
J Nonlinear Sci (2013) 23:39–95
DOI 10.1007/s00332-012-9139-0

Rise and Fall of Periodic Patterns for a Generalized
Klausmeier–Gray–Scott Model

Sjors van der Stelt · Arjen Doelman · Geertje Hek ·
Jens D.M. Rademacher

Received: 4 December 2011 / Accepted: 22 June 2012 / Published online: 19 July 2012
© Springer Science+Business Media, LLC 2012

Abstract In this paper we introduce a conceptual model for vegetation patterns
that generalizes the Klausmeier model for semi-arid ecosystems on a sloped ter-
rain (Klausmeier in Science 284:1826–1828, 1999). Our model not only incorporates
downhill flow, but also linear or nonlinear diffusion for the water component.

To relate the model to observations and simulations in ecology, we first consider
the onset of pattern formation through a Turing or a Turing–Hopf bifurcation. We per-
form a Ginzburg–Landau analysis to study the weakly nonlinear evolution of small
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amplitude patterns and we show that the Turing/Turing–Hopf bifurcation is supercrit-
ical under realistic circumstances.

In the second part we numerically construct Busse balloons to further follow the
family of stable spatially periodic (vegetation) patterns. We find that destabilization
(and thus desertification) can be caused by three different mechanisms: fold, Hopf
and sideband instability, and show that the Hopf instability can no longer occur when
the gradient of the domain is above a certain threshold. We encounter a number of
intriguing phenomena, such as a ‘Hopf dance’ and a fine structure of sideband in-
stabilities. Finally, we conclude that there exists no decisive qualitative difference
between the Busse balloons for the model with standard diffusion and the Busse bal-
loons for the model with nonlinear diffusion.

Keywords Reaction–diffusion systems · Nonlinear diffusion · Bifurcation ·
Periodic patterns · Continuation · Ginzburg–Landau · Busse balloons

Mathematics Subject Classification 35K57 · 35B32 · 35B36 · 35Q56 · 34L16

1 Introduction

In semi-arid ecosystems, a striking example of pattern-formation is found. After the
first discovery in the 1950s in sub-Saharan Africa by aerial photographs (Macfadyan
1950a, 1950b), this type of patterned vegetation has been subject of various studies.
As semi-arid ecosystems often mark the landscape between deserts or dry steppes
on the one side and greener ecosystems on the other side, analysis of their vegetated
patterns may help to understand desertification processes. This is a major reason why
ecologists have performed much fieldwork (cf. Elwell and Stocking 1976; Kelly and
Walker 1976; Rietkerk et al. 2000; Kéfi et al. 2007b), modeling and simulations (cf.
Thiery et al. 1995; Levefer and Lejeune 1997; van de Koppel et al. 2002; Rietkerk
et al. 2004; Kéfi et al. 2007a) in the past decades.

A major goal has been to examine whether and how the presence of patterned
vegetation indicates proximity to a so-called catastrophic shift—a sudden drop to
desert state. The current work is inspired by bifurcation-type diagrams in Rietk-
erk et al. (2002, 2004) which indicate that the catastrophic shifts most likely occur
for long-wavelength patterns with very localized vegetation. In mathematical terms,
these would be pulse patterns with narrow, high peaks and large interpulse regions.
This suggests that the catastrophic shifts may be related to (homoclinic bifurcations
of) single-pulse patterns. See Doelman et al. (1997) for examples for the Gray–Scott
equation.

Various simulations of a three-component reaction–diffusion equation model-
ing plant-water-interactions (Rietkerk et al. 2002) show existence of stable large-
amplitude vegetation patterns for parameter choices close to a Turing–Hopf bifurca-
tion. As such bifurcations give rise to small-amplitude patterns, the question arises
how these large-amplitude patterns are related to the bifurcation. One possibility
would be that the Turing–Hopf bifurcation is subcritical, so that patterns that arise
at the bifurcation are unstable and would hence not be observed (in simulations).
Other, larger amplitude, stable patterns could bifurcate from these initially unstable
patterns and could be the ones found in simulations.
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The simplest model used to describe semi-arid ecosystems is the Klausmeier
model (Klausmeier 1999). In the present paper, we extend this model and analyze
whether it would allow for subcritical Turing–Hopf bifurcations. This is, however,
only our first step: the core of the paper concerns our study for which parameter con-
ditions (stable) vegetated patterns exist as solutions to the model. The emergence of
small amplitude periodic patterns (‘Ginzburg–Landau analysis’) and the stability re-
gion of general periodic patterns in parameter space (‘Busse balloons’) play a major
role in our analysis. Moreover, to our knowledge, we present the first Ginzburg–
Landau analysis and Busse-balloon computations for systems with nonlinear diffu-
sion. In particular, our results significantly add to the very sparse case studies of the
structure of Busse balloons, particularly in reaction–diffusion-type models.

1.1 Origin of the Model

Semi-arid ecosystems are ecosystems with an annual precipitation of 250–500 mm,
which are typically found at the edge of deserts. At the other side, greener ecosys-
tems such as grass savannas, montane forests and temperate broadleaf forests are
found. After the first report of patterned vegetation in sub-Saharan Africa (Mac-
fadyan 1950a, 1950b), such patterns have been reported in many semi-arid ecosys-
tems in Africa, the Americas and Australia. They are estimated to cover about
30 % of the emerging surface of the earth. The composition of the vegetation varies
wildly from one ecosystem to another and can comprise grass, scrubs, bushes or
trees (Levefer and Lejeune 1997; Macfadyan 1950b). Also, the occurrence of these
patterns is not specific to the type of soil (Levefer and Lejeune 1997). There-
fore, attempts have been made to describe them with models that focus on other
possible mechanisms, most notably plant–plant interactions (Levefer and Lejeune
1997) or plant–water interactions (Klausmeier 1999; HilleRisLambers et al. 2001;
Rietkerk et al. 2002).

Early attempts to formulate a model along these lines use cellular automata
(Thiery et al. 1995) or mean field models (Levefer and Lejeune 1997). In 1999, C.A.
Klausmeier was the first to model the dynamic interplay between surface water and
vegetation by a reaction–(advection–)diffusion system (Klausmeier 1999). He intro-
duced a conceptual 2-component model to describe patterns in semi-arid ecosystems,
the components representing water u and biomass/vegetation v. In unscaled form, the
model he introduced reads{

ut = k0ux + k1 − k2u − k3k5uv2;
vt = dvvxx − k4v + k5uv2,

(1.1)

where u(x, t), v(x, t) : R × R+ → R and ki ≥ 0, i = 0, . . . ,5, dv ≥ 0. The flow of
water ut is assumed to be governed by advection caused by the slope of the area,
modeled by k0ux , a constant precipitation rate k1, an evaporation rate that is linear
in the amount of water −k2u, and an infiltration feedback, modeled by −k3k5uv2. It
assumes that the change of biomass is controlled by a diffusive spread of biomass,
modeled by a diffusion term dvvxx , a linear natural death rate −k4v, and the infiltra-
tion feedback k5uv2, which has a positive effect on the vegetation. Since the spread
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of biomass occurs on a much slower time scale than the advection of surface water,
it is natural to assume dv � k0. The equilibrium v = 0, u = k1/k2 corresponds to the
desert. Though the model is simplistic in nature, it is able to capture essential features
of semi-arid ecosystems, such as the emergence of patterned vegetation.

Klausmeier’s original model (Klausmeier 1999) assumed two-dimensional spatial
variation in x and y of both biomass v and water u. In this article, we focus on its
one-dimensional dynamics by assuming a constant variation in the direction of the
spatial y-variable. We also assume that both u and v vary on an infinite domain R

instead of a bounded domain [0,L] with L ∈ (0,∞). This assumption is natural,
since the scale of the observed patterns is very small compared to the size of the
domain (cf. Deblauwe et al. 2008; HilleRisLambers et al. 2001; Klausmeier 1999;
Macfadyan 1950a, 1950b; Rietkerk et al. 2002 and the references therein).

Klausmeier’s model (1.1) assumes the existence of some slope or gradient that lets
the water flow downhill and the growing vegetation migrate uphill. However, patterns
have been observed as well in semi-arid ecosystems without a slope (Macfadyan
1950a, 1950b; White 1970). In order to model the spread of water on a terrain without
a specific preference for the direction in which the water flows, we extend the model
(1.1) by adding a term du(u

γ )xx for a priori possibly nonlinear diffusion. We thus
obtain {

ut = du

(
uγ

)
xx

+ k0ux + k1 − k2u − k3k5uv2;
vt = dvvxx − k4v + k5uv2,

(1.2)

where it is assumed that γ ≥ 1. Since the spread of biomass occurs on a much
slower scale than the (nonlinear) diffusion of water, it is again natural to assume
0 < dv � du. For ecosystems without a slope, we set k0 = 0. In this article we mainly
focus on γ = 1 or γ = 2. The choice γ = 1 simplifies the spread of water to linear
diffusion, whereas γ = 2 is based on a less (over)simplified way to model the motion
of water—see Remarks 1 and 2. Of course the present generalization of Klausmeier’s
model still is a conceptual model—only the basic mechanisms are taken into account
and these are modeled in a highly simplified fashion.

In order to reduce the number of parameters, we rescale the equations. We set

U = k2

k1
u; V = k2k3

k1
v, (1.3)

and further

T = k2
1k5

k2
2k3

t; X =
[
du

k3

k5

(
k1

k2

)γ−3]− 1
2

x (1.4)

to obtain {
Ut = U

γ
xx + CUx + A(1 − U) − UV 2,

Vt = δ2σ Vxx − BV + UV 2,
(1.5)

with

A = k2
k2

2k3

k2
1k5

; B = k4
k2

2k3

k2
1k5

; C = k0
k2

2k3

k2
1k5

[
du

k3

k5

(
k1

k2

)γ−3]− 1
2



J Nonlinear Sci (2013) 23:39–95 43

Fig. 1 A schematic picture of the GKGS-model. On the top line, the models without advection (C = 0) are
depicted. These models generate symmetric Turing patterns that are modulated according to a real GLE.
On the bottom line, the models with a nontrivial advection rate C > 0 are depicted. For these models, the
appearance of the traveling periodic patterns is described by a complex GLE. (See Sect. 2.4)

and

δ2σ = dv

du

(
k2

k1

)γ−1

(σ > 0).

Here 0 < δ � 1, since 0 < dv � du. Notice that there is a redundancy in the intro-
duction of δ > 0 in δ2σ , which will be clarified in Sect. 2. The system parameters
A, B , C, and γ are chosen according to the characteristics of the ecosystem under
study. In particular, ecosystems without a slope are by setting C = 0 and ecosystems
on a sloped terrain are modeled by setting C �= 0. We may view C as a parameter that
measures the rate of advection, A as a parameter that controls the precipitation and
B as a parameter that describes the extinction rate of the biomass.

It is naturally to assume that C and B are constant and to vary A—as is also typi-
cally done in the Gray–Scott model (see Morgan et al. 2000). This change in A may
cause desertification. Throughout this paper, we therefore consider A as our major
parameter—see Remark 3. A priori, there is no reason to assume that the parameters
A, B , and C are O(1) with respect to δ; in fact, the relative magnitudes of A, B , and
C will play a crucial role in the upcoming analysis (see also Morgan et al. 2000).

The above rescaling is motivated by the fact that equation (1.5) reduces to the
well-studied Gray–Scott model if we set C = 0 and γ = 1 (see Chen and Ward 2009;
Doelman et al. 1997; Morgan et al. 2000 and the references therein). We refer to
the equations in (1.5) as the Generalized Klausmeier–Gray–Scott model or, for short,
GKGS-model. By either setting γ = 1 or γ > 1 and either C = 0 or C > 0, the
GKGS-model comprises four types of equation. A schematic picture of the four
classes of the GKGS-system is given in Fig. 1. Klausmeier’s model (albeit in a dif-
ferent scaling than in Klausmeier (1999)) is derived if we set du = 0 or, somewhat
artificially, γ = 0. However, his model can also be derived as a limit case for C → ∞
in a proper scaling of the GKGS-model (see Sect. 2.6).

Remark 1 In the formulation of the Klausmeier model in Klausmeier (1999), the au-
thor does not explicitly distinguish between surface water, i.e. water on top of the
soil, and soil water, water penetrated into the soil. In later, more extended models,
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this distinction indeed has been made—see for instance Gilad et al. (2004), HilleRis-
Lambers et al. (2001), Rietkerk et al. (2002) and the references therein. For both
possible interpretations—u(x, t) as surface water or as soil water in (1.2)—a linear
diffusion term, i.e. γ = 1, for the spread of water is possible, but strongly simplified.
In Gilad et al. (2004), it is deduced by a shallow water argument that for a thin layer
of water on top of the soil, u(x, t) diffuses in a nonlinear fashion (more precisely:
the arguments in Gilad et al. (2004) imply that γ = 2 in (1.2)). Since the soil is in
general a porous medium, flow of (soil) water through this medium naturally is of
porous media type, i.e. of nonlinear diffusion type as in (1.2). Again, the most typ-
ical nonlinear value of γ is 2, although in principle other values of γ (≥1) are also
possible—see for instance Fowler (1997). Note that the ‘infiltration feedback’ term
k3k5uv2 is modeled as a negative effect in (1.1): this is an (implicit) indication that
u(x, t) should be interpreted as surface water in Klausmeier (1999).

Remark 2 For γ �= 1 system (1.2) turns from a standard, semilinear parabolic,
reaction–diffusion system into a quasilinear one, which is mathematically much less
convenient to handle. However, since the solutions we consider in this paper have
uniformly positive u-values, we stay in the well-behaved parabolic regime. A suit-
able abstract framework of well-posedness and nonlinear semi-groups in quasi-linear
problems that in principle covers equations of the type (1.2), (1.5) can be found, e.g.,
in Amann (1990), Kato (1975). Details will appear elsewhere (Siero and Rademacher
2012).

Remark 3 The expression for A depends on the rainfall parameter k1 via A ∼ k3
2/k2

1 .
At first sight, this may seem contradictory, since in the rescaled model (1.5) we argued
that A acts as a parameter that measures the rainfall. Moreover, the appearance (and
subsequent disappearance) of vegetation patterns is initiated by decreasing A, which
at first sight seems to correspond to increasing the rainfall parameter k1. However, we
have seen that B in (1.5) is proportional to k2

2/k2
1 . Thus, the assumption that B and kj ,

j = 3,4,5, are constant, implies that k1 ∼ k2, and therefore A ∼ k3
2

k2
1

∼ k3
1

k2
1

= k1.

Hence, we see that A is directly proportional to the rainfall k1 (under the assump-
tion that B is constant). It should also be noted that exactly the same analysis as is
done in this paper by varying A in (1.5) (and keeping all other parameters fixed), can
also be performed directly on the unscaled equation (1.2), in which one can then—for
instance—only vary the rainfall parameter k1.

1.2 Outline of the Analysis and Conclusions

The GKGS-model (1.5) has the same three spatially homogeneous background states
as the Gray–Scott model for A > 4B2 (in fact, the homogeneous dynamics of both
systems is identical):

U0 = 1, V0 = 0,

U± = 1

2A

(
A ∓

√
A2 − 4AB2

)
, V± = 1

2B

(
A ±

√
A2 − 4AB2

)
.

(1.6)
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The state (U0,V0) = (1,0) represents the desert (since V0 ≡ 0). At Asn = 4B2, the
equilibria (U+,V+) and (U−,V−) collapse and disappear in a fold, or saddle node
bifurcation. Hence, for A < Asn, the desert (U0,V0) = (1,0) is the only background
state, while for A > Asn, we have three background states, of which two represent
homogeneously vegetated states.

This paper is a first step in the analysis of GKGS model for vegetation patterns.
In Sects. 2.1–2.4, we describe analytically the emergence of spatially periodic veg-
etation patterns by a Turing or a Turing–Hopf bifurcation of the stationary state
(U+,V+) by deriving a (complex) Ginzburg–Landau Equation (GLE) for each of
the four classes in Fig. 1. The derivation of the GLE as modulation equation for
Turing patterns in reaction–diffusion equations is a well-known, but certainly non-
trivial procedure (see for instance Morgan et al. 2000 for the Turing bifurcation in
the Gray–Scott model). Here we show that this procedure can also be applied to
reaction–diffusion–advection equations with nonlinear diffusion—to our knowledge
this has not been shown before in the literature (see Sect. 2.4).

We derive that the Turing–Hopf bifurcation is supercritical for ecologically rel-
evant parameter combinations in each of the four classes, regardless the values we
choose for B and C. This answers one of our initial questions: for realistic parameter
values the simple Klausmeier model cannot account for a subcritical Turing bifurca-
tion, not even in an extended form with (nonlinear) diffusion. It appears that for γ = 1
(normal diffusion), the Turing(–Hopf) bifurcation is always supercritical, regardless
the value of the advection rate C. For the Gray–Scott case C = 0, γ = 1, this was
already known (Morgan et al. 2000). However, we find that the Turing(–Hopf) bifur-
cation becomes subcritical if γ > γss ≈ 13. Though it does not occur at a relevant
parameter value for the ecology, this is an interesting mathematical observation: the
nonlinearity of the diffusion is able to trigger a change from super- to subcriticality
while a change of the advection rate C is not.

Related to the Ginzburg–Landau analysis, we have evaluated the associated
Benjamin–Feir–Newell criterion (Aranson and Kramer 2002 and Sect. 2.4). Our anal-
ysis shows that there always exists a band of stable periodic patterns near a Turing(–
Hopf) bifurcation for ecologically relevant parameter combinations. Note that this is
quite remarkable, given the dimensions of the parameter space.

We also show that the Klausmeier model appears as a limit case of the GKGS-
model for large C and derive an explicit Ginzburg–Landau equation for the Klaus-
meier model that shows the Turing–Hopf bifurcation of the Klausmeier system to be
supercritical as well.

The Ginzburg–Landau analysis is weakly nonlinear in the sense that it can only be
applied if the GKGS-system is close to the critical parameter value A∗ for A at which
a Turing–Hopf instability takes place, that is, if |A − A∗| � 1. In the second part of
this paper (Sect. 3), we extend the analysis to more general parameter values A. By
expanding recently developed numerical techniques for the continuation of instabil-
ities of periodic patterns (Rademacher et al. 2007), we present a rather complete
picture of all instabilities that spatially periodic patterns of our reaction–advection–
diffusion models can undergo for all relevant ecological parameters (cf. Rademacher
and Scheel 2007). In particular, we present complete regions in (A,κ)-space (here
κ is the wavenumber of the periodic vegetation pattern) where stable periodic pat-
terns exist. Such regions are called Busse balloons (see Sect. 3 for a more precise
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Fig. 2 (a) Busse balloon for B = C = 0.2 and γ = 1. (b) Busse balloon for B = C = 0.2 and γ = 2.
Notice that the scale of the axes in both pictures is the same. In both cases, the boundary consists of a
branch of sideband instabilities that is crossed by a curve of Hopf instabilities both on the left as well as
on the right. Somewhat surprisingly, the only difference between the Busse balloons for γ = 1 (a) and
γ = 2 (b) is of a quantitative nature

definition)—see Fig. 2 for some first examples. In each of the four classes in Fig. 1,
we construct a Busse balloon for a number of relevant parameter combinations, giv-
ing a complete overview of all the instabilities that periodic patterns can undergo as
a function of A (given that the other parameters are fixed).

We find that periodic patterns destabilize in three different types of instability: fold
(only if C = 0), Hopf and sideband. (Note that the fold cannot be a robust destabiliza-
tion mechanism in non-reversible systems (Rademacher and Scheel 2007).) Some-
what surprisingly, we find that the characteristics of the Busse balloon do, contrary to
the type of Turing bifurcation, depend heavily on C and not on γ (for its most realistic
values 1 and 2). See Figs. 2(a) and (b). We mention our most important results. Firstly,
we show the existence of the so-called Hopf-dance for C = 0, both for the case of
linear as well as for nonlinear diffusion; note that the Hopf dance has been elabo-
rately described in Doelman et al. (2012). If C �= 0, the two intertwining branches of
Hopf instabilities are replaced by a ‘curtain’ of Hopf instabilities. Our second main
observation is that this Hopf curve moves out of the Busse balloon in an intriguing—
and certainly non-understood fashion. Thirdly, we find that—independent of the type
of destabilization (Hopf/sideband), the homoclinic (κ = 0) pattern always is the last
one to become unstable. This corroborates Ni’s conjecture (Doelman et al. 2012;
Ni 1998) and generalizes it significantly to nonreversible systems with nonlinear dif-
fusion. Fourthly, for relatively small values of C there exists a rich and unexplained
fine structure for the sideband instabilities (mostly in the unstable region). Finally,
once more we note explicitly the remarkable fact that the differences between a
Busse balloon for γ = 1 and a Busse balloon for γ = 2 are only quantitative: the
step from linear diffusion (γ = 1) to nonlinear diffusion with γ = 2 triggers no qual-
itative changes in the structure of the Busse balloon.

Remark 4 The mathematical approach to equations of Klausmeier–Gray–Scott type
of the present work is related to several papers in the literature. First of all, in Sherratt
(2005, 2010), Sherratt and Lord (2007) various aspects of the ‘classical’ Klausmeier
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model—for instance, the linear stability analysis of its ‘trivial patterns’—are studied.
However, the weakly nonlinear stability analysis of the onset of pattern formation
in the Klausmeier model as presented in section 2.6 is new in the literature on this
model. In Kealy and Wollkind (2012), a nonlinear stability analysis in a Klausmeier-
type model is presented. In fact, in Kealy and Wollkind (2012) the advection term of
the Klausmeier model is replaced by a linear diffusion term. In our terminology, this
means that the Gray–Scott model is considered in that paper. In this sense, Kealy and
Wollkind (2012) strongly relates to Morgan et al. (2000). Finally, in Satnoianu et al.
(2001), Satnoianu and Menzinger (2000) spatially periodic patterns in Gray–Scott
type equations with an additional advection term are considered: a situation that is
similar to the lower-left side case of Fig. 1 (γ = 1, C > 0). Again, the linear mecha-
nism leading to—in our terminology—Turing–Hopf patterns is studied. However, it
is not followed by a weakly nonlinear Ginzburg–Landau analysis.

2 The Rise of Patterns

Before we embark upon a study of the onset of patterns in the GKGS-system, let
us introduce some terminology that will be used throughout the article. Reaction–
diffusion–advection systems like (1.5) naturally allow for spatially periodic solutions.
These spatially periodic patterns or wave trains are solutions u(x, t) that can be writ-
ten as u(x, t) = uper(κx + Ωt) and that satisfy uper(ξ) = uper(ξ + 2π). Here κ is
called the (nonlinear) wavenumber and Ω is the (nonlinear) frequency. A wave train
is called a background state or stationary state when both its wavenumber and fre-
quency are zero, i.e., when u(x, t) ≡ uper(0) for all x ∈ R, t ∈ [0,∞). It is called a
Turing pattern if its frequency is zero, i.e., when u(x, t) = uper(κx) for all x ∈ R,
t ∈ [0,∞): Turing patterns have standing profiles. A generic wave train has κ �= 0
and Ω �= 0 and will therefore have a traveling profile with velocity Ω/κ .

In this section we derive critical parameter values for which the stationary state
(U+,V+) 1.6 undergoes a Turing–Hopf instability and derive a leading order form
for 0 < δ � 1 of the GKGS-model (1.5) near the Turing–Hopf bifurcation. The sta-
tionary state (U−,V−) is always unstable, as can be readily checked. Subsequently,
we derive a Ginzburg–Landau equation for the slowly modulating amplitude of the
periodic pattern that appears at the Turing–Hopf instability. In order to employ a lead-
ing order analysis in (1.5) for 0 < δ � 1, we follow Morgan et al. (2000) and scale
the parameters by

A = aδα, B = bδβ and C = cδν, (2.1)

with α,β > 0, ν ∈ R and a, b, c = O(1) with respect to δ. The background state
(U+,V+) can then be written out to leading order in δ as

(U+,V+) =
(

b2

a
δ2β−α,

a

b
δα−β

)
+ h.o.t. (2.2)
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We notice that the two states (U±,V±) only exist if A ≥ Asn = 4B2, or equivalently,
a ≥ 4b2δ2β−α . Since δ is assumed asymptotically small, boundedness of a yields the
condition

2β − α ≥ 0, (2.3)

with equality allowed only if a ≥ 4b2.

2.1 The Turing and Turing–Hopf Instabilities

The linearized GKGS-system about the stationary state u+ = (U+,V+) can be writ-
ten abstractly as

ut = Duxx + Cux + ∂uF (u+;A,B)u =: L[∂x]u, (2.4)

with u = (U,V ), F(U,V ;A,B) := (A(1 −U)−UV 2,−BV +UV 2), D the matrix
defined by D = diag(γU

γ−1
+ , δ2σ ) and C the matrix defined by C = diag(C,0).

We consider the spectrum spec L[∂x] of the operator L[∂x] defined in (2.4) and
define the matrix M by

M(a, c, ik) :=
(

−γ (U+)γ−1k2 + icδνk − V 2+ − δαa −2bδβ

V 2+ −δ2σ k2 + δβb

)
. (2.5)

Notice that M(a, c, ik) = L[ik]. As can be seen by computing the Fourier transform
of (2.4) w.r.t. x, a complex number λ ∈ C belongs to the L2-spectrum of L[∂x] if
there exists a k ∈ R such that

d(λ, ik) := det
[

M(a, c, ik) − λ
] = 0. (2.6)

Equation (2.6) is called the (linear) dispersion relation of (1.5) about (U+,V+). We
refer to k as the (linear) wavenumber. It is associated to a Fourier mode of the per-
turbation of the background state (U+,V+). Recall that the nonlinear wavenumber κ

is the wavenumber of the bifurcating wave train itself, it should thus not be confused
with the linear wavenumber k of perturbations to the wave train. We can now make a
basic definition, analogous to Scheel (2003).

Definition 1 L[∂x] is called marginally stable with critical Fourier mode u0eik∗x

associated to the unique critical eigenmode iω∗, up to complex conjugation, if:

1. d(iω∗, ik∗) = 0.
2. d(iω∗, ik) �= 0 for all k �= ±k∗.
3. d(λ, ik) �= 0 for all k ∈ R and all λ ∈ C with λ �= iω∗ and Reλ ≥ 0.

Two possible spectral configurations of the background state (U+,V+) at marginal
stability are depicted in Fig. 3. Definition 1 does not provide an explicit scheme to
determine marginal stability. In practice, one uses the following necessary (though
a priori not sufficient) conditions to derive marginal stability of L with respect to
eigenfunction U0eik∗x and eigenvalue iω∗:

Reλ|k=k∗ = 0 and (2.7a)
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Fig. 3 The thick lines denote possible typical configurations of a spatially periodic perturbation of the
background state at marginal stability in the complex λ-plane. On the left, the spectrum near the origin is
real, as is typical for the (reversible) GKGS-model with C = 0. On the right, C �= 0

∂ Reλ

∂k

∣∣∣∣
k=k∗

= 0. (2.7b)

We call the instability a Turing–Hopf instability if the wavenumber and its associated
frequency of the eigenmode at marginal stability are nonzero, k∗ �= 0, ω∗ �= 0, and
we call the instability a Turing instability if the frequency of the eigenfunction at
marginal stability is zero, i.e., ω∗ = 0 and k∗ �= 0 (see Fig. 3). It will be confirmed in
Sects. 2.2 and 2.3 that (U+,V+) undergoes a Turing instability to Turing patterns if
C = 0 and a Turing–Hopf instability to generic wave trains if C �= 0.

2.2 Critical Parameters for the GKGS-Model with C = 0

First we derive the critical parameter a∗ and critical wavenumber k∗ at which the
stationary state (U+,V+) undergoes a Turing instability for the GKGS-model with
C = 0. For C = 0, the dispersion relation (2.6) can be written as

d(λ, ik) = det
[

M(a,0, ik) − λI
]

= λ2 − tr M(a,0, ik)λ + det M(a,0, ik). (2.8)

If Definition 1 for marginal stability holds, then the trace tr M(a, ik) = λ− + λ+
cannot be positive. Substitution of the leading order formulation for V+ yields

−γ δ(2β−α)(γ−1)

(
b2

a

)γ−1

k2 − a2

b2
δ2(α−β) − δαa − δ2σ k2 + δβb ≤ 0. (2.9)

Recall a, b > 0. For this inequality to hold, also at k = 0, it is needed that either
2(α − β) ≤ β or α ≤ β . Since the weakest of these conditions suffices, we impose

2α ≤ 3β. (2.10)

Notice that this condition is stricter than (2.3). We are now in the position to formulate
the following proposition concerning marginal stability.
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Proposition 1 Let C = 0, γ ≥ 1, and 0 < δ � 1, and define g := 3 − 2
√

2. The
background state (U+,V+) of (1.5) is marginally stable for σ , a = a∗, and k = k∗
satisfying

(2γ + 1)β − (γ + 1)α = 2σ

k2∗ = 1

2
(1 − g)bδ−2γβ+(γ+1)α

a
γ+1∗ = gγ b2γ+1,

(2.11)

to leading order in δ.

Notice that we recover Proposition 3.1 of Morgan et al. (2000) for the Gray–Scott
model if we set γ = 1.

Proof We first show that, as expected from the reversible symmetry for C = 0, an
instability always occurs through the origin so that it suffices to consider the simple
case λ = ω∗ = 0 at k = k∗.

Suppose that d(iω, ik) = 0 and note that M(a,0, ik) is real. According to (2.8)

Imd(iω, ik) = ω tr M(a,0, ik) = 0,

so that either ω = 0 (which means λ = 0) or tr M = 0. The latter implies

tr M(a,0, ik) = −(
γ (U+)γ−1 + δ2σ

)
k2 + tr M(a,0,0) = 0,

which has real roots k if and only if tr M(a,0,0) > 0, which is clearly not the case
by (2.9).

Therefore it suffices to consider λ = 0 and prove that there exist a∗ and k∗ such
that

det M(a∗,0, ik∗) = 0, (2.12a)

∂

∂k
det M(a∗,0, ik∗) = 0. (2.12b)

From (2.12b) we get

k2∗ = −δ2σ V 2+ + δ2σ+αa∗ − γ δβU
γ−1
+ b

2γ δ2σ U
γ−1
+

. (2.13)

From this expression, substitution of γ δ2σ U
γ−1
+ in (2.12a) yields

k2∗ = −2δβb(V 2+ − δαa∗)
δ2σ V 2+ + δ2σ+αa∗ − γ δβU

γ−1
+ b

. (2.14)

Before we solve a∗ from the combination of (2.13) and (2.14) we first determine
its magnitude. Since k2∗ in (2.13) is positive, one obtains, by using the leading order
expression (2.2),
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a2∗
b2

δ2(α−β+σ) + a∗δ2σ+α − γ b

(
b2

a∗

)γ−1

δβ+(2β−α)(γ−1) < 0. (2.15)

It follows from (2.10) that 2(α − β + σ) < 2σ + α, which means that condition
(2.15) would be satisfied if β + (2β − α)(γ − 1) ≤ 2(α − β + σ). Using (2.2)
and (2.10), we deduce from (2.13) that k2∗ is O(δβ−2σ ), and from (2.14) that k2∗ is
O(δ2(α−β)−(2β−α)(γ−1)). Hence, we find a condition on the magnitude of the param-
eters at the Turing instability,

(2γ + 1)β − (γ + 1)α = 2σ. (2.16)

By substituting this in condition (2.15), we get

a
γ+1∗ < γb2γ+1.

We can now consider the leading order expressions of (2.13) and (2.14), and conclude

(
a2∗
b3

− γ

(
b2

a∗

)γ−1)2

= 4γ
a2∗
b3

(
b2

a∗

)γ−1

.

Solving this for a∗ gives two solutions of which only one satisfies condition a
γ+1∗ <

γb2γ+1, hence

a
γ+1∗ = gγ b2γ+1,

which also yields the leading order expression for k2∗ .
Since the spectral curves λ±(k2) are solutions of the quadratic equation in λ (2.8),

it is straightforward to show that d(0, k∗) indeed satisfies Definition 1, i.e., that L is
marginally stable. �

2.3 Critical Parameters for the GKGS-Model

Before we can study the critical parameters at which the (irreversible) Turing–Hopf
instability occurs for C �= 0, we first need to determine the (critical) scaling of C,
that is, the critical value of the exponent ν (2.1). If C is too small (i.e., ν too large),
it will only have a higher order impact on the analysis of the previous section. If C

is very large, it will have a major impact on the linear stability. The critical scaling
of C is determined by the value of ν at which the influence of C becomes of leading
order in the linear stability analysis (this ν is a ‘significant degeneration’, cf. Eckhaus
1979). Therefore, we use the scalings obtained in Proposition 1 in M(a, c, ik). Write

k = δ
1
2 (γ+1)α−γβ k̂ (so that k̂c = O(1)). The scalings for A, B , and C in (2.1) imply

that we have, to leading order in δ,

M(a, c, ik) =
(

δ2α−2β [−Γ k̂2 − a2

b2 + icδν− 1
2 (3−γ )α−(γ−2)β k̂] δβ [−2b]

δ2α−2β [ a2

b2 ] δβ [−k̂2 + b]

)
,

(2.17)
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where we have introduced Γ = Γ (γ, a) := γ (b2

a
)γ−1. Hence, it follows that the crit-

ical scaling of ν is given by

ν = 1

2
(3 − γ )α + (γ − 2)β. (2.18)

For this ν, the dispersion relation is determined by

det

(
δ2α−2β [−Γ k̂2 − a2

b2 + ick̂ − δ3β−2αλ̂] δβ [−2b]
δ2α−2β [ a2

b2 ] δβ [−k̂2 + b − λ̂]

)
= 0, (2.19)

where we have introduced λ̂ by λ = δβλ̂.
It follows from (2.10) that the term with λ̂ in the upper left entry of (2.19) is not of

leading order. Hence, we conclude that at leading order in δ, and by dropping hats on
k̂ and λ̂, the appearance of the Turing–Hopf instability is governed by the simplified
dispersion relation

det Mλ(a, c, ik) = 0, (2.20)

with Mλ(a, c, ik) defined as follows:

Mλ(a, c, ik) :=
(−Γ k2 − a2

b2 + ick −2b

a2

b2 −k2 + b − λ

)
. (2.21)

If we define

F(k) := Γ k2 + a2

b2
and G(k) := k2 − b, (2.22)

it follows from (2.21) that the dispersion relation of the GKGS-system (1.5) is, to
leading order in δ,

d(λ, ik) := λ[F − ick] + det M0(a, c, ik)

≡ λ[F − ick] + det M0(a,0, ik) − ickG = 0. (2.23)

Recall that (2.7a), (2.7b) determines two necessary conditions for marginal stability.
Substituting (2.7a) in (2.23) gives, to leading order in δ,

ωck + det M0(a,0, ik) = 0,

ωF − ckG = 0,
(2.24)

where ω = ω∗ is the critical frequency defined by λ(k)|k=k∗ = iω∗ (see Definition 1).
Differentiation of (2.23) with respect to k yields, after substitution of the conditions
in (2.7a), (2.7b),

∂ω

∂k
ck + ωc + ∂k det M0(a,0, ik) = 0,

∂ω

∂k
F + ωF ′ − cG − ckG′ = 0.

(2.25)
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From the second equations in (2.24) and (2.25) it now follows that

ω = ckG

F
and

∂ω

∂k
= c

F 2

[
F

(
G + kG′) − kGF ′]. (2.26)

Note that unlike in the case c = 0, here we have λ(k)|k=k∗ = iω∗ �= 0. Thus the desta-
bilization that sets in at marginal stability indeed is of Turing–Hopf type if c �= 0.
The right equation in (2.26) gives the group velocity cg := − ∂ω

∂k
|k=k∗ , which may be

interpreted as the velocity with which wave packets with Fourier spectrum centered
around the frequency k∗ evolve.

The equations in (2.24) and (2.25) give

det M0(a,0, ik) = −c2k2G

F
,

∂k det M0(a,0, ik) = −kc2

F 2

[
F

(
2G + kG′) − kGF ′].

(2.27)

These equations determine a∗ and k∗ of Definition 1.

Proposition 2 Let 0 < δ � 1, k̃ = δ− 1
2 (γ+1)α+βγ k and drop the tilde on k̃, and

let C = cδ
1
2 (3−γ )α+(γ−2)β �= 0. Let, as before, g = 3 − 2

√
2. The stationary state

(U+,V+) undergoes a Turing–Hopf instability at a uniquely defined critical param-
eter a = a∗ and critical wavenumber k = k∗ that satisfy

a
γ+1∗ ≥ gγ b2γ+1 and (2.28a)

k2∗ < b. (2.28b)

If c = 2
3bΓ , the Turing–Hopf instability takes place at the explicit parameter values,

to leading order in δ,

a
γ+1∗ = 1

3
γ b2γ+1 and k2∗ = 1

3
b.

Moreover, for c � 1, we have, to leading order in c and δ,

a
γ+3∗ (c) = g

γ
b2γ+3c2 + O(c) and k2∗(c) = 1

2
(1 − g)b + O(1/c). (2.29)

Proof First we show that a Turing–Hopf instability occurs. We rewrite equations
(2.27) by

K = k2 and E = a2

b2
(2.30)

to obtain(
K2 + K

(
E

Γ
− b

)
+ E

Γ
b

)(
K + E

Γ

)
= −

(
c

Γ

)2

K(K − b),

(
2K + E

Γ
− b

)(
K + E

Γ

)2

= −
(

c

Γ

)2(
K2 + 2

E

Γ
K − E

Γ
b

)
,
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and we further introduce X,ρ, and η by

K = bX,
E

Γ
= bρ and

c2

Γ 2
= bη. (2.31)

Then the equations simplify to(
X2 + X(ρ − 1) + ρ

)
(X + ρ) = −ηX(X − 1),[

(X + ρ)
(
2X + (ρ − 1)

)]
(X + ρ) = −η

(
X2 + 2ρX − ρ

)
.

(2.32)

As a shorthand we introduce polynomials f,g,h, and j and write (2.32) in the obvi-
ous way as

f (X,ρ)(X + ρ) = −ηg(X), (2.33a)

h(X,ρ)(X + ρ) = −ηj (X,ρ). (2.33b)

We view these as functions of X and sometimes suppress the dependence on ρ. With
the above rescalings of a and k, the problem of finding a parameter a = a∗ > 0 with
wavenumber k = k∗ such that (2.27) holds, has been reduced to the problem of finding
a ρ > 0 and an X ≥ 0 such that (2.33a), (2.33b) hold. We may assume η �= 0 (since
the case c = 0 is dealt with in Proposition 1. From this and from (2.33a), (2.33b) it
follows that we search for X ≥ 0 such that

j (X)f (X) = g(X)h(X). (2.34)

We notice the following:

j (0) · f (0) = −ρ · ρ = −ρ2 < 0 and j (1) · f (1) = (1 + ρ) · 2ρ > 0

while

g(0)h(0) = g(1)h(1) = 0.

Hence it follows that for each ρ ∈ R, there is a X = X∗(ρ) ∈ (0,1) such that (2.34)
holds.

If g(X∗) �= 0, we can define

η(ρ) := −f (X∗(ρ), ρ)

g(X∗(ρ))

(
X∗(ρ) + ρ

)
. (2.35)

The triplet ρ,X∗(ρ), η(ρ) is a solution for (2.33a), (2.33b).
We need to consider the case g(X∗) = 0 or j (X∗) = 0 separately. We have

g(X) = 0 if and only if X = 0 or X = 1. However, if X = 0 or X = 1, the first
equation of (2.32) contradicts the assumption that ρ > 0, so we find that the condi-
tion g(X∗) �= 0 is never violated. On the other hand, if j (X∗) = 0, then, by (2.33b),
it must hold that X∗ = 1

2 (1 − ρ). Solving j ( 1
2 (1 − ρ)) = 0 gives ρ = 1

3 and therefore
X∗ = 1

3 . Substituting these values for X and ρ in (2.33a), gives η = 2
3 . Hence, by

rewriting to original parameters, we obtain the special case for which

a
γ+1∗ = 1

3
γ b2γ+1, k2∗ = 1

3
b and c = 2

3
bΓ.
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We have now proven that for each ρ > 0, there is a pair X∗(ρ), η(ρ) that solves
(2.33a), (2.33b). In order to complete the proof it remains to show that for each η > 0
(and thus for each c ∈ R), there is a unique pair X∗(η), ρ(η) (or k∗, a∗) that solves
(2.33a), (2.33b). This can be proved by showing that η(ρ) as defined in (2.35), attains
each value in [0,∞) and is an invertible map.

By (2.32) it is easy to see that η(ρ) = 0 if ρ = g. On the other hand, as we will
prove below, η is unbounded as a function of ρ: η → ∞ if ρ → ∞ (which by (2.31)
is c → ∞). Also, the function η(ρ) has no (vertical) asymptotes since we saw that
g(X∗) �= 0. Hence, η(ρ) attains each value in [0,∞). It now suffices to show that
η = η(ρ) is injective. This can be derived by a tedious analysis of the polynomials in
(2.32): for all η there is at most one pair (X,ρ) such that (2.32) holds. We omit the
details.

Next we derive the estimates in (2.28a), (2.28b). The estimate in (2.28b) follows
from the fact that 0 < X∗ < 1 and we have (2.30) and (2.31). We prove the estimate
in (2.28a). From (2.31) it is clear that η does not allow for negative values. That is,
by (2.35), and since g(X) < 0 for all X ∈ (0,1), we can only allow for those ρ for
which sign(f ) > 0. It is straightforward to show that f (X) > 0 for all X ∈ (0,1) if
ρ > g, and f (X) < 0 for all X ∈ (0,1) if ρ < g. Hence, if we rewrite the condition
ρ > g in terms of the original parameters, we obtain (2.28a):

a
γ+1∗ ≥ gγ b2γ+1.

Finally, we analyze the case for asymptotically large values of η (or equivalently,
asymptotically large values for c and derive equations (2.29)). Consider equation
(2.32). Since X∗ is bounded (|X∗| < 1), we must rescale ρ and we obtain

O
(
ρ2) = O(η).

We therefore set η = η̃ρ2, with ρ � 1, and expand (2.32):

X + 1 = −η̃X(X − 1) + O(1/ρ),

1 = −η̃(2X − 1) + O(1/ρ).

Solving this gives, to leading order,

X∗ = 1

2
(1 − g) + O(1/ρ) and η̃∗ = 3 + 2

√
2 + O(1/ρ).

Rescaling X∗ back to k∗ and η̃∗ back to a∗ and c gives (2.29),

k2∗ = 1

2
(1 − g)b + O(1/c) and a

γ+3∗ (c) = g

γ
b2γ+3c2 + O(c). �

2.4 Modulation Equations for the Rising Patterns

At the Turing instability of the stationary state (U+,V+) (which takes place if c = 0)
or Turing–Hopf instability (c �= 0), the homogeneous equilibrium becomes unstable
with respect to periodic perturbations for a < a∗. If the instability is supercritical, one
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expects a small band of stable patterns, the so-called Eckhaus-band for |a − a∗| =
O(ε2) and 0 < ε � 1.

In this section we will derive and analyze the associated Ginzburg–Landau equa-
tions for the GKGS-model in each of the four classes of Fig. 1 and for the special
cases of Proposition 2. The Ginzburg–Landau equation (GLE) governs the behav-
ior of the amplitude of the pattern near criticality. Solutions to this equation are
slow modulations of the amplitude of the underlying ‘most unstable’ Fourier mode
∼ei(k∗x+ω∗t) (see Aranson and Kramer 2002; Mielke 2002 and the references therein).

In the case of the Gray–Scott system it is shown in Morgan et al. (2000) that the
Turing instability is supercritical, meaning that stable small amplitude periodic so-
lutions exist in the region where the underlying homogeneous pattern is unstable. In
Sect. 2.5 we derive that for γ > γ∗ ≈ 13 and c = 0, the Turing instability of the sta-
tionary state (U+,V+) of the GKGS-model becomes subcritical (however, we cannot
think of a relevant ecological interpretation of these values for γ ). We also find that
the Turing–Hopf instability that occurs for c �= 0 is supercritical for all values of c

and either γ = 1 or γ = 2.
In Sect. 2.6 it is shown that, near criticality, the Klausmeier system can be derived

as a limit case of the GKGS-system for c → ∞ (in particular, 0 < 1/
√

c � ε2 � 1).
It is explained that the GLE for the Klausmeier model is the same as the limiting
GLE for the GKGS-system for large c and asymptotically small |ε| � 1 (that is, we
assume 0 < ε2 � 1/

√
c � 1). This is surprising: a priori, it is not at all clear that it

is possible to interchange the limits ε → ∞ and c → ∞. In particular, the Turing–
Hopf instability of the background state (U+,V+) of the Klausmeier system inherits
the supercriticality from the Turing–Hopf instability of the background state of the
GKGS-model.

Let 0 < ε � 1 and assume that the stationary state (U+,V+) is almost marginally
unstable (a = a∗ − rε2, r > 0). Patterns close to the stationary state (U+,V+) can be
described by

U = δ2β−α
(
Û+ + εÛ(x, t)

)
,

V = δα−β
(
V̂+ + εV̂ (x, t)

)
.

(2.36)

By substitution of these expressions in (1.5) and recalling the previous scaling for ν

in (2.18) and the previous scalings for k̃ and λ̃ that induce the spatial and temporal
scalings

x̃ = xδ
1
2 α− 1

2 (2β−α)γ and t̃ = tδβ, (2.37)

we deduce the following leading order system for the GKGS-system:
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δ3β−2αUt = γ

(
b2

a∗

)γ−1

Uxx + cUx −
[
a2∗
b2

U + 2bV

]

+ ε

[
γ (γ − 1)

(
b2

a∗

)γ−2[
UxxU + (Ux)

2] − b2

a∗
V 2 − 2

a∗
b

UV

]

+ ε2
[
γ (γ − 1)(γ − 2)

(
b2

a∗

)γ−3[
U(Ux)

2 + 1

2
U2Uxx

]

+ γ (γ − 1)
1

a∗

(
b2

a∗

)γ−1

Uxx + 2r
a∗
b2

U − UV 2
]
,

Vt = Vxx +
[
a2∗
b2

U + bV

]
+ ε

[
b2

a∗
V 2 + 2

a∗
b

UV

]
− ε2

[
2r

a∗
b2

U − UV 2
]
,

(2.38)

where we have dropped all hats and tildes and have implicitly assumed δ � ε. Re-
mark that after application to the linearly ‘most unstable’ Fourier mode ∼ei(k∗x+ω∗t),
the leading order part of (2.38) indeed corresponds to Miω∗(a∗, c, ik∗) (see (2.21)).
The kernel of Miω∗(a∗, c, ik∗) is given by

ker Miω∗(a∗, c, ik∗) =
(

2b

ηγ,c

)
, (2.39)

with

ηγ,c := −Γ k2∗ −
(

a∗
b

)2

+ ik∗c, (2.40)

and the range of Miω∗(a∗, c, ik∗) is given by

Rg Miω∗(a∗, c, ik∗) =
( −2b

−k2∗ + b − iω∗

)
. (2.41)

Thus, Miω∗(a∗, c, ik∗)x = y has a solution if and only if y ∈ Rg Miω∗(a∗, c, ik∗), that
is, if and only if

2by2 − (
k2∗ + iω∗ − b

)
y1 = 0, (2.42)

where y = (y1, y2)
T. We will need this in our derivation of the GLE and refer to it as

the solvability condition.
The modulation Ansatz for the derivation of the Ginzburg–Landau equation is that

solutions of the system behave as slow spatio-temporal modulations of the solution
for the linear first order problem, i.e., they are of the form:(

U

V

)
= A(ξ, τ )

(
2b

ηγ,c

)
ei(k∗x+ω∗t) + c.c. + h.o.t., (2.43)

with ξ = εx and τ = ε2(x−cgt) and cg the group velocity defined by (2.26) (Aranson
and Kramer 2002; Mielke 2002).

In Morgan et al. (2000) the GLE for periodic patterns near the Turing instability
of the background state (U+,V+) for the Gray–Scott system was computed. Using
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a result of Schneider (1998), the diffusive stability of the Turing patterns described
by the Gray–Scott system could be derived from the spectral stability of periodic
solutions of this GLE. However, to our knowledge there does not exist a similar result
in the literature that can be applied to the present system, i.e., a quasilinear reaction–
diffusion system with nonlinear diffusion. In fact, we are not aware of any (even
formal) GLE analysis in a system with nonlinear diffusion. Still, we expect that a
result similar to that of Schneider (1998) must hold—although a proof is beyond
the scope of this paper. The reason for this is that the nonlinear diffusion term in
(1.5) can be controlled if U remains bounded away from 0, i.e., if U(x, t) ≥ d0 > 0
uniformly in x and t . By the nature of the method, the GLE analysis is applied to
solutions (U(x, t),V (x, t)) of (1.5) that are asymptotically close to the background
state (U+,V+) of (1.5), as is made explicit by ‘Ansatz’ (2.36). Since clearly U+ > 0
(see also (2.2)), the GLE approach indeed only considers patterns in (1.5) for which
U(x, t) ≥ d0 > 0 uniformly in x and t on the time scales associated to this approach.
In this region the equation is still parabolic and existence theory is essentially similar
to the semilinear case—see Remark 2.

In Sect. 2.5 we derive a Ginzburg–Landau equation for the slowly varying am-
plitude A(ξ, τ ). The Ginzburg–Landau equation is first derived without inserting ex-
plicit values of a∗ and k∗. The coefficients of the GLE are functions of b, c, and γ ,
as it is proven in Proposition 2 that the critical values of a∗ and k∗ depend on b, c,
and γ . In Proposition 2 however, we also deduced explicit values for a∗ and k∗ for a
number of special parameter values for b, c, and γ . In each of these cases, we will
present an explicit GLE.

2.5 Ginzburg–Landau Equation for the GKGS-Model

Proposition 3 Assume |a − a∗| = rε2 and ε > 0 small enough. Then, the Ginzburg–
Landau equation associated to (1.5) for solutions of the form (2.43) near the Turing–
Hopf instabilities of Proposition 2 has the form

Aτ = (a1 + ia2)Aξξ + (b1 + ib2)A + (L1 + iL2)|A|2 A (2.44)

with coefficients given by

a1 + ia2 = 1

2bηγ,c

[
2b(cgy12 + ηγ,c + 2ik∗y12)

− (
k2∗ + iω∗ − b

)
(cx12 + 2bΓ + 2ik∗Γ x12)

]
,

b1 + ib2 = −1

2bηγ,c

[
4
ac

b

(
k2∗ + iω∗ + b

) + LA,NLD
(
k2∗ + iω∗ − b

)]
,

L1 + iL2 = 1

2bηγ,c

[(
k2∗ + iω∗ + b

)
Ltot −

(
k2∗ + iω∗ − b

)
LNLD

]
.

(2.45)

We refer to the Appendix for the detailed derivation of the GLE as well as the full
expressions for Ltot, LNLD and LA,NLD, and xij , yij , ij = 02,12,13. Here we remark
that if c = 0, then ω∗ = 0 and cg = 0 by (2.26) and LNLD = 0 and LA,NLD = 0 if
γ = 0, i.e., these coefficients originate from the nonlinear diffusion.
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Fig. 4 An impression of the
stable Eckhaus region as part of
a Busse balloon. Compare
Fig. 2. Inset: the Eckhaus region
of stable patterns (boundary
depicted by a dashed line) lies
within the larger locally
parabolic region of (not
necessarily stable) patterns

In the GLE (2.44), the coefficient L1 + iL2 is called the Landau-coefficient. The
Turing–Hopf instability of the stationary state (U+,V+) is supercritical if and only if
its real part satisfies L1 < 0. It is subcritical if L1 > 0.

If the Turing–Hopf bifurcation is supercritical, it is straightforward to show
(Matkowsky and Volpert 1993) that there exists a band of stable spatially periodic
patterns if and only if

1 + a2L2

a1L1
> 0. (2.46)

This inequality is usually called the Benjamin–Feir–Newell criterion (Aranson and
Kramer 2002). The patterns that satisfy condition (2.46) form a parabolically shaped
region of stable periodic patterns near the Turing(–Hopf) instability at a = a∗ that
lies within a larger parabolically shaped region of periodic patterns (Matkowsky and
Volpert 1993; Mielke 2002). See Fig. 4 for a schematic picture. For a ≈ a∗ − rε2,
the region of stable patterns is called the Eckhaus region, after its boundary which
is called the Eckhaus instability (Mielke 2002). In Fig. 4 the Eckhaus region is de-
picted as a part of the larger Busse balloon (the concept of the Busse balloon will be
discussed in depth in Sect. 3).

As explained in the introduction, the ecologically relevant parameter values for
γ are γ = 1 or γ = 2. With the help of MATHEMATICA we evaluated the Landau
coefficient of the GLE for the GKGS-model with γ = 1 and γ = 2. This way, we
have obtained sufficient evidence to claim:

Claim 1 For the GKGS-model (1.5) with γ ∈ {1,2}, the real part of the Landau
coefficient L1 of (2.44) is negative for all values of b and c up to c ∼ 106 and b ∼ 102.
Therefore we claim that the Turing–Hopf bifurcation at a = a∗ of the stationary state
(U+,V+) of the GKGS-model with c > 0 and γ = 1,2 is supercritical.

As an illustration, we have depicted in Fig. 5 a set of contourlines of the real part of
the Landau-coefficient L1 for γ = 1 and γ = 2 and values of (b, c) on a grid spanned
by (b, c) = (0.1,0.0) + 0.1(k, l), k, l = 0, . . . ,40.
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Fig. 5 Contourplots of the real part of the Landau-coefficient for (a) the GKGS-model with linear diffu-
sion (γ = 1) and for (b) the GKGS-model with nonlinear diffusion (γ = 2), drawn on a grid of points at
(b, c) = (0.1,0.0) + 0.1(k, l), k, l = 0, . . . ,40. In both pictures, the non-advection case (c = 0) is depicted
by the horizontal axis. Notice that the origin in the pictures is at (b, c) = (0.1,0.0), since the case b = 0
has no ecological meaning

By computing the Benjamin–Feir–Newell criterion (2.46), we checked that this
inequality holds for the Ginzburg–Landau equation for the GKGS-model for all b

and c up to c ∼ 106 and b ∼ 102 and γ ∈ {1,2}. Hence we claim the following.

Claim 2 For (1.5) with c > 0 and γ = 1,2, there exists a stable band of periodic
patterns that appears at the Turing–Hopf instability.

Next, we present four explicit Ginzburg–Landau equations for which we have ex-
plicit values for the critical parameter value a∗ and wavenumber k∗ at hand. The
parameter choices for the three Ginzburg–Landau equations are drawn from three
different cases of the GKGS-model as depicted in Fig. 1. Of course, the sign of the
real part of the Landau coefficient confirms the evaluations presented in Fig. 5 in all
three cases.

2.5.1 The GKGS-Model with c = 0 and γ = 1

Clearly, the GKGS-model with γ = 1 and c = 0 reduces to the Gray–Scott system.
By recalling from Proposition 1 (or from Morgan et al. 2000), a2∗ = (3 − 2

√
2)b3 and

k2∗ = (
√

2 − 1)b3, the above equation simplifies to

Aτ = 2
√

2Aξξ + 2√
b

A − 2

9
(10

√
2 − 7)b2|A|2 A. (2.47)
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Since the real part of the Landau coefficient is negative, the Turing-bifurcation is
supercritical. Note that this equation corresponds to (3.27) derived in Morgan et al.
(2000).1

2.5.2 The GKGS-Model with c = 0

In the case of c = 0 and γ ≥ 1, we have derived explicit expressions for the critical
parameter a∗ and wavenumber k∗ in Proposition 1, namely

a
γ+1∗ = gγ b2γ+1 and k2∗ = 1

2
(1 − g)b, (2.48)

with g = 3−2
√

2 (notice we rescaled k∗ in Sect. 2.3). Due to the reflection symmetry
of the GKGS-system at c = 0, all coefficients of the GLE are real. In this case, the
GLE (2.44) has the form

Aτ = 2
√

2 Aξξ + b1(γ )A + L1(γ )|A|2 A (2.49)

with

b1(γ ) = [
39 − 27

√
2 − (41 − 29

√
2)γ

](gγ

b

)−1/(1+γ ) 1

b
,

L1(γ ) = −1

9
(2 − √

2)
[
18(3 + 2

√
2) + 12(2 + √

2)γ + (−8 + 3
√

2)γ 2]

×
(

gγ

b

) 2
γ+1

b3.

One can check that b1(γ ) > 0 for γ > 0 as it—of course—should. Moreover, the
Ginzburg–Landau equation for the GKGS-system for general γ (2.49) reduces to the
Ginzburg–Landau equation for the Gray–Scott system (2.47) if γ = 1.

However, we notice that the (real) Landau coefficient L1(γ ) becomes positive for
large γ and equals zero for

γss ≈ 13.0446. (2.50)

Therefore we have the following result.

Proposition 4 The Turing bifurcation for the GKGS-model (1.2) with c = 0 is super-
critical for γ < γss and subcritical for γ > γss .

1Notice however the extra b2 in the coefficient in front of the nonlinear term. In Morgan et al. (2000), b is
scaled out of the matrix Mc in formula (3.24). That is, the matrix bMc in Morgan et al. (2000) plays the
role of our matrix Miωc (ac,0, ikc). This is equivalent to scaling A → bA in (2.47).
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2.5.3 The Ginzburg–Landau Equation for the GKGS-Model with γ = 1 and

c =
√

2
3b

In this case, the critical parameters for the Turing–Hopf instability can be drawn from
the ‘special case’ in Proposition 2:

k2∗ = 1

3
b, a2∗ = 1

3
b3, ω∗ = 1

3
b
√

2, and cg =
√

2

3
b.

The GKGS-model for γ = 1 is not reflection symmetric. Therefore, traveling spa-
tially periodic patterns appear in a Turing–Hopf bifurcation. The associated GLE is a
complex GLE (cGLE),

Aτ = 1

3
(8 + i

√
2)Aξξ + 2

9

√
3

b
(5 + i

√
2)A − 2

33
(5 − 2i

√
2)b2|A|2 A. (2.51)

Since Re(− 2
33 (5 − 2i

√
2)b2) < 0, the bifurcation is supercritical. We refer to Ap-

pendix A.1 for a complete derivation. We remark that it is possible to derive a special
case GLE for general γ (see Proposition 2). However, this gives no additional insight.

2.6 Ginzburg–Landau Equation for the Case c � 1: The Klausmeier Model and the
GKGS Model for c � 1

In the Gray–Scott scaling introduced in (1.5), the original Klausmeier system reads2

{
Ut = Ux + A(1 − U) − UV 2,

Vt = δ2σ Vxx − BV + UV 2.
(2.53)

Of course, the stationary states for the Klausmeier system are the same as the station-
ary states for the GKGS-model: we have the ‘desert’ state (U0,V0) and the stationary
states (U±,V±) given in (1.6).

A priori, (2.53) cannot be considered as a natural limit of the GKGS-system (1.5)
since the diffusion coefficient du in front of U has been scaled to du = 1 in (1.5)
(so du cannot be set to 0). In fact, from the point of view of mathematical modeling
the original Klausmeier system is somewhat inconsistent: the (linear or nonlinear)
diffusion of water U is neglected since it is dominated by the advection term, while
the diffusion of vegetation V , which is in fact much smaller than that of U , is retained
in (2.53).

2Notice that this rescaling of the Klausmeier system can be acquired from Klausmeier’s original nondi-
mensional system (see Klausmeier 1999),{

uT = νuX + a − u − uv2;
vT = δ2σ vXX − mv + uv2,

(2.52)

by rescaling with x = a2

ν X, t = a2T , v = aV , u = aU , A = 1
a2 , B = m

a2 and by further introducing

0 < δσ := a
ν � 1. (From the estimates for a and ν in Klausmeier (1999), it can be deduced that indeed

0 < a
ν � 1.)
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Fig. 6 Diagram for the GLE for
the GKGS for large c and the
GLE for the Klausmeier-model.
A priori, it is unclear whether
this diagram commutes

In this subsection we justify this for C � 1 in (1.5) or c � 1 in (2.38) and discuss
the relation between the GKGS model with c � 1, i.e., the case in which advection
dominates diffusion in the U -equation, with the original Klausmeier model. We will
do so in the context of the ‘rise of patterns’ and handle the problem in terms of
the GLE associated to the Turing–Hopf bifurcations. As shown in the diagram of
Fig. 6, there are two paths to obtain a GLE for the case c � 1. Based on the previous
sections, the most direct way is to consider the case c � 1 in the general GLE with
coefficients given by (2.45) by introducing a new small parameter 1/

√
c. This choice

implies that it is implicitly assumed that 0 < ε � 1/
√

c � 1 (recall that ε is the
distance from criticality introduced in Sect. 2.3).

However, we will first start out with a path that is closer to the original motivation
behind the Klausmeier model: before we embark upon the weakly nonlinear GLE
analysis, we first consider the limit c � 1 in (1.5). In other words, we take the other
path in Fig. 6 and assume that 0 < 1/

√
c � ε � 1. We show that under this assump-

tion the GKGS equation indeed agrees exactly with the Klausmeier model (at leading
order). Nevertheless, this limit is significantly different from the limit associated to
the other path in the diagram of Fig. 6 and there is a priori no reason for the diagram
in Fig. 6 to commute. The somewhat surprising outcome to our analysis is that the
two resulting GLEs are identical. Before we consider asymptotically large c � 1, we
introduce the scalings

U = Ũb3/4

√
c

; V = b1/4√cṼ ; a∗ = ã∗b5/4√c;

x = b−1/2x̃; t = b−1/4 t̃; r = r̃b5/4√c.

(2.54)

These rescalings here appear a little abruptly. We remark, however, that it follows
from Proposition 2 that a∗ grows with

√
c as c � 1 and that the rescalings in terms

of c are ‘balanced’ such that the terms resulting from the nonlinear diffusion in the
U -component of the GKGS-system for γ ≥ 1 are of higher order in 1/

√
c and such

that all other terms are of the same, lowest order. The rescalings with b are balanced
such that all terms in the GKGS-model that are of lowest order in 1/

√
c are also of

the same order in b. We refer to Appendix A.3 for a more elaborate account on the
derivation of these rescalings.

Now, starting from the GKGS model we employ the following scalings. As before,
we rescale x̃ and t̃ in the GKGS-model (1.5) as given by (2.37). In Sect. 2.4, we have
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seen that patterns close to the stationary state given by (2.36) are described by the
leading order form (2.38) with respect to ε. We adopt the rescalings as given in (2.54)
and obtain, by disregarding all terms that are of higher order in 1/

√
c,

0 = Ũx̃ − [
ã2∗Ũ + 2Ṽ

] − ε

[
1

ã∗
Ṽ 2 + 2ã∗Ũ Ṽ

]
+ ε2[2r̃ ã∗Ũ − Ũ Ṽ 2],

Ṽt̃ = Ṽx̃x̃ + [
ã2∗Ũ + Ṽ

] + ε

[
1

ã∗
Ṽ 2 + 2ã∗Ũ Ṽ

]
− ε2[2r̃ ã∗Ũ − Ũ Ṽ 2].

(2.55)

Note that the leading order formulation of the GKGS-system for large c presented
in (2.55) does not include any terms that result from the nonlinear diffusion in
the U -component. In ecological terms this confirms the (natural) observation that
the character of the diffusion is irrelevant in a strongly sloped—and thus advection
dominated—setting.

It is easy to verify that the leading order system (2.55) is identical to the one that
could be derived from the Klausmeier system (2.52), had we adopted the rescalings
given in (2.54) with c = 1 (as is the case in (2.53)). Thus, the system (2.55) also
describes the dynamics of the Klausmeier system near the Turing–Hopf instability of
(U+,V+). Therefore, we indeed have deduced that the Klausmeier model coincides
with the GKGS model (at leading order) if we assume that 0 < 1/

√
c � ε � 1.

Now we turn to the GLE analysis. In Appendix A.3, it is shown that the associated
GLE is given by

Aτ = 1

41

[
(66 − 56

√
2) − i(63 − 23

√
2)

√√
2 − 1

]
Aξξ

+ r̃
[
4

√√
2 − 1 + i(4 − 2

√
2)

]
A

+ 4

69

[
−807 + 534

√
2 + i(418 − 286

√
2)

√√
2 − 1

]
|A|2 A. (2.56)

Numerically, the Landau-coefficient in front of the |A|2 A-term is given by

L|A|2 A ≈ −1.50174 + 0.252493 i.

We see that the real part of the Landau-coefficient is negative. This once more con-
firms that the Turing–Hopf bifurcation of the equilibrium (U+,V+) in the Klausmeier
model is supercritical. We note that this establishes the supercriticality of the Turing–
Hopf instability of the background state (U+,V+) that was suggested in Sherratt and
Lord (2007).

Next, we consider the alternative path in the diagram given in Fig. 6 and assume
0 < ε � 1. In order to obtain an end result that can be compared to the other path, we
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scale (2.38) with (2.54) for c �= 0 (i.e., not necessarily c � 1) and obtain

δ3β−2αb
1
2 c− 1

2 Ũt̃

= γ ã
1−γ∗ b

3
4 γ− 1

4 c− 1
2 γ Ũx̃x̃ + c

1
2 Ũx̃ − c

1
2
[
a2∗Ũ + 2Ṽ

]
+ ε

[
γ (γ − 1)ã

2−γ∗ b
3
4 γ− 1

4 c− 1
2 γ

[
Ũx̃x̃U + (Ũx̃)

2] − c
1
2

[
1

ã∗
V 2 + 2ã∗Ũ Ṽ

]]

+ ε2
[
γ (γ − 1)(γ − 2)ã

3−γ∗ b
3
4 γ− 1

4 c− 1
2 γ

[
Ũ (Ũx̃)

2 + 1

2
Ũ2Ũx̃x̃

]

+ γ (γ − 1)ã
−γ∗ b

3
4 γ− 3

2 c− 1
2 γ− 1

2 Ũx̃x̃ + 2rã∗c
1
2 Ũ − c

1
2 Ũ Ṽ 2

]
;

Ṽt̃ = Ṽx̃x̃ + [
ã2∗Ũ + Ṽ

] + ε

[
1

a∗
Ṽ 2 + 2a∗Ũ Ṽ

]
− ε2[2rã∗Ũ − Ũ Ṽ 2].

(2.57)

In Appendix A.3 we derive that for asymptotically large c, the GLE for this sys-
tem equals the GLE for the Klausmeier system (2.56). Therefore, patterns near the
Turing–Hopf point of the GKGS-system for large c are, to first order, described by
the Klausmeier system. Ecologically, one may put this by saying that ecosystems for
which the slope along which the water flows downhill has a relatively steep gradient,
are, to first order, described by the Klausmeier model.

3 Busse Balloons for the Generalized Klausmeier–Gray–Scott Model

The Ginzburg–Landau analysis of the last section is weakly nonlinear in the sense
that it is valid only given the necessary assumption that the parameter a is close to its
critical value a∗ at which the Turing(–Hopf) bifurcation takes place, that is, |a−a∗| =
O(ε2) for a small parameter 0 < ε � 1. Naturally, we are interested in the existence
of stable patterns if a is not asymptotically close to a∗. In this section, by using
novel techniques implemented in the continuation software package AUTO (Doedel
2007), we will present a complete picture of all the instabilities that spatially periodic
patterns can undergo for different values of a and fixed values for b, c, and γ . This
complete picture will be called the Busse balloon, after the physicist F. Busse who
introduced the concept in Busse (1978). Later, mostly partial presentations of Busse
balloons for reaction–diffusion systems had been presented, see Chossat and Iooss
(1994), Eckhaus and Iooss (1989), Morgan et al. (2000) and the references therein.
To our knowledge, the first complete Busse balloon has been described in Doelman
et al. (2012). In this section, we will give a description of a series of Busse balloons
for the GKGS-model. See also Fig. 4, in which we have depicted the Eckhaus region
as part of the larger Busse balloon.

To be more precise, let us consider the GKGS-system (1.5) for some fixed B , C,
and γ and let, as before, κ be the nonlinear wavenumber.3 A Busse balloon for the

3Note that we silently switched back to the original parameters A, B , and C in (1.5). We will comment on
the relation between A, B , and C on the one hand and a, b, and c on the other hand in Sect. 3.2.
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GKGS-system (1.5) for B , C, and γ is a (not necessarily connected) set B in (A,κ)-
space with the following property: a point (A,κ) lies in B if Eq. (1.5) with parameter
A allow for at least one stable periodic solution (Up,Vp) with wavenumber κ . Peri-
odic patterns on the boundary of a Busse balloon ∂B are marginally stable.

The Busse balloon is part of the larger realm of existing (i.e., not necessarily sta-
ble) patterns. Let us give a proper definition for the convenience of terminology. The
existence region or existence balloon is a (not necessarily connected) set E in (A,κ)-
space with the following property: a point (A,κ) lies in E if Eq. (1.5) with parameter
A allow for at least one periodic solution (Up,Vp) with wavenumber κ . Typically,
this means that the set has nonempty interior (Rademacher and Scheel 2007).

In this section, we present a series of Busse balloons for a number of choices
for the values of B , C, and γ (we will explain our choices for the values of these
parameters later). First, we briefly present some facts from the stability theory of
wave trains. Then, we consider the instabilities that will appear in the construction of
the Busse balloons in the next section. Thirdly, we explain the numerical continuation
method.

Stability of Wave Trains The GKGS-system (1.5) can be recast in a moving frame
of reference, with respect to the variables (ξ, t) = (x − st, t) (and with a slight abuse
of notation),

{
Ut = (

Uγ
)
ξξ

+ (s + C)Uξ + A(1 − U) − UV 2,

Vt = DVξξ + sUξ − BV + UV 2.
(3.1)

The basic advantage here is that generic wave trains uper(ξ) = (Uper(ξ),Vper(ξ)) with
ξ = κx+Ωt and uper(ξ) = uper(ξ +2π) then become stationary L-periodic solutions
for s = Ω/κ (and with L = 2π/κ),

{
0 = (

U
γ
per

)
ξξ

+ (s + C)Uper,ξ + A(1 − Uper) − UperV
2
per,

0 = DVper,ξξ + sUper,ξ − BVper + UperV
2
per.

(3.2)

To establish spectral stability, we linearize (3.1) about uper = (Uper,Vper) by perturb-
ing the wave train with u(ξ)eλt . We obtain the linear problem (write u = (U,V )),

⎧⎨
⎩

λU = γU
γ−1
per Uξξ + D1Uξ − D2U − 2UperVperV,

λV = DVξξ + sVξ + V 2
perU − (B − 2UperVper)V ,

(3.3)

with D1 = D1[Uper, γ, s,C] := γ (γ −1)UperU
γ−2
per,ξξ +γ (γ −1)(γ −2)U2

perU
γ−3
per,ξξ +

s + C and D2 = D2[Uper,Uper, γ,A, ] := 2γ (γ − 1)UperU
γ−2
per,ξξ + A + V 2

per. Written
as a first-order ODE, (3.3) defines a four-component system

φξ = Aλ

(
uper(ξ)

)
φ (3.4)
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with

Aλ

(
uper(ξ)

) =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 0
λ+D2

γU
γ−1
per

− D1

γU
γ−1
per

2UperVper

γU
γ−1
per

0

0 0 0 1

−V 2
per
D

0
λ+B−2UperVper

D
− s

D

⎞
⎟⎟⎟⎟⎟⎠ . (3.5)

The matrix Aλ(uper(ξ)) is L-periodic. Hence, by Floquet theory, there exists an L-
periodic matrix Bλ(ξ) and a constant matrix Rλ such that the fundamental solution
to the above first-order system is given by

Φλ(ξ) = Bλ(ξ)eRλξ .

Since we only allow for bounded perturbations, it follows that the Floquet exponents
ν of Φλ are purely imaginary, ν = ik. That is, the dispersion relation

d(λ, ik) := det
(
Φλ(L) − eikLI

) = 0 for some k (3.6)

holds. This is equivalent to the boundary value problem (see Rademacher et al. 2007)

λu = Liku,

u(0) = u(L),

uξ (0) = uξ (L),

(3.7)

with Lik : (H 2
per(0,L))2 ⊂ (L2

per(0,L))2 → (L2
per(0,L))2 defined by

Lik :=
(

γU
γ−1
per ∂2 + D1 · ∂ − D2 −2UperVper

V 2
per D∂2 + s∂ − [B − 2UperVper]

)
, (3.8)

where ∂ := ∂ξ + ik. We will occasionally refer to (3.7) as the dispersion relation for
the linearization about uper.

The operator Lik has compact resolvent for each k, so its spectrum consists of
countably many isolated eigenvalues (Henry 1981). Since each of these eigenval-
ues is a root of the complex analytic dispersion relation d(λ, ik), one can continue
the eigenvalues λj (k), j ∈ N globally in k. By periodicity, each homotopy along
λj (k) → λj (k + 2π) will map the set of eigenvalues λj (k), j ∈ N onto itself (no-
tice, however, that it will generally not be the case that each eigenvalue λj is mapped
onto itself by the homotopy!). Therefore, the essential spectrum of the wave train
uper will generally consist of (at most) countably many connected components. One
of these components is connected to the translational eigenvalue at the origin—see
also Gardner (1993, 1997).

A spatially periodic pattern is marginally stable if its associated operator Lik and
the dispersion relation d(λ, ν) (3.7) satisfy the conditions in Definition 1.

Each of the destabilization mechanisms through which a periodic pattern (Uper,

Vper) may destabilize, is characterized by a specific configuration of the essential
spectrum. The GKGS-model with C �= 0 breaks the spatial symmetry that allows
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Fig. 7 Sketches of spectra at
Hopf instabilities with λ ∈ C.
Left: Spectral branches for
C = 0. Due to the reversibility,
the spectral branches have
collapsed to curved line
segments (see Doelman et al.
2012). Right: Spectral branches
for C �= 0

for Turing patterns. This is a crucial observation, since the robust codimension-one
destabilization mechanisms for generic wave trains are in principle different from
the destabilization mechanisms for Turing patterns (Rademacher and Scheel 2007).
We only discuss the robust codimension-one instability mechanisms that we have
encountered for wave trains in our construction of Busse balloons for the GKGS-
model; these are Turing–Hopf instability,4 fold and sideband instability. Note that
Hopf instabilities and sideband instabilities are robust destabilization mechanisms
for all wave trains, while a fold is not a robust instability mechanism for generic
spatially periodic patterns (with Ω �= 0 and κ �= 0) though it is robust for Turing
patterns (Ω = 0) (see Rademacher and Scheel 2007).

A spatially periodic pattern uper undergoes a Hopf instability at A = A∗ if the op-
erator Lik in (3.8) is at marginal stability with k∗ �= 0 at critical eigenvalue λ = iω∗
with ω∗ �= 0. See Fig. 7. A fold and a sideband instability are both characterized as in-
stabilities for which k∗ = 0 at critical eigenvalue λ = iω∗ = 0. A sideband instability
satisfies the additional condition that

Re
∂2λ

∂k2

∣∣∣∣
k=k∗

= 0. (3.9)

We have depicted the difference between the fold (in the reversible case) and the
sideband instability schematically in Fig. 8. Note that the dispersion relation in the
reversible case possesses the symmetry d(λ, ν) = d(λ,−ν) and is thus of the form

d(λ, ik) = a1λ + a2λ
2 + a3k

2 + a4λk2 + a5k
4 + O

(
λ3 + k6), (3.10)

where aj ∈ R. See also Rademacher and Scheel (2007). A fold occurs at a1 = 0 and
the sketches in the top row of Fig. 8 correspond to a1 < 0, a1 = 0, a1 > 0 (and aj > 0
for j > 1).

Methods and Implementation Notes For the construction of the Busse balloons,
we have made use of the continuation and bifurcation software package AUTO (see
Doedel 2007). The methods we have used to construct the Busse balloons are based
upon Rademacher et al. (2007). In this section, we describe these methods.

4With slight abuse of terminology, in the context of perturbations of periodic patterns we abbreviate the
Turing–Hopf instability to ‘Hopf instability’ in the rest of this paper.
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Fig. 8 Sketches of spectral
configurations we encounter for
wave trains close to marginal
stability, when a system
parameter is crossing a critical
value. Top row: reversible fold
for C = 0. Bottom row: sideband
instability for general C

Using (3.2), a wave train solution (U,V ) of the GKGS-model can be written as a
first order system,

Uξ = P,

Pξ = − 1

γUγ−1

[
γ (γ − 1)Uγ−2P 2 + A(1 − U) − UV 2 + (s + C)P

]
,

Vξ = Q,

Qξ = −D−1[sQ − BV + UV 2].
(3.11)

We denote the vectorfield at the right hand of (3.11) by F = F(U,P,V,Q) :
R

4 → R
4 and write ψ = (U,P,V,Q)T. If we normalize the period L to unity, then

(3.11) together with the boundary condition from (3.7) can be written as

ψξ = LF(ψ),

ψ(0) = ψ(1).
(3.12)

In AUTO, the nonlinear equation for the wave train (3.12) is solved together with the
dispersion relation (3.7). By a translation of the independent variable via ∂ζ = ∂ξ + ik,
the dispersion relation (3.7) can also be conveniently cast as a first order system.
Translating back and normalizing the period L to unity again, one obtains

φξ = L
[

Aλ

(
uper(ξ)

) − ik
]
φ,

φ(0) = φ(1),
(3.13)

with Aλ(uper(ξ)) as in (3.4). Hence, we consider the boundary value problem

ψξ = LF(ψ),

φξ = L
[

Aλ

(
uper(ξ)

) − ν
]
φ,

φ(0) = φ(1),

ψ(0) = ψ(1).

(3.14)
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In AUTO, we consider the boundary value problem (3.14) for general ν, as this allows
us to switch between connected components of the essential spectrum (Rademacher
et al. 2007). The essential spectrum is characterized by solutions to (3.14) such that
ν = ik. We also impose the normalization conditions

∫ 1

0
〈ψξ ,ψold − ψ〉dξ = 0;

∫ 1

0
〈φold, φ〉dξ = 1, (3.15)

where the solutions ψold and φold are solutions from a previous continuation step or
an initial solution (Rademacher et al. 2007).

Remark that ψ ∈ R
4 and φ ∈ C

4 � R
8. Hence, we have 8+4 = 12 real unknowns.

On the other hand, we have 12 boundary conditions plus 3 real integral conditions, so
we need 3 + 1 = 4 parameters for continuation. We have at our disposal the system
parameters A, B , C, and D, as well as Reλ, Imλ, the linear wavenumber k = Reν,
the imaginary part Imν, the comoving frame speed s, and the spatial period L (which
is related to the (nonlinear) wavenumber via κ = 2π

L
).

The sideband can be continued by defining the curvature

λ|| := ∂2 Reλ0

∂k2

∣∣∣∣
k=k∗

,

where λ0(k) is the curve through the origin, and k∗ the wavenumber associated to
λ0(k∗) = 0 at the origin (cf. (3.9)). We refer to Rademacher et al. (2007) for an exact
account on the implementation.

Hopf instabilities are continued in a similar way. Hopf instabilities generically
occur when a connected component of the essential spectrum crosses the imaginary
axis, see Fig. 7(b). A sufficient condition in order to fix the spectral component at
marginal stability when a system parameter is changed, is

Reλ|k=k∗ = 0 and
∂ Reλ

∂k

∣∣∣∣
k=k∗

= 0, (3.16)

This condition makes sure that the connected component of the essential spectrum
extends into the left half-plane when continued from λ(k∗) = iω∗. In AUTO, one
therefore defines the tangency

λ| := ∂ Reλ

∂k

and keeps it zero during a continuation of Hopf instabilities, along with Reλ. The
implementation can be derived in the same way as for the sideband instability by
differentiating the dispersion relation. (Note that some terms do not vanish for λ �= 0.)

The above considerations are purely local in the spectrum. The determination of
(marginal) stability requires more effort. We refer to Rademacher et al. (2007) for
the algorithms. In addition, we checked the stability of the spectrum within the Busse
balloon by explicit numerical evaluations on a grid.
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3.1 The Existence Balloon

From Sect. 2.3 we know that the stationary state u+ undergoes a Turing–Hopf insta-
bility at some A = A∗ with critical eigenmode eik∗ and critical frequency λ = iω∗.
Hence, at A = A∗ the dispersion relation of the stationary state u+ (2.6) satisfies

d(iω∗, ik∗) = 0.

In Sect. 2.4 we deduced by our Ginzburg–Landau approach (see also Fig. 4) that
for A < ATH sufficiently close to the Turing–Hopf instability of the background
state u+ = (U+,V+), there exists a parabolically shaped region of periodic pat-
terns. More precisely, for A < ATH sufficiently close to ATH, there exists an interval
IA = (κ−(A), κ+(A)) such that for each κ ∈ IA there is a spatially periodic pattern
with wavenumber κ and these form a continuous family. For each A, the endpoints
κ± = κ±(A) of the interval IA are characterized by the dispersion relation of u+ at A,

d(iΩ±, iκ±) = 0. (3.17)

We remark that this characterization for the endpoints κ± of IA holds for a full range
of A < ATH not necessarily close to ATH. An equivalent formulation to (3.17) can be
given by means of the first order ODE formulation of the linearization about u+ (see
(3.4)),

φξ = Aλ(u+)φ (3.18)

(notice that Aλ(u+) is a constant matrix here). The dispersion relation (2.6) satisfies
(3.17) for some Ω∗ and κ∗ if and only if there exists an Ω∗ such that there is a solution
to (3.18) for λ = iΩ∗ that has purely imaginary eigenvalues ν = iκ∗.

More generally, λ ∈ C is in the essential spectrum of u+ if and only if there is
a solution to (3.17) for some ν = iκ . Since the wavenumbers ν from the dispersion
relation of the stationary state u+ (2.6) appear as eigenvalues to the spatial ODE
(3.18), they are also referred to as spatial eigenvalues.

With AUTO, we have traced out a curve of boundary points κ± = κ±(A) that mark
the boundary of the existence balloon in (A,κ)-space. By construction, this provides
an extension of the existence of the band of periodic patterns near the Turing–Hopf
instability that is predicted by the GLE.

We digress a little on the characterization of the boundary of the existence balloon.
Let C �= 0, and consider fixed A and κ+ = κ+(A), so that there exists a λ = iΩ such
that (3.18) has purely imaginary spatial eigenvalue κ+ and therefore a pair of complex
conjugated spatial eigenvalues ±κ+. Hence, for fixed A, and by changing the speed
s of the comoving frame, typically two spatial eigenvalues ±iκ+ cross the imaginary
axis so that a Hopf bifurcation occurs. Therefore, locally there exists a one-parameter
family of periodic orbits parametrized by the speed s.

Likewise, there exists a one-parameter family of periodic orbits when the other
pair of eigenvalues ±κ− crosses the imaginary axis. By a continuation of the two
families of periodic patterns with AUTO, we have found that they are connected. See
Fig. 9(b). This extends the band of periodic patterns that is described by the GLE
close to the Turing–Hopf bifurcation for A = ATH.



72 J Nonlinear Sci (2013) 23:39–95

Fig. 9 The boundary of the existence region near the Turing and Turing–Hopf bifurcations. Closed curves
are sketches of some periodic patterns for fixed A, illustrating the amplitude variations. Compare with
Fig. 4. Insets show the configurations of spatial eigenvalues of u+ at the boundary of the existence balloon
at this value of A. (a) The reversibly symmetric case C = 0 with s ≡ 0; spatial eigenvalues are two pairs
of purely imaginary values. (b) Asymmetric case C, s �= 0, where spatial eigenvalues change with s; note
that at each end of the dotted curve, a different (single) pair of eigen values lies on the imaginary axis

If C = 0, the reversible symmetry forces the spatial spectrum to be symmetric
with respect to the real axis and the imaginary axis. At the Turing bifurcation of
the stationary state u+, the spatial spectrum shows a 1:1 reversible Hopf bifurcation:
there are two identical pairs of complex conjugate purely imaginary spatial eigenval-
ues ±k∗. By the reversible symmetry, for A < ATH, two pairs of spatial eigenvalues
will move along the imaginary axis. Then one can apply the reversible Lyapunov cen-
ter theorem (Devaney 1976): for (non-resonant) κ− as well as for (non-resonant) κ+,
there is a one-parameter family of periodic orbits with limiting wavenumber κ± as
the orbits approach the background state u+. (At resonances additional bifurcations
occur, which are not relevant here.) Again, by continuation, we find that the fam-
ily that emerges from κ− is connected to the family that emerges from κ+, which
in turn extends the connected band of periodic solutions close to the Turing–Hopf
bifurcation that we know from the Ginzburg–Landau analysis. See Fig. 9(a).

The spectral stability of a stationary state is partly characterized by its spatial
spectrum. In Fig. 10 we have plotted the spatial spectrum of the stationary states u+
and u− for different values of either A and the comoving frame speed s. We briefly
comment on Fig. 10(b) here. First, we check that the speed of the critical pattern that
appears at the Turing–Hopf instability equals s∗ = −ω∗

k∗ . If we write the (stationary)
dispersion relation ds(λ, ν) in (2.6) with respect to a comoving coordinate ξ = x −st ,
we have ds(λ, ν) = d0(λ − sν, ν). In particular, if k∗ �= 0 we see

dω∗/k∗(0, ik∗) = d0(iω∗, ik∗) = 0.

Secondly, the spatial spectrum of the fold of the stationary states u− and u+ is char-
acterized by a complex conjugated pair of purely imaginary eigenvalues that come
together in the origin and move on to the real axis. Thirdly, we remark that for fixed
ASN < A < ATH for any relevant value of s and κ−(A) < κ < κ+(A), the spatial
spectrum of the stationary state u+ has no intersection with the imaginary axis. In
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Fig. 10 The V±-component of the stationary states u± against A, with B = 1. (a) Reflection symmetric
case C = 0. (b) The nonsymmetric case C �= 0. The insets show the typical configuration of the spatial
spectrum of the stationary state u+ . In the nonsymmetric case, the spatial spectrum depends on s—the
speed of the pattern—and thus various distinct configurations have been plotted. Compare to Fig. 9

Fig. 10(b), s+ is the critical frame speed when κ+ crosses the imaginary axis and s−
is the critical frame speed when κ− crosses the imaginary axis. In the pictures of spa-
tial spectra for the different si , i = 1,2,3, it is understood that the comoving frame
speed s varies but differs from either s−, s+ or s∗.

3.2 Busse Balloons for the GKGS-Model

In this section we present a series of Busse balloons for a number of parameter sets
that we have constructed using AUTO (by methods discussed above).

In Klausmeier (1999) the parameters of the Klausmeier model have been esti-
mated. In our scaling of the GKGS-model, it is estimated that Atree ∈ [18.9,169],
Btree ∈ [5.7×10−3,5.1×10−2] and Dtree ∈ [4.2×10−4,1.2×10−2] and that Agrass ∈
[0.127,1.13], Bgrass ∈ [5.7 × 10−2,5.1 × 10−1] and Dgrass ∈ [5.2 × 10−3,1.5 ×
10−2]. The advection term that measures the slope of the surface has been put to
C = 182.5. We therefore set B = Bgrass = 0.2 and D = 1.0 × 10−3. In the results we
are about to present, we found interesting behavior for C satisfying 0 < C < 1, which
is relatively small compared to the estimate of C in Klausmeier (1999). There seem
to be no significant changes in the characteristics of the Busse balloon for C > 1.
Therefore, we focus on Busse balloons with these parameter values for C rather than
on Busse balloons with C ≈ 182.5. This means that we focus on a presentation of
Busse balloons that describe periodic patterns for ecosystems with a weaker slope
than in Klausmeier (1999). The power γ in the nonlinear diffusion term is either set
to γ = 1 or to γ = 2.

We checked that the Turing–Hopf bifurcation indeed takes place at the param-
eter values predicted by the analysis in Sect. 2.2 and 2.3. Consider for instance
Fig. 11. There, B = 0.2, C = 0.4, D = 0.001, γ = 1 and further ATH ≈ 1.24 and
k∗ ≈ 9.1. The estimates for a∗ and k∗ from Proposition 2 are satisfied given that
(2γ + 1)β − (γ + 1)α = 2σ . Further, it must hold that ν satisfies its critical scaling
(2.18): ν = 1

2 (3 − γ )α + (γ − 2)β . For α = 1
2 , β = 1, γ = 1, ν = − 1

2 and σ = 1
(so that D = 0.001 gives δ = √

0.001) these conditions are satisfied. The rescaling
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Fig. 11 Busse balloon and existence balloon for B = 0.2, C = 0.4, γ = 1. Here, periodic patterns become
unstable by either sideband or Hopf instability. Compare Fig. 2

for k introduced in Sect. 2.3 is then k∗ = δ
1
2 (γ+1)α−γβ k̃∗ = 1.62 since k̃ ≈ 9.0. Fur-

ther, we compute a∗ = Aδ−α = 1.24 · δ−1/2 = 7.0, b = Bδ−β = 0.2 · δ−1 = 6.3 and
c = Cδ−ν = 0.4 · δ1/2 = 0.07. Hence, the estimates of Proposition 2 are easily veri-
fied: k2∗ = 1.622 < 6.3 = b and a2∗ = 7.02 > 42.9 ≈ (3 − 2

√
2) · 6.33.

Both branches of sideband instabilities extend far into the region that is not asymp-
totically close to ATH. More precisely, there exists an interval Isb = (Asb,ATH) such
that for each A ∈ Isb there is an interval (κsb−(A), κsb+(A)) of stable patterns that
destabilize by sideband instabilities at κsb−(A) and κsb+(A). Notice that this is anal-
ogous to the existence of the Eckhaus region of stable patterns near ATH (see Fig. 4).

3.2.1 Hopf Instabilities

In Fig. 11 both branches of sideband instabilities are crossed by a branch of Hopf
instabilities. The nature of these Hopf instabilities can be better understood if we first
deal with the situation for C = 0, so we first discuss the Hopf instabilities for C = 0
and refer to the more elaborate account on this topic in Doelman et al. (2012) when
necessary.

For C = 0, the branch of Hopf instabilities decouples in two intertwining curves
of Hopf bifurcations (see Doelman et al. 2012). As is shown in Doelman et al. (2012),
the reversibility induces a symmetry of the essential spectrum Σess. See, for example,
Fig. 7. Each connected component that has the structure of a closed loop for C > 0,
collapses to a (slightly) bended line-segment in the limit C = 0. Due to an additional
effect (called the ‘Belly dance’, see Doelman et al. 2012), a Hopf instability occurs
only if one of the end points of the destabilizing line segment crosses the imaginary
axis (see Fig. 7(b)). It is shown that the end points are associated with Floquet mul-

tipliers m = eik· 2π
L that satisfy m = −1 or m = 1. Hence, the Hopf bifurcation for

C = 0 occurs either with respect to a Fourier mode that is in phase (m = 1) with the
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Fig. 12 Left: sketch of a Hopf dance for the GKGS-model with C = 0. Right: four Hopf curves, each
associated to a different Floquet multiplier m. For each m ∈ S

1 there exists a Hopf curve Hm. At the right,
the inner hull of Hopf instabilities forms the boundary of the Busse balloon. It is assumed that m1 �= m2
and m1,m2 �= ±1. The horizontal lines indicate the stable region

destabilizing periodic pattern or with respect to a Fourier mode that is exactly out
of phase (m = −1) with the destabilizing pattern. Each of these instabilities traces
out a different curve in (A,κ)-space. As a consequence, in the reversible case the
boundary of the Busse balloon associated to a Hopf bifurcation, typically has a (non-
smooth) fine structure of two intersecting curves, one associated to m = 1 and the
other to m = −1, separated by co-dimension two points; the intersections of these
m = ±1 curves.

For C > 0, the reversible symmetry is broken. Therefore, the essential spectrum
consists of at most countably many open or closed loops. Each loop is parametrized
by Floquet exponents k, k ∈ [0,L], or equivalently, by Floquet multipliers m ∈ S

1.
A Hopf instability occurs when a loop crosses the imaginary axis. In Fig. 7(a) one
observes a closed loop of essential spectrum crossing the imaginary axis. The destabi-
lizing Fourier mode is characterized by its Floquet multiplier m ∈ S

1. The difference
between the reversible case and the irreversible case is that in the irreversible case the
destabilizing modes exhaust all Floquet multipliers m ∈ S

1, while in the reversible
case the destabilizing Floquet multiplier is either m = −1 or m = 1. For each Floquet
multiplier m ∈ S

1 there exists a curve of Hopf instabilities that is associated to m.
The multitude of these curves defines an inner hull of Hopf instabilities that is the
boundary of the Busse balloon. See Fig. 12 for a schematic picture.

3.2.2 The Homoclinic Fall of Patterns

An intriguing characteristic of all Busse balloons we have constructed for the GKGS-
equation is that the homoclinic pattern, i.e., a localized vegetated ‘oasis’ state with
wavenumber κ = 0, is the last pattern to become unstable if we change A and keep
all other parameters fixed. On the one hand, this is not atypical for reaction–diffusion
models; in the context of Gierer–Meinhardt type equations it is called Ni’s conjecture
(see Ni 1998 and Doelman et al. 2012 for a more thorough discussion). On the other
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hand, it is certainly not well understood why this ‘homoclinic fall of patterns’ turns
up naturally in reaction–diffusion equations.

The homoclinic fall of (stable) patterns is strongly associated to the appearance of
the ‘Hopf-dance’ at the boundary of the Busse balloon near the homoclinic tip that
we described in Sect. 3.2.1. In fact, the Hopf-dance phenomenon has been discovered
in the context of our research of the GKGS model and led to Doelman et al. (2012)
as ‘spin-off’. In this paper it is shown for a class of reversible model problems that
the intertwining m = ±1 Hopf curves described above (Sect. 3.2.1) accumulate on
the homoclinic tip of the Busse balloon as A approaches its minimal value (for which
stable periodic patterns exist). Thus, the curves have countably many intersections
that accumulate on the homoclinic tip of the Busse balloon—see Fig. 12(a) for a
schematic sketch. The GKGS-model is not of this class (certainly not for γ = 2) but
we found that all Busse balloons for the GKGS model with C = 0 do exhibit this
‘Hopf-dance’ near the homoclinic tip. Of course, this fine structure and its associated
co-dimension two points immediately disappear as C becomes unequal to zero and
gives rise to a simple smooth oscillating curve of Hopf instabilities. See Fig. 12.

3.2.3 Upper Branch of Sideband Instabilities

An intriguing phenomenon is the fact that this branch of Hopf instabilities crosses
the upper branch of sideband instabilities, moves out of the Busse balloon for in-
creasing C. See Fig. 13 for a series of (zoomed in) Busse balloons and a schematic
sketch from which the ‘dynamics’ of the Hopf bifurcation curve are more clear. More
precisely, there exists a CT1 > 0 such that the branch of Hopf instabilities is tangent
to the branch of sideband instabilities. For C slightly larger than CT1 , two connected
components of the boundary of the Busse balloon consist of Hopf instabilities. At
C = CH > CT1 the branch of Hopf instabilities gets connected to the origin. For C

slightly larger than CH, locally there is only one connected component of the bound-
ary of the Busse balloon that consists of Hopf instabilities. If one increases C even
further, it passes a second value CT2 at which there is a tangency between the branch
of Hopf instabilities and the branch of sideband instabilities. For C > CT2 the side-
band is the only destabilization mechanism for long wavelength patterns.

If C = 0, the sideband reaches the A-axis at A �= 0. However, the intersection of
the upper branch of sideband instabilities with the A-axis rapidly moves to A = 0 as
C is increased. This is certainly not fully understood.

3.2.4 Lower Branch of Sideband Instabilities

We recall that the lower branch of sideband instabilities is intersected by a branch
of Hopf instabilities as well. See Fig. 14, where we have magnified the intersection
between the lower branch of sideband instabilities and the right branch of Hopf in-
stabilities. It is visible as a strikingly sharp cusp. In Fig. 14 we have also depicted
the spectrum associated to the stability of a solution at the sideband instability close
to the crossing point, denoted by ➀, the spectrum associated to the solution at the
crossing point, denoted by ➁, and the spectrum associated to a solution close to the
crossing point undergoing a Hopf instability, denoted by ➂. The crossing point ➁ is
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Fig. 13 Upper panels: The left Hopf curve moving out of the Busse balloon for increasing C. The hori-
zontal lines indicate the stable region. Center panel magnify the box in left panels. The fold curve in the
upper left panel has not been plotted in the other panels for readability. Lower panels: A schematic sketch
of the same process (sb = sideband). (a) The curve of Hopf instabilities has one intersection with the up-
per branch of sideband instabilities. (b) At C = CT1 , there is a tangency between the two curves. (c) For
CT1 < C < CH there are two connected components of the boundary of the Busse balloon formed by Hopf
instabilities. (d) At C = CH, the curve of Hopf instabilities is connected to the origin: only one connected
component of the boundary that consists of Hopf instabilities. (e) At C = CT2 , there is a second tan-
gency between the two curves remains. (f) For C > CT2 , the sideband remains as the only destabilization
mechanism in the homoclinic tip (see Sect. 3.2.2)

a codimension-two point at the boundary of the Busse balloon: the solution at the
crossing point simultaneously undergoes a sideband instability and Hopf instability,
as is visible in the plot of the spectrum of solution 2.

When C approaches zero, the lower branch of sideband instabilities stretches out
towards the A-axis and thereby decreases the size of the branch of Hopf instabilities.
The Hopf instabilities disappear at C = 0 where also the sideband curve merges with
the very nearby fold curve (see Doelman et al. 2012). The fact that reversible folds
yield sideband instabilities upon symmetry breaking can be readily seen by perturb-
ing (3.10). See also Fig. 8. In Figs. 15 we have plotted three close-ups of the Busse
balloons for C = 0.1, C = 0.01, and C = 0.001.

A second intriguing phenomenon is the irregular ‘jazzy’ behavior of the lower
branch of sideband instabilities for relatively small C (C = 0 to approximately C =
0.8). See Fig. 16. This fine structure of the lower branch of sideband instabilities is in
sharp contrast with the regular, parabolically shaped Eckhaus region for A near ATH.
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Fig. 14 Close-up of the crossing point between the right curve of Hopf instabilities and the lower branch
of sideband instabilities. Here, C = 0.2 and B = 0.2. The spectra near the origin for the solutions 1, 2 and
3 indicated in the magnification are plotted in the three figures at the bottom

Even a closed curve of sideband instabilities occurs (see Fig. 16(b)). For increasing C,
the fine structure gradually disappears.

While the fine structure of sideband instabilities lies in the unstable region, we
digress a little on its structure and location within the existence region. To the right
of the fine structure lies the fold curve mentioned above (see Fig. 15, left), which
we refer to as the right fold. For the C values considered in Fig. 16, the right fold
curve (see the discussion in Sect. 3.1) terminates on the equilibrium curve at some
(Afe, κfe) near (0.8,4). Hence, for A < Afe there is a second co-existing ‘sheet’ of
(unstable) spatially periodic patterns.

In the lower panel of Fig. 17(a) we plot (for a different C) the L2-norm for fixed
κ to illustrate the different sheets of solutions. Here the co-existence region is rather
small. See top right panel. continuation of periodic patterns for constant wavenum-
ber κ . Comparison with Figs. 15 and 16 shows how the fine structure of sideband
instabilities is to the left of the right fold, thus lying on the same “sheet” of solutions
as the stable periodic patterns of the Busse balloon.
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Fig. 15 The right branch of Hopf instabilities disappears into the A-axis when C ↓ 0. At the left, we see
a part of the Busse balloon for C = 0.1. In the middle, C = 0.01. At the right, C = 0.001. The fold curve
plotted in the left panel has moved very close to the Hopf and sideband curves in the other panels, so that
it cannot be visually distinguished

Fig. 16 (a)–(d) The fine structure of the lower branch of sideband instabilities for B = 0.2 and
(a) C = 0.2, (b) C = 0.4, (c) C = 0.6, and (d) C = 1.0. The equilibrium continues through the fold
and reaches a second sheet of (unstable) patterns; therefore it is plotted with a dashed curve. The intersec-
tion point of the Hopf instabilities with the sideband is indicated with a black circle. Also, the intersection
point of the fold with the equilibrium is indicated with a black circle. Note that some pieces of the curve
of sideband instabilities are missing; here the continuation of the sideband with AUTO becomes extremely
difficult since the norm of one of the eigenvectors in (3.15) rapidly increases
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Fig. 17 Computations for B = 0.2, C = 0.01. (a) Plot for continuation in A with constant wavenumber
κ = 2.78. Top panels magnify the indicated regions. (b) Part of the existence balloon. The thick line
indicates the value of κ used in (a)

An additional phenomenon of the existence region is shown by the region near
A = 0.3: there are two more folds which emerged through a cusp bifurcation when
decreasing C from C = 0.2. lower branch, thereby giving rise to a cusp. We no-
tice that this behavior of the unstable sheet of solutions close to the Busse balloon is
highly nongeneric. Indeed, the existence region has a much richer structure than what
we encounter within the Busse balloon. Finding out the precise geometrical mecha-
nism that triggers the formation of this cusp is beyond the scope of the present paper.
However, this will be the subject of future research.

3.3 Busse Balloons for C > 0 and γ = 2

We are not aware of any (even partial) representations of a Busse balloon for a sys-
tem with nonlinear diffusion in the literature. Nevertheless, the approach with AUTO

developed here can also be directly applied to the GKGS model (1.5) with γ > 1. In
Fig. 18 an existence and a Busse balloon for periodic patterns of the GKGS-model
with γ = 2 and B = C = 0.2 are shown. One can see that the structure of the Busse
balloon of the existence region closely resembles the structure of the Busse balloon
and existence region of the GKGS-model for γ = 1 (see for instance Fig. 11).

As before for γ = 1, we check that the Turing–Hopf bifurcation indeed takes
place at the parameter values predicted by the analysis in Sects. 2.2 and 2.3. We
therefore check whether k2∗ < b and a3∗ = a

γ+1∗ > gγb2γ+1 = 2gb5 with k = k∗
scaled as in Sect. 2.3 and Fig. 18. There, B = 0.2, D = 0.001, γ = 2, and further
ATH ≈ 0.525 and k∗ ≈ 8.9. If γ = 2, the estimates for a∗ and k∗ from Proposi-
tion 2 are satisfied given that 5β − 3α = 2σ . Since D = δ2σ = 0.001, we choose
σ = 1 and δ = √

0.001 and α = β = σ = 1. The rescaling for k introduced in
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Fig. 18 An existence balloon (left) and a Busse balloon (right) for the GKGS-model with γ = 2. B and
C are B = C = 0.2. The intersection points of the Hopf instabilities with the upper and lower curves of
sideband instabilities are indicated with a black circle

Sect. 2.3 is then k̃∗ = δ− 1
2 (γ+1)α+γβk∗ = δ1/2k∗ = (0.001)1/4 · 8.9 ≈ 1.58. Further,

we compute a = Aδ−α = 0.525 · √1000 ≈ 16.6 and b = Bδ−β = 0.2 · √1000 ≈ 6.3.
Hence, the estimates of Proposition 2 are verified by k2∗ = 1.582 < 6.3 = b and
a3∗ = 16.63 ≈ 4.75 × 103 > 3.47 × 103 ≈ 2gb5.

A priori, the GKGS-model for γ = 2 can of course not be interpreted as a ‘per-
turbation’ of the GKGS-model for γ = 1. Quantitatively the structure between the
Busse balloon for γ = 2 and the Busse balloons for γ = 1 is quite different. This is
already apparent in the simple verification of the parameter estimates for a, b, and
c above. Nevertheless, qualitatively the structure of the Busse balloon for γ = 2 is
remarkable akin to the structure of the Busse balloons for γ = 1. All main features of
the (behavior of the) Busse balloon for various C as studied in the previous section
for γ = 1 and described in the Introduction, also appear for γ = 2. Figure 18 shows
that the sideband instabilities make most of the boundary of the Busse balloon, until
the upper and lower branches of sideband instabilities are crossed transversally by
Hopf instabilities for decreasing wavenumbers k. Also, for relatively small C > 0
there is a ‘Hopf dance’ (if C = 0) in the homoclinic tip of the upper branch of side-
band instabilities. In the figure, where C = 0.2, there is a Hopf curve crossing the
upper branch of sideband instabilities. Just as in the case for γ = 1, the left curve of
Hopf instabilities disappears into the unstable region for bigger values of C. These
are not new phenomena and are known from the previous numerical analysis of the
GKGS-model for γ = 1.

Acknowledgements The authors thank Max Rietkerk for sharing his insights and the stimulating dis-
cussions.

Appendix: Derivation of the Ginzburg–Landau Equation

In this appendix, we outline the derivation of the Ginzburg–Landau equation for the
amplitude A of the pattern that appears at the Turing–Hopf bifurcation. Each of the
four different cases of Fig. 1 can be derived from the expressions given in this ap-
pendix by considering either γ = 1 or c = 0, or both.
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In Appendix A.1 we derive the Ginzburg–Landau equation for the special case

that γ = 1 and c =
√

2
3b that was presented in Sect. 2.5.3.

The Ginzburg–Landau Ansatz for patterns that emerge at the Turing–Hopf insta-
bility can, for the rescaled GKGS-system (2.38), be written as

+ ε

(
X02
Y02

)
+ · · ·

(
U

V

)
= A

(
2b

ηγ,c

)
ei(k∗x+ω∗t) + ε

(
X12
Y12

)
ei(k∗x+ω∗t) + ε2

(
X22
Y22

)
e2i(k∗x+ω∗t) + c.c.+ · · ·

+ ε

(
X13
Y13

)
ei(k∗x+ω∗t) + c.c. + · · · , (A.1)

where A and Xij are functions of ξ = εx and τ = ε2(x − cgt) and cg the group
velocity defined by (2.26). Substituting this expansion in the GKGS-system (2.38)
and collecting terms of equal powers of ε and the Fourier modes ei(k∗x+ω∗t), we derive
expressions for X02,12,22,13 and Y02,12,22,13 subsequently. Notice that the scaling in
(2.38) has the advantage that the terms of order ε2 only play a role in the equations
for X13 and Y13.

As mentioned in paragraph 2.4, the solvability condition can be applied to solve
an equation of the form

Miω∗(a∗, k∗, c)x = y. (A.2)

The equations for X1j , Y1j , j = 2,3 are of this form, with

Miω∗(a∗, k∗, c) =
⎛
⎝−Γ k2∗ − a2∗

b2 + ick∗ −2b

a2∗
b2 −k2∗ + b − iω∗

⎞
⎠ . (A.3)

We briefly point out the construction of the set of solutions for (A.2). The construction
for c = 0 differs from that for c �= 0.

If c �= 0, the matrix in (A.3) has two eigenvalues, λ+ = 0 and

λ− = −Γ k2∗ − a2∗
b2

+ ick∗ − k2∗ + b − iω∗. (A.4)

If y ∈ Rg Miω∗(a∗, k∗, c) and c �= 0, the set of solutions to (A.2) is given by

x = 1

λ−
y + ker Miω∗(a∗, k∗, c).

On the other hand, if c = 0, we know from Proposition 1 that

a
γ+1∗ = γgb2γ+1 and k2∗ = 1

2
(1 − g).
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It is then straightforward to show that

Miω∗(a∗, k∗,0) =
⎛
⎝− 1

2 (g − 7)(
gγ
b

)
2

γ+1 b2 −2b

(
gγ
b

)
2

γ+1 b2 1
2b(1 + g)

⎞
⎠ (A.5)

and that λ− = 0 if γ = 1. It is also straightforward to show that both columns of
Miω∗(a∗, k∗,0) span the range. We call the second column v1. So if y from (A.2)
lies in the range, there exists an α ∈ R such that y = αv1. Hence, if c = 0, the set of
solutions to (A.2) can be presented as

x = α ·
(

0
1

)
+ ker Miω∗(a∗, k∗,0). (A.6)

By plugging in the expansion (A.1) into (2.38) one obtains at order O(ε) an equation
for (X02, Y02)

T,

(
X02
Y02

)
=

[
−2

b4

a3∗
|ηγ,c|2 − 8

b2

a∗
Re(ηγ,c)

](
1
0

)∣∣A2
∣∣. (A.7)

We use shorthands x02, y02 for X02 = x02|A|2, Y02 = y02|A|2. The values for x02 and
y02 can be read from (A.7). At order O(εE), we find equations of the form

Miω∗(a∗, k∗, c)
(

X12
Y12

)
=

(
x12
y12

)
Aξ

which can be solved if (x1j , y1j )
T ∈ Rg Miω∗(a∗, k∗, c). We find

x12 = [−4biΓ k∗ − 2bc]/λ−;
y12 = [−ηγ,ccg − 2ik∗ηγ,c]/λ−.

(A.8)

It can be checked that, indeed, (x1j , y1j )
T ∈ Rg Miω∗(a∗, k∗, c). At order O(εE2)

we find (
X22
Y22

)
=

(
x22
y22

)
A2,

with

x22 =
(

b

a∗

)2(
4k2∗ + 2iω∗ − b

)
y22 −

(
b

a∗

)2(
b2

a∗
η2

γ,c + 4a∗ηγ,c

)
,

y22 =
b2

a∗ η2
γ,c + 4a∗ηγ,c + 8b2k2∗γ (γ − 1)( b2

a∗ )γ−2

( b2

a∗ )2(4k2∗ + 2iω∗ − b)(−4Γ k2∗ − ( a∗
b

)2 + 2ick∗) − 2b

+ ( b
a∗ )2( b2

a∗ η2
γ,c + 4a∗ηγ,c)(−4Γ k2∗ − ( a∗

b
)2 + 2ick∗)

( b2

a∗ )2(4k2∗ + 2iω∗ − b)(−4Γ k2∗ − ( a∗
b

)2 + 2ick∗) − 2b
.

(A.9)
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At order ε2E, we obtain equations for X13 and Y13. These equations can be written as

Mω∗(a∗, k∗, c)
(

X13
Y13

)
=

(
I1
I2

)
. (A.10)

The right-hand sides I1, I2 are built up by several terms. The nonlinear terms from
the reaction kinetics generate

2
a∗
b

UV → 2
a∗
b

[2by22 + ηγ,cx02 + η̄γ,cx22],
b2

a∗
V 2 → b2

a∗
[2η̄γ,cy22],

UV 2 → 4b|ηγ,c|2 + 2bη2
γ,c.

We define Ltot as the sum of these expressions:

Ltot :=
(

2η̄γ,c

b2

a∗
+ 4a∗

)
y22 + 2

a∗
b

(ηγ,cx02 + η̄γ,cx22) + 2b
(
2|ηγ,c|2 + η2

γ,c

)
.

(A.11)
The nonlinear terms that appear from working out the nonlinear diffusion terms gen-
erate

UxxU → −2bk2∗(x02 + 5x22)γ (γ − 1)

(
b2

a∗

)γ−2

,

(Ux)
2 → 8bk2∗x22γ (γ − 1)

(
b2

a∗

)γ−2

,

1

2
UxxU

2 → −12b3k2∗γ (γ − 1)(γ − 2)

(
b2

a∗

)γ−3

,

(Ux)
2U → 8b3k2∗γ (γ − 1)(γ − 2)

(
b2

a∗

)γ−3

,

Uxx → −2bk2∗.

Based on this we define

LNLD = −2bk2∗(x22 + x02)γ (γ − 1)

(
b2

a∗

)γ−2

− 4b3k2∗γ (γ − 1)(γ − 2)

(
b2

a∗

)γ−3

,

LA,NLD = −k2∗γ (γ − 1)
2b

a∗

(
b2

a∗

)γ−2

.

We then obtain for the right-hand side of the system

I1 =
(

−4
a∗
b

− LA,NLD

)
A + (Ltot − LNLD)|A|2 A

− (cx12 + 2bΓ + 2ik∗Γ x12)Aξξ ,

I2 = 4
a∗
b

A − Ltot|A|2 A − (cgy12 + ηγ,c + 2ik∗y12)Aξξ + ηγ,c Aτ .

(A.12)
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To derive the Ginzburg–Landau equation, we impose the solvability condition (2.42)
to (A.10):

2bI2 − (
k2∗ + iω∗ − b

)
I1 = 0, (A.13)

and obtain

2bηγ,c Aτ = [
2b(cgy12 + ηγ,c + 2ik∗y12)

− (
k2∗ + iω∗ − b

)
(cx12 + 2bΓ + 2ik∗Γ x12)

]
Aξξ

−
[

4
a∗
b

(
k2∗ + iω∗ + b

) + (
k2∗ + iω∗ − b

)
LA,NLD

]
A

+ [(
k2∗ + iω∗ + b

)
Ltot −

(
k2∗ + iω∗ − b

)
LNLD

]|A|2 A.

A.1 The Special Case that γ = 1 and c =
√

2
3b

In this section we present the expressions for xij , yij , ij = 02,12,22 for the special

case that γ = 1 and c =
√

2
3b. In Proposition 2 we computed that for γ = 1 and

c =
√

2
3b one has

k2∗ = 1

3
b, a2∗ = 1

3
b3, ω∗ = −1

3
b
√

2 and cg = −
√

2

3
b.

Also, one computes the second component of a basis vector of the kernel of
Mω∗(a∗, k∗, c) and the nonzero eigenvalue of Mω∗(a∗, k∗, c) as

η
1,

√
2
3 b

= 1

3
b(−2 + i

√
2) and λ+ = 2

3
bi

√
2.

These values are used to derive

x02 = 4b

√
b

3
,

y02 = 0,

x12 = −1

2

√
6b (2 − i

√
2),

y12 = 1

2

√
6b,

x22 = 2

33
b

√
b

3
(23 + 26i

√
2),

y22 = − 2

33
b

√
b

3
(20 + 14i

√
2).
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The nonlinear terms from the reaction kinetics are

2
a∗
b

UV → − 4

99
b3(82 + 31i

√
2),

b2

a∗
V 2 → 48

99
b3(1 + 4i

√
2),

UV 2 → 4

9
b3(7 − 2i

√
2).

The sum of these expressions is

Ltot := 4

99
(7 − 5i

√
2).

The nonlinear diffusion terms are, of course, zero, so LNLD = LA,NLD = 0. We get
for the right hand components as in (A.10):

b

3
I1 = −4

√
3

b
A + 4

33
b2(7 − 5i

√
2)|A|2 A + (6 + 3i

√
2)Aξξ ,

b

3
I2 = 4

√
3

b
A − 4

33
b2(7 − 5i

√
2)|A|2 A + (5 − 4i

√
2)Aξξ − (2 − i

√
2)Aτ .

These give the Ginzburg–Landau equation in (2.51):

Aτ = 1

3
(8 + i

√
2)Aξξ + 2

9

√
3

b
(5 + i

√
2)A − 2

33
(5 − 2i

√
2)b2|A|2 A.

A.2 Derivation of the Ginzburg–Landau Equation for the GKGS-System with c = 0

In this section we present the expressions for xij , yij , ij = 02,12,22 for the special
case that c = 0. In Proposition 1 we computed that for c = 0 one has

k2∗ = 1

2
(1 − g)b, and a

γ+1∗ = gγ b2γ+1.

Also, one computes the second component of a basis vector of the kernel of
Mω∗(ac, kc, c) and the nonzero eigenvalue of Mω∗(ac, kc, c) as

ηγ,0 = 1

2
(g − 7)

a2∗
b2

and λ− = 1

2
(g − 7)

a2∗
b2

+ 1

2
(1 + g)b.

These values are used to derive

x02 = 4a∗,

y02 = 0,

x12 = 0,

y12 = 2i(6 − g)
a2∗
b3

k∗,
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x22 = 2

9

[
9 − 2(3 + g)γ

]
a∗,

y22 = −4

9
(5 − g)γ

a3∗
b3

.

The sum of the nonlinear terms from the kinetics is

Ltot :=
[

8

9
(18 − 2g)γ + 6(5 − g)

]
a4∗
b3

.

Also we have

LNLD = −2bk2∗(x02 + x22)γ (γ − 1)

(
b2

a∗

)γ−2

− 4b3k2∗γ (γ − 1)(γ − 2)

(
b2

a∗

)γ−3

,

LNLD,A = −(1 − 5g)(γ − 1)
a∗
b

.

This gives the Ginzburg–Landau equation in (2.49):

Aτ = 2
√

2 Aξξ + b1(γ )A + L1(γ )|A|2 A

with

b1(γ ) = [−39 + 27
√

2 + (41 − 29
√

2)γ
](gγ

b

) 1
γ+1

,

L1(γ ) = −1

9
(2 − √

2)
[
18(3 + 2

√
2) + 12(2 + √

2)γ + (−8 + 3
√

2)γ 2]

×
(

gγ

b

) 2
γ+1

b3.

A.3 Derivation of the Ginzburg–Landau Equation for the Case c � 1:
The Klausmeier Model and the GKGS-Model for c � 1

This appendix to Sect. 2.6 deals with an elaborate account on the scalings introduced
in Sect. 2.6 that were used to derive the Klausmeier system (2.53) from the GKGS-
system. Also, we derive the GLE for the Klausmeier system (2.53).

Scaling Analysis for the Klausmeier System as a Limit Case of the GKGS System
We remark that the equilibria for both systems (1.5) and (2.53) are the same. Patterns
close to the equilibrium (U+,V+) can be described as

U = δ2β−α
(
Û+ + εÛ(x, t)

);
V = δα−β

(
V̂+ + εV̂ (x, t)

)
.

(A.14)

Substitution of these expansions in (1.5) gives the leading order formulation (2.38).
We are interested in the behavior of the GKGS-model for 0 < 1/

√
c � ε � 1. Since
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we know from Proposition 2 that ac = O(
√

c), we put a∗ = ā∗
√

c and obtain for
(2.38),

δ3β−2αUt = c− 1
2 (γ−1)γ

(
b2

ā∗

)γ−1

Uxx + cUx −
[
c
ā2∗
b2

U + 2bV

]

+ ε

[
γ (γ − 1)

(
b2

ā∗
√

c

)γ−2[
UxxU + (Ux)

2]

− b2

ā∗
√

c
V 2 − 2

ā∗
b

√
cUV

]

+ ε2
[
γ (γ − 1)(γ − 2)

(
b2

ā∗
√

c

)γ−3[
U(Ux)

2 + 1

2
U2Uxx

]

+ γ (γ − 1)
1

ā∗
√

c

(
b2

ā∗
√

c

)γ−1

Uxx + 2r
ā∗
b2

√
cU − UV 2

]
,

Vt = Vxx +
[
ā2∗c
b2

U + bV

]
+ ε

[
b2

ā∗
√

c
V 2 + 2

ā∗
b

√
cUV

]

− ε2
[

2r
ā∗
b2

√
cU − UV 2

]
.

(A.15)

In order to derive the Klausmeier model, we must scale the components U and V

such that the diffusion coefficient in the first component of (2.38) is of higher order
in 1/

√
c than the other terms in the equations. The other terms must balance at the

same, highest order. In order to obtain this, we scale U , V , and r such that

U = Ū√
c
, V = √

cV̄ and r = r̄
√

c. (A.16)

With these scalings we obtain for (A.15), by neglecting higher orders of δ and 1/
√

c,

0 = Ūx̃ −
[
ā2∗
b2

Ū + 2bV̄

]
− ε

[
b2

ā∗
V̄ 2 + 2

ā∗
b

Ū V̄

]
+ ε2

[
2r̄

ā∗
b2

Ū − Ū V̄ 2
]
,

V̄t̄ = V̄x̄x̄ +
[
ā2∗
b2

Ū + bV̄

]
+ ε

[
b2

ā∗
V̄ 2 + 2

ā∗
b

Ū V̄

]
− ε2

[
2r̄

ā∗
b2

Ū − Ū V̄ 2
]
.

(A.17)

We can now scale out b by putting

Ū = Ũb3/4; V̄ = b̃1/4V ; āc = ãcb
5/4;

x = b−1/2x̃; t = b−1/4 t̃; r̄ = r̃b5/4,
(A.18)
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and obtain, to leading order in ε and neglecting higher order terms of δ and 1√
c
,

0 = Ũx̃ − [
ã2∗Ũ + 2Ṽ

] − ε

[
1

ã∗
Ṽ 2 + 2ã∗Ũ Ṽ

]
+ ε2[2r̃ ã∗Ũ − Ũ Ṽ 2],

Ṽt̃ = Ṽx̃x̃ + [
ã2∗Ũ + Ṽ

] + ε

[
1

ã∗
Ṽ 2 + 2ã∗Ũ Ṽ

]
− ε2[2r̃ ã∗Ũ − Ũ Ṽ 2]. (A.19)

This system is the one presented in (2.55).

Derivation of the GLE for the Klausmeier System: The Regime 0 < 1/
√

c � ε � 1
From (A.19) one derives the dispersion relation associated to the linearization about
the background state (U+,V+) in the Klausmeier model, neglecting higher orders
of ε,

det Mλ(ã∗, ik̃) := det

(−ã2∗ + ik̃ −2
ã2∗ 1 − k̃2 − λ̃

)
= 0. (A.20)

We apply conditions (2.7a), (2.7b) to derive critical parameters. Working out the dis-
persion relation (A.20) using condition (2.7a),

iω̃ã2∗ + ik̃
(
1 − k̃2) = 0; (A.21a)

ω̃k̃ + (
k̃2 − 1

)
ã2∗ + 2ã2∗ = 0. (A.21b)

From these relations one derives

k̃2(k̃2 − 1
) + ã4∗

(
k̃2 + 1

) = 0, (A.22)

and by solving equation (A.21a) for ω̃ we get

ω̃∗ = k̃∗
(
k̃2∗ − 1

) 1

ã2∗
, (A.23)

and thus

∂ω̃

∂k̃
= 1

ã2∗

(
3k̃2 − 1

)
. (A.24)

Differentiating (A.24) with respect to k̃ and substituting equation (A.21b) into the
result, we get

2k̃2 − 1 + ã4∗ = 0. (A.25)

Solving (A.22) and (A.25) for ã and k̃ then gives

ã2∗ = √
2 − 1 and k̃2∗ = √

2 − 1, (A.26)
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which are the expressions for large c that we had derived in Proposition 2. From these
expressions for ã∗ and k̃∗ we further derive the critical frequency and the group speed

ω̃∗ = −√
2

√√
2 − 1;

c̃g = −∂ω̃

∂k̃

∣∣∣∣
k=k∗

= −2 + √
2.

(A.27)

From (A.20) it follows that the kernel and range of the linearization about the equi-
librium (Ũ+, Ṽ+) equal

ker Miω̃∗(ã∗, k̃∗) =
(

2
−ã2∗ + ik∗

)
(A.28)

and

Rg Miω̃∗(ã∗, k̃∗) =
( −2

1 − k̃2∗ − iω̃∗

)
.

From the expression for the range of Miω̃∗(ã∗, k̃∗) we derive that the equations

Miω̃(ã∗, k̃∗)x = f

can be solved for x if and only if f ∈ Rg Miω̃∗(ã∗, k̃∗), that is, if f fulfills the solv-
ability condition

2f2 + [
1 − k̃2∗ − iω̃∗

]
f1 = 0. (A.29)

Since Det Miω̃∗(ã∗, k̃∗) = 0, it follows that the unique solution to the equation
Miω̃∗(ã∗, k̃∗)x = f is

x = 1

λ−
f

with λ− the nonzero eigenvalue of Miω̃∗(ã∗, k̃∗),

λ− := Tr Miω̃(ã∗, k̃∗) = −ã2∗ + ik∗ + 1 − k̃2∗ − iω̃∗. (A.30)

By using (A.28), the expansion (U,V ) that describes the pattern near its onset (i.e.,
for ã = ã∗ − r̃ε2) can be written out as(

U

V

)
= A(ξ, τ )

(
2
η

)
ei(k̃∗x+ω̃∗t) + c.c. + h.o.t., (A.31)

with the shorthand

η := −ã2∗ + ik̃∗.

As pointed out in at the begin of the Appendix, in the Ginzburg–Landau formalism
one subsequently derives equations of the form X02 = x02 A2, Y02 = y02 A2,X12 =
x12 Aξ , Y12 = y12 Aξ ,X22 = x22|A|2, and Y22 = y22|A|2. The formulas for xij and yij
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are derived by substituting the expansion (A.31) in the leading order system (A.19)
and collecting terms of order εj−1Ei (with shorthand E = ei(k̃cx+ω̃ct)) and solving
them for Xij and Yij :

x02 = −2
1

ã3∗
|η|2 − 4

1

ã∗
(η̄ + η),

y02 = 0,

x12 = −2

λ−
,

y12 = 1

λ−
(ηcg − 2ηik̃c),

x22 = 2ik̃∗[ 1
ã∗ η2 + 4ã∗η]

[−ã2∗ + 2ik̃∗] · [4k̃2∗ + 2iω̃∗ − 1] − 2ã2∗
,

y22 = 1

ã2∗

[
4k̃2∗ + 2iω̃ − 1

]
x22 − 1

ã2∗

[
1

ã∗
η2 + 4ã∗η

]
.

(A.32)

The Ginzburg–Landau equation that describes the onset of patterns in the Klausmeier
system (A.19) reads

2ηAτ = −[
2(cgy12 − η − 2ik̃∗y12) − x12

(
1 − k̃2∗ − iω̃∗

)]
Aξξ

− 4r̃ ã∗ [1 + k̃∗ + iω̃]A + [1 + k̃∗ + iω̃]Ltot |A|2A (A.33)

with

Ltot = 2η̄

ã∗
y22 + 4ã2∗y22 + 2ã∗ηx02 + 2ã∗η̄x22 + 4|η|2 + 2η2.

If one works out the parameter values for ã2∗ = √
2 − 1 and k̃2∗ = √

2 − 1, the leading
order system (A.19) becomes

0 = Ũx̃ − [
(
√

2 − 1)Ũ + 2Ṽ
]

− ε

[
1√√
2 − 1

Ṽ 2 + 2

√√
2 − 1Ũ Ṽ

]
+ ε2

[
2r̃

√√
2 − 1Ũ − Ũ Ṽ 2

]
,

Ṽt̃ = Ṽx̃x̃ + [
(
√

2 − 1)Ũ + Ṽ
]

+ ε

[
1√√
2 − 1

Ṽ 2 + 2

√√
2 − 1Ũ Ṽ

]
− ε2

[
2r̃

√√
2 − 1Ũ − Ũ Ṽ 2

]
.

(A.34)

The matrix that describes the linear leading order part of this system is then

Mλ(ã∗, k) :=
(

−√
2 + 1 + i

√√
2 − 1 −2√

2 − 1 2 − √
2 + i

√
2
√√

2 − 1

)
. (A.35)
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Working out the levels for the different expressions (A.32), we get

x02 = (4 − 2
√

2)

√√
2 − 1,

y02 = 0,

x12 = − 1

41

[
10 − 3

√
2 − i(40 + 29

√
2)

√√
2 − 1

]
,

y12 = 1

82

[
78

√
2 − 96 + i(16

√
2 − 108)

√√
2 − 1

]
,

x22 = 1

69

[
(61

√
2 + 40)

√√
2 − 1 + 2i(67

√
2 − 13)

]
,

y22 = − 2

69

[
(10

√
2 + 42)

√√
2 − 1 + i(5

√
2 − 2)

]
,

(A.36)

and

Ltot = −44 + 32
√

2 + i[−20 + 18
√

2]
√√

2 − 1.

The Ginzburg–Landau equation then becomes

−2
[√

2 − 1 + i

√√
2 − 1

]
Aτ

= − 1

41

[
594 − 416

√
2 + i(330 − 304

√
2)

√√
2 − 1

]
Aξξ

− 4r̃
[√

2

√√
2 − 1 − i(2 − √

2)
]

A

+ 4

69

[
−885 + 637

√
2 + i(183 − 170

√
2)

√√
2 − 1

]
|A|2 A

or, equivalently,

Aτ = 1

41

[
(66 − 56

√
2) − i(63 − 23

√
2)

√√
2 − 1

]
Aξξ

+ r̃
[
4

√√
2 − 1 + i(4 − 2

√
2)

]
A

+ 4

69

[
−807 + 534

√
2 + i(418 − 286

√
2)

√√
2 − 1

]
|A|2 A

which is the equation presented in (2.56).

The GLE for the GKGS Model for c � 1: The Regime 0 < ε � 1/
√

c � 1 As in the
previous section, we scale the leading order system of the GKGS model according to
(2.54). We then obtain the leading order system (2.57). To first order in ε, the leading
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order system (2.57) reads

Mc
λ(ã∗, ik̃) :=

(−γ a
1−γ∗ c− 1

2 γ b
3
4 γ− 1

4 k̃2 + c
1
2 [ik̃ − ã2∗] −2c

1
2

ã2∗ 1 − k̃2 − λ̃

)
. (A.37)

First, we remark that for γ ≥ 1 the linear part of the nonlinear diffusion in the GKGS-
model is in leading order ≤O(c−1/2). Secondly, we remark that to leading order in c,

det Mc
λ(ã∗, ik̃) = c

1
2 Mλ(ã∗, ik̃) + O

(
c

1
2 (1−γ )

)
with Mλ(ã∗, ik̃) as defined in (A.20). Therefore, the critical k̃∗, ã∗, ω̃∗, and c̃g are to
leading order in c as in (A.26) and (A.27).

The solvability condition is as in (A.29). Using the leading order system (2.57),
we compute

x02 = −2
1

ã3∗
|η|2 − 4

1

ã∗
(η̄ + η),

y02 = 0,

x12 = l0 · c− 1
2 γ − 2

λ−
,

y12 = 1

λ−
(ηcg − 2ηik̃c),

x22 = 1

ã2∗

[
4k̃2∗ + 2iω̃ − 1

]
y22 − 1

ã2∗

[
1

ã∗
η2 + 4ã∗η

]
,

y22 = −l1c
−θ1 − l2c

−θ2 1
ã∗ η2 + 4ã∗η + 1

a2 [−l3c
−θ2 − a2 + 2ik̃][ 1

a
η2 + 4aη]

[l4c−θ4 − ã2∗ + 2ik̃∗] · [4k̃2∗ + 2iω̃∗ − 1] − 2ã2∗
.

(A.38)

In (A.38) it is understood that all li , i = 0, . . . ,4 do not depend on c and that θi ≥ 0
for i = 0, . . . ,4. We have not computed the li and θi explicitly. This gives for the
GLE of the GKGS-model in general form

2ηAτ = −[
2(cgy12 − η − 2ik̃∗y12) − (

x12 + const · c− 1
2 γ

)(
1 − k̃2∗ − iω̃∗

)]
Aξξ

− [
4r̃ ã∗

(
1 + k̃2∗ + iω̃

) + (
k̃2∗ + iω̃ − 1

)
LA,NLD

]
A

+ [(
1 + k̃2∗ + iω̃

)
Ltot −

(
k̃2∗ + iω̃ − 1

)
LNLD

]|A|2 A (A.39)

with

LNLD = −k̃2∗(x22 + x02) · const · c− 1
2 (1+γ ) − 4k̃2∗ · const · c− 1

2 (1+γ ),

LA,NLD = −k̃∗ · const · c− 1
2 γ .

We have not bothered about calculating the constant denoted by “const”, since for
asymptotically large c the associated expressions only play a role at higher order.
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That is, for asymptotically large c � 1 it is immediate that (A.39) reduces to (A.33).
Using the expressions (A.38) and inserting k̃, ã, ω̃, and cg one obtains the GLE for
the Klausmeier system (2.56).
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