrient concentration
is studied. The spectrum of the linearized differential operator separates into
two sets: one with eigenvalues λi (ordered so that λi ≤ λi+1) which are O(ε1/3)
apart and depend on parameters, and one with eigenvalues µi which are O(ε)

27



Introduction

R

iR

µ1µ2µ3 λBL/DCMλ2

O(ε1/3)

O(ε)

Figure 1.9: Schematic illustration of the spectrum of the background state of the
phytoplankton model discussed in Chapters 2 and 3. Depending on parameters,
the largest eigenvalue may change type.

interspaced, do not depend on parameters and are always negative. Furthermore,
depending on the sinking velocity of the phytoplankton, the largest eigenvalue λ1

may be either λBL or λDCM. That is, depending on that parameter, the primary
bifurcation that the backgrounds state can undergo implies either the formation
of a benthic layer, or that of a deep chlorophyll maximum, see Figure 1.9 for
a illustration. This result is established by approximating the eigenfunctions
corresponding to these eigenvalues using the WKB-method, see Section 1.3.

The bifurcation analysis in [177] provides analytic results for the primary
(transcritical) bifurcations of the background state. Numerical analysis reported
in the same article shows that, in the parameter regime where a DCM bifurcates,
there is a secondary bifurcation of Hopf type. That implies that after the
emergence of a DCM profile, it starts to oscillate in time. The two bifurcations
occur in a O(ε) regime in parameter space, see Figure 1.10.

The Hopf bifurcation of the DCMs is studied analytically in [176]. By
Fourier decomposing the linear stability problem of the background state into
eigenfunctions, the primary, transcritical bifurcation is recovered using center
manifold reduction, see Section 1.2. In principle, the local invariance of the center
manifold is no longer guaranteed when λDCM is commensurate with the other
eigenvalues µi. However, using a novel asymptotic approach and by studying
the amplitude equations of the bifurcating profile, the center manifold reduction
is extended beyond the spectral gap regime. Then, for λDCM = O(ε), the Hopf
bifurcation of the DCM profile is found analytically using, among other tools,
Laplace’s method, see Section 1.1.

In Chapter 2, this method of extending the validity of center manifold
reduction is unfolded. We do this using a dummy model that is in some sense
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Figure 1.10: Schematic illustration of the bifurcations of the background state
of the phytoplankton model discussed in Chapters 2 and 3, depending on the
parameters that model nutrient availability and sinking velocity of the phyto-
plankton. The full model is discussed in Chapters 2 and 3. In the regime ’No
Bloom’, the background state is stable, the BL regime indicates the emergence of
a benthic layer, and sDCM the emergence of stationary deep chlorophyll maxima.
Lastly, oDCM is the regime where the DCM has undergone a Hopf bifurcation
and oscillates consequently.

more general than the phytoplankton model because the reaction terms are
general functions. On the other hand it is also simpler because particular
intricacies of the phytoplankton model were not taken into account in order to
declutter the presentation of the method. In that chapter we also aptly term
this novel method extended center manifold reduction (ECMR). Indeed, in the
dummy model we recover the classical center manifold reduction that indicates a
transcritical bifurcation, as well as requirements for a secondary Hopf bifurcation.
Furthermore, to exemplify the strength of ECMR, we apply the method to
several other models and study the fate of codimension 2 bifurcations and even
find low-dimensional chaos that is described by the extended center manifold
reduction. The potential of ECMR is further substantiated by the fact that the
low-dimensional chaos in the extended reduction persists in the full PDE model.
Chapter 2 was published in full Physica D in 2015, see [139].

In Chapter 3 we return to the phytoplankton model and apply ECMR to
the regime where a benthic layer emerges from the background state. The clean
unfolding of the mechanism in Chapter 2 makes the application of it much more
transparent compared to the pioneering article [176]. Chapter 3 reproduces
briefly the result that a DCM can undergo a Hopf bifurcation, but also shows in
more detail that, conversely, a benthic layer remains stable in the validity regime
of ECMR. Because the phytoplankton model is quite detailed, the asymptotic
analysis is challenging. Here too, the WKB and Laplace’s method are applied.

29



Introduction

Chapter 3 was published in full Chaos in 2015, see [41].

1.5.2 Spreading of malignant tumor

In ecology, a phenomenon called the Allee effect describes a threshold in the
growth of a population. The causes of such an effect are numerous. For example, in
small populations the gene pool may not be large enough for effective reproduction
or finding a mate may be nearly impossible. This Allee effect has been observed
in many applications, and recently, evidence has been gathered that in tumor
growth this effect plays a role too. Intuitively, this can be motivated by the mere
fact that small tumors are expected to be less threatening, but a more extensive
literature overview related to the Allee effect in tumor spread can be found in
the introduction of Chapter 4.

In modeling tumor spread, we focus on how it invades into its healthy sur-
roundings. In the viewpoint of Chapter 4 it does so via hapto- or chemotaxis
through the extracellular matrix. That is, the movement of the tumor is in the
direction of the gradient of its healthy surrounding. As a simplified representation
of the situation, we assume that the focus on a one-dimensional spatial domain
is sufficient. This could be attained, for example, for tumors in two-dimension
with a certain geometric symmetry that reduces the dimension. Mathematically,
an invading tumor corresponds to a traveling front; a fixed spatial profile on an
infinitely long, one-dimensional domain with different boundary conditions on
both sides, moving with a constant speed. Since the type of tumors considered
in Chapter 4, such as melanoma, have a very sharp edge [108], the transition
from the left to the right boundary condition should be steep.

Although there are many ways to model the mechanism responsible for the
growth of tumors, we study the consequences of incorporating the Allee effect in
a model that was proposed in [125] and later adjusted and analysed in [67]. The
former is a reaction-advection system and the latter also incorporates diffusion in
the two components corresponding to tumor cell density and extracellular matrix.
Both models assume that the growth of tumor cells is logistic; the growth term
is quadratic so that the growth rate increases until the population gets close to
the carrying capacity of the system. After that, the growth rate decreases but
the growth term is still positive. For w being tumor cells, this logistic growth
term can be presented by f(w) = w(1− w), if the carrying capacity is scaled to
1. A growth threshold following from the Allee effect is modeled in the system by
substituting the quadratic term by a cubic one, f(w) = w(1− w)(w − α), where
α is the strength of the Allee effect.

In [67], the reaction-diffusion-advection tumor model is shown to exhibit four
types of traveling wave solutions of which three exhibit a shock. This shock is
a very steep transition – the edge of a tumor – and is explained by a canard
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solution that is repelled from the repelling branch of a folded slow manifold and
touched back upon the attracting branch of that manifold. One of these types of
solutions has semi-compact support; on one side of the shock the tumor density
is equal to zero, not only exponentially decaying to it. This type of solution is
considered the most realistic because it models a sharply defined edge of a tumor.
However, three out of four types of traveling wave solutions are deemed stable in
[67] because they were observed numerically.

The effect of using an Allee threshold in the tumor growth term is two-fold.
Following the methods used in [67], we first prove that only the shock solution
with semi-compact support can exist, making the Allee model studied in Chapter
4 already preferable over the logistic growth model. Second, another agreement
with experimental observations is found. This observation relates the invasion
speed of a tumor to the collagen (the dominant ingredient in the extracellular
matrix) density, i.e. the background state of the extracellular matrix. The results
show that this relationship is biphasic, i.e. not monotonic but with a well-defined
maximum. This biphasic relationship is also supported by the Allee model, while
not being a feature of the logistic growth model.

The mathematical analysis in Chapter 4 relies heavily on geometric singu-
lar perturbation theory and canard theory, as briefly explained in Section 1.4.
Chapter 4 was published in full in Journal of Theoretical Biology in 2016, see
[140].

1.5.3 Traveling vegetation stripes

The last natural phenomenon to which reaction-diffusion models are applied in
this thesis sets place in semi-arid regions of the earth. In times that the desert is
expanding and this phenomenon is addressed as one of by-products of climate
change, these half-barren transition regions are important focus points. Indeed,
examples of these types of studies are abundant in literature, not in the least
place in the applied mathematical journals.

The transition of vegetated areas into bare soil, desertification, occurs in
several stages in which the vegetation displays itself in strikingly regular patterns
of labyrinth, spotted, or striped character [106]. In the absence of grazing and
on gentle slopes, it is mostly striped patterns which are observed, and due to the
surplus of water uphill, they slowly migrate upwards. This subphenomenon of
desertification is the focal point of Chapter 5.

The model that we use to analyze these patterns is of reaction-diffusion-
advection type and models the interaction of water and vegetation density
on sloped terrains. It resembles two predecessors; the Klausmeier model [88]
and the Gray-Scott model [62], but incorporates the dominant pattern forming
mechanisms of both. Our model is defined on a two-dimensional surface – the soil,
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but since stripes are trivial in one direction, proving the existence of such solutions
is essentially one-dimensional. The type of solution that corresponds to stripe
patterns is in the non-trivial spatial direction a periodic repetition of localized
pulses, traveling with a constant speed. For the Gray-Scott model, existence and
stability of periodic isolated pulses was already studied in [34, 39, 36], and most
of the techniques used in Chapter 5 are adapted from those articles. However, a
big difference with the Gray-Scott model is the occurrence of an advection term
(induced by the slope) in our model. Contrary to the Gray-Scott model, the
system studied in Chapter 5 therefore does not possess a reversibility symmetry,
on which the proofs in the cited articles rely heavily.

Another motivation to study specifically these types of patterns, is the
numerical analysis done in [143], which shows that the stability regime of two-
dimensional stripe patterns increases with the slope of the terrain. This indicates
that for large enough slopes, the stripe patterns that are solutions to our model
could indeed be observed in the field.

Relying on Fenichel’s theorems, we first construct a single traveling, localized
pulse in an infinite domain; a homoclinic traveling wave as solution of the system.
This is later extended to periodic patterns with a long wavelength; the periodic
extension of localized pulses. Since the validity of GSPT depends on the scale
splitting of a system, a scale analysis of the model is essential and corresponds
directly to the fact that the periodic patterns we construct necessarily have a long
wave length. To prove the existence of periodic patterns, we cannot carry over the
methods used on the Gray-Scott model, because of a lack of symmetry. Hence,
a novel approach using a contraction mapping argument is used to guarantee
existence of such a periodic pattern.

Lastly, the stability of both those types of traveling wave solutions to the
vegetation model is analyzed using an Evans function approach as presented in [35].
Due to the scale separation of the system, the Evans function factorizes in a slow
and a fast part, too. The slow component is solved using hypergeometric functions,
and a full overview of the stability of periodic patterns is given. The main result
is that, despite the numerical results in [143], all the constructed patterns are
unstable in a two-dimensional sense. That is, perturbations in the transverse
direction destabilize the striped pattern. There are several explanations for this
given in the discussion of Chapter 5. Considering only one-dimensional patterns
(thereby neglecting the assumed trivial extension in the other direction), there are
several destabilization mechanisms possible depending on the parameters. More
importantly: there are parameter regimes for which the one-dimensional patterns
are stable. Although one dimension is not representing the initial application
of the system, vegetation patterns, this is a valuable result in a more abstract
sense.
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Extended center manifold reduction1

2.1 Introduction

The analysis of pattern formation in evolutionary partial differential equations is
directly linked to dynamical systems bifurcation theory. At the onset of patterns,
a ‘trivial state’ becomes spectrally unstable as a control or bifurcation parameter,
R, passes through a critical value Rc,1. Typically, a ‘small amplitude pattern’
bifurcates from this state. When the evolution equation is defined on a bounded
domain Ω and the associated spectrum consists of discrete eigenvalues, the very
first step in the onset of pattern formation can be studied by a center manifold
reduction (CMR). For values of R sufficiently close to Rc,1, the dynamics of the full
infinite-dimensional system can be reduced to the dynamics on an exponentially
attracting low-dimensional center manifold. This is due to the existence of a
spectral gap between the first eigenvalue(s) crossing the imaginary axis and all
other, stable eigenvalues. The presence of this gap makes the analysis of the
onset of pattern formation completely equivalent to the study of bifurcations
in finite-dimensional dynamical systems (for instance, [9, 18, 160]). Indeed, the
small amplitude patterns that originate in this mechanism relate, in general,
directly to the standard codimension 1 bifurcations (saddle-node, transcritical,
pitchfork and Hopf): the associated center manifolds are one- or two-dimensional.

The center manifold reduction is only valid for R ‘sufficiently close’ to the –
first – critical value Rc,1, so that the spectral gap is sufficiently wide. However,
in perhaps all examples of pattern forming systems, the pattern originating at
Rc,1 undergoes a next bifurcation at some value Rc,2 of R et cetera. In other

1The content of this chapter was published as Tracking pattern evolution through extended
center manifold reduction and singular perturbations in Physica D. in 2015, see [139].
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words, the first bifurcation at onset is followed by a secondary one at Rc,2. Since
this latter concerns the bifurcating pattern and not the trivial state it bifurcated
from, it cannot be directly studied through the spectral decomposition for that
state. Instead, one now needs stability properties of the pattern bifurcating at
Rc,1. Generally speaking, this is an impossible task – especially for analytical
studies of pattern evolution. To overcome that obstacle, formal and/or numerical
methods have been developed that are based on spectral properties –eigenvalues
and eigenfunctions – associated with the original, trivial background state.

Such secondary, tertiary, et cetera bifurcations cannot be described by CMR,
simply because they do not occur in the reduced (center manifold) flow; they
take place for values of R violating the spectral gap condition. This is often
observed in an explicit setting: the distance between the first, now unstable,
eigenvalue and the imaginary axis becomes proportional to that between the next
largest eigenvalue(s) and the same axis – note carefully that none of these next
eigenvalues needs to actually destabilize for the secondary bifurcation to occur. In
the terminology of applied mathematics and/or physics: one must account for the
evolution of ‘modes’ associated with these next eigenvalues and eigenfunctions,
as these modes can no longer be ‘slaved ’ to the one that was first destabilized
and that parametrizes the center manifold. In principle, then, studying the full
flow through the spectral properties of the trivial state is possible, provided
that one extends CMR to a higher-dimensional system by a Galerkin approach.
In general, however, there is no ‘next ’ spectral gap in that extended spectral
problem: all next eigenvalues are typically commensurable. Accordingly, there is
no telling a priori how many modes must be accounted for in this extended center
manifold Galerkin reduction – certainly not from the analytic point of view. See,
for instance, [128] and references therein for a practical study centering on these
issues.

Presently, we develop analytical (and asymptotic) extensions of classical CMR.
We describe the onset of pattern formation by means of low-dimensional systems
governing the dynamics of the full evolutionary system for parameter values
violating the spectral gap condition. We term the process by which we derive
such simplified systems extended center manifold reduction (ECMR). Our most
generic results concern the extension of the one-dimensional CMR associated with
a transcritical bifurcation to an explicit two-dimensional flow on an exponentially
attracting two-dimensional (local) manifold. We also present explicit classes of
systems with codimension 1 bifurcations where this extended center manifold is
three- or four-dimensional.
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An earlier version of this method was developed in the context of a specific
model problem, which concerned the emergence and evolution of localized spatio-
temporal patterns in a non-local, coupled, phytoplankton-nutrient model in an
oceanic setting,

ωt = εωxx − 2
√
εvωx + (p(ω, η, x)− `)ω,

ηt = ε
[
ηxx + `−1p(ω, η, x)ω

]
;

(2.1)

this is a scaled version of the original model proposed in [78] as well as the
focus of chapter 3. In (2.1), ω(x, t) and η(x, t) denote a phytoplankton and a
(translated) nutrient concentration; x ∈ (0, 1) measures ocean depth. The growth
of the phytoplankton population is delimited by nutrient and light availability;
since light is attenuated with depth and absorbed by phytoplankton, the term
p(ω, η, x) is non-local in ω and depends explicitly on depth x. For more details
on this model and its boundary conditions (BCs), see [78, 176, 177]. In realistic
settings, ε ≈ 10−5 while all other parameters – v, ` and those entering p(ω, η, x)
– can be considered O(1) with respect to ε [177]. Therefore, (2.1) is studied in
[176, 177] as a singularly perturbed system. The spectral problem associated
with the stability of the trivial state (ω(x, t), η(x, t)) ≡ (0, 0) – no phytoplankton,
maximal and constant nutrient concentration – has two distinct sets of (real)

eigenvalues: µm = O(ε), m ≥ 1, and λn = λ∗ + λ̃n, with λ̃n = O(ε
1
3 ) and n ≥ 1;

λ∗ can be ‘controlled ’ by varying the parameters in (2.1), while µm < 0 are
parameter-independent and negative. In [177], it is shown through an asymptotic
spectral analysis that the trivial state is destabilized by a transcritical bifurcation,
at which λ1 crosses zero. The associated eigenfunction has the strongly localized
nature of a (stationary) deep chlorophyll maximum (DCM), the pattern playing
a central role in the simulations and oceanic observations in [78].

In our terminology above, emergence of the deep chlorophyll maximum
represents the onset of pattern formation, and it occurs as the product of the first
bifurcation. For the parameter values considered in [78], the deep chlorophyll
maximum only exists (as a stable, stationary pattern) in an asymptotically
narrow strip of parameter space: the primary bifurcation is almost directly
followed by a secondary Hopf bifurcation through which emerges an oscillating
DCM [176, 177]. In fact, stationary deep chlorophyll maxima were not even
recorded in the numerical simulations of [78] – the bifurcation scenario drawn
there starts directly with the oscillating DCM and proceeds with period-doubling
cascades and spatio-temporal chaos. In other parameter regimes, not a deep
chlorophyll maximum, but a benthic layer – a localized maximum at ocean’s
bottom – marks pattern formation. Numerical simulations have not incidated a
secondary bifurcation of the pattern in this regime. In Chapter 3, we analytically
substantiate this phenomenon using the framework described in this chapter.
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The predictions in [177] on the transcritical nature of trivial state desta-
bilization were validated in [176], as a first step, by restricting analysis to
the regime 0 < λ1 = O(εσ) with σ > 1. In that case, there is a spectral
gap driven by the proximity of that primary eigenvalue to the imaginary axis,
λ1 � minm≥1,n≥2{|µm|, |λn|} = O(ε); the dynamics of system (2.1) can be
reduced to a single amplitude ODE describing the transcritical bifurcation. As
σ ↓ 1 and λ1 becomes O(ε) like the µm’s, the spectral gap breaks down; modes
associated with all (linearly stable!) µm−eigenvalues must now be taken into
account. As a consequence, the one-dimensional CMR is expanded dramatically
into an a priori infinite-dimensional system. Analysis of that model is nevertheless
possible and establishes the existence of a secondary Hopf bifurcation in (2.1),
O(ε)−close to the primary, transcritical one [176]. The existence of oscillating
deep chlorophyll maxima follows. In the present chapter, we show that this
surprising fact – that a secondary bifurcation becomes amenable to analysis by
extending CMR beyond its classical region of validity – is not due to model
specifics but intrinsically tied to the nature of the spectrum associated with
the trivial background state. In general, our approach may be developed in the
context of systems of the form

∂

∂t

(
U
V

)
=

(
L 0
εK εM

)(
U
V

)
+

(
F (U, V ;x)
εG(U, V ;x)

)
, (2.2)

for a ‘fast’, unknown U : Ω× R+ → RmU and a ‘slow’ V : Ω× R+ → RmV , with
mU ,mV ≥ 1. The bounded spatial domain Ω ⊂ Rn has a piecewise C1 boundary
∂Ω. The operators K,L andM are assumed linear, spatial, differential operators
and boundary conditions guaranteeing well-posedness must apply. Several specific
assumptions on the spectrum of L and M and the nonlinearities F (U, V ;x) and
G(U, V ;x) must hold, we refer to Chapter 3 for more details. The aim of this
chapter is to present an investigation into the possible impact of the extended
center manifold reduction approach. Therefore, we will mainly restrict our
analysis to a strongly simplified version of (2.2), i.e. to models of the type{

Ut = LU + αU + F (U, V ),

Vt = ε [LV + βU + γV +G(U, V )] ,
(2.3)

thus K = β, and with a slight abuse of notation, M = L+ γ and the operator
L in (2.2) will be replaced by L + α. The linear differential operator L in
(2.3) – independent of ε – acts on L2(Ω), contains spatial derivatives only and
is assumed self-adjoint with respect to given boundary conditions. We mostly
restrict ourselves to the scalar case mU = mV = 1. In Section 2.6, however,
we will treat an example where mU = 2. By assuming that 0 < ε � 1 is
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asymptotically small, system (2.3) becomes singularly perturbed; the parameters
α, β, γ ∈ R are assumed O(1) with respect to ε. The functions F (U, V ) and
G(U, V ) are assumed sufficiently smooth and at least quadratic in U and V .
The Laplace operator ∆ subject to Dirichlet boundary conditions is a natural
choice for L, with (2.3) then becoming a reaction-diffusion system. This choice
is considered in Sections 2.2.2, 2.4.2, 2.5.2, 2.6.2 to add concreteness to our
discussion, but it is not the sole focus of the present work: precise assumptions
on L and Ω are given in Section 2.2.

One may see the simplified model (2.3) as stripping the explicit phytoplankton
model (2.1) of its non-locality, heterogeneity and various other intricacies not
central to our stated aim. It is for that reason that (2.1) does not precisely fit the
framework (2.3). However, it does fit (2.2), and we elaborate further on this in
Chapter 3. The main property carried over from (2.1) to (2.3), and also crucial
to (2.2), is a decomposition of the (real) eigenvalues in the spectral problem
determining stability of the trivial state (U, V ) ≡ (0, 0) into distinct, ordered,
‘small ’ and ‘large’ sets

µk = O(ε), and λk = O(1), k ≥ 1; (2.4)

cf. Section 2.2 and Figure 2.1. It should be noted here that, strictly speaking,
only asymptotically many µk’s and λk’s are O(ε) and O(1), respectively, as both
sequences diverge to −∞. Similarly to [176], we focus on the destabilization
of (0, 0) by the ‘most unstable’ large eigenvalue λ1, assuming that all other
eigenvalues remain in the left half of the complex plane. As in (2.1), destabilization
of (0, 0) at λ1 = 0 in general occurs through a transcritical bifurcation. This
is evident through a standard center manifold reduction, yet we consciously
employ a slightly different, equivalent approach as a means of setting the stage
for sections 2.4.1 and 2.4.2; see Section 2.3.2 for details.

For our abstract model, 2.3, center manifold reduction remains valid while
σ > 1 just as for (2.1); it breaks down at σ = 1, see Figure 2.1. Recall also our
discussion above on the commensurability of λ1 and µ1, µ2, . . ., where we also
briefly mentioned an extension of the one-dimensional center manifold reduction
to an infinite-dimensional Fourier system. A Fourier decomposition links every
eigenvalue λi and µi to a corresponding eigenfunction with amplitudes ai(t) and
bi(t), respectively. Concretely, this means that the ODE governing the evolution
in (scaled) time τ of the (scaled) amplitude a1(τ) of the λ1−eigenmode must,
now, be combined with ODEs for bk(τ), k ≥ 1 – the (scaled) amplitudes of the
µk−eigenmodes. One of the main results in this paper is the identification at
leading order in ε of a two-dimensional, exponentially attracting, invariant sub-
manifold for this infinite-dimensional system. Thus, also for σ = 1, the dynamics
of small, O(ε) solutions of (2.3) is contained in a low-dimensional manifold.
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Figure 2.1: Schematic representation of the eigenvalues that determine the stability of
(U, V ) = (0, 0). The eigenvalues break up into two separate sets. One set of infinitely
many O(1)-interspaced eigenvalues, λk, and one set of infinitely many O(ε)-interspaced
eigenvalues, µk. Here, the parameter values are such that all µk are negative, while the
first O(1) eigenvalue crossed into the right half-plane but remains small, O(εσ) with
σ > 0.

However, in contrast to the region of classical CMR validity, the dimension of
that manifold is 2. As we will see, this increase in the dimensionality of the
reduced flow lies at the heart of complex phenomena exhibited by the dynamics
of small amplitude solutions of (2.3). The invariant manifold is parametrized by
the modes (a1, b1) and the flow on it is explicitly deducible. A straightforward
analysis reveals that the original pattern bifurcating at onset generically under-
goes a Hopf bifurcation, provided that equation coefficients satisfy an explicit
sign condition. It follows that the primary transcritical bifurcation is generically
succeeded within an O(ε) distance by a Hopf bifurcation, exactly as in the
phytoplankton model. The sub-/supercritical nature of this bifurcation can also
be determined. We finally show that, in such an event, the bifurcating oscillatory
pattern necessarily terminates as the control parameter moves further away from
both bifurcations (transcritical and Hopf), leaving the attracting two-dimensional
manifold unable to sustain bounded behavior. Note that this entire sequence
plays out ε−close to the primary bifurcation in parameter space. In that manner,
our analysis provides an explicit bound on the region in parameter space where
small-amplitude center manifold may be extended: outside it, solutions to the full
problem (2.3) can no longer remain small. This is in stark contrast to standard
CMR, which cannot provide such an explicit bound.

In the phytoplankton-nutrient model (2.1), the first two bifurcations are
only the first steps in a sequence of events leading to low-dimensional spatio-
temporal chaos [78]. We investigate the possibility of similar behavior in singularly
perturbed systems like (2.3) in the second half of the present chapter. Our results
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so far indicate that, near the primary bifurcation, small pattern dynamics are
inherently two-dimensional and hence cannot exhibit such phenomena. Even
worse, Hopf destabilization of the primary pattern – the second step in the
chaotic scenario of (2.1) – is followed by unbounded dynamics: if more complex
dynamics is present, it does not play out on the extended center manifold. In
contrast, the dimensionality of the long-term dynamics in (2.1) is less clear-
cut, and the Hopf destabilization was deduced from a high-dimensional reduced
system. Additionally, it was speculated in [176] already that a codimension
2 transcritical bifurcation in (2.1) may be the organizing center of its spatio-
temporal chaotic dynamics. Inspired by these observations, we move on from
the most simple case of (2.3) and consider two types of systems: first, one with
amplified nonlinearities; and second, one where the primary bifurcation is of
codimension 2; see sections 2.5–2.6 for the details.

To motivate the first direction, we ascertain that it is the linear structure of
(2.3) that enables our approach – not the particular form of the nonlinearities.
Hence, the introduction of an O(1) nonlinearity in the PDE for V should not
hinder application of our method, and we consider (2.3) with εG(U, V ) is replaced
by an O(1) nonlinearity G(U, V ); see especially system (2.52). This leaves
the linear structure unaltered but affects the dimensionality of the reduction
strongly. The extended invariant manifold is no longer two-dimensional; in fact,
asymptotically many bk-modes – related to the ‘small’ spectrum {µk}k≥1– are
excited and must be included in the reduced system, resembling the situation
in (2.1). As an exploratory example, we consider G(U, V ) = G20U

2 and ‘tune’
G20 by having it depend on x, see Section 2.5.2. In that way, we construct
(at leading order in ε) an attracting, linear, five-dimensional, extended center
manifold and describe the flow on it by means of the quintuplet (a1, b1, b2, b3, b4).
Here a1 and bi, i = 1 . . . 4 are the (rescaled) amplitudes associated with λ1 and
µi, respectively. The most unstable mode – which, local to onset, is spanned
by a1 –successfully undergoes a Hopf bifurcation. Depending on parameter
values, this Hopf bifurcation can be followed by a sequence of period-doublings
resulting in chaotic behavior; exactly like in (2.1). This last result is established
numerically, with direct PDE simulations within the chaotic regime revealing a
low-dimensional spatio-temporal attractor strikingly similar to the one capturing
trajectories of the five-dimensional reduced flow; see Figure 2.9. We conclude
that the ECMR accurately describes the dynamics of small amplitude solutions
to (2.52), even when this is complex.

Regarding the second direction, we note that the codimension 2 transcrit-
ical bifurcation in (2.1) arises as the merging of two transcritical bifurcations
generating different localized patterns – a DCM and a benthic layer (BL).
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We emulate this situation here by tuning the two-component model (2.3) so
that the two largest O(1) eigenvalues, λ1 and λ2, coincide at the origin and the
corresponding eigenfunctions are distinct – i.e., the system is not in the most
general case where one needs to introduce a generalized eigenfunction. Extending
the standard center manifold to the ‘gapless ’ situation in which λ1, λ2, µk = O(ε),
we obtain a leading order, attracting, four-dimensional, extended center manifold
parametrized by (a1, a2, b1, b2) – the rescaled amplitudes of modes related to λ1,
λ2, µ1 and µ2, respectively – and the flow on that extended center manifold. See
also (2.71) and its rich behavior we analyze in Section 2.6. Note, however, that
L = ∆ does not admit a double zero eigenvalue, but examples of (polyharmonic)
operators satisfying both conditions are available; see [54] for these facts. Since
our prior discussion is rooted in reaction-diffusion systems, we consider in parallel
a three-component, reaction-diffusion system of the form (2.3) that admits a
double zero eigenvalue. We keep our model as simple as possible, creating a
codimension 2 bifurcation by introducing a vectorial ‘fast ’ component U ,

∂tU1 = D1LU1 + α1U1 + F1(U1, U2, V ),

∂tU2 = D2LU2 + α2U2 + ερ2V + F2(U1, U2, V ),

∂tV = ε [LV + β1U1 + β2U2 + γV +G(U1, U2, V )] ;

(2.5)

see Section 2.6.2 for more details on this model and its boundary conditions.
There exist two sets of large, O(1) eigenvalues, λ1,k and λ2,k (k ≥ 1), where
λ1,k relates to the linear spectrum of the first equation of (2.5), and λ2,k relates
to the linear spectrum of the second equation of (2.5). The codimension 2
bifurcation corresponds to the regime λ1,1 ≈ λ2,1 ≈ 0. Extending the center
manifold, to incorporate the regime where λ1,1, λ2,1 and asymptotically many
µk’s are O(ε) yields an attracting three-dimensional manifold parametrized by
(a1,1, a2,1, b1). The (rescaled) amplitudes a1,1(t), a2,1(t) and b1(t) are associated
with the eigenvalues λ1,1, λ2,1 and µ1, respectively and denote the amplification
in the corresponding modes of a Fourier-like decomposition, see (2.74). The
flow on it is generated by a rather general quadratic vector field – see (2.85) –
containing the celebrated Lorenz system [104] as a special case. A simulation of
the full PDE system (2.5) motivated by the classical parameter settings in [104]
directly captures the Lorenz attractor; see Figure 2.2. We stress, however, an
essential difference between the role of the Lorenz equations relative to the global
dynamics here and in [104]. According to our theory, the Lorenz attractor is a
global attractor for the (small amplitude) flow induced by the full model (2.5);
numerical simulations confirm this, see Figure 2.2. Instead, the same attractor
does not attract trajectories of the original convection model in [104], although
the Lorenz equations are derived from it through a Galerkin-type reduction –
[147], for instance, discusses the differentiating influence of higher-order Galerkin
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2.2 Spectral analysis of the trivial state

modes. Small amplitude derivations of the Lorenz system (e.g., [56]) only concern
solutions with special characteristics, and thus they also do not result in a
three-dimensional flow approximating the full, infinite-dimensional one.

b1

a1,1−10 0 10 20
0

20

40

Figure 2.2: Simulation of system (2.5) using MATLAB’s pdepe function with
L = ∆, Ω = (0, 1) and Dirichlet BCs. Here, ε = 0.01, D1 = D2 = 1, α1 =
π2 − 8ε/3, α2 = π2 − ε, β1 = 0, β2 = 10, γ = π2 − 10 and ρ2 = 28. The
nonlinearities are F1(U, V ) = (3

√
2π/16)U2V , F2(U, V ) = −(3

√
2π/16)U1V and

G(U, V ) = U2
1 . Plotted are the rescaled amplitudes a1,1(t) and b1(t), (see (2.74)),

of the full solution (U1(x, t), U2(x, t), V (x, t)) of system (2.5).

As already mentioned at various places in this Introduction, the analysis
presented in this chapter is exploratory and formal. Theorems and propositions
are provided with proofs, while claims and conjectures are not. We conclude the
chapter with a brief discussion of future plans, including rooting this analysis on
a rigorous foundation, and of the relevance of our study for phenomena reported
in the (mostly reaction-diffusion oriented) literature.

2.2 Spectral analysis of the trivial state

The key to analyzing (2.3) is explicit control over the spectrum and associated
eigenfunctions of the linearization around the background state (U, V ) = (0, 0). In
this section, we formulate the properties that this spectrum must have to enable
our analysis; these effectively formalize Figure 2.1. Then, to illustrate these

41



Extended center manifold reduction

properties, we introduce a reaction-diffusion example in Section 2.2.2, working
out its spectrum methodically.

2.2.1 Linear stability

We write the PDE system (2.3) in matrix form, separating the linear and nonlinear
parts,(

U
V

)
t

=

(
L+ α 0
εβ ε(L+ γ)

)(
U
V

)
+

(
F (U, V )
εG(U, V )

)
= DT

(
U
V

)
+N (U, V ).

(2.6)

The linear stability of solution (0, 0) is governed by the spectral problem associated
with DT ,

Λu = Lu+ αu, (2.7a)

Λv = εLv + εβu+ εγv. (2.7b)

Next, we impose boundary conditions and formulate necessary conditions on the
operator L : H → H acting on an appropriate Hilbert space H equipped with
the standard L2−inner product. Consider the scalar spectral problem of L,

Lφ(x) = νφ(x), (2.8)

where ν is an eigenvalue and φ ∈ H is a scalar eigenfunction, i.e. φ(x) ∈ R,
satisfying boundary conditions adapted from (2.6). We recall that L does not
depend on ε and assume:

A1 L is self-adjoint.

A2 The solutions of (2.8) (eigenvalues of L) are ordered with a maximal
element,

. . . ≤ ν3 ≤ ν2 ≤ ν1 <∞. (2.9)

A3 The invariant subspace associated with any eigenvalue νk is one-dimension-
al.

Moreover, we assume that the boundary conditions are the same for U and V on
∂Ω.

In Section 2.2.2, we will introduce an explicit example system with L = ∆ and
H = H1

0 (0, 1), the Sobolev space of compactly supported, weakly differentiable
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2.2 Spectral analysis of the trivial state

functions. Assumptions A1–A2 are automatically satisfied in this case – see [59].
Note that A3, on the other hand, is somewhat strong, as it entails that we do not
need to introduce generalized eigenvectors in the case of repeated eigenvalues. In
Section 2.6, we will see specific examples by setting L = −∆2 and H = H2

0 (Aδ)
on an annulus Aδ =

{
(x, y) ∈ R2 : δ2 < x2 + y2 < 1

}
, 0 < δ < 1. The boundary

condition is U = V = 0 and ∇U = ∇V = 0 on ∂Ω [54]. In Remark 2.2, we will
comment briefly on more general systems that do not satisfy the assumptions
above but are nevertheless expected to generate dynamics beyond the classical
CMR similar to model (2.3) – such as the phytoplankton-nutrient model (2.1).

The solutions of equations (2.7) and associated BCs are eigenvectors (u(x),
v(x))T and associated eigenvalues Λ. These eigenvalues are all real-valued, due
to the triangular structure of DT and the condition that L is self-adjoint. As
a matter of fact, solutions to the full spectral problem (2.7) are expressible in
terms of the solutions to (2.8).

We normalize the eigenfunctions under the norm of L2(Ω),

〈φk, φl〉L2 = δkl, with δkl the Kronecker delta.

We define the function space H spanned by the eigenfunctions of L,

H = cl
{

span {{φk}k≥1} × span {{φk}k≥1}
}
, (2.10)

define on it an inner product for a Cartesian product of L2-spaces,〈(
u1(x)
v1(x)

)
,

(
u2(x)
v2(x)

)〉
H

=

∫
Ω

(u1(x)u2(x) + v1(x)v2(x)) dx, (2.11)

and note the induced norm,∣∣∣∣(u, v)T
∣∣∣∣ =

√
〈(u, v)T , (u, v)T 〉H. (2.12)

The function space H equipped with (2.11) is a Hilbert space. From here on, we
will omit the subscript in writing the inner product (2.11), because the use of
it is never ambiguous. In the case L = ∆ on Ω = (0, 1) and with homogeneous
Dirichlet BCs, we have H = L2(0, 1)× L2(0, 1) and the inner product and norm
are standard, see Section 2.2.2.

From the assumptions on L, we can formulate the following proposition.

Proposition 2.2.1. The eigenvalues determining linear stability of the trivial
state (U, V ) = (0, 0) of system (2.3) partition into two distinct sets of eigen-
values with asymptotically different interspacing. The eigenvalues {µk}k∈N are
O(ε)-interspaced, while the remaining eigenvalues {λk}k∈N are O(1)-interspaced.
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Extended center manifold reduction

Assuming α, γ 6= −νk, for all k ∈ N, asymptotically many eigenvalues {µk}k∈N
and {λk}k∈N are O(ε) and O(1), respectively. The eigenvalues and the associated
normalized eigenfunctions are{

µk = −εMk = ε(γ + νk), sk = φk(x)

(
0
1

)}
k≥1

, (2.13)

and {
λk = α+ νk, σk =

φk(x)√
1 +D2

k

(
1
Dk

)}
k≥1

, (2.14)

where

Dk =
εβ

νk(1− ε) + α− εγ =
εβ

λk − µk
. (2.15)

This proposition is proved below. Note that Dk is well-defined under our
assumptions that α, γ stay away from −νk. The fact that all eigenfunctions
can be decomposed as scalar x-dependent functions and a constant vector is
noteworthy and becomes fairly important in our analysis. It is due to the same
differential operator L appearing in the U− and the V−equation, both with the
same BCs.

The first N µ−eigenvalues are O(ε) and O(ε)-interspaced, see (2.13). There-
fore, we call this part of the spectrum the small spectrum. Accordingly, {λk}k∈N
is called the large spectrum, which has O(1)-interspacing. The threshold values for
µ1 and λ1 to become unstable are the O(1), fixed values γ = −ν1 and α = −ν1.
Initially, we keep γ < −ν1 fixed, so that the small spectrum is stable. The
parameter α is used as a bifurcation parameter and determines the stability of
(0, 0). We define

αT = −ν1, (2.16)

where T stands for ‘transcritical’. The primary eigenvalue of the large spectrum,
λ1, is unstable for α > αT . Note that the destabilization value for the small
spectrum could also be described as γT = −ν1, so that the primary eigenvalue of
the small spectrum, µ1, is unstable for γ > γT . By setting µk = −εMk, we make
the asymptotic magnitude of the small spectrum explicit, and because γ < γT
almost everywhere in this chapter, we also make the sign explicit.

Proof of Proposition 2.2.1. This proof uses assumptions A1–A3 on L and on
the BCs, as well as the solutions of the associated spectral problem (2.8). Due
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2.2 Spectral analysis of the trivial state

to the triangular structure of DT , one set of eigenvectors is of the form

sk(x) :=

(
0

ζk(x)

)
. (2.17)

The eigenvalues corresponding to sk are µk. Equation (2.7a) is satisfied trivially
and (2.7b) yields a scalar, self-adjoint spectral problem,

(µk − εγ)ζk = εLζk. (2.18)

We can identify (2.18) as the scalar spectral problem (2.8) with a linear shift.
Solutions of (2.18) are therefore the eigenfunctions ζk(x) = φk(x), and the
corresponding eigenvalues µk = ε(γ + νk) immediately follow. Normalizing sk(x)
under the norm (2.12) yields (2.13). To derive the second set of eigenvalues and
eigenfunctions, we write the eigenfunctions as

σk(x) =

(
wk(x)
yk(x)

)
. (2.19)

Substitution of (2.19) into (2.7a) yields an ODE for w(x) that decouples from
y(x). In this ODE, the scalar problem (2.8) can again be identified, so that,

λk = α+ νk and wk(x) = c1,kφk(x),

with c1,k ∈ R, a constant depending on the value of νk. From this, equation
(2.7b) becomes an ODE driven by the inhomogeneity εβφk(x),

λkyk(x) = εLyk(x) + εβc1,kφk(x) + εγyk(x), (2.20)

implying

yk(x) = c2,kφk(x), for some c2,k ∈ R.

Substituting into (2.20), we obtain

(α+ νk)c2,kφk = εc2,kLφk + εβc1,kφk + εγc2,kφk = ε [c2,kνk + βc1,k + γc2,k]φk,

so that we find

c2,k =
εβ

α+ (1− ε)νk − εγ
c1,k =

εβ

λk − µk
c1,k.

The constant c1,k is uniquely defined by normalizing σk. We then obtain the
second set of eigenvalues and eigenfunctions (2.14).
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2.2.2 Example: a reaction-diffusion system

We illustrate our approach by setting L = ∆ and Ω = (0, 1), so that H = L2
0(0, 1).

Hence, we study the reaction-diffusion system,{
Ut = Uxx + αU + F (U, V ),

Vt = ε [Vxx + βU + γV +G(U, V )] .
(2.21)

We assume homogeneous Dirichlet BCs, U(0) = U(1) = V (0) = V (1) = 0. The
eigenvalue-eigenfunction pairs for the one-dimensional Laplacian ∂xx on the unit
interval are

νk = −k2π2 and φk(x) = sin(kπx), with k ∈ N. (2.22)

Normalized under the norm of L2(0, 1), the eigenfunctions form an orthonormal
set in L2(0, 1),{

µk = ε(γ − k2π2), sk(x) =
√

2 sin(kπx)

(
0
1

)}
k≥1

,{
λk = α− k2π2, σk(x) =

√
2 sin(kπx)√

1 +D2
k

(
1
Dk

)}
k≥1

,

(2.23)

where Dk is defined as in (2.15). In this case, αT = γT = π2, so when γ < γT ,
the small spectrum is stable. This example is used several times in numerical
simulations in sections 2.4.2 and 2.5.2, but in the next sections we again turn to
an abstract L.

2.3 Emergence of a small pattern

In Section 2.2, we have obtained explicit control over the spectrum of (2.3)
corresponding to the trivial background state (U, V ) = (0, 0). In the current
section, we set λ1 = rεσ, with r > 0 and σ > 1, and trace the onset of pattern
formation as the background state destabilizes. Since |λ1| � minm,n{µm, λn},
there exists a spectral gap and the flow on a center manifold governs the nonlinear
dynamics of small initial conditions. As mentioned in the Introduction, we operate
slightly different from the textbook center manifold reduction approach but can
recover equivalent results –a transcritical bifurcation and the corresponding flow
on a one-dimensional center manifold.

2.3.1 Fourier expansion and amplitude ODEs

Consider again the function space H defined in (2.10). By construction, the
eigenfunctions sk and σk, see (2.13) and (2.14), form a basis for it. In contrast
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2.3 Emergence of a small pattern

to [176], we choose to not work with the eigenbasis but with{
ek :=

(
φk
0

)
, e′k :=

(
0
φk

)}
k∈N

. (2.24)

Although this will lead to linear coupling between modes, it will render the
amplitude ODEs more amenable to analysis by eliminating many nonlinearities.
This, in turn, makes the analysis of the later obtained amplitude equations much
more transparent. Since L is self-adjoint, this basis is orthonormal:

• 〈el, em〉 = 〈e′l, e′m〉 = δlm, for all l,m ∈ N;

• 〈el, e′m〉 = 0, for all l,m ∈ N;

• ||el|| = ||e′l|| = 1, for all l ∈ N.

Here, 〈·, ·〉 and || · || denote the inner product and norm on H as defined in (2.11)
and (2.12). With this basis for H, we can decompose U and V as(

U
V

)
=
∑
l≥1

Al(t)el +Bl(t)e
′
l =

∑
l≥1

φl(x)

(
Al(t)
Bl(t)

)
. (2.25)

In the context of our reaction-diffusion example (2.21), (2.25) amounts to Fourier
sine series for U and V . The coefficients Al and Bl are called amplitudes
corresponding to el and e′l, respectively, and measure the projection of the solution
(U, V )T along the corresponding eigenspace. For a given solution (U, V )T , the
orthonormality relations yield simple formulas for these amplitudes:

Al =

〈(
U
V

)
, el

〉
, Bl =

〈(
U
V

)
, e′l

〉
.

Because each φl is an eigenfunction of the operator L, substitution of (2.25)
into (2.3) yields

∑
l≥1

(
Ȧl
Ḃl

)
φl =

∑
l≥1

(
λl 0
εβ µl

)(
Al
Bl

)
φl +N (U, V ), (2.26)

cf. (2.7a)–(2.7b). Here, the dot (˙) denotes differentiation with respect to t. We
Taylor-expand the nonlinearity N = (F, εG)T using

F (U, V ) = F20U
2 + F11UV + F02V

2 +O(||U2 + V 2|| 32 ),

G(U, V ) = G20U
2 +G11UV +G02V

2 +O(||U2 + V 2|| 32 ),
(2.27)
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where O(||U2 + V 2|| 32 ) denotes cubic and higher order terms. Upon substituting
(2.25) into these expressions, the nonlinearity becomes

N (U, V ) =
∑
l,m≥1

φlφm

(
F20AlAm + F11AlBm + F02BlBm

ε (G20AlAm +G11AlBm +G02BlBm)

)
, (2.28)

+O(||U2 + V 2|| 32 ) terms. This can now be substituted back into (2.26). Note
that the quadratic terms φlφm must also be projected onto {φk}k≥1,

φlφm =
∑
k≥1

Cklmφk, with Cklm =

∫
Ω

φkφlφm dx, (2.29)

where Cklm is invariant under index permutations. In the case L = ∆, Ω = (0, 1)
and with Dirichlet BCs, for example, C111 = 8

√
2/(3π) and Cklm = 0 if k+ l+m

is even. The resulting system is reducible to an infinite-dimensional system of
ODEs for Ak and Bk by taking the inner product with ek and e′k, respectively.
One thus obtains a pair of coupled ODEs per k ∈ N:

Ȧk = λkAk

+
∑
l,m≥1

Cklm (F20AlAm + F11AlBm + F02BlBm) ,

Ḃk = −εMkBk + εβAk

+ ε
∑
l,m≥1

Cklm (G20AlAm +G11AlBm +G02BlBm) ,

(2.30)

up to cubic corrections. Note that there is now also linear coupling between Ak
and Bk, reflecting the fact that {ek, e′k}k≥1 is not an eigenbasis of DT .

2.3.2 The classical center manifold reduction

As discussed in the Introduction, center manifold reduction (CMR) can be used to
reduce the flow of a system close to bifurcation, provided that there is a spectral
gap between the bifurcating eigenvalues and the other (stable) eigenvalues. To
reflect this feature, we rescale

α = αT + rεσ, with r > 0 and σ > 1, so that λ1 = rεσ; (2.31)

this positions us just beyond destabilization of (U, V ) = (0, 0). As we have
already remarked, the spectral gap condition is satisfied in this regime; recall
Figure 2.1. The results in this section are therefore equivalent to CMR, see
[9, 18, 160].
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2.3 Emergence of a small pattern

We trace the onset of patterns emerging from a trivial background state, so
we expect all amplitudes to be small. To reflect this, we scale all amplitudes by
means of

A1(t) = εσ1a1(t),

Ak(t) = εσUak(t), k ∈ N≥2,

Bk(t) = εσV bk(t), k ∈ N,
(2.32)

with σ1 < σU . We assumed here that the primary amplitude A1 is asymptotically
larger than all other amplitudes, because it corresponds to the bifurcating
eigenvalue. The powers σ1, σU , σV are positive and will be determined in terms of
σ in the forthcoming analysis. Substituting the rescaled amplitudes into system
(2.30) yields,

εσ1 ȧ1 = rεσ1+σa1 + ε2σ1C111F20a
2
1 + εσ1+σV

∑
m≥1

C11mF11a1bm

+ ε2σV
∑
l,m≥1

C1lmF02blbm +O(εσ1+σU , εσV +σU ),
(2.33)

εσU ȧk = εσUλkak + ε2σ1Ck11F20a
2
1 + εσ1+σV

∑
m≥1

Ck1mF11a1bm,

+ ε2σV
∑
l,m≥1

F02Cklmblbm +O(εσ1+σU , εσV +σU ),

εσV ḃ1 = −ε1+σVM1b1 + ε1+σ1βa1 +O(ε1+2σ1 , ε1+σ1+σV , ε1+2σV ),

εσV ḃk = −ε1+σVMkbk + ε1+σUβak +O(ε1+2σ1 , ε1+σ1+σV , ε1+2σV ),

(2.33)

with the higher order corrections originating from the nonlinear terms in (2.30).
The principle of least degeneracy or of significant degeneration [44, 87] suggests
that σ = σ1 = σV , that σU = 2σ and the rescaling of time τ = εσt. Denoting
differentiation with respect to τ by ′, we find up to corrections of O(εσ),

a′1 = ra1 + C111F20a
2
1 + F11a1

∑
m≥1

C11mbm + F02

∑
l,m≥1

C1lmblbm,

εσa′k = λkak + Ck11F20a
2
1 + F11a1

∑
m≥1

Ck1mbm + F02

∑
l,m≥1

Cklmblbm,

εσ−1b′1 = −M1b1 + βa1,

εσ−1b′k = −Mkbk.

(2.34)
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For σ > 1, the left hand side of all ODEs except the first one is of higher order,
compared to their linear terms. This reflects the disparity between the O(εσ)
eigenvalue λ1 and all other eigenvalues, which are at least O(ε). It ensures that
the long-term, leading order behavior of the corresponding modes are described
by algebraic relations – slaving relations – because the left-hand sides become
higher order compared to the linear terms. The corresponding amplitudes are said
to be slaved to a1, leaving this as the only dynamic amplitude and the behavior
of (2.34) completely determined by it. Here, the slaving relations assume the
form

b1 =
β

M1
a1 +O(εσ−1),

bk = 0 +O(εσ−1),

ak = −Ck11H

λk
a2

1 +O(εσ−1),

(2.35)

where, with a slight abuse of notation, we write

H = F20 +
F11β

M1
+
F02β

2

M2
1

. (2.36)

The ODE describing the evolution of a1 on the center manifold is

a′1 = ra1 +HC111a
2
1 +O(εσ−1), (2.37)

obtained by substituting (2.35) into (2.34). At this point, we have recaptured the
classical center manifold reduction results. The center manifold is one-dimensional
and described by the slaving relations, while the evolution on it is governed by
the single ODE for a1 above. The trivial pattern (U, V ) = (0, 0) corresponds to
the trivial steady state a1 ≡ 0, and there also exists a nontrivial steady state
solution,

a∗1 = − r

C111H
. (2.38)

This state indicates the onset of a nontrivial pattern, because the two steady
states exchange stability at r = 0 through a transcritical bifurcation. As long as
σ > 1, (2.37) exhibits no other bifurcations in a neighborhood of (U, V ) = (0, 0).

Theorem 2.3.1. The trivial state (U, V ) = (0, 0) of system (2.3) undergoes a
transcritical bifurcation at α = αT . For α = αT + rεσ with σ > 1, r > 0 and
γ < γT , the nontrivial, stationary, attracting pattern branching off this trivial
state is approximated by(

U
V

)
= εσ

[
− r

C111H

(
1

β/M1

)
φ1(x) +O(εσ−1)

]
. (2.39)
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This result is derived by combining (2.38) and the slaving relations (2.35)
with the original expansion (2.25). It also follows from a standard application of
center manifold reduction, and therefore we refer to [9, 18, 160] for a full proof.

2.4 Evolution of the small pattern outside the CMR regime

The dichotomy σ > 1 versus σ = 1 arises naturally in system (2.34). Indeed, as
σ ↓ 1, the spectral gap between a1 and the bk−amplitudes disappears. What
is left are equations for a1, b1 and all bk with k ≥ 2. Those bk−amplitudes
naturally remain linearly stable, but they now evolve in the same timescale as
a1. As a result, (2.34) does not a priori support an exponentially attracting,
one-dimensional center manifold anymore.

Below, we use the spectrum of the background state and (2.34) to track
the evolution of the small pattern (2.39) emerging from that state well into
the regime σ = 1. We first show that the pattern (conditionally) undergoes a
destabilizing Hopf bifurcation at a value αH > αT for α, through which a small,
stable, temporally oscillatory pattern emerges; see Section 2.4.1. As α increases
even further, numerical work show the amplitude and period of the oscillation to
increase all the way to a homoclinic bifurcation, at which the oscillatory pattern
disappears. Past that α−value, small initial conditions grow unboundedly (in the
scaled setting), see Section 2.4.2; this bounds the span of our analysis explicitly.

2.4.1 Beyond classical CMR: a Hopf bifurcation

Setting σ = 1 in (2.34) and retaining the dynamic equations for the bk−modes,
we obtain, up to O(ε) corrections,

a′1 = ra1 + C111F20a
2
1 + F11a1

∑
n≥1

C1n1bn +
∑
m,n≥1

Cmn1F02bmbn,

b′1 = −M1b1 + βa1,

b′k = −Mkbk, where k ≥ 2.

(2.40a)

(2.40b)

(2.40c)

The amplitudes ak with k ≥ 2 remain slaved. However, since all bk−modes are
now dynamic, each ak is controlled by both the a1− and the bk−modes,

ak = −
C11kF20a

2
1 + F11a1

∑
n≥1 C1nkbn +

∑
m,n≥1 CmnkF02bmbn

λk
.

In the terminology of center manifold reduction (CMR), one could say that
the center manifold dimension has become infinite or, at least, that it cannot
be bounded uniformly as ε ↓ 0 (asymptotically large). Analysis of an infinite-
dimensional ODE system is a priori nontrivial. However, in this case all but
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one (namely a′1) of the equations are linear and all but two (namely a′1 and b′1)
decouple, see also Remark 2.2. Moreover, the ODEs for bk with k ≥ 2, see (2.40c),
imply exponential decay of those modes at rates increasing with k. Therefore we
can conclude that in the long term bk = O(ε) for all k ≥ 2, see again Remark 2.2,
and the evolution of the pattern is controlled by the planar system{

a′1 = ra1 + C111

(
F20a

2
1 + F11a1b1 + F02b

2
1

)
+O(ε),

b′1 = −M1b1 + βa1 +O(ε),
(2.41)

together with the slaving relations

ak = −C11k

λk

[
F20a

2
1 + F11a1b1 + F02b

2
1

]
+O(ε), bk = O(ε), k ≥ 2.

The reduced system (2.41) admits two equilibria, namely the zero solution
corresponding to the trivial state and the continuation of the pattern (2.39) in
this regime,

S∗(r) :=

{
(a1, b1) = − r

C111H

(
1,

β

M1

)}
; (2.42)

recall definition (2.36) for H. The Jacobian of the trivial state has eigenvalues
Λ1 = r and Λ2 = −M1, and thus the state changes from stable node to saddle at
the transcritical bifurcation (r = 0). The stability of S∗ is determined by the
Jacobian corresponding to (2.41),

J(S∗) =

(
r
H (H − J1) − r

H J2

β −M1

)
, with J1 = 2F20 +

βF11

M1

J2 = F11 + 2
βF02

M1
.

(2.43)

One of its eigenvalues becomes zero if and only if r = 0, as expected because of
the transcritical bifurcation, (see Appendix). The branch S∗(r) may further lose
stability through a Hopf bifurcation, where limit cycles (periodic amplitudes) are
born; this occurs if the eigenvalues form a complex pair crossing the imaginary axis.
A straightforward computation gives conditions on r for which the eigenvalues of
J(S∗) are purely imaginary complex conjugates:

rH =
HM1

H − J1
and rH > 0. (2.44)

If rH < 0 instead, S∗ remains a stable point for all positive O(1) values of r.
However, we refrain from investigating the fate of S∗ in the case that it does not
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2.4 Evolution of the small pattern outside the CMR regime

undergo a Hopf bifurcation. If rH > 0 and H − J1 6= 0, then a Hopf bifurcation
takes place. From [98] we derive a degeneracy condition ensuring that the
eigenvalues pass the imaginary axis with nonzero speed, which is always satisfied
if rH > 0. The same reference gives rise to a straightforward computation that
determines the criticality of the bifurcation [98]. Defining

L = (H + rHF20)(2M1F20 + F11β), (2.45)

we obtain that the Hopf bifurcation is supercritical if L < 0 and subcritical
if L > 0. We refer the reader to Appendix A for the full derivation of this
expression. Our results so far, concerning the evolutionary system (2.3), are
summarized in the following proposition.

Claim 2.4.1. In PDE-systems of the class (2.3), the trivial solution (U, V )
= (0, 0), undergoes a transcritical bifurcation as α passes through αT = −ν1.
When the trivial solution loses stability, the nontrivial branch becomes stable and,
under the condition that rH > 0, undergoes a Hopf bifurcation as α increases to

αH =
HM1

H − J1
ε− ν1.

Neither a rigorous proof of this proposition nor validation of the asymptotics
are foci of this presentation. The formal work resulting in Claim 2.4.1 establishes
that, as long as rH > 0 and L < 0, the bifurcating stationary pattern (2.39) starts
oscillating periodically in time for parameters O(ε) close to the first transcritical
bifurcation. As in the case of the phytoplankton-nutrient model (2.1), this
behavior is confirmed by direct simulations of the full PDE model; see next
section.

Remark 2.1. In system (2.40), the dynamics of the bk-modes is governed by
ODEs. From a different persective, the bk-modes represent the leading order
original PDE for V , see (2.3), through transformation (2.25). System (2.40)
can therefore also be regarded as an ODE (equation (2.40a)) coupled to a PDE
(albeit in amplitude form, (2.40b)–(2.40c)). We can reconstruct the PDE to
which equation (2.40a) is coupled by writing V (x, t) = εv(x, t) and using the
correct timescale τ = εt in (2.3). The PDE for v then becomes

vτ = Lv + γv + βa1(τ)φ1(x) +O(ε). (2.46)

System (2.40) is thus equivalent to (2.40a) coupled to the inhomogeneous, linear
PDE (2.46). The analogue of this compact version of system (2.3) is heavily used
in Chapter 3. Note also that all bk-terms appearing in (2.40a) can in principle
be expressed into nonlocal terms of v. We did not work with this representation
of the dynamics beyond classical CMR, because of being able to reduce (2.40) to
the planar system (2.41).
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Remark 2.2. The distinct decoupling between the active b1−mode and the
exponentially decaying bk−modes (k ≥ 2) in the extended center manifold
reduction (ECMR) system (2.40) can be traced back to our assumptions on the
structure of the basic system (2.3) and its BCs. Since the fast (U) and slow (V )
eigenvalue problems are governed by the same operator L subject to the same
BCs, we can employ the Fourier decomposition (2.25) based on the same scalar
eigenfunctions φk(x) for both the U− and the V−components. In a more general
setting – e.g., when the operator and BCs for U differ from those for V – the fast
and slow eigenvalue problems do not admit a set of eigenfunctions expressible in
terms of the same scalar function. As a consequence, the leading order terms in
the (beyond CMR) ODEs for bk may employ the unstable a1−mode; in that case,
a direct decoupling of the form (2.40) is not ascertained. We encounter that in
the phytoplankton-nutrient model (2.1) studied in [78, 176, 177] and Chapter 3
of this thesis. It has, nevertheless, been shown in [176] that, also for (2.1), the
full system behavior is essentially two-dimensional. The transcritical bifurcation
in (2.1) is also followed by a Hopf destabilization. Although we do not consider
the more general case, (2.2) here, we expect it to behave similarly to systems
(2.1) and (2.3): essentially two-dimensional dynamics, beyond the classical CMR,
which may contain a Hopf bifurcation. The difference between the present, most
transparent case (2.3) and the more general (2.2) is expected to mostly be a
matter of linear algebra.

2.4.2 Beyond the Hopf: a homoclinic bifurcation

Having successfully tracked the pattern into an O(ε) regime beyond the tran-
scritical bifurcation, the question arises whether the ECMR system (2.41) can
possibly capture tertiary bifurcations for α > αH . It turns out that, unfortu-
nately, we cannot in general expect (E)CMR to capture the full system dynamics
for r > rH . As we will find out, even small initial conditions are no more trapped
in a neighborhood of the manifold.

First, we select parameter values ensuring the existence of a supercritical
Hopf bifurcation and then trace the stable limit cycle emerging through it. We
do not attempt to follow the oscillatory pattern analytically but rely, instead,
on numerical ODE continuation toolbox MatCont to do just that [33]. The
first outcome is Figure 2.3, where we have plotted the limit cycle born at αH for
increasing r (or, equivalently, α; recall (2.31)). Note carefully that these plots
correspond to the reduced, planar system (2.41) and not to the full PDE model;
also, that we have overlaid the limit cycles corresponding to several r−values –
this is not a single trajectory. As r increases from rH , the period of the limit
cycle tends to infinity while it accumulates to a homoclinic orbit; this occurs at
a well-defined, finite value rHom. As Figure 2.3 shows, that orbit is homoclinic
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2.4 Evolution of the small pattern outside the CMR regime

to the trivial state (a1, b1) = (0, 0). Increasing r beyond rHom leads amplitudes
to grow unboundedly, rendering our asymptotic analysis invalid; indeed, the
assumption on the asymptotic magnitude of A1 and B1 is then violated, see
(2.32).

b1

a10

0.2

0.4

0.6

−0.25−0.5−0.75 0

Figure 2.3: A continuation of the attracting limit cycle in system (2.41) that originates
at the Hopf bifurcation. The horizontal and vertical axes correspond to a1 and b1,
respectively. The parameter values are β = −4, γ = 5, F20 = −2, F11 = 5, F02 = 12, so
that rH > 0 and L < 0. The supercritical Hopf bifurcation occurs at rH ≈ 0.9596. The
limit cycles accumulate at r ≈ 1.0524, at which point the period tends to infinity. This
indicates the existence of an orbit homoclinic to the trivial state (0, 0). As r increases
beyond r ≈ 1.0524, orbits grow unboundedly.

Matlab simulations show that the full system (2.3) exhibits similar behavior
and has a periodically oscillating spatial structure as attractor. Moreover, the
periodic patterns also seem to merge with a homoclinic structure as r increases,
see Figure 2.4 where we plot the amplitudes a1(τ) and b1(τ). Motivated by these
observations, we formulate a conjecture concerning the stability of the nontrivial
steady state.

Conjecture 2.4.2. Let rH > 0 and assume that the Hopf bifurcation that (2.41)
undergoes is supercritical: L < 0, see (2.45). Then, as r increases beyond rH ,
the limit cycles grow into a homoclinic orbit at r = rHom. As r increases beyond
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a1−0.25−0.5 0
0

0.25

0.5

a1

b1 b1

0

0.2

0.4

0.6

−0.25−0.5−0.75 0

Figure 2.4: PDE simulations of (2.3) using matlab’s pdepe function. Here, L = ∆
on Ω = (0, 1) equipped with Dirichlet BCs, and parameters are as in Figure 2.3 and
G20 = 1, G11 = G02 = 0. Plotted are the amplitudes a1 (horizontal axis) and b1 (vertical
axis), obtained by projecting the computed (U(x, t), V (x, t)) onto φ1(x) and rescaling.
(a) An orbit evolving to an attracting limit cycle. Additional parameter values are r = 1
and ε = 0.05. The initial conditions are U(x, 0) = −V (x, 0) = −εφ1(x). (b) A similar
simulation for r = 1.09. For r slightly larger, the limit cycle connects to the origin and
orbits continue to grow (data not shown).

that value, all orbits of (2.41) grow unboundedly except for those with initial
conditions on the stable manifold of the trivial state (0, 0). Qualitatively, this
transition is illustrated in Figure 2.5.

Figures 2.5 contains (hypothetical) phase portraits of a two-dimensional
system as it goes through the transcritical, Hopf and homoclinic bifurcations.
These portraits are meant to illustrate qualitatively these transitions, not to
correspond to (2.41) for specific parameter values. Note that the scenario laid
out in Conjecture 2.4.2 has a strong similarity to the behavior of systems near
a transcritical codimension 2 Bogdanov-Takens bifurcation point – see [23], for
instance. Given the structure of (2.41), this is not surprising. There is, however,
a subtle but significant difference between (2.41) and a generic unfolding of a
(non-semisimple) codimension 2 bifurcation with two zero eigenvalues as that
considered in [23]. Specifically, system (2.41) has been obtained under the
assumption that amplitudes a1 and b1, as well as all parameters, are strictly O(1).
For instance, |r| � 1 will necessarily bring us back to the classical center manifold
reduction case of a transcritical (codimension 1) bifurcation of Section 2.3.2.
Similarly, it is central to our procedure that M1 is not ‘small’ – or equivalently
that µ1 = O(ε) but not smaller – as Figure 2.1 clearly illustrates. Therefore, the
conjectured occurrence of the homoclinic bifurcation cannot be deduced from
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2.4 Evolution of the small pattern outside the CMR regime

the existence of homoclinic bifurcations near a Bogdanov-Takens point: these
are all established by a local analysis zooming into the situation where, in the
notation of equation (2.41), |a1|, |b1|, r and M1 are all ‘sufficiently small ’. A
rigorous proof on the existence of an attracting, extended center manifold as a
reduction, is crucial for the validation of our method, but is part of future work.

In fact, the system beyond the center manifold reduction (CMR) obtained
in [176] for the phytoplankton - nutrient model (2.1) that inspired the present
analysis corresponds to setting γ = 0 in (2.3), since the small eigenvalues µk in
(2.1) are parameter-independent and cannot be ‘tuned ’. Hence, in the case of (2.1),
M1 = −π2 and there is no freedom to consider the case M1 → 0. Nevertheless,
the system beyond CMR obtained in [176] also exhibits the Bogdanov-Takens-like
behavior of Conjecture 2.4.2. This is not surprising: it is natural to assume that
bifurcation curves existing in a local limit may be extended globally.

(a) (b) (c) (d)

Figure 2.5: Qualitative phase portraits illustrating Conjecture 2.4.2 on the evolution
of the stability of the nontrivial steady state S∗. (a) r ∈ (αT , rH); the Hopf bifurcation
has not yet occurred, and S∗ is a stable focus. (b) r ∈ (αH , rHom); a stable limit cycle
has appeared after the Hopf bifurcation, making S∗ an unstable focus. (c) r ≈ rHom;
the limit cycles have grown into an homoclinic orbit to the origin with attracting initial
conditions within its lobe, and S∗ is unstable. (d) r > rHom; now all orbits grow
unboundedly, except for the stable manifold of the trivial state.

Other than the numerical evidence, we do not provide an analytical proof for
the existence of a homoclinic orbit. We will, however, employ geometric singular
perturbation theory (GSPT) and Fenichel’s theorems to show that, if r increases
to be asymptotically large, all solutions of (2.41) indeed blow up [49, 82, 84].

We introduce r = 1
δ , with 0 < δ � 1. System (2.41) then becomes singularly

perturbed, a′1 =
1

δ
a1 + C111

(
F20a

2
1 + F11a1b1 + F02b

2
1

)
+O(ε),

b′1 = −M1b1 + βa1 +O(ε),
(2.47)

where the prime denotes differentiation with respect to τ . With a slight abuse
of notation, we rescale A1 = δa1 and B1 = δb1 to obtain the associated slow
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system,{
δA′1 = A1 + C111

(
F20A

2
1 + F11A1B1 + F02B

2
1

)
,

B′1 = −M1B1 + βA1.
(2.48)

Rescaling time as t̂ = 1
δ τ , we obtain the fast system,

dA1

dt̂
= A1 + C111

(
F20A

2
1 + F11A1B1 + F02B

2
1

)
,

dB1

dt̂
= δ (−M1B1 + βA1) .

(2.49)

Using GSPT, we can now conclude the following.

• To leading order in δ, B1 is constant with respect to the fast dynamics.

• The slow manifold is defined by

0 = A1 + C111

(
F20A

2
1 + F11A1B1 + F02B

2
1

)
, (2.50)

which is a conic section (ellipse, hyperbola or parabola). This slow manifold
is normally hyperbolic, except at the folds where the slope with respect to
B1 is zero.

• The eigenvalues of the nontrivial equilibrium S∗ determined from the fast
system are

Λ1 =
M1

rH
+ δ

rHJ1

H
+O(δ2) and Λ2 = δrH +O(δ2), (2.51)

recall (2.36) and (2.43)–(2.44). In the regime which we consider, rH > 0
and M1 > 0, the equilibrium is a source.

Proposition 2.4.3. Let rH ,M1 > 0 and β 6= 0. If a solution Γ(τ) = (a1(τ),
b1(τ)) of system (2.47) is bounded, then it lies on the stable manifold of the
trivial steady state: limτ→∞ Γ(τ) = (0, 0).

Proof. The proof relies on phase portrait analysis. See Figure 2.6 for two typical
configurations of the phase portrait; the situation is similar for a parabolic slow
manifold (case not shown). Now, assume Γ(τ) to be bounded and to solve (2.47)
but not to limit to the origin. Without loss of generality, we also assume Γ(0)
to lie on the fast plane and not on the slow manifold. Given that Γ is bounded,
the fast flow takes it to a branch of the slow manifold. There, the slow flow
cannot further direct it to the trivial steady state, by assumption. Hence, it
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2.4 Evolution of the small pattern outside the CMR regime

carries it to either of the folds of the slow manifold, where the flow of Γ is more
subtle. Since there is no other branch of the slow manifold to pick up Γ, that
remains unbounded contradicting our assumptions and completing the proof.
Note that, in the above argument, we have implicitly assumed Γ to stay away
from the nontrivial steady state S∗. The linear analysis (2.51) confirming S∗ as a
source supports this conclusion, as does Figure 2.6. The same figure, nevertheless,
suggests the existence of trajectories limiting to S∗, and thus bounded, when that
equilibrium lies at the other side of the folds. This cannot happen in the regime
assumed here, M1 > 0 and rH > 0. Indeed, switching occurs at H − J1 = 0 and,
in our regime, either H − J1 > 0 or H − J1 < 0: the state remains repelling for
all rH ,M1 > 0.

A1

B1

A1

B1

Figure 2.6: Two possible phase portraits of system (2.47). The pink dots mark the folds
of the slow manifold. The blue line is B1 = βA1/M1, and intersections of it with the
conic section are steady states. Left: Here, F20 = 1, F11 = 3, F02 = 1 and β = 0.55M1,
and the conic section is a hyperbola. Right: Here, F20 = −1, F11 = 2, F02 = −3 and
β = 0.8M1, and the conic section is an ellipse. In both cases, the nontrivial steady
state is repelling all initial conditions other than itself. The only orbits that do not
grow unboundedly are those with initial conditions on the stable manifold of the trivial
steady state.

As a corollary of Proposition 2.4.3, every solution of (2.47) not intersecting
the stable manifold of the trivial state grows unboundedly. Hence, orbits of
system (2.41) with asymptotically large r grow unboundedly, unless they intersect
the stable manifold of the trivial state.
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2.5 Capturing the onset of low-dimensional chaos with the
ECMR

In the previous sections, we have analyzed the onset of patterns arising from a
trivial background state in (2.3), finding that it involves a primary (transcritical),
a secondary (Hopf) and a tertiary (homoclinic) bifurcation. In this and the next
section we demonstrate, first, how a modification in (2.3) creates more complex
but equally low-dimensional dynamics and, second, how to track the onset of
this dynamics using extended center manifold reduction (ECMR). The first part
adds to our ongoing effort to unfold the driving mechanism of low-dimensional
chaotic dynamics in (2.1); and indeed, our work puts the spotlight on a wide class
of PDE systems exhibiting similar phenomena, see (2.2) and the corresponding
Chapter 3. The second part is meant to further highlight this class as one where
analysis is possible and onset of chaos may be understood analytically, for a large
part, through ECMR.

As we discussed in the Introduction, the amplitude system (2.40a)–(2.40c)
can hardly support more exciting dynamics, as it is essentially two-dimensional
through the action of the nonlinearity εG in (2.3). A straightforward choice
is amplifying that nonlinearity to G. Note that this does not affect the linear
structure of the system near the trivial state – i.e., DT and thus also the validity
of assumptions A1–A3 – which enabled our analysis in the previous sections.
We discuss this modification below, deferring to Section 2.6 the discussion of
codimension 2 bifurcations as possible organizing centers for chaos. We start
from (cf. (2.3)){

Ut = LU + αU + F (U, V ),

Vt = εLV + εβU + εγV +G(x, U, V ),
(2.52)

equipped with suitable BCs, and focus for specificity on nonlinearities G that
are locally quadratic in U only. Spatial inhomogeneity, modeled here by an
x−dependent G and which is also present in (2.1), will become important in
Section 2.5.2. As we will see, the corresponding amplitude system is now infinite-
dimensional, with all bk−modes nonlinearly coupled to a1. To explore the
consequences of this dramatic increase in dimensionality, we consider a special
case in Section 2.5.2 and recover an essentially five-dimensional reduced system
with chaotic dynamics. We conclude this exploratory piece with simulations of
the full PDE system, through which we identify spatio-temporal chaos bearing
strong similarities to that of the reduced system.
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2.5 Capturing the onset of low-dimensional chaos with the ECMR

2.5.1 New amplitude equations

In this section, we set G(x, U, V ) = G20(x)U2 at leading order in (U, V, ε), with
G20 an arbitrary function. We thus study a modification of (2.3) with an O(1),
quadratic nonlinearity in the V -equation,Ut = LU + αU + F (U, V ),

Vt = εLV + εβU + εγV +G20(x)U2 +O
(
εUV, εV 2,

∣∣∣∣U2 + V 2
∣∣∣∣3/2) ;

(2.53)

the nonlinearity F is as in (2.27). We again equip the system with suitable
BCs guaranteeing conditions A1–A3, and we set α = rεσ − ν1 so that (0, 0)
destabilizes at r = 0.

The analysis proceeds along the same lines as that of system (2.3) in Section
2.3 and 2.4. Using a Fourier-like decomposition in terms of amplitudes and
eigenfunctions for U and V – recall (2.25) – system (2.53) is written as an
infinite-dimensional system of ODEs,

Ȧk = λkAk +
∑
l,m≥1

Cklm (F20AlAm + F11AlBm + F02BlBm) ,

Ḃk = −εMkBk + εβAk +
∑
l,m≥1

HklmAlAm +O(εAlBm, εBlBm).
(2.54)

Here, Hklm is the projection of G20φlφm onto φk,

Hklm =

∫
Ω

G20(x)φk(x)φl(x)φm(x) dx; (2.55)

note that Hklm reduces to G20Cklm for a constant G20, cf. (2.29). Using rescaling
(2.32) with σ1 = σV = σ and σU = 2σ,

A1 = εσa1, Ak = ε2σak, Bk = εσbk, (2.56)

we derive a leading order amplitude system whose only difference from (2.34) is
in the nonlinear terms for the bk’s. Switching to τ = εσt, we obtain a leading
order set of amplitude equations,
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a′1 = ra1 + C111F20a
2
1 + F11a1

∑
m≥1

C11mbm + F02

∑
l,m≥1

C1lmblbm

+O(εσ),

εσa′k = λkak + Ck11F20a
2
1 + F11a1

∑
m≥1

Ck1mbm + F02

∑
l,m≥1

Cklmblbm

+O(εσ),

εσ−1b′1 = −M1b1 + βa1 + εσ−1H111a
2
1 +O(εσ),

εσ−1b′k = −Mkbk + εσ−1Hk11a
2
1 +O(εσ).

(2.57)

Here again, a prime represents differentiation with respect to τ and Cklm, Hklm

are reported in (2.29) and (2.55). For σ > 1, we recover classical center manifold
reduction results, as was the case with (2.34). The slaving relations are

b1 =
βa1

M1
, bk = 0, ak =

C111H

λk
a2

1, (2.58)

compare with (2.36). Substituting into the ODE for a1 and recalling defini-
tion (2.36), we can write

a′1 = ra1 + C111Ha
2
1 +O(εσ). (2.59)

Note that, in agreement with theory, the newly introduced nonlinearity does
not affect classical center manifold reduction. This changes as σ ↓ 1: in that
limit, and similar to system (2.34), the bk−equations in system (2.57) retain
their evolutionary character. The system of ODEs governing the behavior of
(2.53) in the regime λ1 = O(ε) is, up to O(ε) corrections,

a′1 = ra1 + C111F20a
2
1 + F11a1

∑
n≥1

C1n1bn +
∑
m,n≥1

Cmn1F02bmbn,

b′1 = −M1b1 + βa1 +H111a
2
1,

b′k = −Mkbk +Hk11a
2
1, for k ≥ 2.

(2.60)

Asymptotically many bk−modes interact now nonlinearly with the a1-mode at
leading order. Again, a rigorous proof of the validity of our asymptotic method
is necessary, but is not part of this chapter.

Note that system (2.60) resembles but is not identical to the one corresponding
to (2.1). The readily apparent differences between the two systems – linear
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coupling in (2.60) versus more quadratic terms in the other – are circumstantial
and due to our working with (2.24), instead of with the eigenbasis as in [176].
A more appreciable difference concerns their coefficients, as the analogue of
(2.29) in [176] involves two sets of eigenfunctions and is less transparent; recall
Remark 2.2. Therefore, their corresponding flows may be widely different despite
sharing the same functional form, see [66, 98].

In the exploratory spirit of this chapter, we choose not to study (2.60) in
full generality but restrict ourselves, once again, to a transparent and highly
illustrative special case.

2.5.2 Example: Revisiting our reaction-diffusion system

We work with L = ∆, Ω = (0, 1) and homogeneous Dirichlet BCs, as in Sec-
tion 2.2.2; the eigenfunctions are still given by the simple formulas (2.22). To reach
a middle ground between the two-dimensional (2.41) and the infinite-dimensional
(2.60), we choose

G20(x) =
2
√

2

3
A sin(πx) +

√
2B sin(2πx), with A,B ∈ R free parameters.

With this choice,

H111 = A, H112 = B,

H113 = −1

3
A, H114 = −1

2
B

H11k = 0, for all k ≥ 5,

(2.61)

so that the ODEs for bk, with k ≥ 5, only contain higher order nonlinearities:
at leading order, ḃk = −Mkbk. From this we conclude that all bk with k ≥ 5
approach exponentially an O(ε) value. Thus, we obtain an explicit, exponentially
attracting, five-dimensional extended center manifold constraining bk to O(ε)
values, for k ≥ 5, and with flow given by

a′1 = ra1 + C111F20a
2
1 + F11

∑
l≥1

C1l1a1bl + F02

∑
k,l≥1

Ckl1bkbl,

b′1 = −M1b1 + βa1 +Aa2
1,

b′2 = −M2b2 +Ba2
1,

b′3 = −M3b3 −
1

3
Aa2

1,

b′4 = −M4b4 −
1

2
Ba2

1.

(2.62)
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Figure 2.7: Bifurcation figures of system (2.62), with parameters β = −4, F20 = −2,
F11 = 5, F02 = 12, A = 0.2 and B = 0.5. Left: Steady state diagram in terms of
the bifurcation parameter r and the first amplitude a1; here, γ = 5. Solid (dashed)
lines denote stable (unstable) equilibria. The points labeled ‘T’ and ‘Hopf’ indicate a
transcritical (coincides with the vertical axis) and a Hopf bifurcation. The solid curves
emerging from the Hopf bifurcation measure the minimum/maximum a1−values of the
bifurcating stable limit cycle. The limit cycle collides with the trivial steady state at
’Hom,’ yielding a homoclinic bifurcation. Right: A two-parameter continuation in (r, γ)
of these three bifurcations; the transcritical one occurs at r = 0.

The differential equations for a1, b1, b2, b3 and b4 characterize the behavior of the
amplitudes in the direction of the modes linking to λ1, µ1, µ2, µ3 and µ4. Note
how the addition of a special, inhomogeneous, O(1) nonlinearity has yielded a
five-dimensional system as our extended center manifold reduction. We study this
below using the ODE continuation toolbox MatCont, discussing two distinct
parameter sets in some detail to illustrate behavioral diversity in it. First, we
fix β = −4, γ = 5, F20 = −2, F11 = 5 and F02 = 12 as in Figures 2.3 and 2.4.
Note that these figures concern system (2.3), which only has an O(ε), spatially
homogeneous nonlinearity. Also note that γ < γT = π2, so that the small
spectrum is stable. We also fix A = 0.2 and B = 0.5, leaving r to vary. The
left panel of Figure 2.7 provides a bifurcation diagram of the destabilization
of the trivial steady state (a1, b1, b2, b3, b4) = (0, 0, 0, 0, 0) of (2.62). We track,
as r increases, the branches bifurcating from zero using the first amplitude,
a1, as representative. In this way, we recover qualitatively the destabilization
mechanism from Sections 2.2 and 2.4 (small, spatially homogeneous nonlinearity
for V ). Specifically, as r becomes positive, the trivial and nontrivial steady states
exchange stability (transcritical). Tracking the nontrivial steady state for r > 0,
we encounter a supercritical Hopf bifurcation at r ≈ 1.04; of the stable limit cycle
bifurcating from this point, we have drawn the minimum and maximum values
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2.5 Capturing the onset of low-dimensional chaos with the ECMR

of a1. This limit cycle branch exists up to r ≈ 1.17, where it becomes an orbit
homoclinic to the trivial steady state. For larger r-values, we have found no other
attractor. Note that this scenario corresponds precisely (albeit qualitatively)
with our results in Sections 2.4.1 and 2.4.2.

The right panel of Figure 2.7 shows the continuation of these three bifurcations
in two parameters: r and γ. This figure supports Conjecture 2.4.2 in the present
case. If one increases r, starting from a negative value, then one first encounters
a transcritical and then a supercritical Hopf bifurcation, which in turn is followed
by a homoclinic bifurcation. Beyond this homoclinic bifurcation, orbits grow
unboundedly and there seem to be no other attractors. At (r, γ) = (0, π2), there
exists a transcritical Bogdanov-Takens point, see [23] for its unfolding. For
negative values of r the bifurcation diagram is more subtle but we choose not to
focus on that because this does not correspond to our analytical work.

For the parameter values reported above, we have seen no significant qualita-
tive differences in the behavior of the reduced system (2.62) and of the original
PDE system (2.3). This changes drastically if we retain A = 0.2 and B = 0.5
but switch to, for instance, β = −2.2, γ = 6, F20 = −0.6, F11 = 3 and F02 = −3.
Using r as a bifurcation parameter, we observe that the transcritical bifurcation
at r = 0 persists, see the left panel of Figure 2.8. Tracing the nontrivial steady
state stabilized at r = 0, we see that it first encounters two saddle-node points
at r ≈ 11.55 and r ≈ 1.80, before a Hopf bifurcation at r ≈ 5.99 occurs. This
Hopf bifurcation is supercritical, and again we have plotted the minimum and
maximum of the limit cycle that arises there. Since this stable limit cycle exists
for r-values where the nontrivial steady state is stable, there is bistability of both
a steady state and a periodic solution. Contrary to the Hopf bifurcation in the
left panel of Figure 2.7, the limit cycle here undergoes several period-doubling
bifurcations and becomes chaotic, before terminating again in a homoclinic orbit
for larger r-values (r ≈ 30).

In the right panel of Figure 2.8, we have plotted all five Lyapunov exponents
corresponding to the chaotic orbit from r = 7 onwards. At r = 7.34, the first
Lyapunov exponent becomes positive, indicating chaos. Increasing r even further,
the chaotic orbit persists and its magnitude grows, until it collides with a saddle
steady state at r = 7.53. For larger values of r, all orbits escape to infinity. See
the left panel of Figure 2.9, where the chaotic orbit itself is plotted for r = 7.49. In
a simulation of the full PDE (2.3) with the same parameter values, we recover the
same period-doubling scenario leading to chaos as in (2.1). However, at r = 7.49
the PDE is still in the ‘double period-regime’, whereas the ODE reduction already
shows a chaotic orbit. This can be understood by the fact that our approach
only yields leading order accuracy and ε = 0.01. In principle, the incorporation
of higher order terms is expected to improve the correspondence between
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the reduced and the full system, especially through the slaving relations for ak
with k ≥ 2. Note that a1 ∼ 15–30 in the chaotic regime, thus A1 = εa1 ∼ 0.15–
0.30, see (2.56) with σ = 1; this is already near the boundary for which one
would expect an asymptotic method to work.

a1

r0 4 8 12

15

30

0

r

0

−10

7 7.57.25 7.34

SN

T

PD

Hopf

SN

PD

Figure 2.8: Left: A bifurcation diagram corresponding to system (2.62). The parameter
set is β = −2.2, γ = 6, F20 = −0.6, F11 = 3, F02 = −3, A = 0.2 and B = 0.5; r is varied.
The nontrivial equilibrium first undergoes a transcritical bifurcation (T), then loses
stability through a saddle-node bifurcation (SN), and becomes stable again through
another saddle-node. After that, a supercritical Hopf bifurcation occurs (Hopf). We
have plotted the maximum and minimum value of the stable limit cycles that arise.
These undergo period-doubling bifurcations (PD), of which we marked two. Right: The
five Lyapunov exponents corresponding to the chaotic orbit, shown with five different
colors, varying with r. At r ≈ 7.34, the first Lyapunov exponent becomes positive. At
r ≈ 7.53, the chaotic orbit collides with a saddle steady state, after which the chaotic
orbit no longer exists. The black dots mark the r−values at which period-doubling
bifurcations occur.

Remark 2.3. For parameters in a regime where the Hopf bifurcation is subcritical
and with β small enough, we observe behavior similar to the right panel of
Figure 2.7. In that case, the periodic orbit originating at the Hopf bifurcation
exists for r < rH , but it again accumulates onto a homoclinic orbit. The branch
of homoclinic bifurcations in (r, γ)−space is now bounded by the transcritical
branch to its left and the Hopf branch to its right.

2.6 Codimension 2 bifurcations

As explained in the Introduction, it was analyzed in [177] that the organizing
center of chaos in the phytoplankton-nutrient model (2.1) corresponds to a
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Figure 2.9: Two similar chaotic attractors obtained by simulating the ODE (2.62)
(left) and the PDE (2.53) (right), with β = −2.2, γ = 6, F20 = −0.6, F11 = 3,
F02 = −3, A = 0.2 and B = 0.5. (a) r = 7.49. (b) r = 7.7, ε = 0.01 and G20(x) =
2
3

√
2A sin(πx) +

√
2B sin(2πx). The operator is L = ∆ on the one-dimensional domain

(0, 1) and with homogeneous Dirichlet boundary conditions.

codimension 2 bifurcation – a point where two eigenvalues cross the imaginary
axis simultaneously. In this section, we investigate the type of phenomena that
such points can give rise to, within the context of our model problem (2.3). In
the specific case of (2.1), the small spectrum remains contained in the negative
semi-axis for all parameter values [176]. We therefore also focus on the case
where (also) the second eigenvalue crossing the origin is ‘large’. It is neither
our intention nor within the scope of this chapter to offer a complete treatment
of all possible transcritical codimension 2 bifurcations in system (2.3). We
are primarily interested, instead, in giving an indication of the variety of low-
dimensional dynamics exhibited by (2.3) and related models in a codimension 2
setting, which are not captured by classical center manifold reduction.

We present our work below in the general setting of a multidimensional
bounded domain Ω ⊂ Rn. In Section 2.6.1, we construct and treat an abstract
codimension 2 situation, where the two leading eigenvalues λ1 and λ2 of DT
cross zero simultaneously in a two-component system (i.e., with scalar U and
V ), see Proposition 2.2.1 and Figure 2.10. We reduce the PDE system to a four-
dimensional ODE one and subsequently consider another type of codimension 2
bifurcation in Section 2.6.2. In this system with an extra component, we find
that the flow on the extended center manifold is three-dimensional, illustrating
our results further by means of our reaction-diffusion example with an additional
component.
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Figure 2.10: Schematic depiction of a codimension 2 bifurcation where λ1 and
λ2 pass through the origin, while all other eigenvalues remain in the stable
half-plane.

2.6.1 Coincidence of the two largest eigenvalues

We first consider the case in which λ1 and λ2 cross through the imaginary axis
simultaneously, as is depicted in Figure 2.10. Recalling the characterization of
eigenvalues in Proposition 2.2.1, we conclude that the two largest eigenvalues of L
– recall the associated spectral problem (2.8) – are necessarily equal, ν1 = ν2. We
show that, in this case, our PDE system (2.3) is reducible to a four-dimensional
ODE system close to the bifurcation, and we examine the rich dynamics of that
reduced system. Note for definiteness that, in our choice of example L = ∆ with
homogeneous Dirichlet BCs on a bounded domain Ω ∈ Rn, the first eigenvalues
cannot collide [54, 59]. However, there exist combinations of operators, spatial
domains and BCs for which assumptions A1–A3 are satisfied and ν1 = ν2

holds. One such example is L = −∆2 considered on an annulus and with
homogeneous BCs for the zeroth and second order derivatives, see [54] for details.
Following ideas from that work, we parametrize by a scalar parameter κ a
one-dimensional, continuous family of bounded domains {Ωκ}κ, with piecewise
continuous boundaries. The eigenvalues νk corresponding to linear differential
operator L are thus parametrized by κ too, so we write {νk(κ)}k for the spectrum
of this operator on Ωκ. To set us up for our analysis, we next assume the existence
of a κ∗ for which

. . . < ν3(κ∗) < ν2(κ∗) = ν1(κ∗),

and we further assume, for ν1 and ν2, asymptotic expansions in powers of κ up
to first-order:

νi(κ) = ν1(κ∗) + (κ− κ∗)νi,1(κ∗) +O(|κ− κ∗|2),
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2.6 Codimension 2 bifurcations

for i = 1, 2 and with ν1,1(κ∗) 6= ν2,1(κ∗). Finally, to avoid introducing generalized
eigenfunctions, we further assume that the eigenspaces corresponding to these two
eigenvalues do not coincide, as κ→ κ∗ – this is also the case for −∆2 considered
in [54]. At κ = κ∗, the equality ν1 = ν2 automatically yields λ1 = λ2 and µ1 = µ2

for the eigenvalues of DT , see (2.13)–(2.14). Note that the equality µ1 = µ2 is
an accidental consequence of modeling the evolution of U and V by the same
operator L. We additionally assume the small spectrum to remain ‘harmless’
(negative) and set for our analysis

κ = κ∗ + sεσ,

with s ∈ R and σ > 0. The asymptotic expansions for ν1 and ν2 allow us to
write, then,

ν1(κ) = ν1(κ∗) + sεθν1,1(κ∗) +O(ε2θ),

ν2(κ) = ν1(κ∗) + sεθν2,1(κ∗) +O(ε2θ).

As usual, we rescale α according to

α = rεσ − ν1(κ∗) and also demand that γ < γT ,

thus positioning λ1 and λ2 at an O(εσ) distance inside the right half of the
complex plane. Here again, r is the bifurcation parameter; the eigenvalues are,
to leading order,

λ1(κ) = (r + sν1,1(κ∗))εσ = εσL1,

λ2(κ) = (r + sν2,1(κ∗))εσ = εσL2.
(2.63)

As before, we set µk = −εMk and consider (L1, L2) as new and independent
bifurcation parameters. Note that varying them is equivalent to varying (r, s),
since ν1,1(κ∗) 6= ν2,1(κ∗) by assumption. Further, we assume the setting of
Section 2.4, where the nonlinearity co-driving V is weak. Returning to the basic
system (2.3) and substituting amplitude expansion (2.25), then, we again obtain
system (2.30) but with two weakly unstable Ak−modes. This is not surprising,
as the Ak-modes link directly to the two destabilizing eigenvalues λ1 and λ2; all
other modes remain stable. We thus rescale the amplitudes accordingly,

A1 = εσa1, Ak = ε2σak, for k ≥ 3

A2 = εσa2, Bk = εσbk, for k ≥ 1,
(2.64)
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with σ > 0. The amplitude system becomes,

a′i =Liai + F20(Ci11a
2
1 + 2Ci21a1a2 + Ci22a

2
2)

+ F11

a1

∑
m≥1

Ci1mbm + a2

∑
m≥1

Ci2mbm

+ F02

∑
l,m≥1

Cilmblbm,

εσa′k =λkak + F20

(
Ck11a

2
1 + 2Ck12a1a2 + Ck22a

2
2

)
+ F11

a1

∑
m≥1

Ck1mbm + a2

∑
m≥1

Ck2mbm

+ F02

∑
l,m≥1

Cklmblbm,

(2.65)

εσb′i =− εMibi + εβai,

εσb′k =− εMkbk,
(2.65)

for i = 1, 2 and k ≥ 3. to leading order and expressed in τ = εt. Again, a
critical transition occurs when σ = 1, see (2.34), in which regime the spectral
gap condition is violated.

We first consider the case σ > 1, in which the spectral gap is of sufficient
width. The leading order slaving relations are, then,

b1 =
βa1

M1
, b2 =

βa2

M2
and bk = 0, for k ≥ 3. (2.66)

The classical center manifold (recall σ > 1) is two-dimensional, with the flow on
it given by{

a′1 = L1a1 + C111H11a
2
1 + 2C121H12a1a2 + C122H22a

2
2,

a′2 = L2a2 + C211H11a
2
1 + 2C221H12a1a2 + C222H22a

2
2.

(2.67)

Here, we have applied the slaving relations and defined the quantities

Hij = F20 +
F11β

2

(
1

Mi
+

1

Mj

)
+
F02β

2

MiMj
, for i, j = 1, 2.

This is as expected, for a degenerate codimension 2 transcritical bifurcation of
the present type. Moreover, M1 = M2 +O(εσ−1), since ν1 = ν2 +O(εσ). Hence,
H11 = H12 = H22 = H at leading order, cf. (2.36), and (2.67) simplifies to{

a′1 = L1a1 +H
(
C111a

2
1 + 2C112a1a2 + C122a

2
2

)
,

a′2 = L2a2 +H
(
C112a

2
1 + 2C122a1a2 + C222a

2
2

)
.

(2.68)
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2.6 Codimension 2 bifurcations

Note that the validity of center manifold reduction can, in principle, be rigorously
established by classical methods [9, 18, 160]. The trivial state (U, V ) = (0, 0),
represented by (a1, b1) = (0, 0), remains a steady state with eigenvalues Λ1 = L1

and Λ2 = L2. Since steady states now correspond to intersections of two conic
sections, there are up to three more steady states (a∗1, a

∗
2) with Jacobian matrix

J(a∗1, a
∗
2)=

(
L1 + 2H (C111a

∗
1 + C112a

∗
2) 2H (C112a

∗
1 + C122a

∗
2)

2H (C112a
∗
1 + C122a

∗
2) L2 + 2H (C122a

∗
1 + C222a

∗
2)

)
=

(
J11 J12

J12 J22

)
.

(2.69)

Note that the off-diagonal terms are equal; the eigenvalues Λ± of matrices of this
form are

Λ± =
J11 + J22 ±

√
(J11 + J22)2 − 4(J11J22 − J2

12)

2

=
J11 + J22 ±

√
(J11 − J22)2 + 4J2

12

2
,

and they are necessarily real. Hence, none of the steady states can undergo
oscillatory destabilization. The two eigenvalues can, however, change signs when
J11J22 = J2

12, and a fixed point may gain or lose stability.
Next, we analyze the regime σ = 1 for system (2.65). Here again, the bk-

amplitudes are no longer slaved but evolve in the same timescale as a1 and a2.
Up to O(ε) corrections,

a′i =Liai + F20

(
Ci11a

2
1 + 2Ci21a1a2 + Ci22a

2
2

)
+ F11

a1

∑
m≥1

Ci1mbm + a2

∑
m≥1

Ci2mbm

+ F02

∑
l,m≥1

Cilmblbm,

b′i =−Mibi + βai,

b′k =−Mkbk,

(2.70)

for i = 1, 2 and k ≥ 3. System (2.70) contains two quadratically nonlinear ODEs
and infinitely many linear ones. Similar to Section 2.4.1, the bk−modes for k ≥ 3
decouple, at leading order, and are slaved to O(ε) values. We formally conclude
that, in this extended region and codimension 2 setting, the small amplitude flow
of the PDE system (2.3) is attracted to a four-dimensional invariant manifold,
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the flow on which is approximately described by

a′i =Liai + F20

(
Ci11a

2
1 + 2Ci21a1a2 + Ci22a

2
2

)
+ F11a1 (Ci11b1 + Ci12b2)

+ F11a2 (Ci21b1 + Ci22b2) + F02

(
Ci11b

2
1 + 2Ci12b1b2 + Ci22b

2
2

)
,

b′i =−Mibi + βai,

(2.71)

for i = 1, 2. The validity of this reduction is not proved in this study. We
refrain from delving into the characteristics of this flow, as the sheer number of
parameters ensures the existence of rich dynamics. We do note, however, that
the corresponding equilibria will naturally undergo Hopf bifurcations. Thus, also
in this codimension 2 case, transcritical bifurcations may generally be followed
by Hopf bifurcations within an O(ε) neighborhood.

2.6.2 A three-component system

We consider an extended version of system (2.3), namely the 3-component model
(2.5) from the Introduction. The operator L, spatial domain Ω and BCs satisfy
assumptions A1–A3. The constants α1, α2, β1, β2, ρ2 and γ are all real,
and the nonlinearities F1(U1, U2, V ), F2(U1, U2, V ) and G(U1, U2, V ) are smooth
functions of their arguments. Moreover, we have introduced ‘diffusion’ coefficients
D1, D2 > 0, both of which are O(1) with respect to ε; this is natural in reaction-
diffusion 3-component models, since D1 6= D2 in general. More importantly, we
now have the V -component feeding into the U2-equation through (weak) linear
coupling; cf. the term ερ2V in the system. No such mechanism exists for U1, as
was also the case in system (2.3). The rationale behind this weak extension of the
core system (2.3) is its becoming significant in the leading order extended center
manifold reduction (ECMR) we derive below. In that, it highlights how different
unfoldings of the primary bifurcation may excite different dynamic modes in the
ECMR regime.

By construction, the background state (U1, U2, V ) ≡ (0, 0, 0) has 3 distinct
sets of eigenvalues. Assuming that both α2 + D2νk and γ + νk are O(1) and
bounded away from zero, it follows quite straightforwardly that, for k ≥ 1,

λ1,k = α1 +D1νk,

λ2,k = α2 +D2νk +O(ε2),

µk = ε(γ + νk) +O(ε2) = −εMk +O(ε2),

(2.72)

with νk the eigenvalue associated with L – see Proposition 2.2.1 and Figure
2.1. Here, λ1,k is associated with the PDE for U1 and boundary conditions,
and {λ2,k}k≥1 is the spectrum associated with U2 and the boundary conditions.
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2.6 Codimension 2 bifurcations

Thus, the ‘new’ term ερ2V only has an O(ε2) effect on both λ2,k and µk. In the
bifurcational case where we set α2 + D2ν1 = r2ε

σ, with σ ≥ 1 and r2 = O(1),
the effect of ρ2 through ερ2V is larger – O(ε2−σ). Even though γ + νk 6= 0 is
still O(1), ρ2 also impacts µ1. In fact, in the critical case σ = 1, the eigenvalues
λ2,1 and µ1 are both O(ε) and they are the solutions L of the equation

L2 + εL(M1 − r2)− ε2(r2M1 + β2ρ2) = 0. (2.73)

However, except for some notational inconveniences, this feature has no effect on
our method.

Our aim is to study the codimension 2 transcritical bifurcation in which the
‘large’ primary eigenvalues λ1,1 and λ2,1 cross zero simultaneously. Before that,
we first understand the codimension 1 case, where only λ1,1 is O(εσ) close to
zero and λ2,1 far behind it; here, σ ≥ 1 as in Section 2.4. To set up our analysis,
we assume that α2 +D2ν1 < 0 and γ+ ν1 < 0 are O(1). Mimicking our approach
in Section 2.3, cf. (2.25), we introduce the amplitudes A1,k(t), A2,k(t) and Bk(t)
through U1(x, t)

U2(x, t)
V (x, t)

 =
∑
k≥1

φk(x)

 A1,k(t)
A2,k(t)
Bk(t)

 . (2.74)

Here the (rescaled) amplitudes A1,k, A2,k and Bk link directly to the eigenvalues
λ1,k, λ2,k and µk. The new coupling term ερ2V suggests a rescaling differing in
the particulars from that of Section 2.3,

λ1,1 = r1ε
σ, A1,1 = εσa1,1, A1,k = ε2σa1,k,

A2,` = ε1+σa2,`, B` = εσb`,
(2.75)

for k ≥ 2 and ` ≥ 1. We also write Mk = −(γ+νk), as for the two-components sys-
tem (2.3), and expand the nonlinearities restricting to quadratic terms, cf. (2.27).
For i = 1, 2, then,

Fi(U, V ) =Fi,200U
2
1 + Fi,110U1U2 + Fi,101U1V

+ Fi,020U
2
2 + Fi,011U2V + Fi,002V

2,

G(U, V ) =G200U
2
1 +G110U1U2 +G101U1V

+G020U
2
2 +G011U2V +G002V

2.

(2.76)

For σ > 1, classical center manifold reduction is possible with the equivalent
of (2.37) being

a′1,1 = r1a1,1 + C111H1a
2
1,1 +O(ε); (2.77)
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here, the time derivative is taken with respect to τ = εσt and

H1 = F1,200 +
F1,101β1

M1
+
F1,002β

2
1

M2
1

. (2.78)

This ODE is coupled to the slaving relations,

a1,k = − 1

λ1,k

[
C11kH1a

2
1,1

]
+O(ε),

a2,1 = − ρ2β1

M1λ2,1
a1,1 +O(εσ−1),

a2,k = 0 +O(εσ−1),

b1 =
β1

M1
a1,1 +O(εσ−1, ε2),

bk = 0 +O(εσ−1),

(2.79)

where k ≥ 2. All a2,k−modes except for the first one then behave as additional
bk−modes for σ > 1. The eigenvalues λ2,k, k ≥ 2 induce the same kind of
behavior as the µk induce. This changes beyond center manifold reduction, as
σ ↓ 1. In that regime, the a2,k−modes (k ≥ 2) remain slaved – now to both a1,1

and b1 – but neither a2,k nor bk with k ≥ 2 are higher order anymore; we find
that b′k = −Mkbk at leading order (k ≥ 2), similar to (2.40). We therefore have
bk = O(ε) for those k−values and may rewrite the three-component system (2.5)
as a two-dimensional system of amplitude equations resembling (2.41),{

a′1,1 = r1a1,1 + C111

(
F1,200a

2
1,1 + F1,101a1,1b1 + F1,002b

2
1

)
+O(ε),

b′1 = −M1b1 + β1a1,1 +O(ε).

(2.80)

The evolution of the slaved modes is dictated by this system and the slaving
relations,

a1,k = − 1

λ1,k

[
C11k

(
F1,200a

2
1,1 + F1,101a1,1b1 + F1,002b

2
1

)]
+O(ε),

a2,1 = − 1

λ2,1

[
C111

(
F2,200a

2
1,1 + F2,101a1,1b1 + F2,002b

2
1

)
+ ρ2b1

]
+O(ε),

a2,k = − 1

λ2,k

[
C11k

(
F2,200a

2
1,1 + F2,101a1,1b1 + F2,002b

2
1

)]
+O(ε),

for k ≥ 2. Thus, we may conclude that the (codimension 1) transcritical
bifurcation generates precisely the same behavior in the 3-component model (2.5)
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as in the 2-component one (2.3) up to and including the regime σ = 1 covered
by extended center manifold reduction.

We now proceed to analyze the codimension 2 bifurcation. To facilitate our
presentation, we introduce the quadratic polynomials (cf. (2.76))

Fj(a, b, c) = Fj,200a
2 +Fj,110ab+Fj,101ac+Fj,020b

2 +Fj,011bc+Fj,002c
2, (2.81)

j = 1, 2. Note that (2.77), for instance, can now be rewritten as

a′1,1 = r1a1,1 + C111 F1(a1,1, 0, β1a1,1/M1) +O(ε). (2.82)

The polynomials Fj can be similarly introduced in (2.78), as well as in the slaving
relations (2.79). To generate a codimension 2 bifurcation, we tune D1, D2, α1,
α2 and introduce r1, r2 by

α1 +D1ν1 = λ1,1 = r1ε
σ and α2 +D2ν1 = r2ε

σ, with σ ≥ 1, (2.83)

cf. (2.72); the spectrum is depicted in Figure 2.11. Note that α2 +D2ν1 6= λ2,1;
the equality only holds at leading order, due to the presence of ερ2V in (2.5);
cf. (2.72) again. We also set Mk = −(γ + νk) and assume M1 to be O(1) and
nonzero but not necessarily negative.

R

iR

O(1)

O(ε)

O(εσ)

λ2,1λ1,2 µ1µ2µ3 λ1,1λ2,2

Figure 2.11: Schematic representation of the eigenvalues determining the stability
of (U1, U2, V ) = (0, 0, 0) in system (2.5) and in the codimension 2 setting (2.83). All
eigenvalues are negative except for the primary ones, λ1,1 and λ2,1,which are positive
and O(εσ). All three eigenvalue sets are unbounded below.

We skip the case σ > 1 (but see Remark 2.4) and proceed immediately to
σ = 1. We rescale as

A1,1 = εσa1,1, A1,k = ε2σa1,k,

A2,1 = εσa2,1, A2,k = εσ+1a2,k B` = εσb`,
(2.84)
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for k ≥ 2 and ` ≥ 1, see (2.74). The a1,k- and a2,k-modes remain slaved for all
k ≥ 2, while again bk = −Mkbk at leading order; the situation is analogous to
the two-component case, recall Section 2.4. Following the path we carved in that
case, we restrict ourselves naturally to the exponentially attracting subspace
{bk = O(ε)}k≥2. Up to O(ε) corrections the a priori infinite-dimensional flow
then reduces to a three-dimensional one,

a′1,1 = r1a1,1 + C111 F1(a1,1, a2,1, b1),

a′2,1 = r2a2,1 + ρ2b1 + C111 F2(a1,1, a2,1, b1),

b′1 = β1a1,1 + β2a2,1 + (γ + ν1)b1.

(2.85)

It thus turns out that the three-component, codimension 2 equivalent of the
two-component, codimension 1 (planar and quadratic) extended center manifold
reduction (2.80) is the three-dimensional, quadratic system (2.85). In this chapter,
we study neither the dynamics generated by system (2.85) nor the bifurcational
structure associated with it in any detail; we have done so for the planar flow
generated by (2.80), recall Sections 2.4.1 and 2.4.2. We do, however, observe that
the celebrated Lorenz system [104] belongs to the family of systems described by
(2.85), as can be seen by setting

x(t) = b1(τ), y(t) = a2,1(τ), z(t) = a1,1(τ),

and choosing the Fj,klm-coefficients of Fj(z, y, x), see (2.81), so that

C111F1(z, y, x) = xy and C111F2(z, y, x) = −xz.

Then, (2.85) reduces to
ẋ = (γ + ν1)x+ β2y + β1z,

ẏ = ρ2x+ r2y − xz,
ż = r1z + xy,

(2.86)

which is equivalent to the Lorenz system with parameters (σ, b, r), upon setting

(r1, r2, β1, β2, γ, ρ2) = (−b,−1, 0, σ,−σ − ν1, r).

Note that, at first glance, setting both r1 and r2 negative suggests that λ1,1

and λ2,1 are stable. However, recall that we have set α2 + D2ν1 = r2ε, and
the eigenvalues of the trivial state are not represented by (2.72) but rather
as solutions of (2.73) instead. A direct check yields that λ1,1, λ2,1, µ1 indeed
correspond directly to the eigenvalues of the unstable critical point (0, 0, 0) of
(2.86).
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It is apparent in our approach, but we nevertheless underline it here, that there
is a significant difference between our derivation of (2.85) and the derivation
of the Lorenz model. In particular, the Lorenz model is a truncation of the
full flow of the infinite-dimensional convective system considered in [104], which
approximates neither quantitatively nor qualitatively the dynamics of that original
model; see [147] and the Introduction. Instead, (2.85) describes the flow on a
three-dimensional manifold which attracts by construction the dynamics of small
amplitude solutions – scaled as in (2.84) – of the singularly perturbed evolution
equation (2.5). It is for this reason that (2.85) does approximate the full dynamics
of (2.5) asymptotically: see Figure 2.2, where the celebrated Lorenz butterfly
is plainly visible. Note that the figure was produced by a direct simulation
of the PDE system (2.5), with L = ∆, Ω = (0, 1), Dirichlet BCs – similar to
Section 2.2.2 – and all parameters tuned to the standard chaotic parameter
combination (σ, b, r) = (10, 8/3, 28) in the Lorenz model. Indeed, for these
parameter values – as in Figure 2.2 – the solutions of (2.73) are λ2,1 > 0 and
µ1 < 0. Moreover, it should be noted that we have also recovered the Lorenz
attractor for systems (2.5) with nonlinearities that are more general than the
exactly quadratic ones given in the caption of Figure 2.2. Only the leading
order quadratic approximations (2.76) need to be as described above, higher
order nonlinearities do not have a leading order impact. For example, choosing
F1(U1, U2, V ) = 3

√
2π/16 sin(U2V ) as opposed to F1(U1, U2, V ) = 3

√
2π/16U2V

which we have used now, works just as well.

Remark 2.4. The codimension 2 case with σ > 1 is, due to our rescaling, slightly
different from what we expect. All modes are slaved to a1,1 – related to the
eigenvalue λ1,1, see Figure 2.11 –, even though this is a codimension 2 situation.
This has to do with the fact that, for σ > 1, the magnitude of A1,k is scaled
differently from A2,k, see (2.84). We refrain from elaborating further in this
chapter.

2.7 Discussion

In this chapter, we have discussed the extension of center manifold reduction
(CMR), a classical nonlinear method for dimension reduction. We have chosen,
as our setting, the transcritical bifurcation destabilizing a trivial background
state of a singularly perturbed, multicomponent, evolutionary PDE model. CMR
operates locally to the parameter regime where the destabilization occurs and
as long as a certain spectral gap condition is satisfied. We have exemplified
its extension to regions in parameter space where that condition is violated
and termed our approach extended center manifold reduction (ECMR). Our
approach was crafted in the context of a number of explicit and closely related
model problems, see (2.3), (2.5) and (2.52). However, our work has been inspired
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by and builds on an earlier study of a slightly different model, namely the
phytoplankton-nutrient model (2.1) sharing with these model problems the same
basic structure enabling ECMR. This structure unsurprisingly concerns the
spectrum determining the stability of the trivial background state and is drawn
schematically in Figures 2.1, 2.10 and 2.11. Specifically, ECMR hinges on the
assumption that the spectrum in question partitions into families {λk}k and
{µk}k of ‘large’ and ‘small’ eigenvalues, respectively. It is thus expected to be
applicable to the general class of systems given in (2.2), see also Chapter 3. In
this chapter, and for any fixed k, λk and µk are O(1) and O(ε), respectively, for
an asymptotically small parameter ε.

Our analysis treats situations where one or two of the large eigenvalues initiate
a bifurcation by crossing through zero while all others remain stable. Linear theory
suffices to pinpoint the codimension 1 or 2 surface (in parameter space) where
the bifurcation occurs and, additionally, predicts the ‘shape’ of the bifurcating
pattern. The nonlinear extension of center manifold reduction improves on linear
theory by predicting the amplitude of that pattern, and tracking it along a larger
parametric regime. This regime is restricted, nevertheless, in that the ‘eventual
fate’ of the pattern lies even further beyond. The underlying reason is that CMR
validity is relying on the existence of a spectral gap of sufficient width; simply
put, the critical (i.e. bifurcating) eigenvalues λj must be sufficiently closer to
the imaginary axis than the largest stable eigenvalue µ1. In our setting, this
condition reads |λj | = O(εσ)� O(ε) = |µ1| so σ > 1. ECMR, in turn, improves
this state of affairs by operating in the ‘gapless’ limit σ = 1. A priori, one would
expect a large number of µk−modes to be excited in that case, since µk scale
with ε. In the singularly perturbed setting considered here, however, it turns out
that only the µ1−mode contributes appreciably to the dynamics. The classical,
one-dimensional CMR describing a codimension 1 transcritical bifurcation must
hence be extended to a merely two-dimensional extended center manifold. The
resulting reduced dynamics attract small initial conditions at an exponential rate
and well into the regime λj = O(ε) where secondary and tertiary bifurcations
occur.

Using this extended reduction, we showed that the transcritical bifurcation is
typically followed by a supercritical Hopf bifurcation of the emerging pattern,
similarly to the situation for (2.1) [176]. Additionally, we applied our approach
to two systems with codimension 2 (transcritical) bifurcations, finding that the
planar CMR must be extended to either a three- or a four-dimensional ECMR
attracting small initial conditions exponentially. Motivated by simulations of (2.1)
in [78], we have explored various scenarios for the presence of chaotic dynamics
in the ECMR flow. Our approach enabled us to construct several such explicit
examples, where the full PDE semiflow limits to a low-dimensional
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chaotic attractor, i.e. in which the full model exhibits low-dimensional chaotic
spatio-temporal dynamics governed by ECMR flows – see Figures 2.2 and the
right panel of 2.9.

This chapter has a distinctive exploratory character. We have chosen to
investigate the phenomena exhibited by singularly perturbed PDE systems pushed
beyond the region of validity of classical CMR associated with a transcritical
bifurcation: our analysis is entirely formal. Nevertheless, the backbone of our
presentation provides in itself a solid foundation for a rigorous validation. In
the context of reaction-diffusion equations, especially, results on the convergence
of solutions to N−dimensional Galerkin projections as N → ∞ seem directly
applicable to the present setting, see e.g. [135, 154]. For the codimension 2 case,
it is natural to first work out in detail the general case, where eigenfunctions may
not span the invariant subspace of the bifurcating eigenvalue. In that situation,
one needs to account for generalized eigenfunctions, and we have refrained from
doing so in the present chapter.

Another line of future research concerns the application of ECMR to models
where the primary bifurcation, associated with the first large eigenvalue λ1

crossing the imaginary axis, is not transcritical. In principle, ECMR is directly
applicable – at least formally – when the trivial state is annihilated/destabilized
in a pitchfork or saddle-node bifurcation. Further, although that state cannot
undergo a Hopf bifurcation by virtue of L having been assumed self-adjoint (see
A1 in Section 2.2), a spatially inhomogeneous one could sustain it. We already
emphasized that ECMR is enabled by the structure of the spectrum and not
by particulars of the basic state. In principle, then, ECMR can also cover this
case, as long as the spectrum has a large/small decomposition as depicted in
Figure 2.1. A natural question in all of these three contexts is whether the
primary bifurcation is also typically followed by a destabilizing Hopf bifurcation
already upon an O(ε) variation of the bifurcation parameter. This scenario
indeed appears natural, see below; it will thus be relevant to study what ECMR
can yield in those situations.

Since the present chapter was inspired by the appearance of low-dimensional
spatio-temporal dynamics in model (2.1), we finally consider the question of how
assistive can ECMR be in understanding analytically the rich spatio-temporal
dynamics of evolutionary PDE systems. In Chapter 3, this question is further
unfolded. Spatio-temporal dynamics of evolutionary PDE systems are routinely
observed in simulations of systems such as (2.3), see for instance [85] and references
therein for often encountered reaction-diffusion cases. Scenarios involving a
stationary pattern that bifurcates from a basic state, only to be destabilized in a
Hopf bifurcation, also appear naturally in reaction-diffusion equations; see, for
instance, [45] for an explicit example.
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A major question is, of course, how typical is the existence of a stability
problem with small and large eigenvalues? A related question is whether the
(assumed) existence of such a partition can be used to embed these systems
into the singularly perturbed framework necessary for our approach. Given
the character of ECMR, we are convinced that it can be applied to explicit
(reaction-diffusion) models found in the literature – by assuming certain scaling
limits, of course. The most natural candidates are those of Gierer-Meinhardt
and Gray-Scott type, which already have the desired singularly perturbed nature;
see, for instance, [21, 93, 43] and references therein. The complex dynamics
exhibited by these systems is largely dominated by singular solutions of pulse
type [121, 161], the spectral stability problem of which does decompose into
small and large eigenvalues (on bounded domains) – see, for instance, [80, 157].
Typically, these pulses are destabilized through Hopf bifurcations; one thus needs
to adapt ECMR to singular patterns, see our remark above on the nature of the
basic state. This appears to be a promising line for future research, especially
since the low-dimensional chaotic behavior exhibited by solitary pulses in an
extended Gierer-Meinhardt model seems to be driven by large-small spectrum
interactions [161].
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Appendix

A Sub- or supercritical Hopf bifurcation

In this appendix the character of the Hopf bifurcation as derived in subection
2.4.1 is determined in full detail. We follow the procedure outlined in [98].

The system that we consider is the subsystem of the first two equations of
(2.41) on the invariant center manifold.{

a′1 = ra1 + C111

(
F20a

2
1 + F11a1b1 + F02b

2
1

)
,

b′1 = −M1b1 + βa1.
(2.87)

The corresponding Jacobian of (2.87) is,

J(a1, b1) =

(
r + 2C111F20a1 + C111F11b1 C111 (F11a1 + 2F02b1)

β −M1

)
.

(2.88)

The nontrivial stationary state that becomes stable after the transcritical bifur-
cation is given in (2.42). Evaluated at this stationary state, the Jacobian (2.88)
is:

J(a∗1, b
∗
1) =

(
r
H

(
H − 2F20 − F11β

M1

)
− r
H

(
F11 + 2F02β

M1

)
β −M1

)
,

see (2.36) for the definition of H. The eigenvalues of this Jacobian as a function
of bifurcation parameter r are,

Λ± =
tr(J(r))± i

√
4 det(J(r))− tr2(J(r))

2
= µ(r)± iω(r),

where tr(J(r)) and det(J(r)) represent the trace and the determinant of J in
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terms of r, respectively. We find that,

tr(J(r)) =
r
(
H − 2F20 − F11β

M1

)
H

−M1,

det(J(r)) = rM1.

The Hopf bifurcation occurs if µ(rH) = 0 and ω(rH) = ω0 > 0, where rH is the
value of r at the bifurcation. The first condition is satisfied for

rH =
M1H

−F20 + F02β2/M2
1

.

The value of ω(r) at the bifurcation value is

ω(rH) = ω0 =
√
rHM1.

For γ < −ν1, the sign of M1 is positive, so the requirement for a Hopf bifurcation
is that

rH > 0.

The following two degeneracy conditions must be satisfied to assure that the
Hopf bifurcation is regular.

(C1) l1(rH) 6= 0, where l1 is the first Lyapunov coefficient;

(C2) µ′(rH) 6= 0.

The sign of the first Lyapunov coefficient determines the character of the Hopf
bifurcation. If l1(rH) < 0, the bifurcation is supercritical. That indicates that
stable limit cycles bifurcate from the Hopf bifurcation. If l1(rH) > 0, the
bifurcation is subcritical.

Condition (C2) is satisfied for all values of Fij and β, because

µ′(rH) =
−F20 + F02β

2

M2
1

2H
=
M1

rH
.

And if rH > 0, the value µ′(rH) is always positive.

Computing the first Lyapunov coefficient is a more involved task. First we
translate the variables such that the Hopf bifurcation occurs at the origin. We
introduce

x1 = a1 − a∗1, and x2 = b1 − b∗1,
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with a∗1 and b∗1 the values of the nontrivial stationary state, evaluated at the
Hopf bifurcation, i.e. with r = rH . System (2.87) then transforms into

x′1 = rHx1 + C111

[
F20

(
x2

1 + 2a∗1x1

)
+ F11 (x1x2 + a∗1x2 + b∗1x1) + F02

(
x2

2 + 2b∗1x2

)]
≡ F1(x1, x2),

x′2 = −M1x2 + βx1 ≡ F2(x1, x2).

(2.89)

Define the symmetric multilinear vector functions of u, v, w ∈ R2,

B(u, v) =

(
B1(u, v)
B2(u, v)

)
,

C(u, v, w) =

(
C1(u, v, w)
C2(u, v, w),

)
with

Bi(u, v) =

2∑
j,k=1

∂2Fi((x1, x2)T , rH)

∂xj∂xk

∣∣∣∣∣∣
x1=x2=0

ujvk,

and

Ci(u, v, w) =

2∑
j,k,l=1

∂3Fi((x1, x2)T , rH)

∂xj∂xk∂xl

∣∣∣∣∣∣
x1=x2=0

ujvkwl.

For (2.89), these multilinear forms are

B(u, v) =

(
C111 (F20u1v1 + F11u1v2 + F11u2v1 + 2F02u2v2)

0

)
,

C(u, v, w) =

(
0
0

)
.

Then the system (2.89) can be represented as

x′ = J(rH)x+
1

2
B(x, x) +

1

6
C(x, x, x).

Define the eigenvectors of J(r,H) and JT (rH), q and p respectively, as

J(rH)q = iω0q, JT (rH)p = −iω0p.

A straightforward computation yields that,

q =

(
M1 + iω0

β

)
,
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and with normalization 〈p, q〉 = 1,

p =
1

2βM1

(
β

M1 + iω0

)
.

Three inner products of these eigenvectors with the multilinear forms are

g20 = 〈p,B(q, q)〉,
g11 = 〈p,B(q, q̄)〉,
g21 = 〈p, C(q, q, q̄)〉.

The first Lyapunov coefficient is defined as,

l1(rH) =
1

2ω2
0

< (ig20g11 + ω0g21) . (2.90)

Computing all inner products and evaluating l1, we find

l1(rH) =
C2

111

2ω0M2
1

[
(2M1F20 + F11β)

(
HM2

1 + ω2
0F20

)]
.

The factor
C2

111

2ω0M2
1

is positive because ω0 is positive, so the sign of the first

Lyapunov coefficient is determined by the sign of

(2M1F20 + F11β)
(
HM2

1 + ω2
0F20

)
.

This means that the Hopf bifurcation occuring at r = rH is

supercritical if (2M1F20 + F11β)
(
HM2

1 + ω2
0F20

)
< 0,

subcritical if (2M1F20 + F11β)
(
HM2

1 + ω2
0F20

)
> 0.
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3

Stability of a benthic layer of

phytoplankton1

Abstract We consider a two-component system of evolutionary partial differ-
ential equations posed on a bounded domain. Our system is pattern forming,
with a small stationary pattern bifurcating from the background state. It is
also equipped with a multiscale structure, manifesting itself through the pres-
ence of spectrum close to the origin. Spatial processes are associated with long
time scales and affect the nonlinear pattern dynamics strongly. To track these
dynamics past the bifurcation, we develop an asymptotics-based method comple-
menting and extending rigorous center manifold reduction. Using it, we obtain a
complete analytic description of the pattern stability problem in terms of the
linear stability of the background state. Through this procedure, we portray
with precision how slow spatial processes can destabilize small patterns close to
onset. We further illustrate our results on a model describing phytoplankton
whose growth is limited by both nutrient and light. Localized colonies forming at
intermediate depths are found to be subject to oscillatory destabilization shortly
after emergence, whereas boundary-layer type colonies at the bottom persist.
These analytic results are in excellent agreement with numerical simulations for
the full model, which we also present.

The interest to model and investigate dynamic processes at the planetary
level necessitates the development of analytical tools for multicomponent models.
We consider a class of deterministic systems evolving both in time and space
and incorporating slow, passive, spatial processes. Exploiting their multiscale
structure, we develop a method to study the long-term dynamics of small spatial

1The content of this chapter was published as The effect of slow spatial processes on emerging
spatiotemporal patterns in Chaos in 2015, see [41].
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patterns as they bifurcate. Our analytic results indicate that passive processes
strongly affect and may even destabilize such small patterns over a long timescale.
Numerical simulations for an ecologically relevant model of plankton growth in
the ocean support these findings, by showing how nutrient diffusion destabilizes
deep chlorophyll maxima over a timescale of several years.

As efforts to comprehend how our planet functions intensify, so does the
need to comprehend the glaring spatial heterogeneity characterizing it. The
trend towards investigating bona fide spatial phenomena, such as mobility or
anisotropy, is plainly visible within many core Mathematics of Planet Earth areas
[57, 71, 101, 103, 100, 112, 134]. That trend, however, is not always reflected
in our modeling efforts. Indeed, modeling studies of natural phenomena often
focus on temporal variation, without explicitly accounting for spatial variability.
The resulting models can predict, elucidate or quantify temporal trends in the
system under investigation, but their ability to incorporate spatial information
is, unsurprisingly, limited. Despite these limitations, spatially homogeneous
models enjoy wide popularity across a broad range of disciplines. Their evident
ability to generate realistic, if crude, information is but one facet of that tenacity.
Equally important is the confluence of their inimitable simplicity, which sets the
mechanisms underlying complex phenomena in stark relief, and of a rich toolbox
that enables their analysis.

Mathematically speaking, such models are typically formulated as nonlinear
systems of ordinary differential equations (ODEs). As such, their analysis benefits
immeasurably from the advent of dynamical systems theory, an immensely power-
ful conglomerate of qualitative tools dating back to Poincaré [129]. The inclusion
of spatiality, on the other hand, leads to partial differential equation (PDE) mod-
els. The theoretical foundation for the qualitative analysis of nonlinear, pattern
forming PDEs has been set through the work of Turing [156], but a coherent
theory is still largely missing except for sufficiently close to equilibrium. This
is particularly pronounced for systems of PDEs, whose global dynamics remain
poorly understood and which form the subject of this short communication.

Here, we specifically focus on the dynamics of a system of two evolutionary
PDEs posed in a domain of arbitrary dimension. The model is general enough
to accommodate various applications, but we conceptualize it in terms of a
particular setting in the interest of clarity. In particular, we consider it to track
the spatial densities of a consumer and a resource, as they evolve in time and
space under the influence of uptake/growth dynamics and spatial processes. We
assume these spatial processes of the resource to be strictly linear and to play
out much more slowly than the nonlinear dynamics associated with uptake and
growth. Our expressed aim is to shed some light on the importance of spatiality,
and we embark on this mission by exploring the role played by the slow, spatial
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processes. We find these to be crucial, in that they strongly inform the fate
of small patterns emerging from the background state. Although such patterns
emerge when resource availability crosses a certain threshold, as in non-spatial
models, their fate strongly depends on these processes. Depending on problem
specifics, spatiality can effectively “break” what resource availability “makes”.

Our work here also serves as a blueprint for the analytic investigation of
post-bifurcation dynamics relatively close to criticality but not close enough
to be within reach of rigorous methods. Perhaps somewhat counter-intuitively,
this analysis is not obstructed, but rather facilitated by the presence of long
timescales associated with spatial dynamics. To appreciate this statement, note
that the small pattern dynamics become nontrivial only when the unstable
and longest stable timescales become commensurate. Here, these longest stable
timescales correspond by design to linear spatial processes, a fact that enables
us to (formally) reduce the system of two PDEs to an ODE coupled to a PDE.
This formulation was also mentioned in Chapter 2, see Remark 2.1. Within that
coupled system, the linear PDE dictates the evolution of the resource profile,
while the nonlinear ODE dictates that of the amplitude of the emerging pattern.
The intricacy of the resulting stability problem for that pattern is due to the
infinite-dimensional character of the reduced system. Its tractability, on the other
hand, is largely a result of our ability to generate the Green’s function for the
linear PDE problem.

to include nonlinear spatial processes. The reduction procedure outlined
above carries over to that case, yielding a fully nonlinear ODE–PDE system.
Here too, the bifurcating pattern forces the evolution of the resource profile; that,
in turn, feeds parametrically into the ODE for the pattern. Such nonlinearities
increase in many ways the number of possible evolution scenarios, but they do
so at the expense of analytic tractability. Other generalizations, such as wider
classes of nonlinear terms, can also be considered. We will refrain from doing so
here to keep the discussion simple.

This chapter builds on and extends prior work, most notably [176] and
Chapter 2 of this thesis. In [176], we considered an explicit instantiation of the
general model considered presently, namely a plankton–nutrient model posed
on a water column. Our analysis there began with the derivation of ODEs for
the eigenmodes and proceeded with copious amounts of asymptotics. Through
that work, we tracked analytically the emerging pattern, a localized plankton
population at an intermediate depth called a deep chlorophyll maximum (DCM),
and showed that it is destabilized shortly after it bifurcates. We recapture a large
part of those results much more compactly here by employing our new framework;
see Section 3.3.2. In Chapter 2 of this thesis, we worked with a variety of related
models. The focus there, however, was on the derivation of
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finite dimensional approximations in general and on low-dimensional chaotic
dynamics in particular. The part of that work concerning two-component PDE
models can, in principle, be made to fit the framework developed here. In
contrast to [176], little can be earned by doing that and we do not pursue that
direction further. Conversely, our setting here may be easily modified to include
bifurcations of higher codimension as in Chapter 2, at the moderate cost of
involving multiple ODEs in the reduced system. We reserve this work also for a
future communication, especially as it relates to the presence of a codimension 2
point in our exemplar phytoplankton-nutrient system [176].

We conclude this introductory section by outlining the work presented here.
In Section 3.1, we formulate our model and a number of assumptions relating
to it. Then, in Section 3.2.1, we develop an analytical method which allows us
to track the emergent pattern beyond the range of validity of classical center
manifold reduction. The main result here is an extension of that classical method,
in the form of a coupled system composed of a nonlinear ODE and a linear PDE.
Using that extension, we discuss the stability of the pattern in Section 3.2.2. In
fact, we are able to express that stability problem in a surprisingly simple form,
which welds particulars both of the background state and of the spatial processes.
In this manner, we extend and streamline prior results from [176] and Chapter
2 where the ODE–PDE structure of the reduced problem was mentioned in 2.1
but not used extensively. Instead, we chose to work with the infinite-dimensional
system of ODEs that is equivalent to it. The applicability of our methodology
is illustrated in Sections 3.3–3.4, where we consider the phytoplankton–nutrient
model. With the help of the theory developed in Section 3.2, we recapture
the oscillatory destabilization of DCM patterns in Section 3.3.1. Relatedly, we
consider another type of pattern in Section 3.4, namely boundary-layer type,
benthic layer (BL) colonies at the bottom whose dynamics were previously
unexamined. Such patterns require a deeper analysis that necessarily involves
higher-order effects and showcases the advantages of our streamlined approach
over our earlier, more direct efforts [176]. Through that analysis, we obtain a
new result in itself by finding such colonies to persist in the regime we consider.
Section 3.5 concludes the chapter with a summary and critical discussion of our
findings.

3.1 Problem setting

We consider a class of nonlinear, slow/fast PDE systems,[
u
v

]
t

=

[
L 0
εK −εM

] [
u
v

]
−
[
f(z, u, v; ε)uv

εg(z, u, v; ε)

]
(3.1)
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postulated for functions u(z, t) : Ω× R+ → R and v(z, t) : Ω× R+ → R. Here,
Ω ⊂ Rn is a given bounded domain with piecewise smooth boundary, R+ is the
positive timeline and we assume that boundary conditions guaranteeing well-
posedness apply. We leave the linear differential operators L and −M unspecified
but demand that their point spectra are bounded from above. Our main interest
lies in reaction–diffusion systems, for which L and −M are second-order and
elliptic, and we will work with such operators in the ecological application treated
in Sections 3.3–3.4. Other choices are possible and have been discussed in Chapter
2. We impose no specific conditions on the linear operator K other than that,
together with M, it contains the linear dynamics; specifically, g(z, u, v; ε) =
O(u2 + v2 + ε2), as (u, v, ε) → (0, 0, 0). In the same vein, we demand that
f0(z) = f(z, 0, 0; 0) is bounded and not identically zero, so that the leading
order nonlinearity f0uv is quadratic. More general nonlinearities, including ones
with nonlocalities as in Sections 3.3–3.4, are similarly treatable. For clarity of
presentation in this expository chapter, however, we refrain from considering
these in detail.

The form assumed by the nonlinearity for u reflects our motivation, which is
rooted in the aforementioned ecological problem. In short, u is the concentration
of a consumer feeding on a spatially distributed resource. The concentration
v measures resource deviation from a specific spatial profile which, in turn, is
attained in the full absence of consumers. This profile represents an offset, as
casting our model in terms of resource deviation shifts the trivial state to the
origin, (u, v) = (0, 0). Additionally, it is optimal for consumer growth, with
growth limitations caused by depleted resources reflected in the nonlinearity
g. The operator L models growth under optimal conditions, as well as linear
spatial processes such as diffusion and advection. Similarly, −M models the
linear spatial processes affecting the resource, with the minus sign emphasizing
their stabilizing character. Here also, more general nonlinearities for u may be
analyzed, but we do not pursue this direction at present.

Before proceeding with the analysis, we fix notation, which is slightly abusing
compared to Chapter 2. We will write σp(L) = {λj}j≥0 and σp(M) = {µj}j≥0

for the point spectra of the differential operators in system (3.1). For the former,
we explicitly assume that its primary eigenvalue λ0 is real and associated with a
one-dimensional eigenspace. Further, it is separated by all other eigenvalues in
σp(L) by a spectral gap of sufficient width,

ε� λ0 − Re(λj) > 0, for all j ≥ 1. (3.2)

For σp(M), we demand it remains bounded away from the imaginary axis as
ε ↓ 0, i.e., dist(σp(M), iR) > M for some optimally chosen, positive constant M
not depending on ε. Additionally, we assume σp(M) to be bounded from below;
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recall our earlier remark. We write {uj}j≥0 and {vj}j≥0 for the eigenfunctions of
L and M, so that Luj = λjuj and Mvj = µjvj . Again, note that this is slightly
abusive notation compared to Chapter 2. The Banach spaces spanned by {uj}j≥0

and {vj}j≥0 are denoted by Xu and Xv, respectively, and (3.1) with suitable
boundary conditions is well-posed on the product Xu × Xv. We also introduce
the L−invariant spaces Xu,0 = span(u0) and Xu,r = cl(span{uj}j≥1), with the
restriction of L on the latter satisfying σp(L|Xu,r) = {λj}j≥1; in Sections 3.3–
3.4, all four spaces will be closed subspaces of L2(Ω). Finally, we define a
projection P0 : Xu → Xu,0 with ker(P0) = Xu,r, which strips functions of their
components along u1, u2, . . .. Lastly, we introduce the ‘projection amplitude’
operator P a0 : Xu → R by P0u = (P a0 u)u0. In a Hilbert space setting, this
corresponds to the inner product P a0 = 〈·, û0〉, whereas P0 = 〈·, û0〉u0. Here, the
function û0 ∈ Xu is the dual of u0, i.e. 〈u0, û0〉 = 1 and 〈u0, ûj〉 = 0 for all j ≥ 1.

3.2 Emergence and evolution of a small colony

As discussed in the Introduction, understanding the emergence and interaction of
spatial structures in a system helps to shed light on the appearance of complex
dynamics in it. To track such patterns, we will employ a scalar parameter
quantifying the ability of the environment to sustain consumers. In the model
problem we treat in the next sections, this parameter measures resource abundance
in the absence of consumers, i.e. it quantifies the resource offset briefly discussed
in the last section. This control parameter will affect σp(L), at the very least, so
that we will effectively replace it by λ0 in what follows: consumer populations
can either grow or diminish depending on whether λ0 is positive or negative.

Center manifold reduction captures the evolution of emerging small popula-
tions local to bifurcation – specifically, as long as λ0 is asymptotically smaller
than both {λj}j≥1 and the bound εM on σp(εM). In that regime, the emerging
pattern evolves on the longest timescale present in the system, and all other
modes can effectively be considered equilibrated with respect to it. Here, instead,
we derive reduced evolution laws that remain valid in the regime where emerging
pattern and spatial processes evolve in commensurate timescales. In doing that,
we demonstrate that the pattern dynamics are enriched substantially by inter-
acting with the spatial component and, concurrently, we extend center manifold
reduction in a natural manner.

3.2.1 An evolution law for the emerging population

Our tracking begins with the trivial state (u, v) = (0, 0). Since λ0 is real and
leads all other eigenvalues in σp(L), it can only enter the right-half complex
plane through zero. At that point, the trivial equilibrium is destabilized and
develops an unstable direction. For quadratic nonlinearities, such as the ones
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we will consider, this is the classical setting for the transcritical bifurcation of
a stable equilibrium branch {(u∗(z;λ0), v∗(z;λ0))} parametrized by λ0. For λ0

sufficiently small, the full model dynamics are effectively described by a single
ODE for the equilibrium amplitude. That amplitude, in turn, scales with λ0 and
the dynamics about it play out on an O(1/λ0) timescale [98].

These arguments suggest the rescaling

λ0 = εΛ0, τ = εt,
u(z, t) = εx(z, τ), v(z, t) = εy(z, τ),

for the regime λ0 = O(ε). This is a crucial element in our approach, as classical
center manifold reduction is inapplicable for λ0 = O(ε). Indeed, in that regime,
λ0 is of the same order as the small eigenvalues {εµj}j , with spatial processes
and pattern dynamics evolving on the same timescale. To emphasize this,
we decompose the u−component into eigenfunctions by means of x(z, τ) =
x0(τ)u0(z) + xr(z, τ). Here, x0u0 = P0x ∈ Xu,0 is the component of x in the
principal eigendirection, while xr = (I −P0)x ∈ Xu,r is a remainder summarizing
the components of x along all other eigendirections. Similar to center manifold
reduction, the objective of this decomposition is to derive a dynamic equation for
x0 and constrain (slave) the remainder xr. To that effect, we start by reporting
the evolution laws for the two components,

ẋ0 = Λ0x0 − P a0
(
f(z, εx, εy; ε) (x0u0 + xr)y

)
,

ẋτ = ε−1L|Xu,rxr
− (I − P0)

(
f(z, εx, εy; ε) (x0u0 + xr)y

)
.

The regime we are interested in is Λ0 = O(1), where the emerging pattern and
the spatial processes evolve in commensurate timescales but the remainder xr
contracts much faster. Indeed, in that regime, the spectrum of ε−1L|Xu,r is
asymptotically large and resides in the left half of the complex plane, so that the
remainder xr contracts in a relatively short timescale of order |ε/λ1| � |1/Λ0|.
This formally leads to the slaving relation (compare to [176] and those in Chapter
2)

L|Xu,rxr = εx0(I − P0)
(
f0u0y

)
, (3.3)

at leading order in ε, showing the remainder xr to be higher-order. This equation
supplements the reduced dynamic problem

ẋ0 = Λ0x0 − x0P
a
0

(
f0u0y

)
,

yτ = −My + x0Ku0,
(3.4)
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with the prescribed boundary conditions for y also applying. Note carefully
that this evolutionary system is comprised of an ODE for x0(τ) coupled to
an inhomogeneous PDE for y(z, τ); that PDE is linear, as the nonlinearity
εg(z, u, v; ε) has no leading order impact. This systems is analogous to the
ODE-PDE system derived for (2.2) as described in Remark 2.1. The advantage
of using the ODE-PDE formulation of this reduction is mostely its compactness,
although it does take away some of the grip on the amplitude equations. Since the
full method is already laid out in Chapter 2, however, the current approach suits
the purpose of this chapter best. In the system, the pattern drives the evolution
of the profile y whereas, reversely, y forces the pattern parametrically. Note, also,
that Λ0 enters this system both explicitly, through Λ0x0, and implicitly through
u0. Typically, though, u0 can be replaced by its λ0 = 0 counterpart, as Xu,0 will
generically vary with λ0 slower than at an O(1/ε) rate: ε||(I − P0)du0/dλ0|| �
||u0||. In that case, Λ0 enters system (3.4) only explicitly.

The evolutionary system (3.4) generates a semiflow on an invariant manifold
which is local to the origin and a graph over Xu,0 ⊕ Xv. By construction, that
manifold also contains the bifurcating branch of equilibria and the non- (or
less) transient dynamics around it. In other words, the ODE–PDE system (3.4)
directly extends the one-dimensional ODE center manifold reduction further
away from equilibrium and where bifurcating pattern and slow spatial processes
interact at leading order. This extension is critical, as we will see below, in that
it captures information about pattern evolution that center manifold reduction
misses. In principle, the infinite-dimensional ODE systems derived in [176]
and Chapter 2 of this thesis can be rederived directly from (3.4) by eigenmode
decomposition. Conversely, (3.4) offers itself to any of various Galerkin approaches
[135] but maintains a twofold advantage over them. First, it circumvents questions
pertaining to the number of modes that must be retained; and second, it allows
for a compact analysis by exploiting the linearity and overall simplicity of the
PDE problem for y. This will become more apparent both in the next section
and in the model treated in Sections 3.3–3.4.

3.2.2 Parametric dependence and stability of the bifurcating pattern

Before proceeding, we introduce the notation (M + ξ)−1Ku0 for the set of
solutions to the problem (M + ξ)y = Ku0. Here, ξ ∈ C is arbitrary and the
given boundary conditions for y apply. In particular, M−1Ku0 is well defined
because 0 6∈ σp(M) by earlier assumptions. The only values of ξ requiring
special attention are, in fact, the isolated values {−µj} = σp(−M), for which
the solution set is either empty or a nontrivial affine subspace; this depends on
whether or not Ku0 ∈ range(M− µj) and thus on model particulars. We also
define the function
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3.2 Emergence and evolution of a small colony

a : C\σp(−M)→ C,

a(ξ; Λ0) = P a0
(
f0u0(M+ ξ)−1Ku0

)
, (3.5)

which plays a crucial role below. Note that a(ξ; Λ0) depends only implicitly
on Λ0 through the eigenfunction u0; we will suppress this dependence when no
confusion can arise.

All equilibria (x0, y) ∈ R × Xv of (3.4) satisfy, at leading order in ε, the
system

x0

[
Λ0 − P a0

(
f0u0y

)]
= 0,

x0Ku0 −My = 0.
(3.6)

Assuming that

a(0) = P a0 (f0u0M−1Ku0) 6= 0, (3.7)

(3.6) has the isolated solutions

(x0
0, y

0) = (0, 0),

(x∗0, y
∗) =

Λ0

a(0)

(
1,M−1Ku0

)
.

(3.8)

Condition (3.7) ensures that the bifurcating branch of equilibria grows linearly
in the direction (1,M−1Ku0)λ0=0, local to the bifurcation point (Λ0 � 1); see
Theorem 1.7 and 1.18 in [28]. If Xu,0 evolves slowly with Λ0 as in our earlier
remark, then the branch evolves approximately linearly also for O(1) values of
Λ0.

The spectral stability problem for (x∗0, y
∗) is a parametric ODE–PDE problem,

ξx̄0 = −x∗0P a0 (f0u0ȳ),

(M+ ξ)ȳ = x̄0Ku0,
(3.9)

involving the eigenfunction (x̄0, ȳ(z)), the eigenvalue ξ ∈ C and inherited bound-
ary conditions for ȳ. Solving the second equation for ȳ and substituting into the
first one, we derive the associated algebraic equation for ξ dictating the spectral
stability properties of the bifurcating branch,

ξa(0) + Λ0a(ξ) = 0 (3.10)

or, equivalently,(
1− a(ξ)− a(0)

a(ξ)

)
ξ = −Λ0. (3.11)
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If Xu is a Hilbert space, then P a0 = 〈·, û0〉 and

a(ξ) =
〈
f0u0(M+ ξ)−1Ku0, û0

〉
. (3.12)

This last formula will be central to our work in the next sections. Remarkably,
it represents a formulation of the stability problem for the small pattern solely
in terms of information on the background state that the pattern emerges from.
Indeed, both u0 and û0 relate to the stability problem for that state, and f0 is
the nonlinearity coefficient evaluated at it. Generally, a(ξ) will reflect the infinite-
dimensional character of the problem, as it will typically be a transcendental
function of ξ and not a polynomial. As will become evident through our treatment
of the phytoplankton model, this will allow for richer post-bifurcation dynamics
which the one-dimensional center manifold reduction necessarily misses. Note,
finally, that a(ξ) can still depend implicitly on Λ0 through u0 as per our earlier
remark.

3.3 Formation and fate of phytoplankton colonies

We clarify the process laid out above by applying it to a rescaled and dimensionless
version of a phytoplankton–nutrient model [78, 176, 177],[

p
n

]
t

=

[
ε∂zz − 2

√
εv∂z + h(z)− ` 0

ε`−1h(z) ε∂zz

] [
p
n

]
−
[

1
ε`−1

]
(h(z)− µ(z, p, n))p

(3.13)

with associated boundary conditions

(εpz − 2
√
εvp)|z=0,1 = 0,

nz(0) = n(1) = 0.

Table 3.1 summarizes the correspondence between this model and the general
system in Section 3.1. Appendix C shows the nondimensionalization of the
original phytoplankton-nutrient model that was used to obtain (3.13).

Here, z ∈ [0, 1] measures rescaled depth from top to bottom, p phytoplankton
concentration and n nutrient deviation from a constant and spatially uniform
profile attained for p = 0. The function h models growth conditions at maximum
nutrient concentration (when there is zero deviation),

h(z) =
1

ηH + 1

1

1 + jHeκz
,
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so that growth decreases with depth due to light absorption. The nonlinear factor
µ is

µ =
1− n

nH + 1− n
j

jH + j
,

with ηH and jH dimensionless constants and j the rescaled light intensity at
depth z,

j = exp

(
−κz − r

∫ z

0

p(s, τ)ds

)
.

The dimensionless constants κ and r measure water turbidity and the specific
light absorption coefficient of phytoplankton. It is straightforward to verify that
the nonlinearity (µ − h)p, modeling nutrient uptake in the water column, is
proportional to both n and p as in (3.1).

Section 3.1 Section 3.3
u p
v n
L ε∂zz − 2

√
εv∂z + h(z)− `

M −∂zz
K `−1h(z)
f(z, u, v; ε)uv

(
h(z)− µ(z, p, n)

)
p

g(z, u, v; ε) `−1
(
h(z)− µ(z, p, n)

)
p

f0 (1 + ηH)−1h(z)
uj Esj (see Appendix)
ûj E−1sj
µj −Mj = −(j + 1/2)2π2

nj cos(
√
Mj x).

Table 3.1: Notation conversion table.

3.3.1 Linear stability

The nature of the bifurcating profile and of its dynamics after the first bifurcation
depend strongly on the value of parameter v. This, in turn, is influenced by
both physiological properties of plankton and environmental factors. Buoyant
plankton (v ≤ 0) tends to aggregate near the surface, whereas sinking plankton
does so at a well-defined depth z∗ > 0. As v approaches the threshold value
v∗ = h(0) − h(1), the bloom shifts toward the bottom monotonically (z∗ ↑ 1).
For v > v∗, the bloom occurs at the bottom (z∗ = 1) [177]. Depending on
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their localization properties, these stationary blooms are known as surface scums
(SS), deep chlorophyll maxima (DCM) or benthic layers (BL), respectively, and
correspond to equilibria of the model.

This state of affairs is reflected in the eigenvalues {λj} and eigenfunctions
{pj} of the stability problem for the trivial steady state. Asymptotic expressions
for these have been derived elsewhere [177]. At leading order in ε, the primary
eigenvalue λ0 reads

λ0 =

{
λBL = h(1)− `+O(ε

1
2 ), v > v∗,

λDCM = h(0)− `− v −O(ε
1
3 ), v < v∗,

while the higher-order eigenvalues are given by

λj≥2 = h(0)− `− v −O(ε1/3),

i.e. the eigenvalues λj≥2 are a mere O(ε1/3) distance away from λDCM . The
value of v relative to v∗ determines the nature of the primary pair (λ0, p0) and,
therefore, also the nature of the bifurcating profile as the trivial state loses
stability.

The eigenvalue set {µj}j is parameter-independent and negative. For this
model, both {µj} and the associated eigenfunctions {nj} are explicitly com-
putable, see Table 3.1. We finally recall that P a0 = 〈·, p̂0〉, with p̂0 the dual of
p0.

3.3.2 Evolution of DCM profiles

For 0 < v < v∗, a stable DCM branch emerges at λ0 = 0 through a trans-
critical bifurcation and subsequently undergoes a secondary, destabilizing Hopf
bifurcation already for λ0 = O(ε) [177]. Both the primary and the secondary
bifurcations have been analyzed, and a weakly nonlinear stability analysis was
performed by recasting (3.1) as an infinite-dimensional ODE system [176]. In
this section, we repeat that analysis along the lines of Section 3.2, so as to
benchmark the method detailed there, to compactly recover the oscillatory DCM
destabilization mechanism and to further familiarize the reader with the model
and the method.

Before delving into details, we compute the function a(ξ; Λ0) introduced in
(3.5). Here, this function takes the form (cf. (3.12))

a(ξ) =
1

`

〈
f0p0(M+ ξ)−1(hp0), p̂0

〉
, (3.14)

where (M+ ξ)−1 is the solution operator to

−nzz + ξn = w(z), nz(0) = n(1) = 0, (3.15)
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and with w arbitrary. The solution is

(
(M+ ξ)−1w

)
(z) =

∫ 1

0

G(z, s; ξ)w(s)ds,

with G the associated Green’s function,

G(z, s; ξ) =
cosh

(√
ξmin(z, s)

)
sinh

(√
ξ(1−max(z, s))

)
√
ξ cosh

√
ξ

. (3.16)

The function a(ξ; Λ0) becomes, then,

a(ξ; Λ0) =
1

`

∫∫
[0,1]2

f0(r)p̂0(r)p0(r)G(r, s; ξ)h(s)p0(s)dsdr. (3.17)

We can readily estimate the integral asymptotically by noting that p0 and p̂0p0

are strongly localized [176]. Through an application of Laplace’s method, the
localization of p0 about z∗ implies the leading order result∫ 1

0

G(r, s; ξ)h(s)p0(s)ds = G(r, z∗; ξ)h(z∗)||p0||1;

see also [176, Section 3]. By the same token, using that p̂0p0 is localized about

zero, as well as the identities
∫ 1

0
p̂0p0 = 1 and h(z∗) = `, we find

a(ξ; Λ0) = G(0, z∗; ξ)f0(0)||p0||1,

see also [176]. This is the desired formula for a(ξ; Λ0), with

G(0, z∗; ξ) =
sinh

(√
ξ(1− z∗)

)
√
ξ cosh

√
ξ

.

Note that, for ξ = 0,

G(z, s; 0) = 1−max(z, s)

and hence also

a(0; Λ0) = f0(0)||p0||1(1− z∗) = lim
ξ↓0

a(ξ; Λ0).

Combining this last equation with (3.8), we obtain a leading order result for
x∗0. Recalling, additionally, that the remainder xr is higher-order by the slaving
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Figure 3.1: Numerical simulation of (3.13) showcasing the growth of an oscillatory
DCM from an initial perturbation. Here, depth is dimensional and the parameters
are chosen in the DCM regime: ε = 9 · 10−5, v = 0.063, ` = 0.25, ηH = 0.4,
jH = 0.033, κ = 4 and r = 0.65. The period of the oscillation is of the order
of years, correlating well with the longest diffusive timescale. For the values of
the dimensional parameters associated with the nondimensional parameters, see
Appendix C.

relation (3.3), we recover the leading order result [176, Eq. (4.9)] describing the
nontrivial plankton profile for our phytoplankton-nutrient model,

p∗(z) = εx∗(z) =
εΛ0

f0(0)(1− z∗)
p0(z)

||p0||1
.

The biomass contained in that profile is
∫ 1

0
p∗dz = εΛ0/(f0(0)(1− z∗)), which

also matches the prior result [176, Eq. (1.20)]. The stability problem (3.10) for
p∗ reads

ξ(1− z∗) + Λ0

sinh
(√
ξ(1− z∗)

)
√
ξ cosh

√
ξ

= 0 (3.18)

which, in turn, is identical to [176, Eq. (4.28)]. An analysis of this equation
establishes the destabilization of the bifurcating pattern through a secondary,
Hopf bifurcation [176]. This behavior is beautifully captured in Figure 3.1, where
a localized structure is shown to develop at a depth of 120 − 220 meters in a
oceanic layer with a depth of 300 meter.
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Figure 3.2: Numerical simulation of (3.13), showcasing the growth of a stationary
benthic layer from an initial perturbation. The parameters here are chosen in
the benthic layer regime (ε = 9 · 10−5, v = 0.56, ` = 0.25, ηH = 0.4, jH = 0.033,
κ = 4, and r = 0.65). For the values of the dimensional parameters associated
with the nondimensional parameters, see Appendix C.

3.4 Short-term evolution of bifurcating benthic layers

As we mentioned in the previous section, the bifurcating profile and its dynamics
depend on the value of v. An elevated sinking speed, decreased production rate
or shallower top oceanic layers increase the value of v, potentially changing the
profile’s qualitative properties. For v > v∗, in particular, the localized peak of
the eigenfunction migrates to the bottom of the layer (z = 1) [177], and the
corresponding, primary eigenvalue reads λ0 = h(1) − ` + O(

√
ε). As a result,

the small pattern developing past λ0 = 0 is shaped as a benthic layer (BL), see
Figure 3.2.

In this part, we formulate and investigate the stability problem for small
patterns of BL-type. Our analysis roughly proceeds as in the last section, but the
asymptotic estimates are technically more involved and largely deferred to the
Appendix. We find that, contrary to the DCM case, the presence of slow spatial
processes does not lead to destabilization of BL-type patterns in the regime
we examine. Such patterns can and do develop transient oscillatory behavior,
evidenced by the complexification of eigenvalues in their spectrum. Nevertheless,
the oscillations here remain damped, unlike the sustained oscillations undergone
by DCM patterns; eigenvalues cannot escape the left-half complex plane and,
accordingly, BL patterns remain stable.
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Figure 3.3: Eigenfunction profile p0 in the case v > v∗.

3.4.1 Bifurcating profile

The primary eigenfunction p0 can be approximated using the WKB method [76],
see also Section 7.2 in [176]. First, the Liouville transform p0(z) = E(z)s0(z) =

e
√

v/εzs0(z) results in a self-adjoint formulation of the eigenvalue problem, by
removing the advection term:

ε(s0)z − (`+ v − h(z) + λ0)s0 = 0,

(s0)z(z)−
√

v/ε s0(z)|z=0,1 = 0.
(3.19)

The WKB method yields, at leading order,

s0(z) =

√
2v

ε1/4Q
1/4
0 (z)

e−
∫ 1
z

√
Q0(s)/ε ds,

Q0(z) = h(1)− h(x) + v +O(
√
ε),

(3.20)

where we have normalized s0(z) under the L2(0, 1) norm. This profile is depicted
in Figure 3.3 for the parameter values of Figure 3.2 but with ε = 9 · 10−3.

The function a(ξ; Λ0), appearing in the stability problem (3.10)–(3.11) is as
reported in (3.14). Note that the inner product now corresponds to a projection
on the benthic layer profile p0. Green’s function (3.16) also remains unchanged,
since (3.15) does not depend on v. Furthermore, the dual of p0 assumes the
form p̂0 = E−1s0, due to the self-adjointness of (3.19). According to (3.8), the
nontrivial branch of equilibria bifurcating at Λ0 = 0 is

(x∗0(z), y∗(z)) =
Λ0

a(0; Λ0)

(
1,

1

`

∫ 1

0

p0(s)G(z, s; 0)h(s)ds

)
;
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note, here, that p0 depends on Λ0. Upon bifurcation, the stationary profile of
the planktonic component develops in the shape of p0, shown in Figure 3.3, and
amplitude growth is parametrized by Λ0.

3.4.2 Stability

As in Section 3.3.1, the stability properties of the bifurcating profile are governed
by (3.10), with a(ξ; Λ0) given in (3.14). However, our asymptotic analysis here is
much more involved since, in contrast to that section, it must take into account
higher-order terms. A first indication of that is supported by a brief study of the
limit z∗ ↑ 1 of the DCM case. In that limit, the deep chlorophyll maximum sinks
and becomes a benthic layer, but the leading order problem (3.18) becomes trivial,
indicating the need of higher-order approximations. In what follows, we work
out the stability problem, referring the reader to Appendix A for computational
details.

First, since p0 is strongly localized at z = 1, one may estimate a(ξ) by
Laplace’s method, cf. Section 3.3.2. Leading order asymptotics yield

a(ξ) = ε3/4 e
√

v/εh(1)f0(1)

4
√

2`v3/4
+O(ε5/4),

which implies, as it does not depend on ξ, a(ξ; Λ0) = a(0; Λ0) ; see Appendix A.
With this leading order result, one only captures the single eigenvalue ξ = −Λ0

from (3.11). Including the next order term, we find

1− a(ξ)− a(0)

a(ξ)
= 1 +

√
ε

√
ξ tanh(

√
ξ)√

v

and (3.11) becomes(
1 +
√
ε

√
ξ tanh(

√
ξ)√

v

)
ξ = −Λ0, (3.21)

which determines infinitely many other eigenvalues ξ ∈ C.
We proceed with studying (3.21) in a way that resembles Section 4.4 in [176].

We set
√
ξ = µ = µR+iµI and restrict arg(µ) to lie in [0, π/2], because eigenvalues

come in complex conjugate pairs. The stability equation for µ becomes,

p(µ) = −µ2 −
√
ε

v
µ3 tanh(µ) = Λ0 > 0. (3.22)

First, we observe that there are no solutions ξ ∈ R>0 (equivalently, µ > 0),
because p and Λ0 differ in sign; see Figure 3.4 for an illustration. As Λ0 ↓ 0,
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the (real) eigenvalues ξ remain in O(
√
ε) neighborhoods of −Λ0 and σp(−M).

This is also supported by Figure 3.4, where we have plotted {p(√ξ)|ξ ∈ R<0}
(blue curve); real solutions correspond to intersections between that curve and
the horizontal at height Λ0. The curve approaches vertical asymptotes at the
elements of σp(−M), and becomes unbounded. As ε ↓ 0, the approach becomes
steeper and the intersections of p with the horizontal axis limit to {0}∪σp(−M).

As Λ0 increases, the first few eigenvalues complexify and the story takes a
turn. We begin by noting the existence of a local maximum for the first curve
branch, occurring for some ξ ∈ (−µ1, 0); see Figure 3.4. As the horizontal at
height Λ0 increases, the largest two eigenvalues (intersections) approach each
other, collide and develop a nonzero imaginary part; they form a conjugate pair.
We have plotted the real part of that pair in red in Figure 3.4. As Λ0 increases
further, the horizontal line at height Λ0 encounters the local minimum of the
second branch. Here, the pair reconnects and splits into two negative eigenvalues,
again indicated in blue. The largest of these approaches −µ1 asymptotically,
while the other collides with the third eigenvalue and the process restarts. The
smaller the value of ε, the larger the number of these maxima and hence the more
eigenvalues are complexified subsequently as Λ0 increases. For each ε, however,
there is a global maximum of p, where the last complex pair is formed, which
never returns to the real line.

Importantly, the conjugate pairs thus created do not cross into the right-half
complex plane, because (3.22) admits no imaginary solutions. This is supported
by Figure 3.4, where the real part of each conjugate pair can be seen to move away
from the imaginary axis, as Λ0 increases. To prove it, we write ξ = iξ̂ ∈ iR>0

and note that µ = µ̂(1 + i), for some µ̂ ∈ R>0. Splitting real and imaginary parts
in (3.22) and substituting from one into the other, we find

2µ̂2

(
−1 +

√
ε

v
µ̂

sin(2µ̂)

sinh2(µ̂) + cos2(µ̂)

)
= Λ0. (3.23)

No solutions exist because, again, the two sides differ in sign. Since∣∣∣∣µ̂ sin(2µ̂)

sinh2(µ̂) + cos2(µ̂)

∣∣∣∣ < 1,

the left member of (3.23) is in (−1 −
√
ε/v,−1 +

√
ε/v) ⊂ R<0, for ε small.

As we consider Λ0 > 0, only there exists no nontrivial solution µ̂ to (3.23), and
hence no purely imaginary eigenvalues ξ of (3.21). The real parts of the complex
eigenvalues thus never change sign.

Since the spectrum of the stability problem (3.21) remains in the left-half
complex plane, we conclude that the benthic layer remains stable for O(1),

102



3.4 Short-term evolution of bifurcating benthic layers

ξ,Re(ξ)

p( ξ)

2−2

−2
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ξ,Re(ξ)−200−400

200

400

p( ξ)

Figure 3.4: Left: In blue, the function p(
√
ξ) for ξ ∈ R in a a neighborhood of

the origin. Red: the function p(
√
ξ), where the argument is no longer purely

imaginary, so that p(
√
ξ) is a function over the complex plane. The red curve

is the projection of this function onto the =√ξ = 0 plane. Here,
√
ε/v = 10−2.

Right: In blue, the function p(
√
ξ) for ξ < 0 in a neighborhood of the origin.

Red: the function p(
√
ξ), where the argument is no longer purely imaginary, so

that p(
√
ξ) is a function over the complex plane. The red curve is the projection

of this function onto the =√ξ = 0 plane. Here,
√
ε/v = 10−2.

positive values of Λ0. The reader should contrast this behavior to that of deep
chlorophyll maxima which, as we mentioned, undergo oscillatory destabilization
soon after they bifurcate. The difference between these two patterns is underlined
by numerical simulations, such as those of Figures 3.1 and 3.2. Numerically,
one solely observes stationary BL profiles. Stationary DCM profiles are also
present, but can only be detected in a targeted manner as they only exist in an
asymptotically small parametric region.

In the region v ≈ v∗, one expects the system dynamics to exhibit interplay
between BL and DCM patterns. In that region, the two first eigenvalues cross the
imaginary axis in close succession. This is what was referred to as a codimension
2 bifucation in earlier work [176], where the existence of such patterns was
hypothesized but not proved. Figure 3.5 demonstrates what is possibly one such
pattern, where a rather shallow DCM and a BL alternate in a periodic fashion.
This simulation serves as numeric indication of the existence and stability of such
mixed patterns in (3.13). At the same time, it very possibly illuminates the wide
chasm separating nonlinear reality, on one hand, from attempts to explore it
through linear analysis on the other. As we briefly mentioned in the Introduction,
we expect that the method developed here will prove helpful in covering some of
that ground. At present, we defer all analysis to future work.

103



Stability of a benthic layer of phytoplankton
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Figure 3.5: Numerical simulation close to the codimension 2 bifurcation showcas-
ing the appearance of a periodic state that interpolates a DCM and a BL. The
specific parameters values for this simulation are ε = 9 · 10−5, v = 0.32, ` = 0.25,
ηH = 0.3, jH = 0.033, κ = 4 and r = 0.65. For the values of the dimensional
parameters associated with the nondimensional parameters, see Appendix C.

3.5 Conclusions

In this chapter, we considered the evolution of small amplitude patterns bi-
furcating from a trivial state in evolutionary PDE systems. In that direction,
we specifically developed a novel analytical framework to study their dynamics
beyond the range of applicability of classical, one-dimensional, center manifold
reduction. Our main insight is that, in general PDE systems such as (3.1),
classical reduction can and must be extended to capture dynamically significant
behavior. The result of that process is the reduced model (3.4), comprised of a
nonlinear ODE and a linear PDE. The two govern, respectively, the amplitude of
the emerging pattern and the slow spatial processes mentioned in the title of this
communication. The coupling between them is strong and describes accurately
the interactions between pattern and ambient environment.

Using that framework, we next examined the infinite-dimensional eigenvalue
problem determining pattern stability. We were able to encapsulate that in a
transcendental equation that elegantly conflates information from the background
state and the generator of the spatial processes. This analytical result is expressed
in (3.10)–(3.12), and its solutions correspond to eigenvalues of the stability
problem. As such, it extends, streamlines and simplifies similar results where
the infinite-dimensional system was used to work with, instead of the ODE–PDE
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formulation, see [176] and Chapter 2.
Finally, we applied our general method to a specific example describing the

interaction of phytoplankton and nutrient in a water column [78, 177, 176]. This
enabled us to recover swiftly the onset of oscillations in deep chlorophyll maxima,
a phenonomenon previously observed and simulated [78] as well as analyzed by
less elaborate methods [176]. Moreover, our method allowed us to extend earlier
insights [78, 176, 177] by considering the more degenerate dynamics of benthic
layers.
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Appendices

A Approximation of integrals with a localized function

The primary eigenfunction p0(z) associated with a benthic layer has a very
narrow, large amplitude at z = 1, see Figure 3.3. In this appendix, we will write
p0 as,

p0(z) = A(z)e
− 1√

ε
H(z)

(3.24)

with H(z) =
∫ 1

z

√
Q(s)ds−√vz and A(z) =

√
2vε−1/4Q(z)−1/4.

We use the localized structure of p0 to our advantage in approximating
integrals of the form∫ x

0

f(z)p0(z)dz =

∫ x

0

F (z)e
− 1√

ε
H(z)

, (3.25)

where f(z) is (with a slight abuse of notation) any real, continuous function
and F (z) = f(z)A(z). The technique used for approximation is called Laplace’s
method [174, 76] and was applied repeatedly in earlier work on phytoplankton
patterns [176]. The idea behind this method is to evaluate an integral with
an exponentially decaying factor only at its maximum, because the error is
exponentially small. In our case, the exponential in (3.25) is maximal where
H(z) is minimal. H(z) is monotonically decreasing, hence the minimum of H(z)
for z ∈ [0, x] is at z = x. We Taylor expand,

H(z) = H(x) +
∑
n≥0

an(z − x)n+1,

F (z) =
∑
n≥0

bn(z − x)n+α−1,
(3.26)

with α > 0 and compute a0 = −
√
Q(x) − √v and a1 = − 1

4
Q′(x)

2
√
Q(x)

. Laplace’s
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method yields, up to O(ε
α
2 +1) corrections,∫ x

0

F (z)e
−H(z)√

ε dz = (3.27)

−e−
H(x)√
ε ε

α
2

(
Γ(α)

b0
aα0

+
√
ε

Γ(α+1)

a
α+1
0

[
b1− (α+1)a1b0

a0

])
,

as ε→ 0 [174, 76]. Note the Gamma function Γ(n) = (n−1)! for natural numbers
n.

B Approximation of the eigenvalue function

The eigenvalue function a(ξ; Λ0) is defined in equation (3.5),

a(ξ; Λ0) =
1

`

〈
f0p0

∫ 1

0

G(z, s; ξ)h(s)p0(s)ds, p̂0

〉
,

but due to the definition of G(z, s; ξ), we need to split the inner integral into
separate integrals taking care of min(z, s) and max(z, s). After that, we use

Laplace’s method to approximate
∫ 1

0
G(z, s; ξ)h(s)p0(s)ds, and then perform it

once more to find a(ξ). The leading order result is:

a(ξ) = ε3/4 e
v/εh(1)f0(1)

4
√

2`v3/4
. (3.28)

Note that this leading order term does not depend on ξ, hence a(0) has the same
leading order term.

For the stability equation (3.11), we therefore consider the difference

`(a(ξ)− a(0)) =

〈
f0p0

∫ 1

0

G(z, s; ξ)hp0ds, p̂0

〉
−
〈
f0p0

∫ 1

0

G(z, s; 0)hp0ds, p̂0

〉
=

∫ 1

0

f0s
2
0

∫ 1

0

hp0 [G(z, s; ξ)−G(z, s, 0)] dsdz

(3.29)

For ξ → 0, the Green’s function becomes G(z, s; 0) = limξ→0G(z, s; ξ) = 1 −
max(z, s).
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∫ 1

0

f0s
2
0

∫ 1

0

G(1, 1− s+ z; ξ)hp0dsdz

−
∫ 1

0

f0s
2
0

∫ 1

0

G(1, 1− s+ z; 0)hp0dsdz

+

∫ 1

0

f0s
2
0

∫ 1

0

(G(−z, s; ξ)−G(−z, s; 0))hp0dsdz,

because G(1, 1− s+ z; ξ) is zero for z ≤ s ≤ 1 and min(−z, s) and max(−z, s)
do not change for 0 ≤ s, z ≤ 1. We shall evaluate separately for every Green’s
function. Define

I1,i =

∫ 1

0

G(1, 1− s+ z; i)h(s)p0(s)ds,

I2,i =

∫ 1

0

G(−z, s; j)h(s)p0(s)ds.

with i ∈ {ξ, 0}. Integrals I1,i and I2,i are of the form (3.25) and we use the
following table to approximate them with Laplace’s method.

α b0 b1

I1,ξ 2
√
ξ h(z)
Q1/4(z)

h(z)Q′(z)
4Q5/4(z)

− h′(z)
Q1/4(z)

I1,0 1 h(z)
Q1/4(z)

–

I2,ξ 2 −√ξ h(1)
v1/4 −√ξ h′(1)h(1)

4v5/4−v1/4

I2,0 1 h(1)
v1/4 –

The higher order coefficients of I1,0 and I2,0 are not needed for the approximation,
compared to I1,ξ and I2,ξ (compare α = 1 versus α = 2). Substituting the Taylor
coefficients into approximation (3.27) and combining terms yields

`(a(ξ)− a(0))→ 1

2

√
2(εv)

1
4h(1)e

√
v
ε ·∫ 1

0

f0(z)√
Q(z)

e
− 2√

ε

∫ 1
z

√
Q(s)ds

(
1− cosh(

√
ξz)

cosh(
√
ξ)

)
dz

(3.30)

which is a second order Laplace approximation. The integral over z, which is
left, is not of the form (3.25), as the exponential is now

e
− 2√

ε

∫ 1
z

√
Q(s)ds

.
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The factor
∫ 1

z

√
Q(s)ds is also monotonically decreasing, and hence we can

estimate (3.30) at z = 1. Using Taylor approximations, we find α = 2, and
Laplace’s method yields

`(a(ξ)− a(0))→

− ε 5
4 e
√

v
ε

(h(1))2ηH

4
√

2(1 + ηH)`v3/4

√
ξtanh(

√
ξ).

(3.31)

C Nondimensionalization

The system analyzed in sections 3.3 and 3.4 is a nondimensionalized version of a
phytoplankton-nutrient model as stated in [78] and [177],

Wt̂ = DWẑẑ − VWẑ +
[
µ̂P (L,N)− ˆ̀

]
W,

Nt̂ = DNẑẑ − αµ̂P (L,N)W,
(3.32)

with

L(ẑ, t̂) = LIe
−Kbgẑ−R

∫ ẑ
0
W (ξ,t̂)dξ,

P (L,N) =
LN

(L+ LH)(N +NH)
.

(3.33)

The coordinates ẑ and t̂ represent depth – ẑ ∈ (0, zB) and time. The system
(3.32) is subject to boundary conditions,

DWẑ − VW |ẑ=0,zB
= 0,

Nẑ|ẑ=0 = 0,

N |ẑ=zB = NB .

(3.34)

Here, W and N are the phytoplankton and nutrient concentration in a water
column of depth zB, and the system is assumed to be in a turbulent mixing
regime. The parameters V , ˆ̀, α and µ̂measure the sinking speed of phytoplankton,
the species-specific loss rate, the conversion factor and the maximum specific
production rate, respectively. The function L models the light intensity, where
LI is the light intensity at the surface, R is the shading due to plankton and
Kbg is the light absorption coefficient. Lastly, LH and NH are half-saturation
constants of light and nutrient, respectively.

The relevant parameter values used in [78] and their units are reported in
C.1. By introducing new parameters and coordinates, we rescale system (3.32)
to a nondimensional system.
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Indicent light intensity LI 600 m2/s
Background turbidity Kbg 0.045 m−1

Absorption coeff. phyto R 6 · 10−10 m2/cell
Depth zB 300 m
Vert. turbulent diffusivity D 1.2 · 10−5 m2/s
Max. specific growth rate µ̂ 1.11 · 10−4 s−1

Half-sat. light LH 20 m2/s
Half-sat. nutrient NH 2.5 · 10−2 m−3

Specific loss rate ˆ̀ 2.78 · 10−6 s−1

Nutrient content phyto α 1 · 10−9 mmol/cell3

Sinking velocity V 1.17 · 10−5 m/s
Bottom nutrient supply NB 10 m−3

Table C.1: Dimensional parameters of (3.32)used in [78] for a simulation in which
the phytoplankton seems to behave chaotically.

z =
ẑ

zB
` =

ˆ̀

µ̂
,

t = µ̂t̂ v =
V 2

4µ̂D
,

p(z, t) =
ˆ̀αz2

B

DNB
W (ẑ, t̂) ηH =

NH
NB

n(z, t) = 1− N(ẑ, t̂)

NB
κ = KbgzB ,

ε =
D

µ̂z2
B

r =
RDNB
ˆ̀αzB

.

(3.35)

Note that n rescales N as the offset of nutrient from the maximum at the bottom,
NB . The rescaling transforms systems (3.32) to

pt = εpzz − 2
√
εvpz + (µ(z, p, n)− `)p,

nt = εnzz + ε`−1µ(z, p, n)p.
(3.36)

with

µ(z, p, n) =
j(1− n)

(j − jH)(ηH + 1− n)
, j = e−κz−r

∫ z
0
p(ξ,t)dξ.
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parameter Figure 3.1 Figure 3.2 Figure 3.5
LI 600 600 600
Kbg 1.33 · 10−2 1.33 · 10−2 1.33 · 10−2

R 6 · 10−10 6 · 10−10 6 · 10−10

zB 300 300 300
D 9 · 10−5 9 · 10−5 9 · 10−5

µ̂ 1.11 · 10−4 1.11 · 10−4 1.11 · 10−4

LH 20 20 20
NH 4 4 3
ˆ̀ 2.78 · 10−6 2.78 · 10−6 2.78 · 10−6

α 1 · 10−9 1 · 10−9 1 · 10−9

V 1.59 · 10−5 4.74 · 10−5 3.59 · 10−5

NB 10 10 10

Table C.2: Dimensional parameters used in the Figures 3.1, 3.2 and 3.5.

The boundary conditions transform according to (3.35), too.

εpz − 2
√
εvp
∣∣
z=0,1

= 0,

nz(0) = 0,

n(1) = 0.

(3.37)

For the figures 3.1,3.2, 3.5, the dimensional parameters that are used to simulate
the model are reported in the table C.2.
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4

Tumor spread with an Allee effect1

4.1 Introduction

4.1.1 Allee effects and tumor growth

A recent article in Nature Reviews Cancer, [94], has highlighted how a well-
established concept in ecology–the Allee effect [2]–is also relevant to tumors but
has yet to be incorporated into their modelling. In its strong form, the Allee
effect refers to the observation that there is a population threshold below which
a species has negative population growth, driving it to extinction. The weak
form of the Allee effect describes a species that has small (but not negative)
population growth at low populations [25]. The ecological causes of Allee effects
(which are observed within small populations) are multitudinous: the inability
to find a mate; the negative impact on co-operative behaviors such as anti-
predator vigilance; the increased sensitivity to demographic stochasticity; and,
the lack of diversity in the extant gene pool [26, 86, 148]. Evidence for the
strong [12, 27, 65, 81, 99] and weak [2, 5, 30, 151, 152] Allee effects are plentiful
across many taxa; additional reviews are available in [64, 95]. Consequently,
there is a proliferation of mathematical models of the Allee effect in ecology
[7, 8, 29, 70, 96, 102, 130, 175, e.g.]. While studies in ecology often worry about
factors that might push a threatened species below the (strong) Allee threshold
and thereby towards extinction [137, e.g.], an intriguing possibility in cancer
research is whether the Allee effect could be harnessed for controlling or negating
the growth of cancerous cells [94], consonant with recent experiments in bacteria
[146].

1The content of this chapter was published as Influences of Allee effects in the spreading of
malignant tumours in Journal of Theoretical Biology in 2016, see [140].



Tumor spread with an Allee effect

While seldom stated, hints of the Allee effect are numerous in the cancer
research literature. Firstly, at the most anecdotal level, a tumor is only deemed
threatening if it is above a certain size, which is an implicit presumption of a
strong Allee threshold. More concrete illustrations are available in clinical trials
for papillary and follicular thyroid cancers [107], in which risk-of-spread versus
initial tumor size figures indicate that the risk is effectively zero until a minimum
primary tumor size is reached. Secondly, studies of tumor dormancy suggest the
presence of mechanisms such as a restrictive apoptosis/proliferation equilibrium
(a cell density at which natural cell death balances new cell production) or a
minimum angiogenic potential requirement for blood vessel formation in the
tumor [136]. Such biological considerations translate to the inability of the
tumor to grow unless a strong Allee threshold is reached. Thirdly, it has been
shown experimentally that in the growth of blebs (spherical protrusions forming
along the front boundary of tumors), there is a minimum surface tension below
which the blebs cannot expand [155]. Since this surface tension is governed
by a variety of poorly understood factors such as available myosin [155], the
existing microenvironment can be thought of as essentially imposing an Allee
effect. Fourthly, [6] and [127] provide evidence of the co-operation between nearby
subclones in the early evolution of tumors through the production and exchange
of growth factors. Since co-operation is adversely impacted at low populations,
tumor cells must–as in ecological systems–encounter the Allee effect. Fifthly,
deleterious mutations accumulate more in smaller tumors [94], thereby driving
the population to extinction with much higher probability than larger tumors.
Sixthly–and at a much broader level–the very fact that cancers depend on genetic
heterogeneity, mutations and subsequent evolution [15, 63, 113], pinpoints the
necessity of having a large enough gene pool for successful growth, that is, the
requirement of an Allee effect2. For example, numerical results from a recent
integral equation model that models the number of cells in clones with different
mutation rates, indicate that there is a threshold genetic mutation rate below
which the cancer cells suffer extinction [4]. It is important to note that most
evolutionary models of cancer (see the reviews by [113] and [116]) neglect the
spatial structure, which is problematic given that tumors are clinically classified
depending on their shape [24]. One way of incorporating genetic mutation
information within a spatial spreading model is to treat the stochastic mutations
as creating an effective strong Allee threshold.

There are a variety of tumor growth models which examine the roles of
additional effects such as acidity [53, 111, 13], adhesion [20, 55, 141], non-local
interactions [150, 55], cell plasticity in proliferation versus migration [50, 72, 153,

2This is stating that genetic diversity produces an implicit Allee effect, different from studies
on the impact of a separately imposed Allee effect on genetic diversity [172, 173].

114



4.1 Introduction

110], in a range of tumor types. Most models fall into two classes: those which
simulate a network of cells [72, 153], and those which rely of continuum modelling
[20, 53, 110, 111, 141, 150, e.g.], although some models that make a connection
between the two exist, [10, 46, 122, e.g.]. Very recently, a spatio-temporal tumor
cell growth model incorporating micro-environmental influences has been studied.
That analysis reveals an Allee effect depending on the cell motility versus local
cell density, [14].

4.1.2 A new model for malignant tumor invasion

In light of this emergent viewpoint on the relevance of the Allee effect in cancers,
we offer in this manuscript, one of the first (see also [17]) cancer spreading
model that explicitly includes the Allee effect. Specifically, we examine how the
inclusion of the Allee effect changes conclusions in comparison to the commonly
used logistic growth model. For our comparison – the first of its kind – we
choose to examine a model of a malignant, solid tumor invading through the
extracellular matrix (ECM) via hapto- or chemotaxis, as opposed to the more
complex, metastatic dissemination regime [170]. In particular, our analysis
applies to the spread of tumors in which hapto- or chemotaxis is the dominant
mechanism of cell migration, such as melanoma [109, 125]. We focus on the
behavior of the tumors on a long time scale; we do not analyse the transient
dynamics.

We assume that an invasive tumor front can be modeled, mathematically,
by a traveling wave solution (TWS) with constant speed c. TWSs correspond
to stationary solutions in an appropriately moving frame and are defined on a
one-dimensional, unbounded spatial domain. While this choice of domain is a
simplification of the geometry of tumor invasion, it is a reasonable approximation,
while still yielding a model that is amenable to mathematical analysis.

We build on a model of malignant tumor invasion derived in [126] and
subsequently studied in [67, 109]. In these articles, a logistic growth term is
used to model the growth of the cancer cells (see paragraph 4.1.4); Allee effects
are neglected. Here, we replace this logistic growth term with an Allee growth
term and study the existence of TWSs of the following dimensionless model for
malignant tumor invasion (see section 4.2 for the derivation):

∂u

∂t
=

proteolysis︷ ︸︸ ︷
−u2w +

diffusion︷ ︸︸ ︷
εβ
∂2u

∂x2
,

∂w

∂t
= f(u,w)︸ ︷︷ ︸

growth

− ∂

∂x

(
∂u

∂x
w

)
︸ ︷︷ ︸

hapto−/chemotaxis

+ ε
∂2w

∂x2︸ ︷︷ ︸
diffusion

,
(4.1)
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Figure 4.1: Left-hand panel: Sketch of fAllee = w(1− w)(w − α) for 0 < α < 1.
Observe that fAllee > 0 for α < w < 1. Right-hand panel: Sketch of the solutions
to w′ = w(1 − w)(w − α) with 0 < α < 1. Initial conditions larger than α
approach the carrying capacity (which is scaled to one), while initial conditions
smaller than α die out out and approach w = 0.

with

f(u,w) = fAllee(w;α) := w(1− w)(w − α) , |α| < 1 . (4.2)

The dependent variables u ≥ 0 and w ≥ 0 represent the dimensionless ECM
and cancer cell densities, respectively. The independent variables t > 0 and
x ∈ R represent time and one-dimensional space, respectively. Both species are
assumed to diffuse slowly, which is modeled by the small parameter ε: 0 ≤ ε� 1.
We further assume that the ECM diffuses more slowly than the cancer cells:
0 ≤ β ≤ 1 and independent of ε. Observe that our analysis is also able to capture
the situation of the ECM not diffusing, i.e. β = 0. The observed migration of
the cancer cells up the gradient of ECM is modeled by the hapto- or chemotaxis
term. As the cancer cells migrate they break down the ECM; this is modeled
by the proteolysis term. The cubic function describing the growth of the cancer
cells, (4.2), models the Allee effect, with different values of α corresponding to
different strengths. Consistent with the definition in Section 4.1.1, the Allee
effect modeled by (4.2) describes the following.

A positive α models the strong Allee effect. Since the carrying capacity of
the cancer cell density has been scaled to one in (4.2), we require α < 1. The
strong Allee effect imposes a growth threshold on the tumor, whereby the cancer
cell population only increases (at a given location) if α < w < 1, since otherwise
fAllee ≤ 0. See also Figure 4.1. In the context of tumor invasion, α ' 0 is
the most appropriate representation of the strong Allee effect as it is unlikely
that a large threshold value (relative to the carrying capacity) is needed for the
proliferation of cancer cells.

A negative α models the weak Allee effect. Unlike the strong Allee effect,
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the weak Allee effect does not impose a growth threshold. Instead, it models a
population with a growth rate that is initially positive and increases with popu-
lation increase for small populations, until crowding effects take over and cause
the growth rate to decrease with further population increase. Hence, we require
α > −1, with α ' −1 corresponding to the most appropriate representation of
the weak Allee effect. For further discussion and more precise definitions of the
strong and weak Allee effects, see [25] and Appendix A.

4.1.3 Main results

The focus of this chapter is to compare the Allee model (4.1)–(4.2) with the
logistic model, developed in [126], with respect to its ability to capture the
behavior of malignant tumor invasion. Furthermore, we compare our results to a
different modification of the logistic model, studied in [108], where competition
between the species is included in f(u,w) in (4.1). For convenience, we refer
to (4.1)–(4.2) with α ' 0 and α ' −1 as the strong and weak Allee models,
respectively. We present evidence that the strong Allee model provides a better
model of tumor invasion than these previously proposed models, while the weak
Allee model provides no significant improvement. The following sections provide
a summary of the main results that lead to these conclusions.

Strong Allee model

For the strong Allee model, we find that:

• Only invasive tumor fronts with well-defined edges [108] (so-called Type
III waves, see Section 4.1.4) exist, rather than the whole family that
exists for the previously studied models of malignancies such as melanoma
[67, 108, 109, 126]; and,

• A non-monotonic (biphasic) relationship between the background ECM
density and the invasion speed of the tumor is evident, consistent with the
experiments on a HT1080 fibrosarcoma cell line invading collagen gels as
reported in [125, 108]. In contrast, models without the Allee effect predict
a monotonic relationship [67, 126, 109]. See in particular Figure 11 in [67].

These results are illustrated in Figure 4.2. The numerical method used to
simulate (4.1)–(4.2) uses a vertex-centered finite volume discretisation in space,
with upwinding to approximate u and w at the faces of the control volumes, on
a linear mesh with ∆x = 1/80. The resultant ODEs are integrated in time using
MATLAB’s inbuilt ODE solver ode45 (which uses a variable-order Runge–Kutta
algorithm with adaptive timestepping).
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Figure 4.2: Left-hand panel: A Type III wave with a biologically justified,
well-defined edge and speed c ≈ 0.43, obtained by numerically simulating (4.1)–
(4.2) with ε = 0.001, α = 0.05 and β = 0.5. The dashed lines correspond
to u-profiles and the solid lines to w-profiles, with solutions plotted at t =
0 (black), 16 (lightest), 32, . . . , 160 (darkest). Right-hand panel: The leading
order (ε = 0) component of the speed of traveling wave solutions of (4.1)–(4.2)
(c) versus the background ECM density (u∞), with α = 0.05, illustrating a
biphasic relationship.

Weak Allee model

In contrast, the main result relating to the weak Allee model is that it offers
no notable benefits over the previously studied models for tumor invasion such
as melanoma and, so, due to its added complexity, is a less preferable model of
malignant invasion. Consequently, we omit the derivation of the results from
the main body of the chapter; we present them briefly in Appendix B. The key
findings that lead to our conclusion are as follows.

• There exists a family of invasive tumor fronts (so-called Type I–IV waves),
which includes some that have non-sharp fronts but that appear (numeri-
cally) to be stable and, hence, observable within the system.

• The relationship between the background ECM density and the invasion
speed of the tumor fronts with sharp edges is monotonically increasing,
contrary to an experimentally observed biphasic relationship [125].

4.1.4 Comparison with results for previous models

In the models for malignant tumor invasion studied in [67, 109, 125, 126], the
cancer cells are assumed to grow logistically, governed by the dimensionless
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Figure 4.3: Schematics of the four types of traveling wave solutions discussed in
this chapter. This figure is an adaptation of Figure 6 in [67]. Copyright c©2014
Society for Industrial and Applied Mathematics. Reprinted with permission. All
rights reserved.

kinetic function

f(u,w) = flogistic(w) := w(1− w) . (4.3)

In the model studied in [108], an interaction term between the ECM (u) and
cancer cells (w) is added to (4.3) to signify the competition for space between
the two species. Subsequently, the growth of the cancer cells is governed by the
dimensionless kinetic function

f(u,w) = fcompetition(w) := w(1− w)− γuw . (4.4)

Thus, the models studied previously are (4.1), with (4.3) or (4.4) in place of
(4.2)3. Henceforth, for convenience, we refer to the former as the logistic model
and the latter as the competition model.

In [67], it is shown that the logistic model admits a continuous family of
traveling wave solutions (TWSs). This family is classified into four distinct types,
according to qualitative differences in the cancer cell density profiles, in the
singular limit ε→ 0; see Figure 4.3. A Type I wave has a smooth, exponentially
decaying cancer cell density profile. A Type II wave has a cancer cell density
profile with a shock but that remains positive and decays exponentially to zero
as x→∞. A Type III wave has a cancer cell density profile with a shock and
semi-compact support. A Type IV wave has a cancer cell density profile with a
shock and that decays exponentially to zero as x→∞ but with densities that
are negative after the shock. Preliminary numerical results suggest that the Type
I–III waves are stable, in the sense that they are observable in the system, while
the Type IV waves are not [67].

Remark 4.1. The labelling of the four wave types depicted in Figure 4.3 refers to
those waves identified in [67] for the logistic model. However, the classifications

3In [109, 126, 108], it is assumed, for simplicity, that ε = 0. In [67], β = 1.
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that underpin this terminology apply more generally, for example, to TWSs of
(4.1) with 0 ≤ ε � 1 and 0 ≤ β ≤ 1. Thus, we adopt the labels Type I–IV
and henceforth use them to refer to any waves with equivalent features to those
described in [67], outlined above.

A similar family of Type I–IV waves exists for the competition model, stud-
ied in [108]4. Moreover, numerical simulations suggest that in certain, broad
parameter regimes, the Type I–III waves are stable and, hence, observable in the
system. Although the Type IV solution is not observable and a negative density
has no interpretation in the current application of system (4.1), we consider this
type of solution for the sake of completeness.

From a biological perspective, Type III waves are considered to be most
realistic for tumors which are expected to posess a well-defined edge; such as
melanomas, see for example [108]. In contrast to the logistic, competition and
weak Allee models, the strong Allee model automatically selects tumors with
sharply defined edges.

In [125], a biphasic relationship between the background collagen (the predom-
inant ingredient in ECM) density and the invasion speed of malignant tumors is
observed experimentally. These experimental results indicate that the invasion
speeds of malignant tumors do not increase monotonically with the background
collagen (and, hence, ECM) density. Instead, there is some critical density up to
which the invasion speed increases but over which the invasion speed decreases.
The competition model was proposed in [108] to mathematically replicate this
biphasic relationship, which is not a feature of the logistic model [67, 109, 108].
The logistic model exhibits a monotonically increasing relationship between the
speed of the Type III waves cIII and the background ECM density u∞, similar to
the weak Allee model. By studying only the Type III waves, the desired biphasic
relationship is revealed in [108]. Mathematically, this result is facilitated by the
existence to two Type III waves, with different u∞, for certain, fixed speeds.

4.1.5 Outline

The remainder of the chapter is set out as follows. In Section 4.2, we derive the
dimensionless model (4.1) from a dimensional model for malignant tumor invasion
proposed in [126]. In Section 4.3, we set up the mathematical framework that is
required to prove the main results of the strong Allee model, described in Section
4.1.3. We prove (in a mathematically rigorous way) that the strong Allee model
only admits Type III traveling wave solutions. The framework we follow exploits
the separation of scales between the hapto- or chemotaxis and diffusion terms.
It is based on that described in [167] and uses geometric singular perturbation

4Only Type III waves are considered in [108] but, using methods developed in [167] and
used in [67] and here, it can be shown that Type I, II and IV waves also exist.
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theory (GSPT) [73, 82, 84] and canard theory [11, 97, 149, 166]. The results
for the strong Allee model are further analysed in Section 4.4, including the
biological implications of our findings in relation to previously studied models.
In Section 4.5, we discuss the extension of our results to a more general class of
models, the limitations of our work and topics for future research.

Remark 4.2. The mathematical derivation contained within Section 4.3 is not
prerequisite to following the arguments and discussions contained within the
subsequent sections. Thus, we invite the less mathematically inclined reader to
skip over it.

4.2 Model derivation

Our decision to study (4.1) is inspired by [126], where, after a quasi-steady state
approximation, the following dimensional model of malignant tumor invasion is
studied (using the notation in [67]):

∂û

∂t̂
= −k4û

2ŵ,

∂ŵ

∂t̂
= k̂1ŵ(k2 − ŵ)− k3

∂

∂x̂

(
∂û

∂x̂
ŵ

)
,

(4.5)

Here, x̂ represents one-dimensional space (in metres, m) and t̂ represents time
(in seconds, s). The dependent variable û (kg m−3) represents the ECM density
and ŵ (cells m−3) represents the cancer cell density. Diffusion of the species is
assumed to be small and therefore neglected. The parameter k3 > 0 (m5 kg−1

s−1) measures the strength of the hapto- or chemotaxis term, which models
the observed migration of cancer cells up the gradient of ECM. The nonlinear
function −k4û

2ŵ models the degradation of the ECM via proteolysis at rate
k4 > 0 (m6 kg−1 cells−1 s−1)5. The proliferation of the cancer cells is modeled by

the nonlinear function k̂1ŵ(k2 − ŵ): without spatial influences and independent
of the other species, the cancer cells grow logistically to their carrying capacity
k2 > 0 (cells m−3), with (constant) proliferation rate k̂1k2 > 0 (s−1). We refer
to [126] for a more detailed derivation of (4.5).

We wish to study the influence of incorporating an Allee effect into the
description of the growth of the cancer cells. We assume the same nonlinearity
for proteolysis but replace the cancer cell growth function with an Allee term.
Following [167], we reintroduce the small amount of diffusion of both the ECM

5An enzyme–protease–that is produced in the presence of cancer cells, breaks down the
ECM in a process called proteolysis. However, the protease reaction evolves on a much faster
time scale than the other processes within the tumor and so a quasi-steady state reduction is
applied; see [126] for more details.
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and cancer cells that was neglected in (4.5). With these adaptations, the model
under investigation becomes

∂û

∂t̂
= −k4û

2ŵ +D1
∂2û

∂x̂2
,

∂ŵ

∂t̂
= k1ŵ(k2 − ŵ)(ŵ − k6)− k3

∂

∂x̂

(
∂û

∂x̂
ŵ

)
+D2

∂2ŵ

∂x̂2
,

(4.6)

with ki > 0 for i ∈ {1, . . . , 5}, |k6| < k2 and 0 ≤ D1 ≤ D2 (m2 s−1). We will
allow for the ECM to have both no diffusion (D1 = 0), and small diffusion, in
comparison to the cancer cells.

Here, k2 (cells m−3) is still the carrying capacity of the cancer cell density,
while k1k2k6(ŵ/k6 − 1) (s−1) is the (density dependent) proliferation rate. This
density dependent proliferation rate, in contrast to the constant proliferation
rate assumed by logistic growth, is the main difference between the two models,
(4.5) and (4.6). For k6 > 0, k6 (cells m−3) represents a growth threshold, below
which the cancer cell density decreases, consistent with the strong Allee effect.
For k6 < 0, the interpretation of k6 is less clear. However, the effect of the
term (1 + ŵ/(−k6)) is to increase the proliferation rate, relative to the (constant)
rate k1k2(−k6), with this increase more pronounced as the cancer cell density
increases, consistent with the weak Allee effect; see [25] for further discussion of
the weak (and strong) Allee effects and their mathematical representation.

We introduce

u =
û

U
, w =

ŵ

W
, t =

t̂

T
, x =

x̂

X
, (4.7)

with

U =
k1k2

k4
, W = k2, T =

1

k1k2
2

, X =

√
k3

k2k4
,

and define

α :=
k6

k2
< 1, β :=

D1

D2
≤ 1, ε :=

k4

k1k2k3
D2.

This nondimensionalisation transforms (4.6) to (4.1)–(4.2), restated here for
convenience:

∂u

∂t
= −u2w + εβ

∂2u

∂x2
,

∂w

∂t
= w(1− w)(w − α)− ∂

∂x

(
∂u

∂x
w

)
+ ε

∂2w

∂x2
,

(4.8)
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with (x, t) ∈ (R,R+), |α| < 1, 0 ≤ β ≤ 1 and 0 < ε � 1. The new variables
u, w, x and t, and parameters α, β and ε are dimensionless; see Appendix C.
Moreover, α and β are assumed to be O(1) with respect to ε: (loosely speaking)
for α, β > 0 they are independent of ε and do not approach zero in the limit
ε→ 0. Due to the choice of nondimensionalisation, the carrying capacity of the
cancer cells has been scaled to one and the strength of the Allee effect is solely
measured by the parameter α.

The significant reduction in the number of parameters from eight in (4.6) to
three in (4.8) makes the latter (dimensionless) model considerably more amenable
to mathematical analysis.

4.3 Type III traveling wave solutions

In this section, we provide the mathematical foundation to derive the results for
the strong Allee model ((4.8) with α ' 0, 0 ≤ β ≤ 1 and ε sufficiently small),
stated in Section 4.1.3. We prove that this model only admits Type III traveling
wave solutions (TWSs).

In the strong Allee model the homogeneous equilibria (u,w) = (0, 1) and
(u∞, 0), with u∞ ∈ R, represent an all-cancer state and a cancer-free state,
respectively. When studying invasive tumor fronts, we are interested in connec-
tions between these two states. From a mathematical standpoint, we study the
existence of right-moving TWSs of (4.1)–(4.2) that travel with constant speed:
c > 0. Such solutions correspond to stationary solutions in the moving frame
z = x− ct and so satisfy

−cuz = −u2w + εβuzz ,

−cwz = w(1− w)(w − α)− (uzw)z + εwzz ,
(4.9)

TWSs also satisfy the asymptotic boundary conditions

lim
z→−∞

(u,w) = (0, 1) , lim
z→∞

(u,w) = (u∞, 0) , u∞ ∈ R+ , (4.10)

where u∞ represents the (variable) background ECM density, as in [67]. Thus,
TWSs of (4.1)–(4.2) or (4.8) correspond to heteroclinic connections of (4.9) that
satisfy (4.10).

Theorem 4.3.1. For 0 < ε � 1 sufficiently small and 0 < α < 1, 0 ≤ β ≤ 1
and O(1) with respect to ε, the only possible solution of (4.9)–(4.10) corresponds
to a Type III traveling wave solution of (4.1)–(4.2).

We prove Theorem 4.3.1 using a method outlined in [167], which was subse-
quently used in [67] to study the logistic model. The foundation of this method
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lies in geometric singular perturbation theory (GSPT) [73, 82, 84], which provides
a geometric approach to singular perturbation problems. The benefit of using
GSPT lies in the rigorous theory that underpins it, which exploits the geometric
structure embedded in models such as (4.1) and allows us to prove that the
leading order solutions we construct are good approximations of the full solutions
with 0 < ε� 1. Canard theory [11, 97, 149, 166] is also used when the standard
GSPT, known as Fenichel theory [49, 82], becomes invalid due to a loss of normal
hyperbolicity of the critical manifold. Conditions on the vector field of (4.9) that
guarantee the existence of Type III TWSs are also derived.

4.3.1 Set-up

System (4.9) is singularly perturbed, due to the different asymptotic scalings
of the diffusion and hapto- or chemotaxis terms, with perturbation parameter
0 ≤ ε � 1. Singularly perturbed systems exhibit an inherent separation of
scales. In Figures 4.2 and 4.3, for example, we observe two spatiotemporal scales:
the fast scale captures the dynamics where rapid changes occur, which, in the
singular limit, correspond to shocks in the solutions; and, the slow scale relates
to the dynamics away from the shocks (in the singular limit), or where less rapid
changes occur.

The separation of slow and fast behavior becomes more evident when we
write the w-equation of (4.9) as a balance law

(εwz − uzw + cw)z = −w(1− w)(w − α).

So, we define two new variables,

p := uz and v := εwz − pw + cw ,

(see [67] and [167] for a further rationale behind the rescaling above). This way,
we can write (4.9) as a four-dimensional system of first-order ordinary differential
equations (ODEs):

uz = p ,

vz = −w(1− w)(w − α) ,

εpz =
1

β
(u2w − cp) ,

εwz = v + (p− c)w .

(4.11)

For β = 0, the equation for p in (4.11) becomes singular. This has to do with
the fact that the u-equation of (4.9) is only first order for β = 0, as opposed
to second order for β > 0. We assume from now on that β > 0, and discuss
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the proof of Theorem 4.3.1 for β = 0 (which goes along the same lines as for
β > 0) in some more detail in Remark 4.4. Following standard terminology from
geometric singular perturbation theory (see for example [82, 84]) we label (4.11)
the slow system, with z the slow traveling wave coordinate. Provided ε 6= 0, we
can equivalently write (4.11) in terms of the fast scale by introducing the fast
traveling wave coordinate, y = z/ε:

uy = εp ,

vy = −εw(1− w)(w − α) ,

py =
1

β
(u2w − cp) ,

wy = v + (p− c)w .

(4.12)

So, (u, v) are the slow variables and their equations determine the dynamics away
from the shock, while the equations for the fast variables (p, w) determine the
dynamics around the shock. While (4.11) and (4.12) are equivalent for ε 6= 0, in
the singular limit ε→ 0, they reduce differently depending on the spatiotemporal
scale. In Section 4.3.2–4.3.3, we study the singular limits of (4.12) and (4.11),
respectively. The results of these sections determine the leading order behavior
of the heteroclinic connections in the appropriate regimes. In Section 4.3.4, the
results from Section 4.3.2–4.3.3 are combined to prove Theorem 4.3.1.

4.3.2 Layer problem

On the fast scale, taking the singular limit (ε→ 0) of the so-called fast system,
(4.12), yields a two-dimensional ODE system, termed the layer problem:

py =
1

β
(u2w − cp),

wy = v + (p− c)w,
(4.13)

with two parameters u, v ∈ R. Since u and v are parameters in (4.13), they
remain constant along any shocks in the TWSs of (4.1)–(4.2) with ε = 0.

The equilibria of (4.13) form a two-dimensional surface in (u, v, p, w)-space,
referred to as the critical manifold, which can be represented as a graph over the
original variables (u,w):

S :=

{
(u, v, p, w)

∣∣∣∣ v =

(
c− u2w

c

)
w , p =

u2w

c

}
. (4.14)

The left-hand panel of Figure 4.4 shows a projection of S into (u, v, w)-space.
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Lemma 4.3.2. The critical manifold S is folded around the so-called fold curve,

F := {(u,w) | 2u2w − c2 = 0} . (4.15)

In other words, at F , two branches of equilibria (p±(u, v; c), w±(u, v; c)) of (4.13)
originate in a saddle-node bifurcation, see for example [98] for the conditions of
a saddle-node bifurcation. The equilibria (p−(u, v), w−(u, v)) are unstable, or
repelling, with respect to (4.13) and, hence, we label this branch of S as Sr. The
other branch of S, given by (p+(u, v; c), w+(u, v; c)), is stable, or attracting, and
is labelled Sa. S is symmetric in w around F with w− ≥ w+.

Proof. The proof follows from [167], and is similar to the proof of Lemma 2.2
in [67]; we refer to these works for the details. Briefly: the folded structure of
S follows from checking that the standard conditions for a saddle-node (SN)
bifurcation are met [98, e.g.]; the stabiltiy of S is evident from the eigenvalue
structure of the linearisation of (4.13); and, the symmetry is a consequence of
the definition of S.

The folded structure of S allows heteroclinic connections between Sr and Sa.
Such a connection transports a point (u−, v−, p−, w−) on Sr to the point (u+, v+,
p+, w+) on Sa, with u+ = u− and v+ = v− (since u and v are constant in (4.13)),
and

p+ =
u2
−w+

c
= c− p− ,

w+ =
c2

u2
−
− w− = 2F (u−)− w− .

(4.16)

These conditions follow from the definition of S and are equivalent to the Ran-
kine–Hugoniot and Lax entropy conditions for shocks for the strictly hyperbolic
system (4.1)–(4.2) with ε = 0; see [67, 109, 167]. The second equation in (4.16)
highlights the symmetry of S around F . The right-hand panel of Figure 4.4
provides a schematic of S and an example heteroclinic connection between Sr

and Sa via the dynamics of (4.13).

4.3.3 Reduced problem

On the slow scale, taking the singular limit of (4.11) yields a differential–alge-
braic system with two ODEs coupled to two algebraic constraints, termed the
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Figure 4.4: The critical manifold S, defined in (4.14). S is folded around the
fold curve F , defined in (4.15) and represented by the blue dotted line. It is
symmetric in w around F , with one repelling side (Sr) and one attracting side
(Sa). Left-hand panel: Projection of the S into (u, v, w)-space, highlighting
the folded structure. Right-hand panel: A schematic of S and an example of
a flow connecting a point on Sr to the corresponding point on Sa. This is an
adaptation of Figure 4 in [68]. c©IOP Publishing & London Mathematical Society.
Reproduced with permission. All rights reserved.

reduced problem:

uz = p,

vz = −w(1− w)(w − α),

0 =
1

β
(u2w − cp),

0 = v + (p− c)w.

(4.17)

As expected from geometric singular perturbation theory, the algebraic constraints
define S. Herein lies the geometric structure of the model. When viewed on the
slow scale, the flow along S is evident and governed by (4.17).

Since S is given as a graph over the original model variables (u,w), we
restrict our investigation of (4.17) to these coordinates, where the slow behavior
is governed by

uz =
u2w

c
,(

c− 2u2w

c

)
wz = −w(1− w)(w − α) +

2u3w3

c2
.

(4.18)
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Consequently, the analysis of the reduced dynamics reduces to a two-dimensional,
(u,w)-phase plane analysis. In this projection, the phase space consists of two
distinct regions corresponding to Sa and Sr, separated by F ; see, for example,
Figure 4.8.

The equilibria of (4.18) in the first quadrant are

(u∞, 0) , (0, α) , (0, 1) , u∞ ∈ R+ .

The stability of these equilibria is determined via the associated Jacobian matrix,
appended with a perturbation analysis in the case of a zero eigenvalue:

• (u∞, 0) has an unstable eigenvalue and a zero eigenvalue (related to the
translation in the u direction);

• (0, α) has a stable eigenvalue with eigenvector pointing in the direction
of the invariant w-axis and center-unstable outgoing trajectories, directed
into the first quadrant; and,

• (0, 1) has an unstable eigenvalue with eigenvector pointing in the direction
of the invariant w-axis and center-unstable outgoing trajectories, directed
into the first quadrant.

System (4.18) is singular along F , because the left-hand side of the w-equation
vanishes here. In general, solution trajectories approaching F have w-derivatives
that blow-up in finite time. The isolated points on F at which the right-hand side
of (4.18) also vanishes, referred to as canard points [11, 166], form the exception
to this rule.

To understand solution trajectories of (4.18) interacting with these canard
points, we introduce a new variable z̄, defined via

dz

dz̄
= c− 2u2w

c
.

With this change of coordinate system, (4.18) transforms to the so-called desin-
gularised system

du

dz̄
=
u2w

c

(
c− 2u2w

c

)
,

dw

dz̄
= −w(1− w)(w − α) +

2u3w3

c2
.

(4.19)

This system is more amenable to analysis than (4.18) as it is no longer singular.
Canard points of (4.18) correspond to equilibria of (4.19) on F . They are
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4.3 Type III traveling wave solutions

classified according to the nature of the corresponding equilibrium in (4.19).
For example, if (4.19) has a saddle equilibrium on F , then the corresponding
canard point of (4.18) is called a folded saddle canard point (FS). Similarly, we
have folded focus canard points (FF), folded node canard points (FN), etc.. Two
trajectories of a system with a FS can pass through F at such a canard point,
thereby flowing from Sa to Sr and vice versa [166]. The former trajectory is
labelled the canard solution and the latter the faux canard solution. Trajectories
are not able to pass through F at a FF, while a funnel of trajectories pass through
F at a FN [165, 166]. Figure 4.5 provides a schematic of a FS, FF and FN and
illustrates their connection with regular equilibria.

Remark 4.3. The flows of (4.18) and (4.19) differ only in their parametrization.
The flows are topologically equivalent in forward z̄ if dz/dz̄ > 0 and topologically
equivalent in backward z̄ if dz/dz̄ < 0. It is straightforward to see that dz/dz̄ =
c2−2u2w < 0 on Sr, or above F in the (u,w)-plane, while dz/dz̄ = c2−2u2w > 0
on Sa, or below F in the (u,w)-plane. Thus, the (u,w)-phase plane of (4.18)
is obtained from the (u,w)-phase plane of (4.19) by reversing the direction of
the trajectories on Sr, or above F in the (u,w)-plane; see Figure 4.8 for an
illustration.

Lemma 4.3.3. For 0 < α < 1, (4.18) has two canard points if 0 < c < c+(α),
and no canard points otherwise, where

c+ = c+(w+(α), α) := 2
√

2w+
(
1− 2w+ + α

)
(4.20)

and

w+ = w+(α) :=
1

6

(
1 + α+

√
(1 + α)2 + 12α

)
.

The w-components of both canard points are larger than α and smaller than 1.

Proof. Canard points of (4.18) correspond to equilibria of (4.19) on F . The
w-components of these equilibria are real positive roots of

q(w) :=
√

2(1− w)(w − α) = c
√
w =: s(w) , (4.21)

and the corresponding u-components are given by u = c/
√

2w. The number of
solutions to (4.21) changes in a saddle-node (SN) bifurcation as q(w) and s(w)
become tangent, which occurs at c = c+(α). From the shapes of the graphs of
q(w) and s(w) (parabolic and monotonically increasing, respectively) for different
values of c, it follows that the smaller root of (4.21) lies between α and w+(α),
while the larger root lies between w+(α) and 1. As c→ 0, the roots approach α
and 1, and as c→ c+(α), they approach w+(α).
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Figure 4.5: Schematics of some types of canard points. The blue dotted line
represents F , the upper-right, shaded region Sr and the lower-left, unshaded
region Sa. The upper panels show standard equilibrium points (saddle, focus,
node), which lend their names to the corresponding canard points shown in the
lower panels (folded saddle, folded focus, folded node). The difference between
the upper and lower panels is the direction of the trajectories on Sr due to the
parametrization, z̄ or z. A folded saddle admits two trajectories through it,
along the stable and unstable manifolds of the corresponding saddle. A folded
focus does not admit any trajectories. A folded node admits a funnel (dotted
region) of trajectories between the stronger stable (or unstable) manifold of
the corresponding node and F , which follow the weaker stable (or unstable)
manifold. This is an adaptation of Figure 10 in [68]. c©IOP Publishing & London
Mathematical Society. Reproduced with permission. All rights reserved.
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Figure 4.6: The type of canard points of (4.18), in the (α, c)-plane. The canard
points are created in a saddle-node bifurcation as c decreases through c = c+(α),
defined in (4.20). The folded node becomes a folded focus at c = cB1(α) and a
folded node once again at c = cB2(α) < cB1(α).

We determine the type of the canard points by numerically computing the
the eigenvalues of the corresponding equilibria of (4.19). Since the canard points
are created in a SN bifurcation, we observe a folded saddle (FS) and a folded
node (FN) near the bifurcation point, c = c+(α). Just after the SN bifurcation,
at c = cB1(α) < c+(α), the FN becomes a FF (while the FS remains a FS). The
FF transitions back to a FN at c = cB2(α) < cB1(α); see Figure 4.6. While
c+(α) is determined analytically, and defined in (4.20), cB1,B2(α) are determined
numerically6.

Lemma 4.3.4. For 0 < α < 1 and 0 < c < c+(α), with c+(α) defined in (4.20),
(4.18) admits a solution trajectory connecting (0, 1) to the FS.

Proof. For 0 < α < 1 and 0 < c < c+(α), Lemma 4.3.3 implies that (4.18)
has two canard points, (uFS, wFS) and (uF, wF), with α < wF, wFS < 1. It is
straightforward to show that the FS, (uFS, wFS), is the canard point with the
larger w-component. Since F corresponds to a monotonically decreasing function
of w as u increases, uFS < uF. Consequently, (uFS, wFS) lies above and to the
left of (uF, wF) in the (u,w)-phase plane. From (4.18) it follows that u′ > 0
for w, c > 0 and that w′ < 0 along w = wF for 0 < u < uF. Consequently,

6In principle, it may be possible to determine cB1,B2 analytically: the canard points
correspond to roots of (4.21) and these roots are a subset of the roots of a quartic polynomial.
However, these expressions are so complicated they offer little insight
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the trajectory leaving (0, α) does not connect to (uFS, wFS). Since the u-axis
is repelling, it intersects F below and to the right of (uF, wF). The w-nullcline
connecting (0, 1) with the FS is strictly decreasing and the stable eigenvector of
the FS lies below that nullcline for u / uFS . As a result, there is a trajectory
leaving (0, 1) that connects to (uFS, wFS).

This solution trajectory (that leaves (0, 1), connects to (uFS, wFS) and, hence,
continues onto Sr) is the canard solution, which we label To. It is the only
solution trajectory of (4.18) that (partly) lives on Sr and connects to (0, 1).

In the remainder of this chapter, we do not consider regimes where FNs are
present: 0 < c < cB2 and cB1 < c < c+. Although we expect that our results are
valid for 0 < c < c+, the analysis of FNs is beyond the scope of this chapter.

Remark 4.4. In the case β = 0, the u-equation of (4.9) is of first order. In this case,

uz is simply u2w
c and the singularly perturbed system becomes three-dimensional.

uz =
u2w

c
,

vz = −w(1− w)(w − α),

εwz = v − cw +
u2w2

c
.

(4.22)

Consequently, the layer problem becomes one-dimensional, but the defnition of S
and the symmetry it has around the fold curve F remain unchanged. Hence, the
reduced system and the slow behavior are independent of β, and for β = 0 are
described by (4.18). This is also supported by the simulations of the full PDE
system with β = 0, see Figure 4.7 which has identical parameter values as Figure
4.2, besides β = 0. The case β = 0 applies to tumors of which the dominant
mechanism of cell migration is haptotaxis rather than chemotaxis, like some solid
tumors.

4.3.4 Proof of Theorem 4.3.1

Traveling wave solutions (TWSs) are identified in the four-dimensional phase
space of (4.11) or (4.12) as heteroclinic connections between the equilibria

(u, v, p, w) = (0, c, 0, 1) and (u, v, p, w) = (u∞, 0, 0, 0).

To leading order, flow in the four-dimensional phase-space can be represented
by concatenations of the fast flow of (4.13) with u, v constant, describing the
TWSs around the shock, and the slow flow of (4.17), describing the TWSs away
from the shock. This glueing together of solution segments from (4.13) and (4.17)
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Figure 4.7: Left-hand panel: A Type III wave with a biologically justified,
well-defined edge and speed c ≈ 0.43, obtained by numerically simulating (4.1)–
(4.2) with ε = 0.001, α = 0.05 and β = 0. The dashed lines correspond
to u-profiles and the solid lines to w-profiles, with solutions plotted at t =
0 (black), 16 (lightest), 32, . . . , 160 (darkest). Note that this is very similar to
the left panel of Figure 4.2, because only the fast dynamics is influenced by β,
see (4.13). Right-hand panel: The leading order (ε = 0) component of the speed
of traveling wave solutions of (4.1)–(4.2) (c) versus the background ECM density
(u∞), with α = 0.05, illustrating a biphasic relationship. This is exactly the
same as the right-hand panel of Figure 4.2 as the leading order component is
independent of β, see (4.18).
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is how we construct leading order approximations of TWSs of (4.1)–(4.2). The
validation of this approach follows from GSPT and canard theory.

Since both equilibria lie on Sa, they both have two-dimensional stable man-
ifolds in (4.13) and a two-dimensional center manifold corresponding to the
slow variables. Consequently, a heteroclinic connection cannot be made between
the two equilibria purely within (4.13). Similarly, since (u∞, 0) in (4.18) has a
one-dimensional unstable manifold (since α > 0) and a one-dimensional center
manifold corresponding to translation in the u-direction, a heteroclinic connec-
tion cannot be made between the two equilibria purely within (4.18). Instead,
a connection must contain solution segments from both systems. Consequently,
no TWSs exist when no canard points are present (c > c+(α)) and TWSs of
(4.1)–(4.2) can only be Type III waves since the final part of the heteroclinic
connection for ε = 0 has to be a trajectory of (4.13).

According to Lemma 4.3.2 and (4.16), the fast flow is directed from Sr to
Sa and the w-component is symmetric in F , while the u-component is constant.
Hence, a heteroclinic connection to (u∞, 0, 0, 0) on Sa via (4.13) must take-off
from (u∞, 0, 0, c2/u2

∞) on Sr. The canard solution is the only solution of the
slow flow that (partly) lives on Sr and that connects to Sa in backward z. So, to
construct a heteroclinic connection between (0, c, 0, 1) and (u∞, 0, 0, 0), we need
the canard solution (in four-dimensional space) to intersect (u∞, 0, 0, c2/u2

∞). In
the original, (u,w)-coordinates, this means that the canard solution of (4.18)
(To) must intersect the jump curve: J := c2/u2

∞. In Figure 4.8, the phase plane
of (4.18) and J are shown for particular values of α and c; To and J intersect,
yielding a heteroclinic connection of (4.9)–(4.10) with ε = 0 and, hence, a Type
III TWS of (4.1)–(4.2) with ε = 0.

With ε > 0, the end states (0, 1) and (u∞, 0) do not perturb. Geometric
singular perturbation theory implies that the (invariant) manifolds Sa and Sr

perturb to the O(ε)-close, locally invariant manifolds Sa,ε and Sr,ε, respectively,
provided Sa and Sr are normally hyperbolic and ε is sufficiently small. Along F ,
S loses normal hyperbolicity. However, canard theory guarantees that To persists
[167].

If the unstable manifold of (0, 1) and the stable manifold of (u∞, 0) have a
transverse intersection for ε = 0, the heteroclinic connection for ε = 0 persists as
a solution of (4.9)–(4.10) with 0 < ε� 1. This condition is equivalent to J and
To intersecting transversally. In D, we show that this transversality condition
holds, provided c 6= u∞

√
α. Hence, a TWS that is constructed for ε = 0, persists

as a TWS of (4.1)–(4.2), with 0 < ε� 1 sufficiently small, provided c 6= u∞
√
α,

with the former providing a leading order approximation of the latter.
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Figure 4.8: Phase planes of (4.19) (left) and (4.18) (right), for α = 0.05 and
c = 0.33. The blue line is the fold curve (F ), which is dotted on the right to
illustrate its singularity. Black dots represent equilibria. The black open square
is a folded saddle and the solid black square is a folded focus. F divides S into a
repelling side (Sr, shaded) and an attracting side (Sa, not shaded). The canard
solution is labelled To (take-off). The curve J given by w = J(u) = c2/u2 and
is a reflection of the u-axis in F . An intersection between J and To determines
the u∞ for which a Type III traveling wave solution (with speed c) exists. Here,
only one intersection exists.
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4.4 Implications of the strong Allee effect

In the previous section, we introduced the mathematical framework to study
invasive tumor fronts, or traveling wave solutions (TWSs), of the strong Allee
model (4.1)–(4.2) with 0 / α < 1, 0 ≤ β ≤ 1 and 0 ≤ ε � 1 sufficiently
small) connecting the all-cancer state (0, 1) and the cancer-free state (u∞, 0) with
u∞ ∈ R+. It was shown, in a mathematically rigorous way, that the strong Allee
model cannot admit Type I, II or VI TWSs (see Theorem 4.3.1); only TWSs
where the w-component has a well-defined edge–Type III waves–can exist. This
result is due to the stability of the states (u∞, 0). While Type III waves are the
only possible TWSs of the strong Allee model, their existence is not guaranteed.
In Section 4.3, we derived a condition for the existence of Type III waves.

In this section, we establish the main results presented in Section 4.1.3.
We demonstrate the existence of Type III TWSs in the strong Allee model and
investigate the relationship between their speed and the background ECM density
(u∞), for different values of ε. We also make a qualitative comparison between
the results for the strong Allee model and results for the logistic model, (4.1)
with (4.3), [67] and the competition model, (4.1) with (4.4), [108], and review
the impact of the inclusion of the strong Allee effect.

4.4.1 Existence of invasive tumor fronts with well-defined edges

Type III TWSs of the strong Allee model exist if a transverse intersection between
two specific curves in the phase plane of the ODE system

uz =
u2w

c
,(

c− 2u2w

c

)
wz = −w(1− w)(w − α) +

2u3w3

c2

(4.23)

exists; see Section 4.3 for the derivation of this condition. The two curves are the
so-called canard solution, denoted To in Figure 4.9, and the so-called jump curve,
denoted J := c2/u2 in Figure 4.9. Here, u and w still represent the ECM and
cancer cell densities, c is the invasion speed of the tumor and z = x− ct is a new
variable–the so-called traveling wave coordinate–that corresponds to a coordinate
frame moving along with the TWS. Note that (4.23) can also be obtained from
the strong Allee model by setting ε = 0 and looking for stationary solutions in
the z-coordinate frame.

A consequence of the requirement of an intersection between the canard
solution and the jump curve is that no TWSs exist for c greater than a critical
value, c = c+(α), defined in (4.20), as the canard solution does not exist in this
regime; see Section 4.3. The behavior of c+ as a function of α is shown as the
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transition curve between the light and dark green regions in Figure 4.6, which
shows that c+(α) is a decreasing function of the Allee threshold α. Tumors
requiring a larger threshold to grow, therefore have a slower maximum speed
potential. Henceforth, we only consider speeds cB2(α) < c < cB1(α) < c+(α),
where 0 < c ≤ cB2(α) and cB1(α) ≤ c < c+(α) are narrow regions where the
mathematical analysis becomes more involved and is beyond the scope of this
chapter. The analytic expression c+(α) hence yields an upper bound on the speed
of the invading waves. Consequently, the model does not support traveling waves
that go faster than this upper limit. So, the expression c+(α) can be used as a
crude measure to give an upper bound on how far an invading wave has traveled
at any time without any significant computation. Because c+(α) is decreasing, a
larger α gives a lower upper bound on the speed.

With cB2(α) < c < cB1(α), the canard solution is the only solution trajectory
of (4.23) that leaves the all-cancer state (0, 1) and crosses the so-called fold curve,
denoted F := c2/2u2 in Figure 4.9. (This fold is a projection in two dimensions
of the fold F of the critical manifold as shown in Figure 4.4). Other trajectories
leaving (0, 1) also hit the fold curve, but do not cross it due to the singular nature
of (4.23); at the point where the canard solution crosses the fold curve both the
left- and right-hand sides of the second equation in (4.23) vanish. This point is a
folded saddle canard point (FS).

A TWS of the strong Allee model corresponds (to leading order in ε) to the
canard solution until it intersects the jump curve, at say (u,w) = (u∗, c2/u2

∗),
at which point it jumps to (u∞, 0). This jump corresponds to a shock in the
w-component of the (leading order) TWS that connects to zero, while the u-
component stays constant (u = u∗), creating a Type III TWS with cancer-free
state (u∞, 0) = (u∗, 0) and speed c (to leading order); see Figure 4.9. The length
of the shock is c2/u2

∗, which is double the distance between the u-axis and the
fold curve at u = u∗. In other words, the jump curve is the reflection of the
u-axis around the fold curve.

Figure 4.9 provides an example phase plane of (4.23) for given α and c, and
a schematic of the Type III TWS that the strong Allee model admits for this
parameter set. The fold curve is indicated by the green dotted line. The solid
blue lines are solution trajectories of (4.23) and the unique solution trajectory
crossing the fold curve (the canard solution) is labelled To. Potential shocks
are indicated by the the dashed blue lines. Due to the symmetry of the shock,
the length of the dashed blue lines is twice the distance between the canard
solution and the fold curve and the given u-coordinate. Since (u∞, 0) are repelling
equilibrium points of (4.23), trajectories of (4.23) cannot connect to the u-axis
as z →∞. Consequently, only shocks landing exactly on the u-axis create TWSs;
such TWSs are Type III TWSs.
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Figure 4.9: Left-hand panel: An example phase plane of (4.23), with α = 0.05
and c = 0.33. The green dotted line represents the fold curve, labelled F , and
the open black square represents the folded saddle, at which the canard solution,
labelled To, crosses the fold curve. The solid blue lines correspond to trajectories
of (4.23) and the dashed blue lines correspond to shocks. The jump curve,
labelled J := c2/u2, is shown in orange. A Type III traveling wave solution of the
strong Allee model exists since the jump curve and the canard solution intersect
transversally. The solid black square is a folded focus canard point, which does
not play a role in the construction of traveling wave solutions. Right-hand panel:
An illustration of the Type III traveling wave solution (as a function of x) that
is obtained from the dark blue trajectory in the phase plane.The w-component
has semi-compact support and u∞ > 1 is chosen arbitrarily.

138



4.4 Implications of the strong Allee effect

The connection to the u-axis occurs if and only if u∗ = u∞; only if the canard
solution intersects the jump curve is a Type III TWS created. The jump curve is
indicated by the orange curve in Figure 4.9. For the given parameters, there is a
unique intersection between the canard solutions and the jump curve. Therefore,
with α = 0.05, the strong Allee model admits a unique Type III TWS that travels
with speed c = 0.33 and asymptotes to the cancer-free state (u∞, 0) = (u∗, 0) (to
leading order).

4.4.2 Biphasic relationship between invasion speed and background
ECM density

In the previous section, we discussed how Type III traveling wave solutions
(TWSs) are created. However, several questions remain:

1. For a given α and c, does an intersection between the canard solution and
the jump curve always exist, such that a Type III TWS is created?

2. If such an intersection exists, is it unique?

3. Can different speeds yield TWSs that asymptote to the same cancer-free
state (u∞, 0) with α fixed?

The first question is answered Section 4.3 and discussed in the previous
section. For c > c+(α), there is no canard solution and, thus, no TWSs exist.
However, neither Section 4.3 nor the previous section guarantee that the required
intersection exists for cB2(α) < c < cB1(α) < c+(α), despite the canard solution
existing in this regime. An investigation of the phase portraits of (4.23) for
different values of α and c provides further insight into this, and the other
questions. The results are presented in Figure 4.10, where the (leading order)
speed of the Type III TWS c (if such a TWS exists) is indicated, for the chosen
values of α and u∞.

Figure 4.10 suggests that there is an upper limit c = ctrans(α) on the values
of c for which there exists an intersection between the canard solution and the
jump curve. This upper limit appears to be less than cB1 < c+(α) and satisfies
the transversality condition derived in D. Consequently, the corresponding value
of u∞ = utrans

∞ is related to ctrans via ctrans =
√
αutrans
∞ . Moreover, for fixed α,

different values of c yield different u∞-values and it appears that TWSs to all
cancer-free states (u∞, 0) can be constructed. For a given α, the relationship
between the invasion speed of the tumor (c) and the background ECM density
(u∞) has a single turning point–a maximum–at u∞ = utrans

∞ (α) with speed
ctrans =

√
αutrans
∞ . This biphasic relationship qualitatively resembles experimental

results for malignant tumor invasion reported in [125], where the relationship
between the collagen concentration and invasion distance of HT1080 is measured
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Figure 4.10: Left-hand panel: The leading order speed of the invasive tumor
fronts as a function of the background ECM density, for α = 0.01, 0.05, 0.2. For
increasing α, the biphasic relationship between c and u∞ becomes more prominent
and the wavespeed for a given u∞ decreases. Right-hand panel: A close-up of
the α = 0.05-curve in the left-hand panel, highlighting the biphasic relationship.

to be non-monotonic. Moreover, the non-monotonicity becomes more pronounced
as α increases. Consequently, there is no intersection between the canard solution
and the jump curve for c > ctrans, and, therefore, no TWS. For c < ctrans there is
a narrow region where two intersections exist, which implies the existence of two
TWSs, with different end states, that travel with identical speed. However, since
the relationship between u∞ and c illustrated in Figure 4.10 is a graph over u∞,
each background state (u∞, 0) corresponds to a single invasion speed. Hence,
for a given α and u∞, we obtain a unique TWS. Figure 4.10 indicates that for
increasing α and for fixed u∞, this speed decreases.

4.4.3 ODE versus PDE

The phase plane and wave shape illustrated in Figure 4.9 as well as the wave-
speed results presented in Figure 4.10 are for the strong Allee model with
ε = 0. However, provided we are not near the turning point of the biphasic
relationship, where transversality between the canard solution and the jump
curve is lost, the shape and speed of these traveling wave solutions (TWSs) are
good approximations of TWSs of strong Allee model with 0 < ε� 1; see Section
4.3.4. It is probable that even near the turning points, the ε = 0-solutions are
good approximations of the ε > 0-solutions. The location of the turning point
will simply shift. However, further mathematical analysis is required to confirm
this.
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Figure 4.11: A numerical simulation of (4.1)–(4.2), with α = 0.05, β = 0.5,
ε = 0.001, u∞ = 1 and a measured speed c ≈ 0.43, consistent with the ODE
results. The dashed lines correspond to u-profiles and the solid lines to w-profiles,
with solutions plotted at t = 0 (black), 16 (lightest), 32, . . . , 160 (darkest).

Figure 4.11 provides an example simulation of (4.1), the strong Allee model
with ε > 0, away from the turning point. This simulation shows the evolution of
a Type III wave with a speed that agrees with that predicted by the phase plane
analysis, to O(ε). The figure also suggests that the invasive tumor front is stable,
in the sense that it is observable in the system. The initial conditions for this
particular simulation are (u,w) = (u∞, e−x). However, the same invasive tumor
front, with the same speed, appears to evolve from any exponentially decaying
w-initial condition, or a w-initial condition with semi-compact support.

Figure 4.12 depicts the results of further numerical simulations for a range
of ε and u∞ values, α = 0.05 and β = 0.5; the right-hand panel is a close-up of
the left-hand panel. The solid curve is the biphasic relationship for ε = 0 and
α = 0.05, given in Figure 4.10. The markers indicate the measured speed of the
Type III TWS that evolves from the numerical simulation of strong Allee model,
with ε > 0 as indicated. These results demonstrate that for a given u∞ and α,
the invasion speed is an O(ε) perturbation of the ε = 0-speed, as expected; see
Section 4.3.4. Moreover, they suggest that near the maximum of the solid curve,
Type III TWSs continue to exist for ε > 0 with speeds close to the ε = 0-speed.
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Figure 4.12: The relationship between u∞ and the measured speed c for Type
III traveling wave solutions obtained by numerically simulating (4.1)-(4.2) with
α = 0.05, β = 0.5 and ε as indicated, together with bifurcation values of c for
α = 0.05; see Section 4.3.3. The solid curve indicates the relationship between
u∞ and c for Type III traveling wave solutions with α = 0.05 and ε = 0, given
in Figure 4.10. The right-hand panel is a close-up of the left-hand panel. The
biphasic relationship is clearly visible for small ε.

This observation supports our previous claim that while the mathematical
analysis breaks down near the maximum, the results are not significantly altered.

The light blue dashed and dotted curves in Figure 4.12 are values of c at
which the phase plane of (4.23) changes qualitatively, for α = 0.05; see Figure 4.6.
For c values between these lines, the folded focus canard point (FF) denoted
by the filled black square in Figure 4.9, remains a FF. The values of c between
the light blue dashed and dotted curves (cB2(α) < c < cB1(α)) represent the
regime analysed mathematically in Section 4.3. Thus, we require that for a
given α, u∞ is chosen in such a way that the resulting TWS has a speed in this
regime. Based on Figure 4.12, for α = 0.05, the minimum value of u∞ appears
to be less than 0.05 (the smallest value we tested). Since ctrans < cB1, there
does not appear to be an upper bound on u∞. The cB1,B2 lines will perturb for
ε > 0, which may affect the range of appropriate choices of u∞. However, the
appearance of qualitatively similar TWSs of the strong Allee model for a range
of ε values suggests that our analysis remains valid for reasonably large ε values
(say, ε = 0.1).

4.4.4 Comparison with models with logistic growth

In this section, we make a qualitative comparison between the strong Allee model
and the logistic ((4.1) with (4.3)) and competition ((4.1) with (4.4)) models. The
logistic model, where cancer cell growth is modeled by a logistic growth term, is
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studied extensively in [67]. The competition model, where a term representing
the competition for space between the ECM and cancer cells is appended to a
logistic growth term, is studied in [108]. The results of the previous sections, for
the strong Allee model, differ from those derived previously, in two main aspects.

For the logistic and competition models, there exists a range of traveling wave
solutions (TWSs) with different speeds for a given background ECM density,
varying from Type I–IV. This is in contrast to the unique TWS for the strong
Allee model. Moreover, this unique TWS is of Type III, the most biologically
relevant type, and appears to be stable in the sense that this kind of TWS is
observed in numerical simulations of the PDE system, for a wide range of initial
conditions. In contrast, for both the logistic and competition models all the Type
I–III TWSs appear to be stable. See, for example, Figure 1 in [67] where stable
Type I–III TWSs are shown.

The biphasic relationship observed experimentally in malignant tumor invasion
[126], occurs in the competition model [108, fig. 10] but not in the logistic model.
For the logistic model, the relationship between the invasion speed of the Type
III waves and the background ECM density is monotonically increasing [67,
fig. 11]. Thus, we conclude that the relationship between u∞ and c has changed
qualitatively due to the Allee effect, in comparison with logistic growth.

4.5 Discussion and future work

In this chapter, we proposed, what is to our knowledge, one of the first model of
malignant tumor invasion that explicitly includes Allee effects, [17]. The analysis
and results lead us to the conclusion that this model, with the strong Allee
effect, is a better model of types of malignant tumor invasion in which hapto- or
chemotaxis is the dominant mechanism of cell migration than similar, previously
studied models: the logistic model [67, 109, 126] and the competition model
[108]. This conclusion is based on the strong Allee model’s ability to replicate
experimentally observed features of malignant tumor invasion more effectively
than the previous models. In particular, the two main results that lead to this
conclusion are:

1. The strong Allee model only admits Type III waves, the most biologically
relevant invasive tumor fronts, rather than the whole family of Type I–IV
waves that is admitted by the logistic and competition models.

2. The relationship between the invasion speed of these Type III waves and the
background ECM density is biphasic, which is consistent with experimental
observations, contrary to the corresponding relationship for the logistic
model.
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The results for the weak Allee model are less impressive; see Appendix B.
They lead to the conclusion that the weak Allee model is similar to the logistic
or competition models as a model of malignant tumor invasion. It admits the
same family of traveling wave solutions, including those that are not biologically
relevant, and does not exhibit the experimentally justified biphasic relationship
between the speed of the Type III waves and the background ECM density.

4.5.1 Additional biological processes

The kinetic function for the cancer cells that we study is a general representation
of a cubic function with zero constant term, negative cubic term and positive
quadratic term:

fAllee(ŵ) = −k1ŵ
3 +k1(k2 +k6)ŵ2−k1k2k6ŵ =: K1ŵ

3 +K2ŵ
2 +K3ŵ , (4.24)

with K1 < 0 and K2 > 0. Thus, appropriate modifications to the second equation
in (4.6) (in the form of linear, quadratic or cubic terms in ŵ) can be expressed and
studied using (4.1)–(4.2); the interpretation of the parameters simply changes.
Consequently, the results of the Allee model apply more generally and we may use
them to infer the effects of including (appropriate) additional biological processes
to (4.6).

For example, the death of the cancer cells as a result of treatment or therapy
can be modeled by the linear death term −k7ŵ, with k7 > 0 (s−1). Appending
this term to the ŵ-equation of (4.6) yields

∂û

∂t̂
= −k4û

2ŵ +D1
∂2û

∂x̂2
,

∂ŵ

∂t̂
= k1ŵ(k2 − ŵ)(ŵ − k6)− k7ŵ − k3

∂

∂x̂

(
∂û

∂x̂
ŵ

)
+D2

∂2ŵ

∂x̂2
.

(4.25)

Upon applying the nondimensionalisation

ud =
û

Ud
, wd =

ŵ

Wd
, td =

t̂

Td
, xd =

x̂

Xd
, (4.26)

with

Ud =
k1

k4
Wd ,

Td =
1

k1W 2
d

,

Wd =
1

2

(
k2 + k6 +

√
(k2 − k6)2 − 4

k7

k1

)
,

Xd =

√
k3

k4Wd
,

144



4.5 Discussion and future work

and

αd :=
k2 + k6

Wd
− 1 , βd :=

D1

D2
= β , εd :=

k4

k1k3Wd
D2 ,

and dropping the subscript d, (4.25) transforms to the Allee model, (4.1)–(4.2).
We assume k7 < k∗7 = k1(k2 − k6)2/4 so that Wd is real-valued.

To interpret the effect of the additional death term, we analyse how the
dimensionless variables and parameters change between (4.7) and (4.26), keeping
the remaining dimensional parameters ki, i ∈ {1, 2, . . . , 6} fixed. The death rate
k7 appears directly in Wd and indirectly via Wd in the other terms (excluding
βd = β). It is straightforward to see that a death rate k7 decreases Wd compared
to W : Wd < W . Consequently,

Ud < U , Td > T , Xd > X , αd > α , βd = β , εd > ε .

As expected, the expression for Wd corresponds to the background state
of (4.25) that represents the carrying capacity of the cancer cell density; the
cancer cell density in (4.2) has been scaled to one so the representative cancer
cell density W[·] used in the nondimensionalisation must correspond to this
background state. In terms of their relationship to Wd, the other quantities in
the nondimensionalisation remain unchanged.

The parameter αd represents the ratio of the two nontrivial w-background
states of (4.25), consistent with α in (4.2). Consequently, for αd > 0, this
parameter still imposes a growth threshold. However, in terms of the dimensional
variables, the growth threshold is no longer represented by k6 > 0 but by
k6 + k7/(k1k2) > 0. Increasing k7 causes the two nontrivial ŵ-background states
of (4.25) to approach each other on the ŵ-axis, until they collide and become
complex-valued at k7 = k∗7 . In (4.2), since the greater background state is scaled
to one, increasing k7 increases the value of the lesser nontrivial ŵ-background
state, which has been scaled to α. Consequently, to obtain results for (4.25) we
take α < αd < 1 (with αd → 1 as k7 → k∗7). As evidenced by Figure 4.10, for
α > 0, increasing α causes an overall decrease in the speed of the waves. Thus,
adding a linear death term to the strong Allee model slows the invasive tumor
fronts.

On more speculative terms we may conclude that, as incorporating a growth
threshold yields a better match between experimental data and model data,
cancer treatment may be improved. If indeed tumor cells cannot survive when
the density is low, therapy only needs to be applied until the density is below
this threshold. If more experimental data would be available, these thresholds
can be determined.
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4.5.2 Shortcomings and future work

In this chapter, we proposed a model of malignant tumor invasion that we argue is
an improvement on previously studied models of its kind. However, our proposed
model is still far from a complete description of malignant tumor invasion; any
mathematical model describing a biological process is highly simplified. It it rarely
possible to identify the exact mechanisms that are involved in a given process
and parameter values such as reaction-rates are often only known to several
orders of magnitude. Even if the biology is completely understood, it remains
a challenge to represent it mathematically in a way that is both accurate and
manageable. For example, irregularities in the border of malignant tumors can be
important [3, e.g.], contributing to the speed and severity of the tumor. However,
to capture these irregularities, two- or three-dimensional models must be used.
Such models are highly complex and not conducive to rigorous mathematical
analysis. In the quickly developing field of cancer research, the correct formulation
of a model is an ongoing debate. We chose to model the Allee effect with the
cubic function (4.2). However, other functional forms may also be used; see, for
example, [25] and references therein. Nevertheless, simple models, such as the
Allee model, still provide useful information. In this case, we demonstrate that
using the strong Allee effect instead of logistic growth has strong implications on
the modelling of malignant tumor invasion. They also provide a stepping stone
towards understanding more realistic, complex models.

The mathematical methods in this chapter focus on proving the existence of
traveling wave solutions. Although the PDE simulations provide an indication of
which of these solutions are stable, a rigorous stability analysis remains to be
undertaken. One method of inferring stability results for models such as (4.1)
is based on an Evans function computation. Such a method is at the time of
publishing under development; see [69]. A related aspect that is not discussed
in this chapter is the transient dynamics of the traveling wave solutions. We do
not discuss how an initially small, localised patch of cancer cells evolves into
an invading tumor front or how the cancer cells come to be present in the first
place. Instead, we investigate the possible long term behaviors of pre-existing
tumors. An alternative model is necessary to describe the early stages of tumor
development; the prime feature of the strong Allee effect is the growth threshold
it imposes, which causes populations less than the threshold value to become
extinct. The stability and transient dynamics of the traveling wave solutions
studied here are topics for future research.

Finally, our analysis is only valid for sufficiently small values of ε. The
numerical simulations suggest that our results remain (at least qualitatively)
sound for quite large values of ε, say, ε = 0.1 (see, for example, Figure 4.12).
However, we purposely avoid specifically defining sufficiently small as this goes
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beyond the scope of this chapter. An investigation of the effect of larger ε is left
for future research.
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Appendices

A Logistic growth and the Allee effect

To gain an understanding of the influence of the Allee effect, in comparison to
logistic growth, consider the two ordinary differential equations (ODEs)

dw

dt
= flogistic(w) = w(1−w) and

dw

dt
= fAllee(w) = w(1−w)(w−α) . (4.27)

Both ODEs are separable and can be solved analytically; sketches of the solutions
are given in Figure A.1. The ODEs with logistic growth and the weak Allee
effect yield growth (or decay) to the dimensionless carrying capacity (w = 1) for
any positive initial condition. In contrast, the ODE with the strong Allee effect
yields growth (or decay) to the dimensionless carrying capacity only if an initial
condition is greater than the threshold value α > 0; initial conditions less than
α > 0 result in the extinction of the species. The differences between logistic
growth and the strong and weak Allee effects are further explained by looking at
the per capita growth rate (pcgr) of w, in the absence of spatial (or other) effects.
The pcgr of w is defined as

pcgr(w) :=
1

w

dw

dt
=

d(logw)

dt
,

where logw represents the natural logarithm of w. We determine the pcgr of w
for the two cases, logistic and Allee, using dw/dt defined in (4.27):

pcgrlogistic(w) = 1− w , pcgrAllee(w) = (1− w)(w − α) .

Figure A.2 provides an illustration of these curves for w ≥ 0.
For 0 < α < 1, the pcgr curve for the strong Allee effect is negative in a

neighbourhood of w = 0, before becoming positive at w = α. This negativity,
which corresponds to negative population growth, characterizes the strong Allee
effect. For −1 < α < 0, the pcgr curve for the weak Allee effect decreases almost
everywhere except for a small increasing part for w ∈ [0, (1+α)/2). This increase
characterizes the weak Allee effect.
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Figure A.1: Sketches of the solutions to the ODEs in (4.27). Left-hand panel:
The OD]Es with logistic growth and the weak Allee effect yield growth (or
decay) to the carrying capacity (scaled to one) for all positive initial conditions.
Right-hand panel: The ODE with the strong Allee effect only yields growth to
the carrying capacity for initial conditions larger than the threshold value α > 0.
Initial conditions smaller than α > 0 result in the extinction of w.
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α = −0.95
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1

Figure A.2: The pcgr curves for logistic growth (solid), the strong Allee effect
(dashed) and the weak Allee effect (dotted). The negativity of the dashed curve
for w < α characterizes the strong Allee effect. The turning point in the dotted
curve at a small value of w relative to the carrying capacity (in this case, at
w = 1/40), combined with the positive intercept (at w = 0), characterizes the
weak Allee effect.
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Figure B.1: Left-hand panel: Phase plane of (4.18), parametrized by z, with
α = −0.95, c = 0.43. The green line is the fold curve (F ), which is dotted
to illustrate its singularity. Black dots represent equilibria. The black open
square is a folded saddle. F divides S into a repelling side (Sr, shaded) and an
attracting side (Sa, unshaded). There exist a family of heteroclinic connections
corresponding to Type I–IV traveling wave solutions. Right-hand panel: The
relationship between the background ECM density (u∞) and the speed of a
Type III wave (cIII), with α = −0.95. The solid curve is obtained from ODE
simulations of (4.19); the markers are obtained from PDE simulations of the
weak Allee model.

B Results for the weak Allee model

The mathematical techniques outlined in Section 4.3 can be directly applied to
the weak Allee model ((4.1)–(4.2) with α ' −1). With α < 0, the equilibrium
(u,w) = (0, α) lies on the negative w-axis and the equilibria (u∞, 0) are center
stable, in constrast to the case presented in Section 4.3 with α > 0. This means
that the phase planes of the reduced problem in the weak and strong cases
differ considerably, especially near the u-axis. In the weak case, trajectories can
approach (u∞, 0) via either the fast or slow dynamics, instead of only the fast.
For |α| sufficiently large (see Remark 4.5), one canard point exists on F : a folded
saddle. The left-hand panel of Figure B.1 illustrates these features and depicts
an example phase plane for the weak Allee model.

The configuration of canard points and end states (u∞, 0) for the weak Allee
model is equivalent to that of the logistic model. Consequently, the analysis of
the former is very similar to the latter, which is described in detail in [67]. By
glueing together trajectories of the reduced and layer problems, as in Section
4.3.4, we construct a family of Type I–IV traveling wave solutions, parametrized
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Figure B.2: Type I–III waves with speeds c ≈ 1.2, 0.80 and 0.73, respectively,
obtained by numerically simulating (4.1) with ε = 0.001, α = −0.95 and β = 0.5.
The only imposed difference between the three simulations is the initial condition,
in particular, the steepness of the w-component; steeper w-components lead to
slower waves. The dashed lines correspond to u-profiles and the solid lines to w-
profiles, with solutions plotted at t = 0 (black), 8 (lightest), 16, . . . , 80 (darkest).

by c, for a given u∞ and ε = 0. The Type III waves correspond to solutions that
approach (u∞, 0) via the fast dynamics, similar to the Type III waves in the
strong Allee model. The Type I, II and IV waves correspond to solutions that
approach (u∞, 0) via the slow dynamics.

The persistence of these solutions follows from geometric singular perturbation
theory and canard theory, using very similar arguments to those presented in
[67]. One difference arises from a transversality condition, which is automatically
satisfied in the logistic model but is violated in the weak Allee model if u− =
u+ = c/

√
1 + α, where u± is the u-coordinate of the shock; see Section 4.3.2.

The full implications of this loss of transversality remain to be determined. One
immediate implication is the breakdown of the proof of persistence for 0 < ε� 1
for any traveling wave solutions that violate the transversality condition. Another
implication appears to be the existence of nonunique solutions, that is, two
possible traveling wave solutions for a given α, c, u∞ and ε = 0: one with a
shock and one without. Numerical simulations of the weak Allee model with
0 < ε� 1 suggest that the Type I–III waves are stable; see Figure B.2.

The right-hand panel of Figure B.1 provides a plot of the speed of the
Type III waves cIII as a function of the background ECM density u∞, for
fixed α = −0.95. This monotonically increasing relationship resembles the
corresponding relationship for the logistic model, rather than the experimentally
justified biphasic relationship.

Remark 4.5. The above discussion of the weak Allee effect requires |α| to be
sufficiently large. This is ensure that there exists exactly one canard point on
F . For −7 + 4

√
3 ≈ −0.072 < α < 0, there may exist three canard points on
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F , depending on the value of c. As c increases, the number of canard points on
F changes from one to three and back to one via two saddle-node bifurcations.
Although this regime may be mathematically interesting, it is not biologically
relevant since the weak Allee effect requires α ' −1; see A. Consequently, we do
not consider it here.

C Dimensionless variables and parameters

[u] = [û]
[k4]

[k1][k2]
=

kg

m3
× m6

kg × cells× s
× cells× s

m3
= 1

[w] = [ŵ]
1

[k2]
=

cells

m3
× m3

cells
= 1

[x] = [x̂]

√
[k2][k4]

[k3]
= m×

√
cells

m3
× m6

kg × cells× s
× kg × s

m5
= 1

[t] = [t̂][k1][k2]2 = s× m3

cells× s
× cells

m3
= 1

[α] =
[k6]

[k2]
=

cells

m3
× m3

cells
= 1

[β] =
[D1]

[D2]
=

m2

s
× s

m2
= 1

[ε] =
[k4]

[k1][k2][k3]
[D2] =

m6

kg × cells× s
× cells× s

m3
× kg × s

m5
× m2

s
= 1

D Transversality

The curves J and To intersect at (u,w) = (u∞, c2/u2
∞). Since To follows the

vector field, this intersection is transverse (not tangent) if

dJ

du

∣∣∣∣
u=u∞

− dw

du

∣∣∣∣
(u,w)=(u∞,c2/u2

∞)

6= 0 ,

where dw/du is the ratio of the ODEs in (4.19). A straightforward computation
shows that the above express is given by

2c2

u3∞
+
c2(1− c2/u2

∞)(c2/u2
∞ − α)− 2u3

∞c
4/u4
∞

u2∞(2u2∞c2/u2∞ − c2)
=

(u2
∞ − c2)(c2 − αu2

∞)

u6∞
6= 0 .

So, transversality is lost if c = u∞ or c =
√
αu∞. The former case implies that

the take-off point of the jump is (u,w) = (c, 1), which is only possible if c = 0.

153



Tumor spread with an Allee effect

Thus, given u∞, c > 0, transversality is violated only if c =
√
αu∞. This speed

corresponds to a take-off point of the jump at (u,w) = (u∞, α).
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5

Long wave length vegetation patterns1

5.1 Introduction

Human activity and climate change have stressed life on the Earth’s surface. Es-
pecially in the drylands the effects are tangible, as persistent soil degradation has
led to barren areas, unsuitable for agriculture. To combat this process of deserti-
fication is set as one of seventeen global goals on the United Nations’ sustainable
development agenda [119]. The need for a better insight in arid ecosystems is
thus widely acknowledged. In the absence of grazing, vegetation growth is mainly
limited by scarcity of water and nutrient. Therefore, homogeneously vegetated
areas may turn into bare soil as a result of decreasing precipitation. Several
intermediate stages, where the terrain is partly vegetated and partly barren, are
observed, all with strikingly regular patterns [106]. In the case of a flat terrain,
the transition from homogeneous vegetation to bare soil goes via hole, labyrinth,
and spot patterns, [132, 138]. On a sloped terrain, however, the labyrinth pat-
terns self-organize spatially as stripe patterns, parallel to the terrain’s contours,
[171]. Moreover, patterns on flat terrain have been reported to be stationary,
while the stripe patterns slowly move uphill, [88]. Although the evolution from
fertile to barren soil is not instantaneous, it is catastrophic in the sense that it
is nearly irreversible; an increase of water availability does not automatically
cultivate barren terrain to be fertile again. Therefore, vegetation patterns not
only announce an early warning signal for desertification, but conversely provide
a starting for the development of a homogeneously vegetated state.

The mathematical models developed to study the mechanisms responsible

1The content of this chapter was submitted under the title Spatially periodic multi-pulse
patterns in a generalized Klausmeier-Gray-Scott model.
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for this pattern formation are mostly of reaction-diffusion type. Some models
are two-component systems regarding the interaction of plant density with water
density, [178, 133, 163, e.g], while others include competition for surface water,
see [75, 131], or [58, 114, e.g.]. The effect of grazing of the region in question is
also expected to have a significant impact, and is taken into account in [58, 115,
e.g.]. Typically, the patterns arise as a heterogeneous perturbation destabilizes
the homogeneous, vegetated state; a Turing bifurcation, [156]. The catastrophe
is then explained by the fact that there is a bistable parameter regime, in which
both a vegetation pattern and the bare soil state are attracting [132, 138, e.g].
As water availability decreases to some bifurcation point, the vegetation pattern
destabilizes, causing it to collapse to the bare soil state; a process that is not
simply reverted if water increases, because the bare soil state is also stable. The
water availability should be increased as far as beyond the bistable regime to
be able to configure into a vegetation pattern again. This is also referred to as
hysteresis.

The focus of this article is on the striped vegetation patterns, which are
observed on terrains with a gentle slope, [171]. This slope induces a downwards
flow of precipitation in the form of surface water, which is then modeled by
an advection term, and was introduced by C.A. Klausmeier in 1999, [88]. His
model has two components, for water U , and vegetation V , and is subjected to a
rescaling in [159], after which it is of the form

Ut = A(1− U)− UV 2 + CUx,

Vt = D∆x,yV −BV + UV 2,
(5.1)

where A controls water input, B is the natural death rate of vegetation, C is the
rate at which water flows downhill and D is a diffusion coefficient. All coefficients
are positive. The diffusion ∆ models vegetation spread on a two-dimensional,
infinite domain, (x, y) ∈ R2. Naturally, t ∈ R+ is the temporal coordinate.

The observation that vegetation patterns also occur in the absence of a slope,
motivated an extension of model (5.1). By introducing (nonlinear) diffusion
of water the spread is also modeled by a term that has no preferred direction.
Extended comparisons in [159] show that nonlinear diffusion does not induce
significant differences to the model. This motivates that in this article, we focus
specifically on linear diffusion of water, i.e. we study

Ut = ∆x,yU +A(1− U)− UV 2 + CUx,

Vt = δ2∆x,yV −BV + UV 2.
(5.2)

Because it is natural to assume that water diffuses faster than vegetation, 0 <
δ � 1 is a small parameter. The homogeneous background state (U, V ) = (1, 0) is
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interpreted as a desert state; a constant water availability, yet with no vegetation.
The main parameter, A, relates to precipitation, B models the vegetation’s death
rate and C models advection of water induced by a sloped terrain. Furthermore
we assume A,B > 0, and C ≥ 0. Under the assumption A > 4B2, there are two
more homogeneous steady states, (U±, V±) which are vegetated. We refer to (5.2)
as the generalized Klausmeier–Gray–Scott (gKGS) model, because for C = 0,
the model reduces to the Gray–Scott model, [62]. The model in [62] describes
autocatalytic reactions, but as their setting is in a continuously stirred tank
reactor, no diffusion is taken into account [62]. The Gray–Scott ODE system,
extended with diffusion, is what is currently referred to as the Gray–Scott model,
and was introduced in [19, 124].

It is widely known that both the Gray–Scott and the Klausmeier model
exhibit a plethora of spatial patterns, [88, 123], and the gKGS-model captures
patterns on both sloped (Klausmeier) and flat (Gray–Scott) terrains. To describe
this phenomena mathematically, the existence of solutions with certain properties
(wave number, amplitudes) is usually proved. However, stability analysis of these
patterns is a necessary follow-up, as one does not expect to observe patterns
which are unstable. To bridge the gap between existence of regular patterns
in a mathematical setting and observable patterns, we consider the so-called
Busse balloon, introduced in [16] and generalized to reaction-diffusion equations
in [40, 117]. This balloon is a region in (wave number, parameter)-space in
which patterns are stable against perturbations. In the context of vegetation
patterns, the natural choice for the parameter is precipitation, A. Multistability
of patterns with different wavelengths explains the hysteresis mentioned earlier.
The onset of patterns, an extremum of the Busse balloon, occurs through a
Turing bifurcation, while at the other end of the balloon, only patterns with very
small wave numbers, are stable. The latter coincides with the homoclinic limit
of periodic patterns confirmed by, for example [90, 91, 120, 157].

Research in the setting of system (5.2) has been fruitful at the interface of
ecology and mathematics. Several Busse balloons for the gKGS system were
derived using numerical continuation in [159]. In the same article, analytic control
over the beginning of pattern formation is gained through the analysis of the
complex Ginzburg-Landau equation associated with the pattern’s amplitude.
Although system (5.2) is written in a slightly different way in [143, 145], the
instability mechanism for stripe patterns is unfolded further in these two articles.
Using numerical continuation and simulations, [145] reports an extensive study
of the destabilization of stripe patterns under the influence of a slowly decreasing
parameter A. For flat terrains, the existence of nontrivial two-dimensional
patterns of stripe and rhomb type and to some extent also their stability, is
established in [143].
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An analytical result is formulated in Theorem 3 of that article, which states
that stripe patterns are unstable in the Gray–Scott model, i.e. on flat terrain,
described by the C = 0 case of (5.2). For nonzero slope C, however, the stability
is derived only using numerical continuation. These numerics suggest that as
the slope of the terrain increases, the stability regime of stripe patterns spreads
from the Turing bifurcation down. Eventually, for a slope large enough, even
patterns with the smallest wave numbers are stable. Observations in nature also
support this theory, because stripe patterns occur on sloped terrain [32]. Yet,
analytical results on existence and stability of stripe patterns with small wave
numbers have not been reported so far. To justify both numerics and to test
the ability of the gKGS model to describe natural observations, this analysis
is precisely the focus of the current paper. Our methods are based on those
used for multiscale pulses in the Gray–Scott model, which as a long history of
analytical studies that are discussed in section 5.1.1. Due to the advective term
in (5.2), this truly is a nontrivial task; the symmetries that are used extensively
in the proofs in for example [34, 39], break as soon as C 6= 0. Hence, the proof
of existence of pulse patterns with small wave numbers in (5.2) – Theorem 5.3.1
of this paper – requires mathematical methods that go beyond the classical
framework of geometric singular perturbation theory.

5.1.1 Existence and stability results of the Gray–Scott model

In this article, we exploit the singularly perturbed nature of (5.2), (recall that
0 < δ � 1) and use asymptotic analysis to prove existence and stability of
stripe patterns. Our approach mainly follows the techniques developed for
generalized Gray–Scott type systems in [34, 35, 36, 39, 117]. It involves geometric
singular perturbation methods as well as an Evans function formulation, using
the slow/fast structure of the problem and the evaluation of the solutions of a
nonlocal eigenvalue problem.

In order to clearly compare the results, we summarize briefly the relevant
results derived in for the Gray–Scott model, (5.2) with C = 0. In one spatial
dimension, the existence of homoclinic N -pulses with N ≥ 1 is largely covered
in Theorem 4.1 of [39], see also Figure 5.1. These pulse solutions correspond
to a single strip or N stripes of vegetation in an elsewhere bare terrain. An
N -pulse is constructed as a homoclinic solution to the desert background state
(U, V ) = (1, 0) that makes N fast excursions in a small spatial regime in which
V is large. Already in the early publications on existence of pulses in the Gray–
Scott model, the asymptotic scaling of the parameters and variables proves
to be a crucial step in the analysis; a feature we also encounter for C 6= 0
throughout this article. In terms of the small parameter δ, the V -component
of the pulse solutions constructed in [39] have asymptotically large amplitudes
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in a small spatial interval, while being exponentially small outside the pulse
region. The pulse solutions of [117] have less restrictions on relative magnitude
of the U and V -component, and in [90, 91], an even broader parameter spectrum
is analyzed in which pulse solutions exist. The rescaled, singularly perturbed
system gives rise to a geometric singular perturbation analysis, where solutions of
the limiting slow and fast system are concatenated according to classical Fenichel
theory [82, 48, 49]. Periodic extensions of the N -pulses are characterized by slow
components with long length scaled with a negative power of δ, in which the
V -coordinate is exponentially small. That is, the slow/fast structure of these
periodic solutions remains to be clearly distinguished. As stated in Theorem 4.2
of [39], there exists a 1-parameter familiy of stationary periodic solutions, and the
proof relies highly on the reversible symmetry of (5.2) with C = 0. With a trivial
extension in y-direction, the existence proof remains valid for two dimensions,
but of course the extra spatial freedom gives way to more complex patterns. The
existence of spot and multispot patterns on bounded two-dimensional domains
have been proved in [168, 169]. The stability of homoclinic and periodic pulse
patterns in the one-dimensional Gray–Scott is further analyzed in [34], where
again scaling is essential, especially the relative magnitude of parameter B. From
the stability problem, a nonlocal eigenvalue problem (NLEP) is formulated, and
the eigenfunctions are constructed using matched asymptotic expansions. The
NLEP is subsequently solved using hypergeometric functions, which reveals that
for B small enough with respect to A, the 1-pulse is stable. There is a Hopf
bifurcation through which it loses/gains stability in a specific B-regime, and the
1-pulse is unstable if B becomes larger than that. In the more general setting,
the terminology of a Busse balloon for patterns in the Gray–Scott model was
used as early as in [117]. Of course, as the authors are considering only one
spatial dimension, the stability results do not necessarily hold for two-dimensional
solutions, albeit with a trivial extension in the y-direction, as perturbations in the
transverse direction are not taken into account. For spot and stripe patterns in
two dimensions, the instability mechanisms of the Gray–Scott model are analyzed
in [92] and in more detail in [22].

Another method to calculate the eigenvalues in a setting like this, is using the
Evans function, see [1]. The embedding of this a priori formal stability analysis
using the NLEP into the Evans function approach is established in [36], and
studied in full detail in a more general context in [35].

As stated earlier, the one-dimensional patterns are trivially (constantly),
extended in the transverse y-direction form 2D stripe patterns. To show existence
of these patterns, no extra analysis is needed compared to the 1D existence proof.
Stability, however, now needs to be tested against perturbations in both the x-
and y-direction.
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Figure 5.1: Simulations of homoclinic 1-pulses in system (5.2) in one spatial
dimension x and δ = 0.01 with C = 0 (Gray-Scott) in the top panels and C = 1
(gKGS) in the bottom panels. Left, a plots of U at t = 50 are depicted, in the
middle V at t = 50 is depicted, and on the right we see a surface plot of V against
both x and t. As parameter values we have used the sets A = 4, B = 1.8, C = 0
in the Gray-Scott case, and A = 1.4, B = 0.6, C = 1 in the gKGS case. Note
that the V -pulse is stationary for C = 0, and travels with a constant speed to
the right for C = 1. For the gKGS case, the values of A,B,C may, for instance,
be equivalently represented by a ≈ 0.28, b = 0.25, c ≈ 0.45 with γ ≈ −0.174 and
β ≈ −0.190 via rescaling (5.7).

This analysis is done in [143], and in the parameter regimes considered in
that article, the transverse perturbations cause instability.

5.1.2 Outline of this article

In this article, we exploit the singularly perturbed nature of the system (recall
δ is a small parameter), and analytically prove the existence of traveling stripe
patterns on a sloped terrain, with a singular character. That is, we establish
the existence of single pulses with an asymptotically large amplitude, as well as
periodic extensions of these pulses. For the N -pulse, our approach goes along the
lines of [39]. However, the advection term breaks the reversible symmetry so that
the solutions now travel with a constant wavespeed, S, in x-direction, which we
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introduce by setting χ = x− St. Figure 5.1 shows a numerical simulation of the
model where the symmetry breaking and constant travel speed is clearly visible.
Furthermore, by focussing on stripe patterns and choosing the y-coordinate along
the patterns, the spatial derivatives with respect to y vanish. Hence, we use the
following system to construct stripe patterns,

0 = Uχχ +A(1− U)− UV 2 + (C + S)Uχ,

0 = δ2Vχχ −BV + UV 2 + SVχ,
(5.3)

where we make specific choices for the magnitude of the parameters and coordi-
nates with respect to δ, in section 5.2.1. Note that the homogeneous, stationary
state (U, V ) = (1, 0) is still a solution. Due to the loss of symmetry, the existence
analysis for the spatially periodic solutions requires a novel approach. Using a
contraction argument, we show that, for each given slope C, there is an interval
of speeds S, for which traveling periodic pulse solutions exist.

In section 5.4, we analyze the Evans function to evaluate the eigenvalues
corresponding to the stability of homoclinic and periodic pulse patterns. We
require the constructed pulse patterns to have a sufficiently long wave length
so that solutions to the stability problem are exponentially small in between
the pulses. This implies that every family of eigenvalues one would expect
in the stability analysis of spatially periodic patterns may be asymptotically
approximated by a single discrete eigenvalue. See also section 5.4.1 and, for a
rigorous validation, [31, 51, 52, 157]. Using the slow/fast splitting of the solutions,
a leading order approximation of the eigenvalue problem is then formulated. This
is equivalent with again an NLEP, that can be solved using hypergeometric
functions. Similar to the results for the Gray–Scott model, the stability of
patterns depends on the asymptotic magnitude of B, but the slope also affects
the stability. The results are presented in Theorems 5.4.1–5.4.3. One of the
findings is that perturbations with (asymptotically) large transverse wave numbers
eventually destabilize any pattern. This confirms in some sense the numerical
results of [143], which state that stripe patterns can only be stable on very steep
slopes; a parameter regime that is not covered by the scaling restrictions of our
asymptotic analysis. Moreover, one may argue that not all perturbations are
representative to model ecological resilience of a pattern. Therefore, we also
present Corollary 5.4.5, which analyzes the stability with respect to a more
restrictive and specifically chosen function space. Since it is the transverse
perturbations that form the main destabilization mechanism of stripe patterns,
Theorems 5.4.2 and 5.4.3 restrict to one-dimensional patterns for which we derive
saddle-node and Hopf bifurcations in several parameter regimes. Lastly, a detailed
characterization of destabilization through a decrease of A or C is discussed in
section 5.5. One of the conclusions that can be drawn is that indeed, a larger
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value of both precipitation and slope is preferable for stripe patterns, confirming
the natural observations.

5.2 Existence of homoclinic traveling multi-pulse patterns

In this section, we construct N -pulse solutions and periodic solutions of (5.3)
that consist of slow and fast components. Specifically, these solutions have large
χ-intervals for which the V -solution is close to zero. The building block for these
solutions is the 1-pulse, i.e. a solution homoclinic to (1, 0), with a localized
pulse where V is O(1) or larger compared to δ and U small within the localized
χ-interval. In this section, we will prove the following theorem.

Theorem 5.2.1 (Existence of 1-pulse patterns). Let A = δ2γa, B = δβb,

C = δγc, and S = δ1− 3
2β+2γs, where γ, β satisfy the following assumptions, also

illustrated by Figure 5.2

A1 β < γ,

A2 β > 2
3 (γ − 1),

A3 β ≥ 2(γ − 1),

and a, b, c, s ∈ O(1). Then, there exists a δ0, such that for all δ < δ0 and
a, b, c given, there exists a uniquely determined speed s such that the four-
dimensional dynamical system (5.3) has a homoclinic solution to the critical
point (U,Uχ, V, Vχ) = (1, 0, 0, 0). This solution corresponds to a traveling wave
solution γhom(χ) of (5.2), with speed s. Its spatial profile is in x biasymptotic to
(U, V ) = (1, 0), and trivially extends into the y-direction. The orbit γhom consists
of two slow components and a single fast excursion. The magnitude of the U and
V components during the fast excursion are δ1+ 3

2β−γ and δ−1− 1
2β+γ , respectively.

Moreover, the traveling speed of this wave is to leading order in δ given by

s =
c
√
c2 + 4a

6b
√
b

. (5.4)

During the fast excursion, the U-component is constant to leading order, U =
δ1+ 3

2β−γu0, with

u0 =
6b
√
b√

c2 + 4a
. (5.5)

In the remainder of this section, we prove this theorem using geometric
singular perturbation techniques.
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Figure 5.2: Scaling regime in the (γ, β)-plane, that satisfies assumptions A1–A3
in Theorem 5.2.1.

5.2.1 Rescaling

The model proposed by Klausmeier, (5.1), is in dimensionalized form, meaning
that it does not take into account the relative magnitudes of parameters and
coordinates. However, in the case of Gray–Scott models, patterns are observed
in regimes where not all quantities are O(1). In fact, scaling is essential for
the analysis and plays an important role in the results. Hence, scaling of all
parameters and coordinates is also appropriate in system (5.2), and here too, it
is crucial for the analysis.

In the system (5.3), which already incorporates traveling solutions with a
trivial y-extension, we introduce a new traveling coordinate,

ξ = δ
1
2β−1χ, (5.6)

which we will refer to as the fast variable. The original χ will be referred to
as the super slow variable. Furthermore, we introduce the following rescaled
parameters and coordinates,

S = δ1− 3
2β+2γs, U = δ1+ 3

2β−γu, V = δ−1− 1
2β+γv

A = δ2γa, B = δβb, C = δγc,
(5.7)

where a, b, c, s, u, v are O(1). This specific scaling is motivated by arguments
derived from simulations and observations, as well as earlier work on the Gray–
Scott model, see [34, 39]. Most important is assumption A1, without which our
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rescaled system would not have distinct slow and fast behavior. This assumption
makes it possible to perform geometric singular perturbation analysis in the
first place. The fact that A is scaled quadratically compared to C, is the most
significant choice because this is the only way that neither the effects of a nor
those of c (the most important parameters) are negligible. The factor δ1− 3

2β+2γ

of s is chosen such that the speed has a measurable effect in the two-dimensional
Hamiltonian system associated with the fast dynamics. Furthermore, we require
the U -equation to exhibit slow behavior with small amplitudes in the fast interval
as opposed to the fast dynamics with large amplitudes governed by the V -equation,
this results in assumptions A2 and A3, respectively. Lastly, we balance BV
and UV 2, so that the two-dimensional Hamiltonian system associated with the
fast V -equation has a homoclinic orbit for δ → 0 and we take into account the
forthcoming matching of slow and fast behavior, which leads to the specific
choices of the scalings of U and V . The details of the limit behavior in the slow
and fast variable, are laid out in sections 5.2.2 and 5.2.3, respectively. In the end,
all quantities are scaled with only two scaling parameters, β and γ, combined with
three assumptions A1–A3. Note that the calibration of the scalings is largely
consistent with that of the Gray–Scott case, where only the scaling parameter
β was left undetermined. Upon introducing an extra parameter, the slope C,
one may expect the degree of freedom in scaling to increase by one which is
indeed the case here. In Figure 5.2, the allowed regime of β, γ according to the
assumptions is graphically outlined.

Rescaling system (5.3) according to (5.7) gives rise to,

uξξ = δ2(γ−β)
[
uv2 − δ2+βa(δγ−

3
2β−1 − u)− δ1−γ+ 3

2βcuξ − δ2suξ

]
,

vξξ = bv − uv2 − δ2(γ−β)svξ.
(5.8)

Note that γ > β (A1), so that the right hand side of u-equation is indeed
asymptotically small for 0 < δ � 1. The homogeneous equilibrium state (U, V ) =

(1, 0) is now represented by (u, v) = (δ−1− 3
2β+γ , 0). We label this desert state P .

We write (5.8) as a four-dimensional system of first order differential equations,
by introducing the variables p, q.

uξ = δγ−βp,

pξ = δγ−β
[
uv2 − δ2+βa(δγ−

3
2β−1 − u)− δ1+ 1

2βcp− δ2+γ−βsp
]
,

vξ = q,

qξ = bv − uv2 − δ2(γ−β)sq.

(5.9)

164



5.2 Existence of homoclinic traveling multi-pulse patterns

Assumptions A1–A3 guarantee that the right hand side of the equation for pξ is
always asymptotically small. We now introduce a second slow variable, see A1,
to write system (5.9) in the slow form,

ζ = δγ−βξ.

Note that ζ is, however, faster or of the same speed as χ because of A3,

χ = δ1− 1
2βξ . ζ = δγ−βξ � ξ.

From now on, we work with ζ, ξ exclusively and refer to those as the slow and
fast variable, respectively. In terms of the slow variable ζ, (5.9) becomes

uζ = p,

pζ = uv2 − δ2+βa(δγ−
3
2β−1 − u)− δ1+ 1

2βcp− δ2+γ−βsp,

δγ−βvζ = q,

δγ−βvζ = bv − uv2 − δ2(γ−β)sq.

(5.10)

Using the limiting behavior for δ → 0 of the two equivalent systems (5.9) and
(5.10), we will establish the existence of solutions for δ 6= 0.

5.2.2 Slow limit behavior

For δ → 0, the last two equations of system (5.10) become,

0 = q,

0 = bv − uv2,
(5.11)

which define two two-dimensional critical manifolds in R4, {v = 0, q = 0} and
{v = b/u, q = 0}. Since P is on the former, and as the latter is not normally
hyperbolic for all v, q, we focus on the dynamics on

M = {u ≥ 0, v = 0, q = 0}, (5.12)

where we restrict to u ≥ 0 because this is the only ecologically relevant regime
for u. Fenichel theory [9, 48, 49], guarantees the persistence of M for 0 < δ � 1
as a slow manifold. In the present case, (5.12) exactly defines the invariant slow
manifold associated to the full problem. Fenichel theory and its implications are
discussed in more detail in section 5.2.4.

The slow dynamics on M is described by

uζ = p,

pζ = −δ2+βa(δγ−
3
2β−1 − u)− δ1+ 1

2βcp,
(5.13)

165



Long wave length vegetation patterns

from which we can derive that P is a saddle point on M, with eigenvalues

Λ± =
1

2
δ1+ 1

2β
(
−c±

√
c2 + 4a

)
,

and eigenvectors through P in the (u, p̂)-plane,

`u : p̂ =
1

2

(
c−

√
c2 + 4a

)
(1− δ1+ 3

2β−γu),

`s : p̂ =
1

2

(
c+

√
c2 + 4a

)
(1− δ1+ 3

2β−γu).

(5.14)

with a new variable p̂ = δβ−γp. When assumption A2 is satisfied, the eigenvectors
do not depend on u in the leading order. The point P then has an asymptotically
large u-value, and hence in the (p̂, u)-plane `s,u are vertical at leading order. This
is depicted in the middle panel of Figure 5.3. However, as β = 2

3 (γ− 1), the fixed
point comes into frame and U = u. In this case the eigenvectors do depend on u,
see the right panel in Figure 5.3. This case is also explained in more detail in
remarks 5.1 and 5.2. Contrary to the Gray–Scott case, where c = 0, the behavior
on M is in both panels of Figure 5.3 not symmetric about the u-axis.

M
v

q u

M M

P

U

W s = Wu u s

p̂

u s

p̂

Figure 5.3: Left: The phase plane corresponding to (5.16), with in purple the
homoclinic orbit to (v, q) ∈M. Center: Dynamics on M dictated by (5.13) in
the (p̂, u) plane when A2 is satisfied. The equilibrium P has an asymptotically
large u-value and does not appear in this frame. To leading order, all dynamics,
as well as `s,u are vertical. Right: Dynamics on M in the (p̂, U) plane, when
β = 3

2 (γ − 1) and u = U . The equilibrium P is O(1) and the eigenvectors vary
with U .

5.2.3 Fast limit behavior

The limiting fast problem, system (5.9) with δ → 0, implies that u and p are
constant, to leading order, i.e.

u(ξ) ≡ u0, p(ξ) ≡ p0. (5.15)
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Hence, the fast dynamics is determined by

vξ = q,

qξ = bv − u0v
2,

(5.16)

where u0 occurs as a parameter. The fast limit problem (5.16) is Hamiltonian,
with conserved quantity

H(v, q) =
1

2
q2 − 1

2
bv2 +

1

3
u0v

3. (5.17)

Note that there exists a symmetry in (5.16),

q → −q, ξ → −ξ. (5.18)

The equilibrium of (5.16) of our focus, (v, q) = (0, 0), has H = 0 and is a saddle.
There is a homoclinic connection to (0, 0), and we find an explicit solution by
integrating H(v, q) = 0 with respect to ξ,

v0(ξ) =
3b

2u0
sech2

(
1

2

√
bξ

)
,

q0(ξ) = −3b
√
b

2u0
sech2

(
1

2

√
bξ

)
tanh

(
1

2

√
bξ

)
.

(5.19)

The phase plane of (5.16) is depicted in the left panel of Figure 5.3. Since the
homoclinic orbit exists for any u0 and p0, the equilibrium (v, q) = (0, 0) represents
the entire critical manifoldM (5.12). The critical manifold has three-dimensional
stable and unstable manifolds, Wu,s(M). Because the homoclinic orbit exists
for all u0, p0, we find Wu(M) = W s(M) in the limit δ ↓ 0. This is represented
in three dimensions in the left hand panel of Figure 5.4.

5.2.4 Persistence of solutions in the perturbed problem

With the results of sections 5.2.2 and 5.2.3, we construct a singular homoclinic
orbit to P with both slow and fast parts obtained by the δ = 0 limits. For δ ↓ 0,
the eigenvectors `s,u tend to and eventually collide on the u-axis. In other words,
the stable and unstable manifolds of P , restricted to M are in fact the u-axis
in this limit. To construct a singular slow/fast homoclinic solution to P , we
may match any point on the u-axis to the fast homoclinic excursion, because for
ξ → ±∞, the eigenvectors `s,u will connect it to P . As a result, we have a one
parameter family of singular homoclinic connections to P , parametrized by the
value of u at the concatenation point of the slow and fast parts, say u0.
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vq

M

vq

MW s = Wu

W s

Wu

Figure 5.4: Schematic three-dimensional representation of the intersection of
Wu(M) and W s(M) of (5.9) for δ = 0 (left) and 0 < δ � 1 in four dimensions.
In reality, M, here the one-dimensional vertical axis, is two-dimensional. Left:
The stable and unstable manifolds of M are three-dimensional, and coincide.
For every point on M there exists a fast homoclinic connection. Right: The
stable (blue) and unstable (red) manifolds persist, but no longer coincide. Their
intersections correspond with fast N -pulses, homoclinic to M. Here, only the
first two intersections are drawn: the 1-pulse, in white, and the 2-pulse in purple.

For δ 6= 0, the stable and unstable manifolds of M persist as W s,u
δ (M)

according to Fenichel theory [48, 49], but they no longer coincide. Instead, the
intersection of W s,u

δ (M) perturbs, like depicted in Figure 5.4. A fast connection
to M is thus no longer guaranteed for every pair (u, p̂).

A solution homoclinic to P , with a slow/fast structure must leave P via the
perturbed `u on M, connect to a fast orbit homoclinic to M, and returning to
M exactly such that it enters P along the perturbed stable manifold, `s. These
eigenvectors `s,u have also perturbed with δ, and no longer coincide on the u-axis.
Schematically, we represent a homoclinic slow/fast solution in four dimensions in
a three-dimensional illustration in the left hand panel of Figure 5.5.

Although the fast connection to M generally does not persist, a perturbed
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v, q v, q

Figure 5.5: Schematic representation of a 1-pulse (left) and a 2-pulse (right); a
slow/fast homoclinic connection to P , with a fast component that has one (left)
or two (right) maxima. On M, the solution follows `u before taking off into the
fast field, where v and q become large. After that, the solution lands back on M
at `s, which limits to P .

homoclinic orbit is still approximated by the δ = 0 solution in the fast field,
(5.19). To prove the statement of Theorem 5.2.1, we show that there still exists
a homoclinic solution to P for 0 < δ � 1. We label this solution γhom(ξ) =
(u(ξ), p(ξ), v(ξ), q(ξ)). Without a loss of generality, we choose
γhom(0) = (u0, p0, vmax, 0). That is, we select the ξ = 0 point exactly there where
q = 0; it is at the maximum value of the V -pulse.

We first show that there exists a one-dimensional manifold for which W s
δ (M)

and Wu
δ (M) intersect transversally in the hyperplane {q = 0}. Then, following

the approach developed in [35, 39], we construct take-off and touch-down curves
that dictate how to connect the intersection W s

δ (M) ∩Wu
δ (M) ∩ {q = 0} to

the slow stable and unstable manifolds of P restricted to M, which are the
eigenvectors `s,u.

Lemma 5.2.2. Assume the conditions on a, b, c from Theorem 5.2.1 are satisfied.
Then there exists a δ0 > 0 such that for all 0 < δ < δ0 the stable and unstable
manifold of M in system (5.9) intersect transversally in {q = 0}; the (u0, p0)
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coordinates of this one-dimensional intersection are at leading order given by

p0 = δγ−βsu0. (5.20)

In other words, the homoclinic connection of (5.16) to M persists for δ > 0
in (5.9) if (5.20) is satisfied.

For 0 < δ � 1, the critical manifold M, as well as the stable and unstable
manifolds W s,u(M) persist as a slow manifoldMδ and W s,u

δ (M) in an O(δγ−β)-
neighborhood. This follows directly from Fenichel’s first and second theorem, see
[48, 82]. In fact, we may choose Mδ =M, because v = q = 0 is still invariant
under the flow for 0 < δ � 1. This is not the case for W s,u

δ (M); the stable and
unstable manifolds that used to coincide (see the left hand side of Figure 5.4),
no longer do so. In general, the two three-dimensional manifolds intersect in
two-dimensional surfaces, and in these intersections lie the only trajectories that
are biasymptotic (homoclinic) to M, see an illustration of such a perturbation
and a persisting connection in the right-hand panel of Figure 5.4.

To detect these intersections, and hence proving Lemma 5.2.2, we apply a
Melnikov method, much like [35, 39]. We will work with the fast variable ξ and
define the fast interval If , as

If =

[
− 1

δµ
,

1

δµ

]
, with 0 < µ < γ − β. (5.21)

If γ(ξ) is a solution of (5.9), then, for ξ ∈ If , u and p are constant and equal to
u0, p0 at leading order. We measure the distance between W s(M) and Wu(M)
in the hyperplane {q = 0}, using the Hamiltonian (5.17) and the fact that on
M, H ≡ 0 even though δ 6= 0, see (5.17). We now determine the first order
corrections of u and p in the fast variable ξ. That is, we write

u(ξ) = u0 + δγ−βu1(ξ) + h.o.t.,

p(ξ) = p0 + δγ−βp1(ξ) + h.o.t.,
(5.22)

and determine u1(ξ), p1(ξ). We assume u(0) = u0, and set uj(0) = 0 for all j ≥ 1.
Using a standard asymptotic analysis and the boundary conditions that U and V
must remain bounded on the real line, we find that u1(ξ) ≡ 0. From the leading
order analysis of section 5.2.2, we derive that p = O(δγ−β), so p0 = 0. As a
matter of fact, p1 = p̂, the variable introduced in section 5.2.2.
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5.2 Existence of homoclinic traveling multi-pulse patterns

We compute p̂ from the first order terms of system (5.9),

p̂ =

∫ ξ

0

p̂ξdξ + p̂(0) =

∫ ξ

0

u0v
2
0(ξ)dξ + p̂(0),

=
3b
√
b

2u0
tanh

(
1

2

√
bξ

)(
2 + sech2

(
1

2

√
bξ

))
+ p̂(0),

(5.23)

to leading order in δ. Now we can measure the change in the Hamiltonian H in
If over the fast homoclinic orbit. For δ 6= 0, it is given by

Hξ = δ2(γ−β)

(
1

3
v3p̂− sq2

)
, (5.24)

which implies

∆H = δ2(γ−β)

∫
If

(
1

3
v3p̂− sq2

)
dξ,

= δ2(γ−β) 6b2
√
b

5u2
0

(
2p̂(0)

u0
− s
)
,

(5.25)

where ∆H means the change in H over If . Hence, for given p0 = δγ−β p̂(0), ∆H
changes sign once and in a transversal way at

p̂(0) =
1

2
su0, (5.26)

which implies that W s
δ (M) and Wu

δ (M) indeed intersect transversally. This
proves Lemma 5.2.2.

Note that equation (5.25) is actually the first moment we explicitly focus on
the construction of a 1-pulse, by measuring the change in H over exactly one
fast excursion. In Corollary 5.2.4, we explain how this step changes to establish
the existence of N -pulses with N > 1.

Lemma 5.2.3 (Take-off and touch-down curves). Let Γ(ξ;u0) be the one-
parameter family of solutions of (5.9) with Γ(0;u0) in W s

δ (M)∩Wu
δ (M)∩{q = 0}.

In other words, let Γ(0;u0) = (u0,
1
2δ
γ−βsu0, v(0), 0) at leading order, see (5.26).

Moreover, let Γo,d(ξ;uo,d, po,d) be trajectories strictly on M with initial condition
at (uo,d, po,d). Then, there exist two curves To(u) and Td(u) on M, such that
there are Γo,d satisfying

||Γ(ξ;u0)− Γo(ξ;u0, To(u0))|| < k1e
k3δ

β−γ
, for − ξ ≥ O(δβ−γ),

||Γ(ξ;u0)− Γd(ξ;u0, Td(u0))|| < k2e
k3δ

β−γ
, for ξ ≥ O(δβ−γ),

(5.27)
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for some O(1) constants k1,2,3 > 0. The curves To(u) and Td(u) are called
take-off and touch-down curve, respectively, and are given by

To(u) =
1

2
δγ−β

(
su− 6b

√
b

u

)
,

Td(u) =
1

2
δγ−β

(
su+

6b
√
b

u

)
,

(5.28)

to leading order.

Thus, this lemma explicitly describes trajectories onM, for which the distance
to a solution homoclinic to M gets exponentially small as ξ gets large in either
the negative or the positive half-line.

Proof. The existence of the take-off and touch-down curves is established by
Fenichel theory, where the points in To and Td are referred to as base points of
the Fenichel fibers, see [48, 49]. The geometry of W s(M)∩Wu(M) implies that
To and Td can indeed be characterized as graphs over u. Their quantification
is obtained by explicitly determining the change of p from the ξ = 0 point
in the intersection W s

δ (M) ∩Wu
δ (M) ∩ {q = 0}, over half a fast pulse, to an

exponentially small neighborhood of M for both negative and positive ξ,∫ 0

− 1
δµ

pξdξ

∫ 1
δµ

0

pξdξ,

for ξ < 0 and ξ > 0, respectively. The boundaries of the integrals are the
boundaries of If , see (5.21). The fast behavior is symmetric to leading order, see
(5.18), so both integrals are half of the integral over the full fast interval, and
equal to

1

2

∫
If

pξdξ =
1

2
δγ−β

∫
If

u0v0(ξ)2dξ + h.o.t.,

=
1

2
δγ−β

6b
√
b

u0
+ h.o.t.

(5.29)

So, combining this rate of change of p with p(0) from (5.23), we arrive at (5.28).
The estimates of (5.27) are derived from Fenichel theory, and the constant k3 is
related to the largest eigenvalue of the fast field.

Using Lemmas 5.2.2 and 5.2.3, we now prove Theorem 5.2.1.
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5.2 Existence of homoclinic traveling multi-pulse patterns

Proof. (of Theorem 5.2.1). From all the solutions γ(ξ) that are biasymptotic to
M, the homoclinic 1-pulse γhom is by construction exactly that one that connects
to `u for ξ < 0 and to `s for ξ > 0. Thus, we need

To(u0) = `u(u0) and Td(u0) = `s(u0).

This happens when

u0 =
6b
√
b√

c2 + 4a
, and s =

c
√
c2 + 4a

6b
√
b

, (5.30)

to leading order in δ, see the left panel of Figure 5.5.

Corollary 5.2.4 (Existence of N -pulse patterns). Let A,B,C satisfy the as-
sumptions A1–A3.
Then there exists a δ0, such that for all δ < δ0, and for each N of O(1), there
exists a solution γN,hom of (5.3) homoclinic to (U,Uχ, V, Vχ) = (1, 0, 0, 0) for
a uniquely defined speed sN . The orbit γN,hom corresponds to a traveling wave
solution of (5.2). Its spatial profile that is in x biasymptotic to (U, V ) = (1, 0),
and trivially extends into the y-direction. It consists of two slow components and
N fast excursions. The traveling speed of this wave is given by

sN =
c
√
c2 + 4a

6Nb
√
b
. (5.31)

During the fast excursions, the U -component is constant to leading order, U =
δ1+ 3

2β−γu0, with

u0,N =
6Nb
√
b√

c2 + 4a
. (5.32)

For N = 2 the homoclinic orbits to P are schematically drawn in the right
hand panels of Figures 5.4 and 5.5. The key principle to realize is that manifolds
W s(M) and Wu(M) may intersect more than once in {q = 0} . In [35], it
is shown, using the symmetry of the fast system, that indeed, there may be
many intersections W s(M) ∩Wu(M) ∩ {q = 0}, all of dimension 1. Following
ξ in forward and backward time along W s and Wu, starting from M, the first
intersection corresponds to the 1-pulse of Theorem 5.2.1 and has v = O(1). The
second intersection happens for 0 < v � 1, and corresponds to the 2-pulse, the
third intersection has again v = O(1) and corresponds to the 3-pulse, et cetera.

Proof. The condition (5.23) must still hold, but since the trajectory makes N
circuits in the fast regime, we must measure the change of p a total of N times.

173



Long wave length vegetation patterns

Symmetry (5.18) makes that we can construct take-off and touch-down curves
for every N , as follows

TNo (u) =
1

2
δγ−β

(
su− 6Nb

√
b

u

)
, TNd (u) =

1

2
δγ−β

(
su+

6Nb
√
b

u

)
.

Again, an intersection of TNo , T
N
d with `s,u constructs the homoclinic N -pulse,

and we arrive at the conditions for u0,N and sN as stated in the theorem.

As opposed to the homoclinic 1-pulse, we will not dive into the details of
the existence of periodic extensions of these N -pulses nor their stability. The
main reason for this is the fact they can be argued to be unstable by a simple
argument, explained in section 5.4.1.

Remark 5.1. Even in the case that β = 2
3 (γ−1), when A2 is violated, homoclinic

pulse solutions continue to exist. In that case, the expressions for `s,u from (5.14)
depend on u in the leading order and the behavior on M is as described by the
right panel of Figure 5.3. The fast limit results remain unchanged but the fine
tuning for the values (5.30) is slightly different. In both cases, the touch-down
curve intersects `s twice, while the take-off curve intersects `u just once. By
tuning s and u0, there are two solutions

u−0 =
1−

√
1− 24δγ−

2
3β−1b

√
b(c2 + 4a)−1/2

2δγ−
2
3β−1

, s+= cδγ−
2
3β−1

(
1

u−0
− 1

)
,

u+
0 =

1 +
√

1− 24δγ−
2
3β−1b

√
b(c2 + 4a)−1/2

2δγ−
2
3β−1

, s−= cδγ−
2
3β−1

(
1

u+
0

− 1

)
.

(5.33)

When A2 is satisfied, only the pair (u−0 , s
−) is an eligible solution because u+

0 is
not O(1). To leading order in δ, this results exactly in (5.30).

However, as β = 2
3 (γ − 1), both intersections u±0 are O(1), so there are two

solutions under the condition that

24b
√
b√

c2 + 4a
≤ 1. (5.34)

u−0 =
1−

√
1− 24b

√
b(c2 + 4a)−1/2

2
, s+ = c

(
1

u−0
− 1

)
,

u+
0 =

1 +
√

1− 24b
√
b(c2 + 4a)−1/2

2
, s− = c

(
1

u+
0

− 1

)
.

(5.35)
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5.3 Existence of traveling multiscale periodic solutions

Both solutions correspond to a homoclinic 1-pulse solution of (5.3), and (5.34)
defines the parameter combination at which the solutions merge in a saddle-node
bifurcation, see also [39].

5.3 Existence of traveling multiscale periodic solutions

Given that the origin of system (5.3) is the description of vegetation patterns,
the existence of periodic patterns is perhaps more relevant than the homoclinic
N -pulse patterns. After all, homoclinic patterns represent N relatively nearby
stripes that are isolated in an elsewhere completely bare desert. The stripe
patterns, as they are observed in the field, are naturally much better represented
by periodic pulse patterns, [143]. The periodic patterns still have a slow/fast
structure, and we will construct periodic patterns as depicted in Figure 5.6. That
is, the slow parts of the period patterns lie close to M and connect to a fast
excursion. Furthermore, we use that the fast parts of the constructed solutions are
nearly homoclinic to the slow manifoldM; solutions stay in a neighborhood ofM
for an O(δ−1+ 1

2β−γ) amount of time in ξ. By definition, a periodic orbit cannot
be homoclinic toM, but we use in our construction that it is exponentially close
to Wu(M)∩W s(M), see also [38]. We focus on the periodic solution that consists
of one fast excursion from the slow manifoldM, and one long, slow segment near
M, per period. This periodic orbit may be distinguished from an N -pulse by the
distance between the fast pulses. After their fast excursions, periodic solutions
constructed in this section remain exponentially close to M for a long time in ξ
before making another excursion that actually marks a new period of the pattern.
Therefore, the wavelength of the constructed patterns is algebraically large in δ−1.
The N -pulses, however, do not return to an exponentially small neighborhood of
M after a fast excursion, since N -pulses only approach M to an algebraically
small distance in δ between consecutive fast excursions. The distance between
pulses of an N -pulse is thus only logarithmically large in δ. It is only after the
N -th excursion that the N -pulse returns to M, indefinitely.

In this section, we prove the following theorem.

Theorem 5.3.1. Let a, b, c, s ∈ O(1) be given and let A1–A3 and

s <
c
√
c2 + 4a

6b
√
b

, (5.36)

be satisfied. Then, there exists a δ0, such that for all δ < δ0, there exists a unique
periodic solution γp,s(ξ) of (5.8) with a slow/fast structure. That is, for any s
satisfying (5.36), there exists a traveling wave solution of (5.2), with a spatial
profile which is periodic.
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v, q

Figure 5.6: Schematic representation of a periodic slow/fast solution of which the
slow part is close to the manifold M. During the fast excursion the coordinate u
is constant to leading order.

Figure 5.7 shows a simulation of (5.2) representing a solution like γp,s.
Because v, q are exponentially small during the largest part of the period

of the constructed solution, the leading order behavior of the slow parts is still
governed by (5.13), and the derivation of the take-off and touch-down curves
remains valid. We use the explicit formulas we have for To and Td to construct
periodic solutions and prove Theorem 5.3.1. As an illustrative guide to the proof,
we use Figure 5.8.

First, note that the slow segments of the periodic solution must lie in the
area enclosed by `s and `u, because they are separatrices in the slow manifold.
Within this area, the take-off curve is monotonous as a function of p, while the
touch-down curve is not. This fact is key in the existence of periodic solutions.

Second, note that the geometry of To,d and `s,u determines the eligible u-
values for which the periodic pattern will make the fast excursion. For a given s,
the maximum of the interval of eligible u-values is always

ũ =

√
6b
√
b

s
(5.37)
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U

V

x

x

0

0.15

0

50

8.5 9

8.5 9

9
u

0

0.35

0

v

Figure 5.7: Simulation of (5.2) with A = 15, B = 1.8, C = 1 and δ = 0.01, or,
a = 3, b = 0.75, c ≈ 0.447 with γ ≈ −0.174, β ≈ −0.190. The simulation was
done on a spatial domain of length 10, and the patterns travel to the right over
time. The left y-axes denote the unscaled U0 (blue) and V - (red) values while
the right y-axes denote the values of the scaled u and v for our choices of β, γ.
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P
u

su

JL JR

S
M

To Td

p̂

F
ũ

u∗
p,h

Figure 5.8: Schematic illustration of the construction of a periodic solution of (5.8).
Depicted is the slow manifold M with the stable and unstable eigenvectors `s,u

and take-off and touch-down curves To,d. In dark red, a schematic representation
of the slow function S is sketched, and the fast function F is dark blue. The
point P is at an O(δ−1− 3

2β+γ)-distance, hence the dashed lines.

, i.e. the intersection of To wit the {p = 0}-axis. Condition (5.36) implies that
the minimum is always the u-value corresponding to `u ∩ To, see Figure 5.8.

Due to the lack of reversible symmetry, the methods developed in [38] do
not provide sufficient control over the slow system to prove Theorem 5.3.1. We
therefore employ a different approach making use of a contraction argument.

We define a horizontal line segment in the (p̂, u)-plane, i.e. onM enclosed by
`u and `s, and at the u = ũ level.

J =
{
p̂ ∈

(
c−

√
c2 + 4a, c+

√
c2 + 4a

)
, u = ũ

}
. (5.38)

and JR and JL as the parts of J , where p̂ is postive, resp. negative, see Figure
5.8. On these intervals, we define two functions. Firstly, a map S : JR → JL.
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5.3 Existence of traveling multiscale periodic solutions

Let JR represent a line of initial conditions of the slow flow, see (5.13). Note
that uξ = 0 for p = 0. As the slow flow is linear and P is a saddle point on M,
we know that all orbits with an initial point in JR have an intersection with JL
as well. In fact, this is a one-to-one correspondence. The map S assigns to every
point (ũ, p) ∈ JR, the corresponding intersection in JL, and this is a bijection.

Secondly, in the parameter regime where (5.36) holds, define the map

F : JL → JR, F(ũ, p) =

ũ, p+
24sb
√
b

p+

√
p2 + 24sb

√
b

 . (5.39)

This map represents the fast flow indicated by the take-off and touch-down
curves. For initial values in JL, the map is based on a concatenation of three
steps. To leading order, p does not change by the evolution of the slow flow.
Furthermore, To is monotonous, so by following the slow flow the initial points
on JL correspond bijectively to points To. This is the first step of F . As the
second step, dictated by the fast flow, the point on To that results from the first
step is sent to a point on Td, which is also well-defined since the u-value remains,
at leading order, constant during the fast excursion. Lastly, the slow flow takes
all these touch-down points to JR. Condition (5.36) implies that the range of F
is guaranteed to be within JR. Hence, the map F keeps solutions in the bounded
area of M, shaded in Figure 5.8. By inverting the expressions for To and Td, it
can be verified that F indeed acts as given in (5.39).

Lemma 5.3.2. Both maps S : JR → JL and F : JL → JR are contractions.

Proof. Naturally, we use the Euclidian metric on JL and JR. As explained, the
map S is a bijection. However, the size of the domain, JR is c+

√
c2 + 4a, which

is smaller than the size of codomain JL, which is c −
√
c2 + 4a. Since P is a

saddle, the flow onM is linear and orbits cannot intersect, the initial points in JR
remain ordered after they intersect the nullcline p = 0. By explicitly evaluating
S, we indeed find that for every pair X,Y ∈ JR,

|S(X)− S(Y )| < |X − Y | ,
and S is a contraction.

For the map F it suffices to check that

∂

∂p

p+
24sb
√
b

p+

√
p2 + 24sb

√
b

 =
p√

p2 + 24sb
√
b
< 1.

A derivative smaller than 1 implies contraction, so the function F is a contraction,
too.
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Lemma 5.3.2 allows us to establish the first ingredient of the proof of Theorem
5.3.1 about the existence of periodic solutions. The composition F ◦S : JR → JR
is a contraction as well. By Banach’s fixed point theorem, this contraction has
a unique fixed point in JR, say p̂ = p̂∗p,h ∈ JR. This implies that (ũ, p̂∗p,h) is an
initial point for a slow segment inM which intersects the take-off and touch-down
curves in the same u-value. We label this u-value u∗p,h so that

(
u∗p,h, p̂

∗
p,h

)
=

(
u∗p,h,

1

2

(
su∗p,h +

6b
√
b

u∗p,h

))
. (5.40)

Note that u∗p,h is always larger than the u0 of (5.30), because u0 marks the left
boundary of JL, in which To is monotonically increasing. In sections 5.4 and 5.5,
we show that this has implications for the stability of the solutions and links
directly to Ni’s conjecture [120].

A concatenation of the slow and fast parts of the constructed orbit associated

with
(
u∗p,h, p̂

∗
p,h

)
does not immediately result in a periodic orbit, because the orbit

is derived using the intersection of W s(M) ∩Wu(M) for To,d. The constructed
orbit, we label it γp,h(ξ), is depicted in Figure 5.9, and is rather than being
periodic, homoclinic to the manifold M. That means that it makes only one
excursion in the fast field, after it has returned to a neighborhood of M it only
gets closer and closer. Note that actually, γp,h(ξ) depends on the choice of s. We
label the speed corresponding to γp,h as sp,h.

We reset the initial point of γp,h so that it is a the point where v is maximal,
i.e. q = 0. That is, we write

γp,h(0) = (up,h(0), pp,h(0), vp,h(0), 0).

We will show that a true periodic orbit exists with initial point exponentially
close to γp,h(0). This orbit is γp,s(ξ) that is defined in the statement of theorem
5.3.1.

The proof of Theorem 5.3.1 is inspired by that of Theorem 3.1 in [38], but
cannot be carried over immediately. The advection term in (5.2) breaks the
reversible symmetry, which is crucial to the proofs in [38]. In the present, not
symmetric case, more delicate arguments are developed to resolve that issue.

Proof. (of Theorem 5.3.1)
We prove the existence of periodic orbits by using arguments of intersecting
manifolds, similar to the proof of Theorem 5.2.1. The aim is to show (in four
dimensions) that there is a one-dimensional periodic orbit that lies close to
γp,h(ξ).
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5.3 Existence of traveling multiscale periodic solutions

v, q

(u∗
p,h, p

∗
p,h)

Figure 5.9: Schematic representation of the four-dimensional orbit γp,h in three
dimensions. The orbit makes one fast excursion and is homoclinic to the manifold
M.

Define the exponentially small, two-dimensional rectangle  as follows,

 = {u = up,h(0)} ×
(
pp,h(0)− k1e

−kδ−1+ 1
2
β−γ

, pp,h(0) + k2e
−kδ−1+ 1

2
β−γ
)

×
(
vp,h(0)− k3e

−kδ−1+ 1
2
β−γ

, vp,h(0)− k4e
−kδ−1+ 1

2
β−γ
)

× {q = 0},
(5.41)

with k, ki > 0 and k3 > k4. The value k is associated with the eigenvalues
of the fast limit system. Figure 5.10 shows the rectangle  in the rescaled

e−kδ
−1+ 1

2
β−γ

(v, p)-plane. Note that −1 + 1
2β − γ < 0 in the regime defined by

A1–A3 (Figure 5.2), so −kδ−1+ 1
2β−γ is very large and negative, and  is indeed

exponentially small.
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

−k3 −k4

−k1

k2

Rsp,h

(vp,h(0), pp,h(0))

G+
sp,h

() G−
sp,h

()

G+,−1
sp,h

(Rsp,h)

G−,−1
sp,h

(Rsp,h
)

e−kδ−1+ 1
2
β−γ

p

e−kδ−1+ 1
2
β−γ

v

Figure 5.10: Schematic representation of the rectangle  (gray) with G+
sp,h

() and

G−sp,h
() as one-dimensional curves in  in red and blue, respectively. The point

G+,−1
sp,h

(Rsp,h
) is the original in  that was sent to Rsp,h following the forward flow

and is therefore red, while G−,−1
sp,h

(Rsp,h
) is the original under G− and is therefore

associated with the blue curve and colored accordingly.

We use  as a set of initial conditions that lie exponentially close to the
intersection Wu(M) ∩W s(M) ∩ {q = 0}. All orbits formed by flowing initial
condition in  forward, remain exponentially close to W s(M) as long as ξ does

not become larger than O(δ1− 1
2β+γ). Because of the exact closeness estimate

of O(e−kδ
−1+ 1

2
β−γ

), it remains close to W s(M) exactly long enough to make an
O(δγ−β) change in p. This is the same order of magnitude that p changes during
the slow part of γp,h. The three-dimensional manifold is obtained from flowing 
forward is labeled J+. The flow depends directly on the speed of γp,h, i.e. sp,h,
so J+ does so as well.

By choosing ki appropriately, J+ will return to an exponentially small neigh-
borhood of , since it is exponentially close to Wu(M). Thus, J+ intersects  in
a one-dimensional manifold ∩ J+; a curve in . We define the map G+

sp,h
: → 

that maps points in  to their next intersection with  when the forward flow
induced by (5.8) is followed. Hence we find

G+
sp,h

() = J+ ∩ ,

see Figure 5.10.
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

Rs

X−k3 −k4

−k1

k2
G+,−1

s (Rs)

e−kδ−1+ 1
2
β−γ

p

e−kδ−1+ 1
2
β−γ

v

(vp,h(0), pp,h(0))

Rsp,h G+,−1
sp,h

(Rsp,h)
G−,−1

sp,h
(Rsp,h

)

G−,−1
s (Rs)

Figure 5.11: Representation of the rectangle  (gray) with G−,−1
s (Rs) and

G+,−1
s (Rs) as one-dimensional curves in  in red and blue, respectively. Rsp,h

is
the original intersection G+

sp,h
() ∩ G−sp,h

() in  associated with the speed sp,h

of orbit γp,h(ξ). The points G±,−1
sp,h

(Rsp,h
) are the pre-images of Rsp,m

and the
curves are parametrized by s. The intersection of the curves is the point X,
which is associated to an initial condition for the periodic orbit γp(ξ), and is
indicated with a black diamond.

Similarly, we can define J− by flowing  backwards in ξ. Again, appropriate ki
will make sure that J− intersects  and we label this analogous map G−sp,h

: → ,
so that we have

G−sp,h
() = J− ∩ .

See again Figure 5.10 for an illustration. The curves G±sp,h
() are one-dimensional

and generically intersect in a point in , say Rsp,h
. The intersection point Rsp,h

is the point in  that in both in forward and backward time returns to . Since
Rsp,h

is on G+
sp,h

(), there is a point in  that is flown forward to Rsp,h
, say

G+,−1
sp,h

(Rsp,h
), as it is a the pre-image of Rsp,h

. On the other hand, since Rsp,h
is

on G−sp,h
() as well, there is a point in  that is flown backward to Rsp,h

, which

we label G−,−1
sp,h

(Rsp,h
). However, G−,−1

sp,h
(Rsp,h

) and G+,−1
sp,h

(Rsp,h
) are both zero-

dimensional in  and hence a priori do not intersect. The point Rsp,h
generally is

thus not an initial value for a periodic orbit.

We do know, however, that if we consider exponentially small deviations in
s from sp,h, the points G−,−1

sp,h
(Rsp,h

) and G+,−1
sp,h

(Rsp,h
) move in , along curves
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parametrized by s, see Figure 5.11. These curves, G±,−1
s (Rsp,h

), generically
intersect in  for a specific sp, say in the point X. Exactly when this happens,
both the forward flow map G+ and backward flow map G− have X as a fixed
point. Of course, that also implies that the intersection G+

sp() ∩G−sp() occurs
exactly in X so Rsp = X.

This point X = (vX , pX) is associated to a periodic orbit with an initial value
(up,h(0), pX , vX , 0). This periodic orbit is γp(ξ) and it has a speed that is expo-
nentially close to sp,h. Note that, by our choice of rectangle , we do fix the
initial condition of the periodic solution at the maximum value of v (since q = 0)
and that the u-value at that point is equal to the u-value of γp,h where vp,h is
maximal.

Using the direct method as developed in [37], or the exchange lemma approach
with exponential errors of [83], it is possible to show that indeed this X exists
for a certain sp. Moreover, this sp is unique, but we refrain from going into the
details any further.

Remark 5.2. As for the existence of homoclinic singular pulse solution, see 5.2.1,
we have assumed through A2 that β > 2

3 (γ − 1). When β = 2
3 (γ − 1) the

construction of a homoclinic singular pulse solution is still possible, see Remark
5.1. The same holds for periodic patterns. As the assumption A2 attains equality,
the construction of periodic solutions remains valid as the rectangle  remains
exponentially small. The only difference to take into account is that condition
(5.36) changes into

umin <
2c

2c+ s
,

where umin is the u-value corresponding to the intersection of To with `u in M.

5.4 Stability of singular multiscale patterns

Although the existence of many types of stripe patterns in system (5.3) is
guaranteed by the analysis of sections 5.2 and 5.3, not all will be relevant in
light of vegetation patterns. Of course, an unstable solution of a simplified model
like (5.3) can never be observed in a natural system. In this section, we test the
linear stability of the constructed patterns from the previous sections against
two-dimensional perturbations. We formulate the Evans function corresponding
to the linear stability problem, and make extensive use of the slow/fast structure
of our solutions to evaluate it. This method is developed and described in full
detail for reversible systems in [34, 35, 36]. However, like in the existence problem,
the advection term breaks the symmetry, so the theory cannot be carried over
completely. Nevertheless, we show that this approach can be extended and
we decompose the Evans function in a fast and a slow component. As in the
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5.4 Stability of singular multiscale patterns

literature, the slow component of the Evans function is determined explicitly in
terms of hypergeometric functions.

Let (U0, V0) be a traveling solution of (5.2) corresponding to a single stripe
(Uhom, Vhom) of vegetation or a periodic pattern (Up, Vp) of vegetation stripes in
R, trivially extended in a second spatial dimension. Since N -pulse solutions with
N > 1 are unstable (this is motivated in section 5.4.1), we do not consider the
stability of these patterns in the current section. The solutions γhom and γp,s

that have been established in Theorems 5.2.1 and 5.3.1 may be rescaled back
into U, V coordinates according to (5.7) to obtain (Uhom, Vhom) and (Up, Vp),
respectively; both solutions of (5.2) could be substituted for (U0, V0). Due to
the trivial structure of (U0, V0) in y-direction we can use a Fourier ansatz and
perturb the solutions as,

(U(χ, y, τ), V (χ, y, τ)) =
(
U0 + eλ̂τ+iˆ̀yû(χ), V0 + eλ̂τ+iˆ̀y v̂(χ)

)
, (5.42)

where χ is the super slow traveling coordinate. Here we must make the following
clarification. For periodic patterns, any perturbation in the direction transverse
to the pattern (that is the y-direction), may be represented by ˆ̀ ∈ R and a
γ̂ ∈ S1, taking into account the so-called ‘γ̂-eigenvalues’ [31]. We may then speak

of eigenvalues λ̂(γ̂, ˆ̀) for each γ̂, ˆ̀∈ (R, S1). However, since the fundamental
interval of our periodic solutions is asymptotically large and the exponential
decay of U and V is fast enough so that they are both exponentially small outside
If , the entire family λ̂(γ̂, ˆ̀) is exponentially close to one specific value λ̂(ˆ̀) for

each ˆ̀. We quantify this in section 5.4.1. Then, for every fixed ˆ̀∈ R there exists
an eigenvalue λ̂(ˆ̀) that determines the stability of the solution (U0, V0), also in
the case that (U0, V0) is a spatially periodic pattern. For more details on this
approach, see [31, 51, 52, 157].

If λ̂ has negative real part for every ˆ̀∈ R – apart from the trivial translation
eigenvalue λ̂(0) = 0– the pattern is (spectrally) 2D-stable. Conversely, if there

is one ˆ̀ for which an eigenvalue λ̂(ˆ̀) has positive real part, the pattern is 2D-

unstable. Note that the reduction ˆ̀ = 0 in (5.42) implies only perturbations

in the χ-direction. The results for ˆ̀ = 0 therefore correspond to 1D-stability.
In what follows, we derive the stability problem of (U0, V0) and subsequently
formulate three theorems that summarize the results. In section 5.4.1, the Evans
function framework is established and analyzed for 1-pulse patterns. These results
are expanded to also be valid for periodic patterns, so that the proofs of the
theorems can be presented for all stripe patterns constructed in this article in
section 5.4.2.

Substituting (5.42) into (5.3) and linearizing, yields the linear stability prob-
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lem for (û, v̂),

0 = ûχχ+ (C + S)ûχ− (A+ ˆ̀2 + λ̂+ V 2
0 )û− 2U0V0v̂,

0 = δ2v̂χχ+ Sv̂χ+ (2U0V0 − δ2 ˆ̀2 − λ̂−B)v̂+ V 2
0 û.

(5.43)

Rescaling according to (5.7), and introducing

U0 = δ1−γ+ 3
2βu0, û = δ1−γ+ 3

2βu, λ̂ = δβbλ,

V0 = δ−1+γ− 1
2βv0, v̂ = δ−1+γ− 1

2βv, ˆ̀= δθ
√
b`,

(5.44)

we derive a linear, non-autonomous, four-dimensional system of first order differ-
ential equations in the fast variable ξ, much like system (5.9),

uξ = δγ−βp,

pξ = δγ−β
[
2u0v0v + v2

0u+ δ2+βau+
(
δ2+2θ+β−2γ`2 + δ2+2β−2γλ

)
bu

−δ1+ 1
2βcp− δ2+γ−βsp

]
vξ = q,

qξ = [b(λ+ 1)− 2u0v0] v + v2
0u− δ2+2θ−βb`2v − δ2(γ−β)sq.

(5.45)

Here, the new scaling parameter θ is a dummy parameter to make the magnitude
of ˆ̀ explicit. In principle, 2D-stability is only guaranteed if we can make a
stability statement for all θ ∈ R. In order to perform our slow/fast analysis,
however, we restrict to a subclass of transverse perturbations by assuming,

θ > γ − 1

2
β − 1. (5.46)

That is, we test stability against perturbations with a transverse wave number
that may be arbitrarily small, but is not larger than O(δγ−

1
2β−1). Since we

have assumed (A3) that γ − 1
2β − 1 ≥ 0, this is an asymptotically large bound.

Restricting to this subclass in general weakens the stability statements. However,
we find that also for θ within this bound, there always exist unstable perturbations.
That implies that the restriction to this subclass does not change anything for
the 2D-stability of (U0, V0).

Concerning the stability of solutions (U0(ξ), V0(ξ)) of (5.2), we formulate the
following theorems.
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5.4 Stability of singular multiscale patterns

Theorem 5.4.1. Let the assumptions A1–A3 be satisfied and let δ be small
enough. Let (U0, V0) be a slow/fast solution of (5.2), either of a 1-pulse type, or

a spatially periodic pattern with asymptotically large wave length of O(δ
1
2β−1−γ)

as established in Theorems 5.2.1 and 5.3.1. Then there is an ˆ̀ such that there
is a bounded solution to (5.42) for a λ̂(ˆ̀) with positive real part. That is, the
1-pulse and periodic stripe pattens constructed in this article, are 2D-unstable.

For ˆ̀ = 0, the stability of a solution (U0, V0) is tested for perturbations
without a component in the y-component. Since we have assumed the constructed
solutions in this article have a trivial extension in the y-direction, results for ˆ̀= 0
correspond to the stability of one-dimensional patterns. For this 1D-stability of
a spatially one-dimensional pattern, which we will, slightly abusive, also label
(U0, V0), we formulate Theorem 5.4.2.

For a clear presentation of the results, we introduce,

C1 =
ū2

6b
, C2 =

c2 + 4a

b
. (5.47)

where ū is the value of δγ−
3
2β−1U0 in the fast regime If , where U0 is to leading

order constant, see 5.9. In the case that (U0, V0) = (Uhom, Vhom), the value of ū
is in fact reported in (5.30).

Theorem 5.4.2. Let the assumptions A1 and A3 be satisfied and let β ≥
2
3 (γ − 1). Let (U0, V0) be a slow/fast 1-pulse solution of (5.2) in one spatial
dimension. That is, let (U0, V0) be (Uhom, Vhom) established in Theorem 5.2.1
without the trivial extension in the y-direction. The 1D-stability of this pattern
can be summarized as follows.

(i) If β < γ − 1
2 , there is a bounded solution to (5.42) with <(λ̂) > 0, so

(U0, V0) is 1D-unstable.

(ii) If β > γ − 1
2 and A2 is satisfied, all nontrivial eigenvalues λ̂ corresponding

to pattern (U0, V0) have negative real part, so the pattern is 1D-stable.

(iii) If β = γ − 1
2 and A2 is satisfied, then a pair of eigenvalues λ̂1,2 passes

through the imaginary axis (i.e. a Hopf bifurcation occurs) if C1 = 2H∗.
Here, H∗ is given as the explicit solution of an expression in terms of
hypergeometric functions, and H∗ ≈ 0.661. Using (5.30), we equivalently

formulate that for
√

b
c2+4a < 2H∗, the pattern (U0, V0) is 1D-stable.

(iv) If β > γ− 1
2 and β = 2

3 (γ− 1), then an eigenvalue λ̂ passes through zero if

C1

√
C2 = 1. (5.48)
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The pattern (U0, V0) is 1D-stable if C1

√
C2 < 1. This implies, using (5.35)

that the pattern with ū = u+
0 is 1D-unstable, and the pattern with ū = u−0

is 1D-stable. The bifurcation occurs exactly at the saddle-node bifurcation,
at which u±0 collide.

(v) If β = γ − 1
2 , β = 2

3 (γ − 1) and C2 > C∗2 , which is a explicit solution of
an equation in terms of hypergeometric functions and C∗2 ≈ 1.333, then

an eigenvalue λ̂ passes through zero if (5.48) is satisfied. This implies,
using (5.35) that the pattern with ū = u+

0 is 1D-unstable, and the pattern
with ū = u−0 is 1D-stable. The bifurcation occurs exactly when (5.34) is an
equality; where u±0 collide.

(vi) If β = γ − 1
2 , β = 2

3 (γ − 1) and C2 ≤ C∗2 as defined in case (v), then a

pair of eigenvalues λ̂1,2 passes through the imaginary axis (i.e. a Hopf
bifurcation occurs) if

C1 = Z(C2) :=
1√

4iκ̄(C2) + C2

 9

K
(

2
√
iκ̄(C2) + 1

) − 1

 . (5.49)

Here, the function κ̄(C2) is the function that assigns to every C2 ∈ (0, C∗2 )
the imaginary part of the eigenvalues at the Hopf bifurcation, and K(P )
is defined in (5.77). The bifurcation never occurs for patterns with u+

0

of (5.35), and the pattern with ū = u+
0 is 1D-unstable. The pattern with

ū = u−0 may undergo the Hopf bifurcation and is 1D-stable if C1 < Z(C2).

For a schematic representation of the stability results in different scaling
regimes from Theorem 5.4.2, see Figure 5.12.

Theorem 5.4.3. Let the assumptions A1 and A3 be satisfied and let β ≥
2
3 (γ − 1). Let (U0, V0) be a slow/fast periodic solution of (5.2) in one spatial
dimension with wave length of O( 1

δ1+γ− 1
2
β

). That is, let (U0, V0) be (Up,s, Vp,s)

as established in Theorem 5.3.1 without the trivial extension in the y-direction.
The 1D-stability of this pattern can be summarized as follows.

(i) If β < γ − 1
2 , there is a solution to (5.42) with <(λ̂) > 0, so (U0, V0) is

1D-unstable.

(ii) If β > γ− 1
2 and β < 2γ, all eigenvalues λ̂ corresponding to pattern (U0, V0)

have negative real part, so the pattern is 1D-stable.

(iii) If β = γ − 1
2 and β < 2γ, then a pair of eigenvalues λ̂1,2 passes through the

imaginary axis (i.e. a Hopf bifurcation occurs) if C1 = 2H∗. Here, H∗ is
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−1−2 1 2

−2

−1

1

2

β =
2

3
(γ − 1)

β = γ

β = γ − 1

2

β = 2(γ − 1)

(i) (ii) (iii) (iv) (v)-(vi)

β = 2γ

Figure 5.12: Schematic representation of 1D-stability regimes as described in
Theorems 5.4.2 and 5.4.3. The shaded regimes are the regimes in the (γ, β)-plane
where stripe patterns exist, defined by assumptions A1, A3 and β ≥ 2

3 (γ − 1).
Stripe patterns with scaling parameters in the gray shaded areas are 1D-unstable.
Stripe patterns with scaling parameters in the blue shaded area are 1D-stable.
Stripe patterns with scaling parameters on the borders may undergo a bifurcation
when parameters change as described in Theorem 5.4.2. The regimes (i)–(vi)
correspond to the subresults with the same labels in Theorem 5.4.2, and the
regimes (i)–(iii) with those of Theorem 5.4.3.

given as the explicit solution of an expression in terms of hypergeometric
functions, and H∗ ≈ 0.661. For C1 < 2H∗, the pattern (U0, V0) is 1D-
stable.

Note that the cases (i)–(iii) of Theorem 5.4.3 do not cover the entire triangular
scaling regime defined by assumptions A1–A3 and Figure 5.2, due to the extra
assumptions β < 2γ in cases (ii) and (iii). This is associated with the validity
regime of the slow/fast approximation of the Evans function, and is explained in
more detail in section 5.4.1.

Remark 5.3. In the case of the homoclinic pulses of Theorem 5.4.2, the fact
that the operator is sectorial immediately establishes nonlinear stability if the
pattern is spectrally stable, [36, 74]. We refrain from going into details about
the nonlinear stability of the periodic patterns and two-dimensional patterns:
stability statements in Theorem 5.4.3 and upcoming Corollary 5.4.5 concern only
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spectral stability with respect to O(1) eigenvalues. This follows the approach of
[34], and more details are reported in [31].

5.4.1 The Evans function and associated nonlinear eigenvalue problem

For the proof of Theorems 5.4.1–5.4.3, we establish an Evans function framework
for the 1-pulse patterns, (Uhom, Vhom) constructed in section 5.2. In section
5.4.1 we will show how this framework can be in essence carried over to periodic
patterns with periods of sufficient asymptotic length, after which we may proceed
to section 5.4.2 for the proofs of the Theorems 5.4.1, 5.4.2. To make use of
the slow/fast structure of the system in an efficient way, we will use the four-
dimensional formulation of the stability problem, (5.45).

Homoclinic 1-pulse solutions

As an equivalent representation of (5.45), we write

∂

∂ξ
φ(ξ;λ, `) = A(ξ;λ, `)φ(ξ;λ, `), (5.50)

where φ(ξ;λ, `) = (u(ξ), p(ξ), v(ξ), q(ξ)), and A is a 4 × 4 matrix. We will lay
out the stability analysis in terms of the fast variable ξ. For ξ outside If , the
solution v0 is exponentially close to zero. Moreover, every term of (5.45) that
involves u0, which varies outside the fast regime, is multiplied with v0. Hence,
the matrix A(ξ;λ, `) approaches a constant matrix outside that fast regime;

lim
ξ→±∞

A(ξ;λ, `) = A∞(λ, `),

with

A∞(λ, `) =


0 δγ−β

δ2−γ+β
[
δ2γ−βa+ b(δ2θ−β`2 + λ)

]
−δ1+γ−β(δ

1
2
βc+ δ1+γ−βs)

0 0
0 0

0 0
0 0
0 1

b(λ+ 1 + δ2+2θ−β`2) −δ2(γ−β)s


(5.51)
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The matrix A∞ has four eigenvalues Λ1,2,3,4. Two of those eigenvalues are
asymptotically small and two are O(1). Their leading order approximations are,

Λ1 =
√
b(λ+ 1 + δ2+2θ−β`2) + h.o.t.

Λ2 =
1

2
δ1+γ− 1

2β

[
−c+

√
c2 + 4a+ 4δβ−2γ (δ2θ−βb`2 + bλ)

]
+ h.o.t.

Λ3 =
1

2
δ1+γ− 1

2β

[
−c−

√
c2 + 4a+ 4δβ−2γ (δ2θ−βb`2 + bλ)

]
+ h.o.t.

Λ4 = −
√
b(λ+ 1 + δ2+2θ−β`2) + h.o.t.

(5.52)

Assumptions A1–A3 and (5.46), imply that indeed Λ2,3 � 1, while Λ1,4 = O(1).
Furthermore, the eigenvalues Λ1,2 have by definition positive real part and are
unstable, while Λ3,4 have negative real part and are stable. The corresponding
eigenvectors are

E1,4 = (0, 0, 1,Λ1,4)T ,

E2,3 = (1, δβ−γΛ2,3, 0, 0)T .
(5.53)

The essential spectrum associated with (5.50) coincides with all λ(`) for which
A∞ has an eigenvalue Λi ∈ iR, that is,

σess =
⋃
k,`∈R

{
−1− δ2+2θ−β`2 − k2,

1

4δβ−2γb

(
−4a− 4δ2θ−2γb`2 + 2cik − k2

)}
(5.54)

Depending on whether β ≷ 2γ, the maximal real part of the essential spectrum
is −1 or −δ2γ−β a

b , see a schematic representation of both cases in C in 5.13.
The full linear stability problem (5.50), has four independent (vector-)solutions
φj(ξ;λ, `). The theory in [35, 36] explains that we may introduce eigenvectors
φj such that,

lim
ξ→−∞

φj(ξ, λ, `)e
−Λjξ = Ej for j = 1, 2,

lim
ξ→∞

φj(ξ, λ, `)e
−Λjξ = Ej for j = 3, 4.

(5.55)

In particular, this implies that φ1,2 → (0, 0, 0, 0) as ξ → −∞ and φ3,4 → (0, 0, 0, 0)
as ξ →∞. Because Λ1 is the largest, positive eigenvalue, a general solutions φ
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iR

R−1

O(δ2γ−β)

iR

R−1

O(δ2γ−β)

Figure 5.13: Schematic representation of the essential spectrum, (5.54) in C. On
the left, the case that 2γ > β, so the maximal real part of the essential spectrum
is −δ2γ−β a

b . On the right the case 2γ < β, so the maximal real part of the
essential spectrum is −1.

will grow as eΛ1ξ as ξ → ∞. We define the fast transmission function tf (λ, `),
which is an analytic function over λ as,

lim
ξ→∞

φ1(ξ;λ, `)e−Λ1ξ = tf (λ, `)E1(λ, `). (5.56)

Not all φi necessarily grow with the largest rate, though. In the case that
tf (λ, `) 6= 0, we can define φ2 uniquely by assuming it does not grow like eΛ1ξ,
i.e.

lim
ξ→∞

φ2e
−Λ1ξ = (0, 0, 0, 0)T . (5.57)

In other words, the only vector solution that grows with the fast rate as ξ →∞
is φ1(ξ), because (5.55) has already put a boundary condition on φ2 and φ3. A
detailed justification of this procedure follows especially from Lemma 3.7 in [35].
Generically, the behavior of the second solution φ2 is dominated by the slow
growth rate Λ2 for ξ > 0. Hence, we define a slow transmission function, ts(λ, `).

lim
ξ→∞

φ2(ξ;λ, `)e−Λ2ξ = ts(λ, `)E2(λ, `). (5.58)

The Evans function is the determinant of the four independent solutions of A∞,

D(λ, `) = det [φ1, φ2, φ3, φ4] e−
∫ ξ
0

Tr(A(η;λ,`))dη, (5.59)
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see [35]. The Evans function is only defined for λ outside of the essential spectrum,
(5.54). Since

Tr(A(η;λ, `)) =
∑
j

Λj = −δ2(γ−β)s,

and because the Evans function is independent of ξ, see [1], (5.59) is equivalent
to,

D(λ, `) = lim
ξ→∞

det
[
φ1e
−Λ1ξ, φ2e

−Λ2ξ, φ3e
−Λ3ξ, φ4e

−Λ4ξ
]

= det [tf (λ, `)E1(λ, `), ts(λ, `)E2(λ, `), E3(λ, `), E4(λ, `)]

= δβ−γts(λ, `)tf (λ, `)((Λ4 − Λ1)(Λ3 − Λ2)),

(5.60)

to leading order. Zeros of the Evans function coincide with eigenvalues λ(`).
Since outside of the essential spectrum σess, see (5.54), the Λi never coincide, we
conclude that the Evans function is zero only if the product of the transmission
functions, tstf is zero. For the fast transmission function, the zeros can simply
be found in literature. The associated fast reduced stability problem, that can
be obtained from (5.45) by taking the limit δ → 0 and setting u ≡ 0, is

vξξ + 2ūv0v − b(λ+ 1)v = 0. (5.61)

Which equivalent to those reported in [35, 36, 143]. The fast isolated eigenvalues
are

λ0
f =

5

4
, λ1

f = 0, λ2
f = −3

4
. (5.62)

Paradoxicaly, the positive eigenvalue λ0
f does not immediately imply instability

of (u0, v0), because the slow transmission is not analytic but merely meromorphic
and has a pole at λ0

f , as we will show below. This zero-pole cancellation is
explained in full detail in [35, 36]. In [35], it is also shown that N -pulses pick up
the same fast eigenvalues but with multiplicity N , which are not canceled by the
order 1 poles of the slow transmission function. Hence, N -pulses are unstable.
For more details on this mechanism, see [38].

Zeros of the slow transmission function

We determine the zeros of the slow transmission function by matching the values
of u and p in- and outside the fast interval If , see (5.21). The change in u and p
is measured by the uniquely determined fundamental solution φ2. We know that
it does not grow with the fast rate, see (5.57), so outside If and with ξ > 0,

φ2(ξ) = tse
Λ2ξE2 + t̃se

Λ3ξE3 + t̃fe
Λ4ξE4,

193



Long wave length vegetation patterns

where t̃s,f are also transmission functions of λ and `. The Λ4-term does not
contribute to the leading order behavior, however, because Λ4 is large and
negative. In fact, outside If , eΛ4ξ is already exponentially small. On the other
side outside of If , where ξ < 0, we know by (5.55)

φ2(ξ) = eΛ2ξE2,

up to exponentially small corrections. We measure the change of φ2 over If from
outside of If (in the slow regime) first. We define the slow difference function
∆s as follows,

∆s


u
p
v
q

 = lim
ξ↓δ−µ

(tse
Λ2ξE2 + t̃se

Λ3ξE3 + t̃fe
Λ4ξE4)− lim

ξ↑−δ−µ
eΛ2ξE2. (5.63)

Upon assuming A1–A3 and (5.46), we can always choose a µ > 0 (recall (5.21))
such that

∆su = tse
Λ2δ
−µ
E2 + t̃se

Λ3δ
−µ
E3 + t̃fe

Λ4δ
−µ
E4 − eΛ2δ

−µ
E2,

= ts + t̃s − 1,
(5.64)

to leading order. We know that during the fast transition, the u-component does
not change (recall (5.45)), therefore

t̃s = 1− ts.

Although u is constant even up to the second order corrections during the fast
transition, p is not constant in the first correction, see (5.9). We also measure
the change in p with the slow difference function,

∆sp = tse
Λ2δ
−µ
δβ−γΛ2 + t̃se

Λ3δ
−µ
δβ−γΛ3 + t̃fe

Λ4δ
−µ· 0−e−Λ2δ

−µ
δβ−γΛ2,

= δβ−γ(ts − 1)(Λ2 − Λ3),

(5.65)

to leading order. On the other hand, we can measure the change in p over the
fast regime, much like section 5.2, equation (5.29). We define the fast difference
function ∆f as,
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5.4 Stability of singular multiscale patterns

∆fp =

∫
If

pξ(ξ)dξ,

= δγ−β
∫
If

(
v2

0u+ 2ūv0v + δ2+βau+ δ2+2θ−2γ+βb`2u+ δ2−2γ+2βbλu

−(δ1+ 1
2βc+ δ2+γ−βs)uξ

)
dξ,

(5.66)

We use the fact that, at the boundary of If , the two difference functions must
be equal; ∆fp = ∆sp. Moreover, as we are interested in zeros (and poles) of the
slow transmission function, we set ts = 0, so that

δβ−γ(Λ3 − Λ2) = ∆fp. (5.67)

In the evaluation of ∆fp, we may choose u = 1, because it must be a constant
and we use the one-parameter freedom of choice in determining an eigenfunction.
If A1–A3 and (5.46) are satisfied, we can always choose a µ as defined in (5.21)
such that ∆fp is, at leading order, purely associated with the fast variables, that
is,

∆fp = δγ−β
∫
If

2ūv0(ξ)v(ξ) + v2
0(ξ)dξ, (5.68)

In particular, this implies we must choose

0 < µ < min{2 + 2θ − 2γ + β, 2− 2γ + 2β, γ − β, 1 + γ − 1

2
β}. (5.69)

See Figure 5.2 and take into account assumption (5.46) to verify that in our
restricted regime for γ and β, we can always choose µ within this range.

Equation (5.68) does not stand on itself but is directly linked to the stability
problem (5.50). Our slow eigenvalue problem thus becomes

δ2(γ−β)

∫
If

2ūv0(ξ)vin(ξ) + v2
0(ξ)dξ = Λ3 − Λ2,

vin,ξξ + (2ūv0 − b(λ+ 1))vin = −v2
0

(5.70)

We can rewrite (5.70) into one equation: the so-called nonlinear eigenvalue
problem (NLEP) as is used in [34],

vξξ+(2ūv0−b(λ+1))v =
2δ2(γ−β)ūv2

0

δ2(γ−β)
∫
If
v2

0(ξ)dξ − Λ3 + Λ2

∫
If

v0(ξ)v(ξ)dξ. (5.71)

195



Long wave length vegetation patterns

Using (5.19), we derive∫
If

v2
0(ξ)dξ =

6b
√
b

ū2
, (5.72)

which simplifies equation (5.71),

vin,ξξ +

 3b

cosh2
(√

bξ
2

) − b(λ+ 1)

 vin

=

27
4 δ

2(γ−β)b3 sech2
(√

b
2 ξ
)

δ2(γ−β)b
√
b− (Λ3 − Λ2)ū2

∫
If

vin

cosh2
(√

b
2 ξ
)dξ.

(5.73)

Following [34], we transform equation (5.71) using the following substitutions,

ξ =
2√
b
t, vin(ξ) = y(t), λ =

1

4
P 2 − 1. (5.74)

We only consider Re(P ) > 0, to stay away from the essential spectrum, see
(5.54) and Figure 5.13. To convert P into λ, we use the principal square root.
Substituting (5.74) into (5.73) yields

ytt +

(
12

cosh2(t)
− P 2

)
=

K

cosh4(t)

∫
If

y(t)

cosh2(t)
dt, (5.75)

with

K =
9δ2(γ−β)

δ2(γ−β) + ū2(Λ2−Λ3)

6b
√
b

. (5.76)

Following [34], the differential equation for y can be modified to a hypergeometric
differential equation for G(x) with a second substitution,

y(t) = G(t)/(cosh(t))P , t = tanh−1(2x− 1).

The exact derivation of the solutions of that hypergeometric differential equation
is detailed in [34], and an alternative expression for K is derived,

K(P ) =
P (P − 1)(P − 2)(P − 3)

16R(P )
, (5.77)
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5.4 Stability of singular multiscale patterns

where

R(P ) =
−1

(P + 3)(P + 2)(P + 1)

∫ 1

0

∫ ξ

0

ξ(1−ξ)
(
x(1− ξ)
ξ(1− x)

)P/2
k(P, 1−x)k(P, ξ)dxdξ,

(5.78)

where k(P, ξ) is defined as,

k(P, ξ) = (P−3)(P−2)(P−1)+12(P−3)(P−2)ξ+60(P−3)ξ2+120ξ3. (5.79)

For consistency in K, we must equate (5.76) and (5.77), and we arrive at the
final formulation of the eigenvalue problem.

δ−2(γ−β) (Λ2 − Λ3)
ū2

6b
√
b

=
9

K(P )
− 1, (5.80)

with K(P ) as in the formulation (5.77). The right hand side of (5.80) has poles
of O(1) for P = 1 and P = 3, see Figure 5.14 and [34, 35]. They link directly
to two of the fast eigenvalues (5.62), λ0

f = 5
4 and λ2

f and hence the positive

eigenvalue λ0
f does not necessarily destabilize the pattern. This phenomenon is

often referred to as the ‘NLEP-paradox’ see [35].

Periodic solutions

In the previous section, we have derived equation (5.80) which determines the
stability properties of a 1-pulse (Uhom, Vhom). In this subsection, we briefly
comment on how the same equation determines stability of periodic solutions
(Up,s, Vp,s). For homoclinic solutions, which are localized, the eigenfunctions are

localized as well. Hence, the full spectrum consists of discrete eigenvalues λ̂ for
given ˆ̀, united with the essential spectrum corresponding to the background
state. Perturbations of periodic solutions are in general represented by both a
wave number ˆ̀ as well as a γ̂ ∈ S1, because the eigenfunctions are not localized.
This implies that the eigenvalues λ̂ outside σess, see (5.54), are not discrete for a

given ˆ̀. Instead, there exist curves of essential spectrum parametrized by γ̂, [51].
For periodic solutions with a sufficient length, these γ̂-parametrized curves

of spectrum may be exponentially approximated by the discrete eigenvalue
corresponding to a localized pulse, because the periodic solution is ‘nearly’
localized. The period of the solutions constructed in section 5.3, has a length of
O( 1

δγ−
1
2
β+1

) in ξ. If we assume that q(0) = 0 we can construct a fundamental

interval for the periodic solution as

Iper =

(
− l

δγ−
1
2β+1

,
l

δγ−
1
2β+1

)
,
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with l > 0. The eigenfunctions (U, V ) of (5.42) corresponding to a periodic
solution (Uper,s, Vper,s) may then be called nearly localized if both U and V are
exponentially small on the boundaries of Iper. For the V -pulse, this is clear,
because V decays exponentially fast to zero already within the fast interval If ,
which is smaller than Iper. What is left is to verify that the decay rate of U is
also fast enough. About this decay rate and the validity of the approximation,
we formulate the following lemma.

Lemma 5.4.4. For periodic solutions of (5.2) as constructed in section 5.3, with

wave length of O
(

1

δ1+γ− 1
2
β

)
, we may approximate the spectrum outside σess by

the discrete values that are solutions to (5.80) in any of the following regimes.

(i) β < 2γ;

(ii) β ≥ 2γ and γ − 1
2β − 1 < θ < γ.

Proof. To show this, we will work with the rescaled coordinates and system
(5.45). Outside the fast interval If , the equation for u decouples because v is
exponentially small. We obtain,

uξξ =δ2γ−2β
[
δ2+βau+ (δ2+2θ+β−2γ`2 + δ2+2β−2γλ)bu−

(
δ1+ 3

2β−γc+ δ2s
)
uξ

]
,

(5.81)

which is a second order ODE for u with constant coefficients. The solution for u
is a linear combination of exponentials in variable δrξ, where

r = min{1, 1 + γ − 1

2
β, 1 + θ − 1

2
β}, (5.82)

is the decay rate of u. If we require u to be exponentially small on the boundaries

of Iper, which is O
(

1

δ1+γ− 1
2
β

)
, we must satisfy

1 + γ − 1

2
β > r = min{1, 1 + γ − 1

2
β, 1 + θ − 1

2
β} (5.83)

In other words, the length of the fundamental interval Iper must be asymptotically
strictly larger than the decay of u. If we want to exponentially approximate the
spectrum corresponding to periodic solutions by discrete eigenvalues, condition
(5.83) must be satisfied. Note that the strict inequality (5.83) can never be
satisfied if r = 1 + γ − 1

2β, the same parameter combination is stated on the left
side of the inequality. This is implies that if β ≥ 2γ, a restriction must be put on
θ so that r = 1+θ− 1

2β, in order to satisfy (5.83). Combining this with condition

198



5.4 Stability of singular multiscale patterns

(5.46), this yields the result stated in (ii). If, on the other hand, β < 2γ, then
r 6= 1 + γ − 1

2β and this immediately implies that (5.83) is satisfied, so we arrive
at the statement of (i).

Since θ is only a dummy parameter restrictions on θ change the function
space of perturbations against which we will test the (in)stability of periodic
patterns. By condition (5.46), we put an upper bound on the transverse wave
number of the perturbation. A consequence of Lemma 5.4.4 is that if β ≥ 2γ,
the stability statements derived from equation (5.80) for periodic solutions are
only valid for a smaller subclass of perturbations. Namely, those perturbations
that have a transverse wave number that is not only bounded below by (5.46),
but also bounded above by requiring θ < γ.

5.4.2 Proof of stability theorems

In this section, we analyze (5.80), to prove Theorems 5.4.1 and 5.4.2. The
right-hand side of (5.80) is plotted as a graph over P ∈ R in Figure 5.14. Note

1 3 5

-2

2

4

0 P

Figure 5.14: Black: Graph of 9
K(P ) − 1 with P > 0 and real-valued. Note that

there are vertical asymptotes at P = 1 and P = 3. These are the poles of the slow
transmission function, and they cancel two of the zeros of the fast transmission
function, λ0

f and λ2
f , see (5.62).

that, as λ ∈ C, so is P . The representation of Figure 5.14 is therefore not
exhaustive. Note that, indeed, the graph is singular at P = 1 and P = 3, where
the function has poles of order 1. In the cases that λ is real, however, the solutions
of (5.80) may be visualized as the intersections of the graph in Figure 5.14 and a
real-valued curve of the left hand side of (5.80) as a function over P . We clarify
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this in the proofs of the Theorems 5.4.1–5.4.3. As was already obvious from
their formulations, the magnitude of Λ2,3 makes a crucial difference. From (5.52)
which we derive

Λ2 − Λ3 = δ1+γ− 1
2β
√
c2 + 4a+ 4b(δ2θ−2γ`2 + δβ−2γλ). (5.84)

Note that

O(Λ2 − Λ3) = O(δr), (5.85)

where r was defined in (5.82).

Proof. (of Theorem 5.4.1).
If the left hand side of equation (5.80) is much larger than O(1), there are
solutions for P ' 1 and P / 3, because the right hand side has poles for P = 1
and P = 3. By choosing θ appropriately, namely

θ < 2γ − 3

2
β − 1, (5.86)

we obtain r < 2(γ−β), so that the left hand side of (5.80) is asymptotically large.

That implies that there is always a ˆ̀ such that there exists an solution P / 3,
which corresponds to λ = 5

4 . Note that condition (5.46) is automatically satisfied
in this case. Hence, perturbations with a transverse wave number that is small
enough grow exponentially, so the patterns are 2D-unstable. This result holds
for both the 1-pulse and periodic solutions, because (5.86) implies by assumption
A2 that θ < γ, see Lemma 5.4.4.

Proof. (of Theorem 5.4.2)
This theorem concerns only patterns in one spatial dimension. Hence, we do
not consider transverse perturbations so we may set ` = 0 in equation (5.80) or,
more specifically, (5.84). This simplifies equation (5.80) to

δ1−γ+ 3
2β
√
c2 + 4a+ 4δβ−2γbλ

ū2

6b
√
b

=
9

K(P )
− 1. (5.87)

(i) If β < γ − 1
2 and β ≥ 2

3 (γ − 1), then the left hand side of (5.80) is much
larger than O(1), so the same argument as in the proof of Theorem 5.4.1
applies. There is an eigenvalue λ / 5

4 , so the solution is 1D-unstable.

(ii) If β > γ− 1
2 and β > 2

3 (γ−1), the left hand side of (5.80) is asymptotically
small. Thus, we solve

0 =
9

K(P )
− 1.
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5.4 Stability of singular multiscale patterns

By a numerical evaluation of the analytic expressions (5.76)–(5.79), we find
that this occurs for P ≈ 0.56 ± 0.52i or λ ≈ −0.99 ± 0.14i. Hence, the
pattern is 1D-stable.

(iii) If β = γ − 1
2 and β > 2

3 (γ − 1), recall the definition of C1 in (5.47), so that
the leading order of equation (5.87) becomes

1

2
C1 =

1√
P 2 − 4

(
9

K(P )
− 1

)
, (5.88)

which is equivalent to equation (5.15) of [34]. Thus, there is a Hopf
bifurcation when this equation is solved for a purely imaginary set of
eigenvalues λ±. Using numerical evaluation we can derive immediately that
this occurs when

1

2
C1 = H∗ ≈ 0.661,

at which λ ≈ ±0.535i. This implies that the pattern is 1D-stable for
C1 < 2H∗ and 1D-unstable for C1 > 2H∗. Since we know that in this case

ū = u0 = 6b
√
b√

c2+4a
(see 5.30), we can simplify this to√

b

c2 + 4a
< 2H∗.

This proves this part of the theorem.

(iv) If β > γ − 1
2 and β = 2

3 (γ − 1) equation (5.80) reduces to leading order to,

C1

√
C2 =

9

K(P )
− 1. (5.89)

The left hand side of this equation does not depend on λ and is always real-
valued. The stability of a pattern changes if the real part of an eigenvalue
λ passes zero. The special case λ = 0 corresponds to P = 2, and a simple
check with [34] yields

lim
P→2

9

K(P )
− 1 = 1. (5.90)

Which implies that (5.89) is solved for a zero eigenvalue if

C1

√
C2 = 1.

Hence, this is where a bifurcation occurs. A straightforward verification
yields that the pattern is 1D-stable if C1

√
C2 < 1, and 1D-unstable if

201



Long wave length vegetation patterns

C1

√
C2 > 1. Since this is the case that β = 2

3 (γ − 1), we use solutions u±0
of (5.35) for ū. That implies that

C±1 =

(
1±

√
1− 24b

√
b√

c2+4a

)2

24b
,

so the pattern is stable if,(
1±

√
1− 24b

√
b√

c2+4a

)2

24b
√
b

√
c2 + 4a < 1,

which is always true for u−0 , and never true for u+
0 . Hence, the pattern with

ū = u−0 is in this case always 1D-stable, and the pattern with ū = u+
0 is

always 1D-unstable. This concludes the proof of part (iv) of the theorem.

For cases (v) and (vi) we have β = −1 and γ = − 1
2 , we rewrite the leading

order terms of equation (5.87) to

C1 =
1√

P 2 − 4 + C2

(
9

K(P )
− 1

)
. (5.91)

Recall also the values (5.35) for ū and the existence requirement (5.34).
While C1 is real-valued, P ∈ C. We use Mathematica to solve for which
values of P the right hand side of (5.91) is real-valued, and plot its values
against the real part of these values of P . For several values of C2, we have
illustrated this in Figure 5.15. The P -values of intersections of the left
and right side of (5.91), correspond to eigenvalues λ via (5.74). Regardless
of the value of C2, there is an asymptote at P = 3 (λ = 5

4 ). Hence, a
stability criterion is always an upper limit for C1. On the other hand, as C1

approaches 0, equation (5.91) approaches case (ii) of this theorem and the
pattern is stable for every C2 of O(1). Hence, there is always a bifurcation,
although the nature of it may vary. A transition between a Hopf bifurcation
or a zero eigenvalue occurs when the minimum of the right hand side of
(5.91) for real-valued P occurs exactly at P = 2. That happens for

C2 = C∗2 = − 9

2K ′(2)
≈ 1.333,

which separates the cases (v) and (vi).

(v) This case occurs if C2 > C∗2 and (5.34) is satisfied. That implies

24b
√
b√

c2 + 4a
< min

{
24b√
C∗2

, 1

}
. (5.92)
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If C2 > C∗2 , the right hand side of (5.91) is real-valued in a neighborhood
of P = 2. Hence, there is a bifurcation with a zero eigenvalue. We use
(5.90) to derive that the pattern is 1D-stable if

C1 <
1√
C2

,

and 1D-unstable if C1 >
1√
C2

. A straightforward computation yields that

the pattern with ū = u+
0 never satisfies this case but undergoes a saddle-

node bifurcation when it collides with u−0 , i.e. when (5.34) is equality. The
pattern with ū = u−0 , is always stable, apart from that same bifurcation
point.

(vi) Using both conditions C2 ≤ C∗2 and (5.34), we derive that case (vi) occurs
for

24b√
C∗2
≤ 24b

√
b√

c2 + 4a
≤ 1,

which is only a nonempty range if b ≤
√
C∗2

24 ≈ 0.048. In this case, destabi-
lization occurs through a Hopf bifurcation. For Re(P ) > 0, P has nonzero
imaginary part if and only if λ has nonzero imaginary part. If λ = iκ
with κ ∈ R, i.e. at the bifurcation point, P = 2

√
iκ+ 1, see (5.74). We

substitute P = 2
√

iκ+ 1 in (5.91) and for every C2, we solve for which κ
the right hand side of (5.91) has zero imaginary part,

Im

 1√
4iκ̄(C2) + C2

 9

K
(

2
√

iκ̄(C2) + 1
) − 1

 = 0. (5.93)

This yields a curve that assigns to every C2 ∈ (0, C∗2 ) the value of the right
hand side of (5.91) at the Hopf bifurcation, see the right panel of Figure
5.14, which is exactly the function Z(C2) defined in (5.49). A 1D-stability
requirement is then,

C1 < Z(C2),

where equality coincides with the Hopf bifurcation. The value of the
eigenvalues as function of C2 is depicted in Figure 5.16, where we see that
C2 ↓ 0 returns the same result as described in case (iii) of this theorem.
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1 2 3 4

1

0

−1

−2

2

Re(P )

0.5 10

0.7

0.8

C2

Z(C2)

1.333

Figure 5.15: Left: Two times the graph of the right hand side of (5.91) for two
values of C2, for values of P ∈ C for which the expression equals a value in
R, plotted against the real part of the corresponding P . When P has nonzero
imaginary part, the graph is gray. Dark blue corresponds to C2 = 4, while lighter
blue corresponds to C2 = 0.5. The stars indicate where the intersections with
P = 2 are, i.e. at the bifurcation point. Right: The function Z(C2) (see (5.49))
for those values of C2 for which Z(C2) is real-valued, and with κ̄ for C2 ∈ (0, C∗2 ).

1.3331

0.25

0 0.5

0.5

C2

κ̄(C2)

Figure 5.16: The function κ̄ for C2 ∈ (0, C∗2 ), which assigns to every C2 the
imaginary part of the eigenvalues at the Hopf bifurcation.

Proof. (of Theorem 5.4.3). In Theorem 5.4.3, the only change compared to
Theorem 5.4.2 is that this concerns periodic solutions with long wave lengths.
Following Lemma 5.4.4, the results for the 1-pulse may be carried over to this
situation exactly if β < 2γ. The case (ii) of that lemma does not apply, because for
one spatial dimension there is no parameter θ. Selecting exactly those parameter
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5.5 Stability of singular multiscale patterns

regimes that satisfy β < 2γ, yields the results stated in the theorem.

The results of the Theorems 5.4.1 is derived from testing the stability of
solutions (U0, V0) of (5.2) against perturbations in two dimensions. Of these
perturbations, the wave number of the transverse perturbation factor may be
arbitrarily small, but has an upper bound defined by (5.46). The Theorems
5.4.2 and 5.4.3, however, consider only patterns with one spatial dimension and
hence perturbations in only one space variable. If, however, we consider a more
restrictive function space for perturbations in two spatial dimensions, we may
carry over the results of Theorems 5.4.2 and 5.4.3 to two-dimensional stability.

Corollary 5.4.5. Let the assumptions A1 and A3 be satisfied and let β ≥
2
3 (γ − 1). Let (U0, V0) be a slow/fast 1-pulse solution of (5.2), trivially extended
in the y direction. Let X be the function space spanned by peturbations

ei
ˆ̀
(û(χ), v̂(χ)) ,

with ˆ̀ � δ2γ− 3
2β−1. Then, the statements of Theorem 5.4.2 summarize the

two-dimensional stability of (U0, V0) against functions space X.
Let (U0, V0) be a slow/fast periodic solution of (5.2), trivially extended in the y

direction. Then, the statements of Theorem 5.4.3 summarize the two-dimensional
stability of (U0, V0) against functions space X.

Proof. The proof follows immediately from the observation that if ˆ̀� δ2γ− 3
2β−1,

θ ≥ 2γ − 3
2β − 1, which is more restrictive than (5.46). The proof of Theorem

5.4.1 can no longer be applied. In fact, if the wave number is not too large, the
leading order equation that determines the stability, (5.80), is (5.87). Hence, the
results from Theorems 5.4.2 and 5.4.3 follow.

The Theorems 5.4.1–5.4.3 particularize the 2D-instabilty and 1D-stability
results for a range of parameter and scaling regimes. Since the results are
concluded from the Evans function that was derived in section 5.4.1 for 1-pulses
and where it was explicitly used that the function has a slow/fast splitting, our
results are not exhaustive. If wave numbers become too large (i.e. when (5.46)
is violated), equation (5.80) does not describe the leading order approximation
of the eigenvalues. In fact, it can be shown that the unstable eigenvalue λ(`)
of (the proof of) Theorem 5.4.1 become negative as ` increases further, see also
[42]. Similarly, if β > 2γ, the constructed periodic solutions cannot be considered
‘nearly’ localized, and therefore the associated spectrum cannot be approximated
by discrete values united with σess. In that case, the stability problem is similar
to that of the periodic solutions of the Gierer-Meinhardt equations, see [157]. A
full analysis of this case is, however, not part of the present article.
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5.5 Conclusions and ecological implications

The need for a mathematical framework to study vegetation patterns has been
acknowledged at least since [88, 133, 58]. So far, in various mathematical models,
both analytic and numerical results have been derived, [58, 88, 133, 142, e.g].
However, the trade-off between manageable analytics and a realistic model is
ever apparent. In the original Klausmeier, (5.1), or the Gray-Scott model, the
existence of patterns has been thoroughly studied and reported in [88] and [34, 39,
e.g]. With the introduction of the generalized Klausmeier-Gray-Scott model in
[159], the combination of water diffusion (Gray-Scott) with the advective term
induced by a gentle slope (Klausmeier) came forth to be quite effective. In more
recent times, both analytic and numerical results about solutions and pattern
formation in the gKGS system have been published, [159, 145, 143]. Apart from
the intrinsic value of homoclinic or periodic pulse solutions of the gKGS system,
they also form the foundation for complex pattern dynamics as, for example,
pulse interactions. Still, rigorous results on the existence and stability of traveling
slow/fast solutions of neither homoclinic nor periodic type have been reported in
the literature.

In this article, we have explored the existence and stability of traveling stripe
patterns of the generalized Klausmeier-Gray-Scott(5.2). They arise as multiscale
pulse patterns in one spatial dimension, trivially extended in the other direction.
The scaling of parameters and coordinates in this derivation is nontrivial and
crucial to our analysis, and we present it in its most general form.

The existence of traveling single pulse solutions is established using geometric
singular perturbation theory. Such a traveling homoclinic solution corresponds
to a single strip of vegetation in an elsewhere endless desert: a traveling oasis.
Perhaps more realistic are the periodic patterns that were constructed in section
5.3. The stripe patterns that correspond to these solutions are widely observed
and in the field of ecology also known as tiger bushes [171]. Both types of
solutions have a positive speed, indicating that the patterns travel uphill. This
phenomenon is confirmed by observations, and can be explained by a surplus of
water on the upper side of a vegetation strip. For homoclinic traveling waves,
the values (5.30) imply that as the slope c decreases, the speed of the homoclinic
traveling wave also decreases. This is in agreement with the Gray-Scott results,
see section 5.1.1, where stationary pulses exist on flat terrain (c = 0). Note that
as the rainfall, parametrized by a, decreases, the speed decreases. Furthermore,
the water density value in the vegetation strip is smaller in the case of a traveling
oasis (u0) compared to traveling periodic patterns for the same set of parameters.

There are several destabilization mechanisms described by the Theorems
5.4.1–5.4.3. Theorem 5.4.1 describes that in the validity regime of our analysis,
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defined by assumptions A1–A3, there is always a range transverse wave number
of perturbations that destabilize the pattern. In other words, stripe patterns
will cease to exist, as soon as the perturbations along the vegetation strip have
a transverse wave number that is within this regime. Since the scaling regime
bounds the slope of the terrain, c, this is in agreement with [143], where two-
dimensional stripe patterns are numerically found to be stable only above a
certain threshold for the slope. Since we only consider patterns that are trivially
extended, it is not yet clear if the patters will in fact collapse to a desert state.
Considering the observations of rhombic or spot patterns, one may suggest that
a large wave number perturbation could generate nontrivial two-dimensional
patterns, as is also confirmed by the numerical simulations in [143]. If we consider
a more ‘mild’ definition of stability, with perturbations in a well-chosen function
space, we can make more detailed conclusions about the resilience of stripe
patterns, formulated in Corollary 5.4.5.

The Theorems 5.4.2 and 5.4.3 describe stability of homoclinic and periodic
patterns, with respect to one-dimensional (non-transversal) perturbations, respec-
tively. In absence of transverse perturbations, the patterns may indeed be stable
and several destabilization mechanisms take place as parameters vary. In the
cases (iii)-(vi) in Theorem 5.4.2 and case (iii) in 5.4.3, destabilization occurs as C1

(defined in (5.47)) grows. Reversely, the patterns are stable as long as C1 is small
enough. Since C1 is minimal for the homoclinic 1-pulse, because u0 is smaller
than u∗p,h, the homoclinic 1-pulse is the last pattern to destabilize, i.e. ‘the most
stable pattern’. This is completely in agreement with Ni’s conjecture, which was
formulated for the Gierer-Meinhardt system in [120], see also [42, 157, 40]. This
implies that, as either precipitation (a) or slope (c) decreases, periodic solutions
with the larger water density in the vegetation strip destabilize first and the
traveling oasis is the last observable pattern. Although this also confirms the
numerical observations of [143, 145, 159], it should be remarked that the present
analysis only holds for the validity regime of our method, which is characterized
by the splitting of fast and slow behavior in the system and defined by A1–A3.
Furthermore, our analysis is only valid for patterns that are ‘nearly localized’,
i.e. that the pattern is a homoclinic pattern or that Lemma 5.3.2 holds. Outside
this regime, extra measures are necessary to draw conclusions about the stability
(and the existence) of stripe patterns.

The value of ū – the water density within a vegetated area – for periodic
patterns is not explicitly determined in section 5.3, which makes the interpretation
of the stability results of section 5.4 less straightforward. However, we do have a
lower and upper bound for ū, namely,
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ū ∈ (u0, ũ) =

 6b
√
b√

c2 + 4a
,

√
6b
√
b

s

 , (5.94)

see (5.30) and (5.37). The upper bound can be carried over to C1 to obtain, by
Theorem 5.4.2(iii), a sufficient but not necessary condition for the stability of
periodic patterns, namely

√
b

s
< 1.322, (5.95)

see (5.88). In other words, it implies a lower bound for the migration speed of
the periodic patterns. Together with the upper bound for s defined in (5.36), we
have a range of s-values for which one-dimensional periodic patterns exist and
are stable,

s ∈
(

0.756
√
b,
c
√
c2 + 4a

6b
√
b

)
. (5.96)

This range is nonempty if 4.539b2 ≤ c
√
c2 + 4a. We conclude that even if a or c

decreases, this does not have to destabilize the pattern, as long as it adapts to a
suitable speed s, to satisfy the stability condition.

For all patterns constructed in this manuscript, we conclude that if a or c
decreases the parameter regime in which patterns are stable shrinks, making
them less resilient. A general conclusion we may draw is that decreasing rainfall
or slope may have a serious negative impact on the ecological resilience of both
homoclinic and periodic patterns. This is also confirmed by [32], where field
observations show that stripe patterns disappear as the slope decreases.

In mathematical terms, we have considered the existence of homoclinic and
spatially periodic slow/fast patterns in a reaction-advection-diffusion model.
The advection term breaks the reversibility symmetry of the original reaction-
diffusion system. Since this symmetry is a key feature of the establishment of
especially the existence of these types of patterns in reaction-diffusion equations
– Gray-Scott, Gierer-Meinhardt – several novel ideas have been introduced to
incorporate the skew effects of the advection term in the geometric singular
perturbation approach. We found that the symmetry breaking effect could be
incorporated in the Evans function framework for spectral stability of the patterns
in a natural way. Our stability results on one-dimensional patterns provide direct
generalizations of previous results in the literature on reaction-diffusion models,
see [34, 80, 157, 164]. Moreover, our result on the instability of stripes to the
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transverse perturbations, Theorem 5.4.1, is similar to the findings in [42, 118, 143],
to a class of reaction-advection-diffusion systems.

5.6 Discussion

In any article where mathematical models are used to describe a natural phe-
nomenon, many simplifications need to be done to keep the work manageable.
This, in turn, implies the need for a brief discussion of the conclusions drawn
according to the simplified model. As mentioned before, our analysis does not
extend beyond stripe patterns, and hence does not describe the widely observed
gap or labyrinth patterns described in, for example, [61, 60]. Many of the assump-
tions made in this article cannot be made in the case where the pattern is not
trivially extended in one spatial dimension. Perhaps another type of symmetry
could resolve this. Furthermore, we did not incorporate nonlinear diffusion, nor
did we examine a spatially dependent slope C(x, y) or a nonconstant speed S(t).

A more general, but prudent remark that should be made, is that the com-
parison of mathematical results with observation from the field remains to be a
delicate task. We did not attempt to estimate the magnitude of parameters, let
alone the values of the parameters themselves, from field data. The difficulties
related to this data validation are also discussed in [144]. Of course, this makes it
difficult to distinguish which of our conclusions drawn are relevant to the natural
system it applies to, and which are interesting for the mathematical audience.
Especially in the case of stability, it is not easily identified whether stability
should indeed be tested against perturbations with all possible transverse wave
numbers. Moreover, case (vi) of Theorem 5.4.3 is only valid for b / 0.048. It is
not clear if this can be regarded as a valid result if b is assumed to be O(1) with
respect to δ. A necessary continuation of this research should therefore analyze
data, to confirm or reject the mathematical theory.

Finally, it should be explicitly noted that our analysis relies heavily on the
scaling regimes. The clear advantages of this asymptotic approach is that we can
explicitly determine the existence and stability regimes. The major drawback is,
however, that we were not able to capture all types of stripe patterns. This could
also be an explanation for the fact that we do not recover the stability results of
[143], in which 2D-stable stripe patterns were reported for (a slightly rescaled
version of) system (5.2) with large slopes. These large slopes may be described
by parameters outside the triangular regime defined by assumptions A1–A3, and
therefore cannot be fully understood by our analysis. However, since this [143] is
to our awareness the first mathematical result in the literature that states that
singular, far-from-equilibrium stripes may be stable, this challenging problem is
intriguing, [42, 118]. Solving it requires a new mathematical approach that goes
beyond the currently developed method for reaction-advection-diffusion systems.
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This is the topic of ongoing research.
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Samenvatting

Patronen in natuurlijke systemen

Zoals in de Preface van dit proefschrift al werd betoogd, kan de wiskundige
een belangrijke rol spelen in het aanpakken van de globale uitdagingen die de
groeiende wereldbevolking met zich meebrengt. Door de gestructureerde aanpak
van een wiskundige worden vraagstukken namelijk ontdaan van onnodige details,
waardoor deze dikwijls beter te beantwoorden zijn. Voor een dergelijke aanpak is
interdisciplinaire samenwerking echter cruciaal. In veel projecten in de toegepaste
wiskunde wisselen ecologen, biologen, natuurkundigen of scheikundigen ideeën uit,
waardoor de wiskunde steeds meer gëıntegreerd raakt in andere wetenschappen.
Hiermee is eigenlijk de deelwetenschap van de toegepaste wiskunde geboren.

Een veelgebruikte wiskundige vorm om natuurlijke fenomenen mee te beschri-
jven is de differentiaalvergelijking, die beschrijft hoe een bepaalde grootheid
verandert met het verstrijken van, bijvoorbeeld, de tijd. Binnen de toegepaste
wiskunde richt patroonformatie zich op oplossingen van stelsels van zulke dif-
ferentiaalvergelijkingen die een zekere regelmaat vertonen. In een groot deel
van de gevallen gaat het hierbij om reactie-diffusiestelsels, waarbij patronen zich
tentoonstellen in de vorm van bijvoorbeeld pulsen, fronts of periodieke oplossin-
gen. Dit proefschrift is een bloemlezing van verschillende patroonoplossingen in
reactie-diffusiestelsels met een singuliere verstoring, die een natuurlijk fenomeen
beschrijven. De singuliere verstoring betekent in dit geval dat er in ieder van
deze patronen sprake is van meerdere schalen in tijd of ruimte. In de analyse en
studie van de verschillende modellen die besproken worden, worden uiteenlopende
methodes uit de verstoringsanalyse gebruikt. In deze Nederlandse samenvatting
wordt per hoofdstuk een beknopt overzicht gegeven van de resultaten.

5.8 Uitgebreide centrumvariëteitreductie

Het ontstaan van patronen in reactie-diffusiestelsels is al vaak bestudeerd, bijvoor-
beeld als het gevolg van een bifurcatie of middels een studie naar de amplitude
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van een patroon. Wat daarna gebeurt, de evolutie van dergelijke patronen, is
vaak minder begrepen, omdat de analyse onvermijdelijk gecompliceerder wordt.
Één van de klassieke manieren om patroonformatie te bestuderen is door middel
van centrumvariëteitreductie. Door middel van deze techniek kan het gedrag
van een differentiaalstelsel bestudeerd worden rondom een bifurcatie, door het
stelsel te projecteren op de deelvariëteit die geassocieerd is met de kern van de
differentiaaloperator. Deze methode geeft een lokaal resultaat, omdat één van de
voorwaarden voor de toepassing ervan is dat er een ‘spectraal gat’ bestaat, wat
ervoor zorgt dat de reductie daadwerkelijk lager-dimensionaal is. In Hoofdstuk
2 breiden we centrumvariëteitreductie uit naar het parameterregime waar die
voorwaarde op het spectrum net niet meer geldt. Dit creëert ook de gelegenheid
om eventuele secundaire bifurcaties van het primair ontspringende patroon te
vinden, waardoor we de evolutie van een patroon na diens formatie beter kunnen
begrijpen. De achtergrond waartegen we de methode ontvouwen is die van sin-
gulier verstoorde reactie-diffisiestelsels op een begrensd gebied met een homogene,
stationaire oplossing. Het (niet-essentiële) spectrum behorende bij een dergelijke
differentiaaloperator en achtergrondoplossing valt namelijk uiteen in twee verza-
melingen van discrete eigenwaarden, met verschillende asymptotische grootte.
Deze splitsing geeft precies de grip die nodig is om de klassieke centrumvariëteitre-
ductie uit te breiden. In wezen is deze klassieke reductie een speciaal geval van de
Galerkin methode, waarbij het stelsel geprojecteerd wordt op een oneindig aantal
Fourierrichtingen. Galerkins methode resulteert in een oneindig aantal gewone
differentiaalvergelijkingen die de amplitude van het patroon in verschillende
richtingen beschrijft. In het geval van een bifurcatie is het inzichtelijk welke
van deze amplitudevergelijkingen bepalend is voor het gedrag, namelijk precies
die welke geassocieerd worden met de centrumeigenwaarden. Wanneer er een
oneindig aantal eigenwaarden is met dezelfde asymptotische grootte, is het echter
niet te verwachten dat het relevante gedrag beschreven kan worden door een
laag-dimensionaal stelsel van gewone differentiaalvergelijkingen. Het gedrag van
elke afknotting van oneindig veel vergelijkingen kan immers drastisch veranderen
wanneer er slechts één vergelijking meer of minder beschouwd wordt. Een bekend
voorbeeld van dit fenomeen is de chaotische attractor in het drie-dimensionale
Lorenz stelsel.

Door een geschikte projectie te kiezen en de verstoringsparameter expliciet in
te zetten, laten we in Hoofdstuk 2 zien dat toch ook wanneer er een oneindig aantal
eigenwaarden is met vergelijkbare grootte, een laag-dimensionale reductie mogelijk
is. We laten zien dat het op deze manier mogelijk is om vanuit de spectraalanalyse
van een homogene, stationaire oplossing niet alleen een transkritische bifurcatie
te volgen, maar ook de evolutie van de ontspringende, niet-homogene oplossing.
Dit komt doordat het overgrote deel van de amplitudevergelijkingen in essentie
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exponentieel aantrekkend gedrag beschrijft, wat gemakkelijk te analyseren is.
In het stelsel dat we in eerste instantie analyseren blijkt die evolutie te vangen
in een reductie van twee dimensies, en binnen die reductie leiden we vervolgens
voorwaarden af die een Hopf-bifurcatie genereren. Dit betekent dat we door
middel van de spectraalanalyse van een triviaal patroon, we het ontstaan van
een niet-triviaal patroon kunnen beschouwen, alsmede oscillerend gedrag van
het patroon kort na diens ontstaan. Bovendien blijkt uit numerieke simulaties
dat deze bifurcaties en het laag-dimensionale gedrag blijven bestaan wanneer de
dynamica van het volledige PDV-stelsel beschouwd wordt (en dus alle oneindig
veel dimensies in principe gesimuleerd worden). Vervolgens is deze uitgebreide
centrumvariëteitreductie in Hoofdstuk 2 toegepast op verschillende andere stelsels
van reactie-diffusievergelijkingen, om te tonen hoe breed inzetbaar de ontwikkelde
methode is. In het bijzonder is hierbij een laag-dimensionale chaotische attractor
gevonden, die, anders dan de oorspronkelijke Lorenz attractor, blijft bestaan in
simulaties van het volledige PDV-stelsel.

Al met al kunnen we concluderen dat de uitgebreide centrumvariëteitreductie
ervoor zorgt dat niet alleen het ontstaan van patronen in een primaire bifur-
catie, maar ook diens evolutie volgens secundaire (of tertiaire, etc.) bifurcaties
bestudeerd kunnen worden op een laag-dimensionale variëteit. Doordat het
grootste deel van de amplitudevergelijkingen tot op leidende orde exponentieel
aantrekkend gedrag vertoont, is het helder te identificeren welke vergelijkingen
bepalend zijn voor de dynamica van het gehele systeem.

5.9 Stabiliteit van een bodemlaag van fytoplankton

De aanleiding voor het onderzoek dat gepresenteerd is in Hoofdstuk 2 was het
artikel [176], waarin de methode min of meer ontwikkeld werd voor een specifiek
model wat toegepast wordt op de dynamica van fytoplankton. Deze toepassing
vereist wat uitleg. Binnen de verschillende planktonsoorten onderscheidt fyto-
plankton zich doordat het zijn energie verkrijgt via fotosynthese. Het is het soort
plankton dat vergelijkbaar is met een plant, tegenover zoöplankton, wat meer
weg heeft van een beestje. Fytoplankton vormt de basis van de voedselketen
in de oceanen, maar is ook een belangrijke schakel in het aanpakken van het
broeikaseffect, omdat het op zeer effectieve wijze koolstofdioxide uit de atmosfeer
haalt en omzet in zuurstof.

Wiskundig gezien is fytoplankton interessant omdat observaties laten zien dat
de koloniën zich concentreren op een zeer specifieke diepte: ze zijn gelokaliseerd.
Dit is toe te schrijven aan de balans die zij trachten te vinden tussen de beschik-
baarheid van licht en voedingsstoffen, afkomstig van respectievelijk het waterop-
pervlak en de bodem. Wanneer het water waar het model betrekking op heeft
erg diep of troebel is, kan licht niet tot aan de bodem penetreren. Het plankton
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zal in dat geval de gunstige diepte zoeken waar zowel licht als voeding optimaal
verkrijgbaar zijn, en dat is niet aan de bodem. Dit fenomeen noemen we een diep
chlorofyl maximum, en is de focus van [176]. Wanneer het water echter niet erg
diep is, reikt het zonlicht tot aan de bodem, en aangezien de voedingsvoorziening
aan de bodem optimaal is, is de gunstigste diepte voor de planktonkolonie dan
wel op de bodem; er vormt zich dan een bodemlaag.

In Hoofdstuk 3 staat een reactie-diffusiestelsel centraal dat de interactie
tussen fytoplankton en diens voedingsstoffen beschrijft. Dit bewuste model is in
wiskundige context eerder geanalyseerd in [177] en [176]. In [177] is de lineaire
stabiliteit van de homogene oplossing (geen plankton, constante voedingsstof)
bestudeerd, en daar werd al ontwaard welke parameters verantwoordelijk zijn
voor het vormen van een diep chlorofyl maximum, dan wel een bodemlaag. Het
spectrum van de homogene oplossing verdeelt zich over twee verzamelingen,
en afhankelijk van de precieze parameters van het systeem is de eigenwaarde
die hoort bij een bodemlaag of een diep chlorofyl maximum het grootst. Dit
geeft precies aan welk van beide profielen in de eerste plaats zal ontstaan bij
het destabiliseren van de homogene oplossing. Numerieke continuatie van deze
bifurcaties heeft in [177] laten zien dat een diep chlorofyl maximum vrijwel direct
na ontspringen periodiek gaat trillen. In [176] wordt bewijs geleverd voor deze
numerieke conclusie door te laten zien dat de transkritische bifurcatie die hoort bij
de oorsprong van de gelokaliseerde oplossing, binnen een klein parametergebied
wordt opgevolgd door een (secundaire) Hopf bifurcatie. Eigenlijk wordt in [176]
dus een rudimentaire versie van uitgebreide centrumvariëteitreductie uitgevoerd.

Na de ontplooiing van de precieze methodiek die aan de resultaten van [176]
ten grondslag ligt, in Hoofdstuk 2, wordt deze reductie in Hoofdstuk 3 toegepast
op het fytoplanktonmodel. In eerste instantie wordt de methode nog verder
verfijnd. In plaats van een reductie naar twee niet-triviale, en oneindig veel
triviale amplitudevergelijkingen (gewone differentiaalvergelijkingen), presenteren
we deze reductie in Hoofdstuk 3 in een equivalente vorm waarbij een gewone dif-
ferentiaalvergelijking aan één lineaire partiële differentiaalvergelijking gekoppeld
is. Deze lineaire PDV blijkt oplosbaar, waardoor de reductie helder gepresenteerd
en toegepast kan worden. In eerste instantie herontdekken we in Hoofdstuk 3 kort
de resultaten uit [176]. Dat wil zeggen, we vinden de transkritische bifurcatie
waarbij een diep chlorofyl maximum ontstaat, en de vrijwel direct daaropvolgende
Hopf bifurcatie die maakt dat de planktonconcentratie gaat oscilleren.

Vervolgens bekijken we het parameterregime waarin een bodemlaag ontspringt
in plaats van een diep chlorofyl maximum en analyseren we de stabiliteit van deze
ontstane bodemlaag. Anders dan in het geval van een diep chlorofyl maximum,
tonen we met behulp van de uitgebreide centrumvariëteitreductie aan dat een
stationaire bodemlaag niet kort na zijn ontstaan kan destabiliseren.
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In plaats daarvan blijft het patroon bestaan als stationaire oplossing van het
systeem, in elk geval binnen het parameterregime waarin onze reductie toepasbaar
is. Dit gedrag is bovendien bevestigd door middel van numerieke simulaties.
Toch blijkt de analyse van de bodemlaag significant anders dan die van het diep
chlorofyl maximum, omdat er hogere orde termen nodig zijn in de asymptotische
analyse.

5.10 Tumorspreiding met een Allee effect

Binnen de ecologie is het Allee effect een bekend fenomeen. Het beschrijft de
groeidrempel van een populatie; de populatie kan zich pas voortplanten wanneer
er genoeg individuen zijn. Er zijn verschillende verklaringen voor dit Allee effect,
zoals de noodzaak voor genetische diversiteit, het niet kunnen vinden van een
partner, of te weinig bescherming van elkaar tegen roofdieren. Het Allee effect
is al in vele disciplines een bekend begrip, maar dat dit ook aanwezig zou zijn
in de groei van sommige tumoren is een vrij recent inzicht. Desalniettemin is
het intüıtief heel goed te motiveren, alleen al door het feit dat kleine tumoren
minder gevaarlijk worden geacht dan grote.

We richten ons in Hoofdstuk 4 op hoe tumorcellen de omgevende gezonde
cellen infiltreren. Het model dat gebruikt wordt neemt aan dat dit gebeurt via
hapto- of chemotaxis, dóór de extracellulaire matrix; de voorkeursrichting van de
tumorcellen om naartoe te groeien, is die van de gezonde cellen. We simplificeren
het model tot één oneindig lange ruimtelijke dimensie en wiskundig gezien is
zo’n doordringend front van tumorcellen een lopende golf met verschillende
randvoorwaarden aan beide kanten van het domein. Aangezien de tumoren waar
we ons op richten een heel duidelijke rand hebben, zou de overgang tussen de
twee gebieden scherp moeten zijn. Zo’n snelle transitie is een fenomeen dat je
vaak ziet bij singulier verstoorde problemen, dus er is in ons model ook een kleine
parameter aanwezig.

Binnen kankeronderzoek is het vrijwel onmogelijk om een modelkeuze te
maken die onbetwist blijft. Onze keuze viel op een model dat voorgesteld is in
[125] en verder ontwikkeld is in [67] vanwege de relevante ervaring die we hiermee
al hadden en de goede vergelijkingsmogelijkheden. Evenwel is het reactie-advectie-
diffusiestelsel uit [67] aangepast om het Allee effect te bestuderen, tegenover het
oorspronkelijke model waarin de voortplanting van tumorcellen gemodelleerd
is door middel van een logistische groeiterm. Dit houdt in dat de populatie
groeit via een kwadratisch verband totdat zij zo groot is dat de draagkracht
van het ecosysteem bereikt is. Wanneer er sprake is van een groeidrempel,
zou de voortplantingsterm van de populatie negatief moeten zijn bij een kleine
populatiedichtheid. We modelleren het Allee effect daarom met een kubische
term.
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In [67] is bewezen dat het model met logistische groei vier types lopende
golfoplossingen heeft. De soorten worden van elkaar onderscheiden door de
snelheid van de transitie van tumorisch naar gezond gebied, maar ook door de
dichtheid van tumorcellen in het gezonde gebied verder weg van deze transitie.
Wegens de eerdergenoemde scherpe rand van sommige tumoren, worden niet alle
types die geconstrueerd zijn in [67] relevant geacht. Toch blijken drie van de vier
soorten oplossingen zichtbaar in numerieke simulaties van het PDV-model, wat
een indicatie is voor de stabiliteit van deze lopende golven.

Het toevoegen van het Allee effect in het model heeft een tweevoudig resultaat.
Enerzijds laten we zien dat alleen de meest relevante van de verschillende types
oplossingen uit [67] blijft bestaan in de aanwezigheid van een groeidrempel, terwijl
de andere types niet meer bestaan. Anderzijds, bevestigen we de experimentele
resultaten die eerder niet te verklaren waren met een model van deze vorm. Dit
betreft de relatie tussen de invasiesnelheid van een tumor en de dichtheid van
collageen (het belangrijkste onderdeel van de extracellulaire matrix). Die relatie
blijkt niet monotoon te zijn, maar een duidelijk maximum te hebben. Deze
bifasische relatie is ook aangetoond in het model dat we beschouwen in Hoofdstuk
4, en was geen kenmerk van het logistische groeimodel.

De methoden die we gebruiken in dit hoofdstuk zijn afkomstig uit de ge-
ometrische verstoringsanalyse en canard theorie, wat wordt toegelicht in sectie
1.4.

5.11 Vegetatiepatronen met een lange golflengte

De laatste natuurlijke toepassing van wiskundige modellen die beschouwd wordt
in dit proefschrift speelt zich af in semi-droge gebieden van de aarde. Het is een
breed geaccepteerd feit dat, onderhevig aan klimaatverandering, de woestijnen
zich langzaam uitbreiden. Dit is problematisch omdat woestijngrond onvruchtbaar
is voor de verbouwing van de gewassen die nodig zijn voor het voeden van de
continu groeiende maatschappij. Omdat tijdens de overgang van vruchtbaar
naar kale grond allerlei vegetatiepatronen geobserveerd zijn is dit bij uitstek een
natuurfenomeen waar wiskundigen zich over kunnen buigen. De patronen die
geobserveerd worden zijn grofweg in te delen in drie groepen: strepen, stippen,
en labyrinthpatronen. In het geval dat het grondoppervlak licht glooiend is en er
geen sprake is van begrazing, zijn het vooral de streeppatronen die geobserveerd
worden. Deze strepen vormen zich parallel aan de hoogtecontouren van de helling,
en migreren langzaam omhoog. Deze beweging kan verklaard worden door het
feit dat er een wateroverschot bovenaan de helling is, waardoor een gewas zich
aan die zijde beter kan voorplanten, terwijl het watertekort onderaan de helling
ervoor zorgt dat vegetatie afsterft. Dit specifieke fenomeen bestuderen we in
Hoofdstuk 5.
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Het model dat geanalyseerd wordt is wederom van het reactie-advectie-
diffusietype en modelleert de interactie tussen water- en vegetatiedichtheid op
gebieden met een helling. Het model heet het gegeneraliseerd Klausmeier-Gray-
Scott (gKGS) model, omdat het in een zeker opzicht lijkt op twee voorgangers:
het Klausmeier model [88] en het Gray-Scott model [62]. De eerste modelleert
water zonder diffusie, en de tweede modelleert een gebied zonder helling. Door
beide mechanismen samen te voegen kunnen meer aspecten van dit natuurlijke
fenomeen beschreven worden dan in ieder van de individuele modellen doet.

Het ruimtelijke domein waarop de analyse van Hoofdstuk 5 zich afspeelt
is twee-dimensionaal. Maar aangezien strepen triviaal uitgebreid zijn in één
richting, is het existentieprobleem van streepoplossingen in het gKGS model in
essentie één-dimensionaal. De streeppatronen zoals ze geobserveerd worden in
de woestijn zijn daarom wiskundig te beschrijven als een periodieke herhaling
van bijna gelokaliseerde pulsen van vegetatie, die met een constante snelheid
voortbewegen. Net als in het vorige hoofdstuk, gaat het hier dus om een lopende
golfoplossing.

Een studie naar het bestaan van dergelijke oplossingen en diens stabiliteit was
in het geval van vlak terrein al gedaan in [34, 39, 36], met het Gray-Scott model.
De technieken die gebruikt zijn in Hoofdstuk 5 zijn grotendeels afkomstig van
deze referenties, maar dienden in sommige gevallen sterk aangepast te worden.
Een cruciaal verschil tussen beide modellen is namelijk het gebrek aan symmetrie
in het gKGS model. Hierdoor zijn een groot deel van de argumenten voor
de bewijzen ongeldig. In Hoofdstuk 5 hebben we daarom andere technieken
ontwikkeld en toegepast om ook zonder symmetrie stellingen te kunnen bewijzen
over het bestaan van streeppatronen.

Het moet gezegd worden dat in dit hoofdstuk, waarin de resultaten sterk
afhankelijk zijn van asymptotische argumenten, een tamelijk specifieke keuze is
gemaakt voor de parameterruimte waarin de patronen zich vormen. Ook deze
schalingsafhankelijkheid is gepresenteerd in Hoofdstuk 5.

Nadat eerst de existentie van streeppatronen met een lange golflengte is
afgeleid, beschouwen we de stabiliteit van deze patronen. De numerieke resul-
taten uit [143], die aantonen dat strepen stabiel kunnen zijn tegen verstoringen
(zoals je die tegenkomt in de natuur), gaf aanleiding om te verwachten dat de
geconstrueerde patronen van Hoofdstuk 5 dat ook zouden zijn. Het feit dat
streeppatronen instabiel zijn op vlak terrein (wat volgt uit eerdere resultaten
in het Gray-Scott model, [143]) maar stabiel worden wanneer het terrein glooit,
is bovendien te motiveren vanuit het feit dat het ene geval niet, en het andere
wel geobserveerd wordt. Toch tonen we in Hoofdstuk 5 aan dat, in het schal-
ingsregime waar we ons tot beperkt hebben, verstoringen in de transversale
richting van het patroon groeien. Met andere woorden; de streeppatronen uit dat
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hoofdstuk zijn, wanneer beschouwd in twee ruimtelijke dimensies, instabiel. De
meest aannemelijke verklaring hiervoor is de restrictie die opgelegd wordt door
de verstoringsanalyse; de parameters waarmee numerieke simulaties gedaan zijn
in [143] vallen wellicht niet in het door ons toegestane parametergebied.

Toch is de kous hiermee nog niet af. Hoewel twee ruimtelijke dimensies
overduidelijk een betere beschrijving geven van de realiteit, zijn de patronen in
één dimensie (dus zonder de triviale uitbreiding) in wiskundig opzicht zeker ook
interessant. Deze patronen blijken wel stabiel te kunnen zijn, en in Hoofdstuk 5
wordt een precies overzicht gegeven van de mogelijke bifurcaties.

De methoden die gebruikt worden in dit hoofdstuk zijn geometrische verstor-
ingsanalyse, alsmede een Evans functie analyse waarbij het meerschalige karakter
van dit probleem uitgebuit wordt.
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