Families of Divisors after János Kollár

Informal Preprint Seminal

Yajnaseni Dutta May 20, 2020

Classify smooth quasi-projective varieties.

Classify smooth quasi-projective varieties.

Equivalent data for curves: take a projective compactification (C, p_1, \cdots, p_k) .

Classify smooth quasi-projective varieties.

Equivalent data for curves: take a projective compactification (C, p_1, \cdots, p_k) .

Equivalent data for genus: $\omega_C(p_1 + \cdots + p_n)$.

Classify smooth quasi-projective varieties.

Equivalent data for curves: take a projective compactification (C, p_1, \cdots, p_k) .

Equivalent data for genus: $\omega_C(p_1 + \cdots + p_n)$. We get some moduli space of curves.

Classify smooth quasi-projective varieties.

Equivalent data for curves: take a projective compactification (C, p_1, \cdots, p_k) .

Equivalent data for genus: $\omega_C(p_1 + \cdots + p_n)$. We get some moduli space of curves. The compactification contains nodal curves.

Classify smooth quasi-projective varieties.

Equivalent data for curves: take a projective compactification (C, p_1, \cdots, p_k) .

Equivalent data for genus: $\omega_C(p_1 + \cdots + p_n)$. We get some moduli space of curves. The compactification contains nodal curves. $p_i \notin$ nodes.

Classify smooth quasi-projective varieties.

Equivalent data for curves: take a projective compactification (C, p_1, \cdots, p_k) .

Equivalent data for genus: $\omega_C(p_1 + \cdots + p_n)$. We get some moduli space of curves. The compactification contains nodal curves. $p_i \notin$ nodes.

Higher dimension: take a projective compactification (X, D) with D simple normal crossing.

Classify smooth quasi-projective varieties.

Equivalent data for curves: take a projective compactification (C, p_1, \cdots, p_k) .

Equivalent data for genus: $\omega_C(p_1 + \cdots + p_n)$. We get some moduli space of curves. The compactification contains nodal curves. $p_i \notin$ nodes.

Higher dimension: take a projective compactification (X, D) with D simple normal crossing.

Not a one to one correspondence.

Classify smooth quasi-projective varieties.

Equivalent data for curves: take a projective compactification (C, p_1, \cdots, p_k) .

Equivalent data for genus: $\omega_C(p_1 + \cdots + p_n)$. We get some moduli space of curves. The compactification contains nodal curves. $p_i \notin$ nodes.

Higher dimension: take a projective compactification (X, D) with D simple normal crossing.

Not a one to one correspondence. Pass to the log canonical model. $X' \simeq \operatorname{Proj}(\oplus_m \Gamma(X, m(K_X + D))).$

Classify smooth quasi-projective varieties.

Equivalent data for curves: take a projective compactification (C, p_1, \cdots, p_k) .

Equivalent data for genus: $\omega_C(p_1 + \cdots + p_n)$. We get some moduli space of curves. The compactification contains nodal curves. $p_i \notin$ nodes.

Higher dimension: take a projective compactification (X, D) with D simple normal crossing.

Not a one to one correspondence. Pass to the log canonical model. $X' \simeq \operatorname{Proj}(\bigoplus_m \Gamma(X, m(K_X + D)))$. When $K_X + D$ is big, the ring is finitely generated as a graded algebra over the base field. and $X \sim_{\operatorname{bir}} X'$.

Classify smooth quasi-projective varieties.

Equivalent data for curves: take a projective compactification (C, p_1, \cdots, p_k) .

Equivalent data for genus: $\omega_C(p_1 + \cdots + p_n)$. We get some moduli space of curves. The compactification contains nodal curves. $p_i \notin$ nodes.

Higher dimension: take a projective compactification (X, D) with D simple normal crossing.

Not a one to one correspondence. Pass to the log canonical model. $X' \simeq \operatorname{Proj}(\bigoplus_m \Gamma(X, m(K_X + D)))$. When $K_X + D$ is big, the ring is finitely generated as a graded algebra over the base field. and $X \sim_{\operatorname{bir}} X'$. Define $D' := \operatorname{image}(D)$.

Classify smooth quasi-projective varieties.

Equivalent data for curves: take a projective compactification (C, p_1, \cdots, p_k) .

Equivalent data for genus: $\omega_C(p_1 + \cdots + p_n)$. We get some moduli space of curves. The compactification contains nodal curves. $p_i \notin$ nodes.

Higher dimension: take a projective compactification (X, D) with D simple normal crossing.

Not a one to one correspondence. Pass to the log canonical model. $X' \simeq \operatorname{Proj}(\bigoplus_m \Gamma(X, m(K_X + D)))$. When $K_X + D$ is big, the ring is finitely generated as a graded algebra over the base field. and $X \sim_{\operatorname{bir}} X'$. Define $D' := \operatorname{image}(D)$.

The compactification contains KSBA STABLE PAIRS.

Classify smooth quasi-projective varieties.

Equivalent data for curves: take a projective compactification (C, p_1, \cdots, p_k) .

Equivalent data for genus: $\omega_C(p_1 + \cdots + p_n)$. We get some moduli space of curves. The compactification contains nodal curves. $p_i \notin$ nodes.

Higher dimension: take a projective compactification (X, D) with D simple normal crossing.

Not a one to one correspondence. Pass to the log canonical model. $X' \simeq \operatorname{Proj}(\bigoplus_m \Gamma(X, m(K_X + D)))$. When $K_X + D$ is big, the ring is finitely generated as a graded algebra over the base field. and $X \sim_{\operatorname{bir}} X'$. Define $D' := \operatorname{image}(D)$.

The compactification contains KSBA STABLE PAIRS.

Nodes \rightsquigarrow Nodes in codimension 1. genus>2 $\rightsquigarrow K_X + D$ ample.

Chow semistable \Rightarrow KSBA stable (Wang-Xu'14).

Chow semistable \Rightarrow KSBA stable (Wang-Xu'14).

But there are families that do not admit any Chow semistable compactification.

Chow semistable \Rightarrow KSBA stable (Wang-Xu'14).

But there are families that do not admit any Chow semistable compactification.

Example (Wang and Xu)

```
Chow semistable \Rightarrow KSBA stable (Wang-Xu'14).
```

But there are families that do not admit any Chow semistable compactification.

```
Example (Wang and Xu)
```

$$\begin{split} & \mathcal{Y} = & \text{Weighted blow up of} \\ & (w^{25}(xyz^4 + y^6) + w^{21}z^{10} + t^{30}w^{31} + x^{31} + y^{31} + z^{31} = 0) \subset \\ & \mathbb{P}(x;y;z;w) \times \mathbb{C}[t] \text{ at } (0,0,0,1) \times 0. \end{split}$$

```
Chow semistable \Rightarrow KSBA stable (Wang-Xu'14).
```

But there are families that do not admit any Chow semistable compactification.

Example (Wang and Xu)

 \mathscr{Y} =Weighted blow up of $(w^{25}(xyz^4 + y^6) + w^{21}z^{10} + t^{30}w^{31} + x^{31} + y^{31} + z^{31} = 0) \subset$ $\mathbb{P}(x; y; z; w) \times \mathbb{C}[t]$ at $(0, 0, 0, 1) \times 0$. What fails: Chow semistability $\stackrel{\text{Mumford}}{\Rightarrow}$ mult_x $\mathscr{Y}_0 < (\dim \mathscr{Y}_0 + 1)!$.

(X, D) is a stable pair if X is

(X, D) is a stable pair if X is equidimensional

(X, D) is a stable pair if X is equidimensional with at worst nodal singularities in codim 1 and

(X, D) is a stable pair if X is equidimensional with at worst nodal singularities in codim 1 and D is an effective Q-divisor

(X, D) is a stable pair if X is equidimensional with at worst nodal singularities in codim 1 and D is an effective \mathbb{Q} -divisor such that the pair's normalization is log canonical

(X, D) is a stable pair if X is equidimensional with at worst nodal singularities in codim 1 and D is an effective \mathbb{Q} -divisor such that the pair's normalization is log canonical and $K_X + D$ is \mathbb{Q} -Cartier

(X, D) is a stable pair if X is equidimensional with at worst nodal singularities in codim 1 and D is an effective \mathbb{Q} -divisor such that the pair's normalization is log canonical and $K_X + D$ is \mathbb{Q} -Cartier and ample.

(X, D) is a stable pair if X is equidimensional with at worst nodal singularities in codim 1 and D is an effective \mathbb{Q} -divisor such that the pair's normalization is log canonical and $K_X + D$ is \mathbb{Q} -Cartier and ample.

Family of stable pairs

A family of stable log-varieties $f: (X, D) \to S$,

(X, D) is a stable pair if X is equidimensional with at worst nodal singularities in codim 1 and D is an effective \mathbb{Q} -divisor such that the pair's normalization is log canonical and $K_X + D$ is \mathbb{Q} -Cartier and ample.

Family of stable pairs

A family of stable log-varieties $f: (X, D) \rightarrow S$, with S a normal variety; variety = reduced but possibly reducible

(X, D) is a stable pair if X is equidimensional with at worst nodal singularities in codim 1 and D is an effective \mathbb{Q} -divisor such that the pair's normalization is log canonical and $K_X + D$ is \mathbb{Q} -Cartier and ample.

Family of stable pairs

A family of stable log-varieties $f: (X, D) \rightarrow S$, with S a normal variety;

pair (X, D), i.e. X equi-dimensional at worst nodal in codim 1 and D is an effective \mathbb{Q} -divisor.

(X, D) is a stable pair if X is equidimensional with at worst nodal singularities in codim 1 and D is an effective \mathbb{Q} -divisor such that the pair's normalization is log canonical and $K_X + D$ is \mathbb{Q} -Cartier and ample.

Family of stable pairs

A family of stable log-varieties $f: (X, D) \rightarrow S$, with S a normal variety;

pair (X, D), i.e. X equi-dimensional at worst nodal in codim 1 and D is an effective \mathbb{Q} -divisor.

f flat proper surjective morphism

(X, D) is a stable pair if X is equidimensional with at worst nodal singularities in codim 1 and D is an effective \mathbb{Q} -divisor such that the pair's normalization is log canonical and $K_X + D$ is \mathbb{Q} -Cartier and ample.

Family of stable pairs

A family of stable log-varieties $f: (X, D) \rightarrow S$, with S a normal variety;

pair (X, D), i.e. X equi-dimensional at worst nodal in codim 1 and D is an effective \mathbb{Q} -divisor.

- f flat proper surjective morphism
- D avoids the codimension 1 singular points of every fiber

(X, D) is a stable pair if X is equidimensional with at worst nodal singularities in codim 1 and D is an effective \mathbb{Q} -divisor such that the pair's normalization is log canonical and $K_X + D$ is \mathbb{Q} -Cartier and ample.

Family of stable pairs

A family of stable log-varieties $f: (X, D) \rightarrow S$, with S a normal variety;

pair (X, D), i.e. X equi-dimensional at worst nodal in codim 1 and D is an effective \mathbb{Q} -divisor.

f flat proper surjective morphism

D avoids the codimension 1 singular points of every fiber

has pure dimX - 1 dimensional fibres over *S*.

(X, D) is a stable pair if X is equidimensional with at worst nodal singularities in codim 1 and D is an effective \mathbb{Q} -divisor such that the pair's normalization is log canonical and $K_X + D$ is \mathbb{Q} -Cartier and ample.

Family of stable pairs

A family of stable log-varieties $f: (X, D) \rightarrow S$, with S a normal variety;

pair (X, D), i.e. X equi-dimensional at worst nodal in codim 1 and D is an effective \mathbb{Q} -divisor.

f flat proper surjective morphism

D avoids the codimension 1 singular points of every fiber

has pure dimX - 1 dimensional fibres over S.

 $K_{X/S} + D$ is Q-Cartier

(X, D) is a stable pair if X is equidimensional with at worst nodal singularities in codim 1 and D is an effective \mathbb{Q} -divisor such that the pair's normalization is log canonical and $K_X + D$ is \mathbb{Q} -Cartier and ample.

Family of stable pairs

A family of stable log-varieties $f: (X, D) \rightarrow S$, with S a normal variety;

pair (X, D), i.e. X equi-dimensional at worst nodal in codim 1 and D is an effective \mathbb{Q} -divisor.

f flat proper surjective morphism

D avoids the codimension 1 singular points of every fiber

has pure dimX - 1 dimensional fibres over *S*.

 $K_{X/S} + D$ is Q-Cartier

 (X_s, D_s) is a connected stable log-variety for all $s \in S$,

(X, D) is a stable pair if X is equidimensional with at worst nodal singularities in codim 1 and D is an effective \mathbb{Q} -divisor such that the pair's normalization is log canonical and $K_X + D$ is \mathbb{Q} -Cartier and ample.

Family of stable pairs

A family of stable log-varieties $f: (X, D) \rightarrow S$, with S a normal variety;

pair (X, D), i.e. X equi-dimensional at worst nodal in codim 1 and D is an effective \mathbb{Q} -divisor.

f flat proper surjective morphism

D avoids the codimension 1 singular points of every fiber

has pure dimX - 1 dimensional fibres over *S*.

 $K_{X/S} + D$ is Q-Cartier

 (X_s, D_s) is a connected stable log-variety for all $s \in S$, in particular, $K_{X_s} + D_s$ is ample.

Why normality of *S* is necessary?

4
Let $f\colon X\to S$ be a flat morphism of schemes. A relative (effective) Cartier divisor is

Let $f\colon X\to S$ be a flat morphism of schemes. A relative (effective) Cartier divisor is

effective Cartier divisor D + D is flat over S

Let $f\colon X\to S$ be a flat morphism of schemes. A relative (effective) Cartier divisor is

effective Cartier divisor D + D is flat over S

 \Longleftrightarrow

Let $f\colon X\to S$ be a flat morphism of schemes. A relative (effective) Cartier divisor is

effective Cartier divisor D + D is flat over S

 \iff

D is flat + D_s effective Cartier for all $s \in S$.

Let $f: X \to S$ be a flat morphism of schemes. A relative (effective) Cartier divisor is

effective Cartier divisor D + D is flat over S

 \iff

D is flat + D_s effective Cartier for all $s \in S$.

 \rightsquigarrow good moduli functor that is representable by an open subscheme of $\operatorname{Hilb}_{X/S}$.

Let $f: X \to S$ be a flat morphism of schemes. A relative (effective) Cartier divisor is

effective Cartier divisor D + D is flat over S

 \iff

D is flat + D_s effective Cartier for all $s \in S$.

 \leadsto good moduli functor that is representable by an open subscheme of $\mathrm{Hilb}_{X/S}.$

Example: When f is smooth and S normal, then any Weil divisor D on X mapping surjectively onto S and

Let $f: X \to S$ be a flat morphism of schemes. A relative (effective) Cartier divisor is

effective Cartier divisor D + D is flat over S

 \iff

D is flat + D_s effective Cartier for all $s \in S$.

 \rightsquigarrow good moduli functor that is representable by an open subscheme of $\mathrm{Hilb}_{X/S}.$

Example: When f is smooth and S normal, then any Weil divisor D on X mapping surjectively onto S and that does not contain any irreducible component of the fibres

Let $f: X \to S$ be a flat morphism of schemes. A relative (effective) Cartier divisor is

effective Cartier divisor D + D is flat over S

 \iff

D is flat + D_s effective Cartier for all $s \in S$.

 \leadsto good moduli functor that is representable by an open subscheme of $\mathrm{Hilb}_{X/S}.$

Example: When f is smooth and S normal, then any Weil divisor D on X mapping surjectively onto S and that does not contain any irreducible component of the fibres is *relative Cartier divisor*. (cf. [Moduli Book, Theorem 4.21, Kollár]).

 (Y, D_Y) is log canonical and $K_Y + \frac{1}{r}D_Y$ is Cartier.

 (Y, D_Y) is log canonical and $K_Y + \frac{1}{r}D_Y$ is Cartier. $\chi(\mathcal{O}_{D_\infty}) = \chi(\mathcal{O}_{\mathbb{P}^1}) = 1$

 (Y, D_Y) is log canonical and $K_Y + \frac{1}{r}D_Y$ is Cartier. $\chi(\mathcal{O}_{D_\infty}) = \chi(\mathcal{O}_{\mathbb{P}^1}) = 1$ but $\chi(\mathcal{O}_{D_0}) = \frac{1}{r}(1 - \chi(\mathcal{O}_{\mathbb{P}^2}(-r))) = -\frac{(r-3)}{2}$.

 (Y, D_Y) is log canonical and $K_Y + \frac{1}{r}D_Y$ is Cartier. $\chi(\mathcal{O}_{D_\infty}) = \chi(\mathcal{O}_{\mathbb{P}^1}) = 1$ but $\chi(\mathcal{O}_{D_0}) = \frac{1}{r}(1 - \chi(\mathcal{O}_{\mathbb{P}^2}(-r))) = -\frac{(r-3)}{2}$. Therefore, flat limit of D_∞ must have embedded points.

For any morphism $g: T \to S$, consider

For any morphism $g: T \to S$, consider

Define $D_W := g^{[*]}D := Div(g_X^{-1}(D))$

For any morphism $g \colon \mathcal{T} \to \mathcal{S}$, consider

Define $D_W := g^{[*]}D := Div(g_X^{-1}(D))$

Theorem [Kollár, Moduli Book, §4]

Let *S* be reduced and $f: (X, D) \rightarrow S$ satisfies the following:

For any morphism $g \colon \mathcal{T} \to \mathcal{S}$, consider

$$W := X \times_S T \xrightarrow{g_X} X$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$T \xrightarrow{g} S$$

Define $D_W := g^{[*]}D := Div(g_X^{-1}(D))$

Theorem [Kollár, Moduli Book, §4]

Let *S* be reduced and $f: (X, D) \to S$ satisfies the following: (A) *f* is flat outside codim 2 subset on each fibre, of pure relative dimension *n* and geometrically reduced fibres.

For any morphism $g \colon \mathcal{T} \to \mathcal{S}$, consider

$$W := X \times_S T \xrightarrow{g_X} X$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$T \xrightarrow{g} S$$

Define $D_W := g^{[*]}D := Div(g_X^{-1}(D))$

Theorem [Kollár, Moduli Book, §4]

Let *S* be reduced and $f: (X, D) \to S$ satisfies the following: (A) *f* is flat outside codim 2 subset on each fibre, of pure relative dimension *n* and geometrically reduced fibres. (B) *D* has pure relative dimension n - 1

For any morphism $g \colon T \to S$, consider

$$W := X \times_S T \xrightarrow{g_X} X$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$T \xrightarrow{g} S$$

Define $D_W := g^{[*]}D := Div(g_X^{-1}(D))$

Theorem [Kollár, Moduli Book, §4]

For any morphism $g \colon T \to S$, consider

$$W := X \times_S T \xrightarrow{g_X} X$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$T \xrightarrow{g} S$$

Define $D_W := g^{[*]}D := Div(g_X^{-1}(D))$

Theorem [Kollár, Moduli Book, §4]

For any morphism $g \colon T \to S$, consider

$$W := X \times_S T \xrightarrow{g_X} X$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$T \xrightarrow{g} S$$

Define $D_W := g^{[*]}D := Div(g_X^{-1}(D))$

Theorem [Kollár, Moduli Book, §4]

Let *S* be reduced and $f: (X, D) \to S$ satisfies the following: (A) *f* is flat outside codim 2 subset on each fibre, of pure relative dimension *n* and geometrically reduced fibres. (B) *D* has pure relative dimension n - 1 (C) *D* does not contain any codim 1 points of X_s . Then the following are equivanent

• Well defined under pullback.

For any morphism $g \colon T \to S$, consider

$$W := X \times_S T \xrightarrow{g_X} X$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$T \xrightarrow{g} S$$

Define $D_W := g^{[*]}D := Div(g_X^{-1}(D))$

Theorem [Kollár, Moduli Book, §4]

Let *S* be reduced and $f: (X, D) \to S$ satisfies the following: (A) *f* is flat outside codim 2 subset on each fibre, of pure relative dimension *n* and geometrically reduced fibres. (B) *D* has pure relative dimension n - 1 (C) *D* does not contain any codim 1 points of X_s . Then the following are equivanent

• Well defined under pullback. i.e. $(g \circ h)^{[*]}D = h^{[*]}g^{[*]}D$

For any morphism $g \colon T \to S$, consider

$$W := X \times_S T \xrightarrow{g_X} X$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$T \xrightarrow{g} S$$

Define $D_W := g^{[*]}D := Div(g_X^{-1}(D))$

Theorem [Kollár, Moduli Book, §4]

- Well defined under pullback. i.e. $(g \circ h)^{[*]}D = h^{[*]}g^{[*]}D$
- D is a relative, generically Cartier divisor.

For any morphism $g \colon T \to S$, consider

$$W := X \times_S T \xrightarrow{g_X} X$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$T \xrightarrow{g} S$$

Define $D_W := g^{[*]}D := Div(g_X^{-1}(D))$

Theorem [Kollár, Moduli Book, §4]

- Well defined under pullback. i.e. $(g \circ h)^{[*]}D = h^{[*]}g^{[*]}D$
- *D* is a relative, generically Cartier divisor. i.e. $D_s = \overline{D_{U_s}}$

For any morphism $g \colon T \to S$, consider

$$W := X \times_S T \xrightarrow{g_X} X$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$T \xrightarrow{g} S$$

Define $D_W := g^{[*]}D := Div(g_X^{-1}(D))$

Theorem [Kollár, Moduli Book, §4]

- Well defined under pullback. i.e. $(g \circ h)^{[*]}D = h^{[*]}g^{[*]}D$
- *D* is a relative, generically Cartier divisor. i.e. $D_s = \overline{D_{U_s}}$
- $g: D \to S$ is flat at generic points of D_s for every $s \in S$.

Let f be flat

Let f be flat with S_2 fibres of pure dimension n.

Let f be flat with S_2 fibres of pure dimension n. D is a relative Mumford divisor if

Let f be flat with S_2 fibres of pure dimension n. D is a relative Mumford divisor if

• there is $U \subseteq X$ with $\operatorname{codim}_{X_s}(X_s \setminus U) \ge 2$ and $D|_U$ is relative Cartier.

Let f be flat with S_2 fibres of pure dimension n. D is a relative Mumford divisor if

- there is $U \subseteq X$ with $\operatorname{codim}_{X_s}(X_s \setminus U) \ge 2$ and $D|_U$ is relative Cartier.
- D_s does not contain any codim 1 singular points of X_s

Let f be flat with S_2 fibres of pure dimension n. D is a relative Mumford divisor if

- there is $U \subseteq X$ with $\operatorname{codim}_{X_s}(X_s \setminus U) \ge 2$ and $D|_U$ is relative Cartier.
- D_s does not contain any codim 1 singular points of X_s

• $D = \overline{D|_U}$.

Let f be flat with S_2 fibres of pure dimension n. D is a relative Mumford divisor if

- there is $U \subseteq X$ with $\operatorname{codim}_{X_s}(X_s \setminus U) \ge 2$ and $D|_U$ is relative Cartier.
- D_s does not contain any codim 1 singular points of X_s
- $D = \overline{D|_U}$.

The moduli space is way too big.

Let f be flat with S_2 fibres of pure dimension n. D is a relative Mumford divisor if

- there is $U \subseteq X$ with $\operatorname{codim}_{X_s}(X_s \setminus U) \ge 2$ and $D|_U$ is relative Cartier.
- D_s does not contain any codim 1 singular points of X_s
- $D = \overline{D|_U}$.

The moduli space is way too big.

Example

Let $D = (x = 0) \subset \mathbb{A}^2_{x,y}$. A deformation of D over $\frac{k[\epsilon]}{(\epsilon^2)}$ is also allowed to be non-Cartier at (0, 0).

Let f be flat with S_2 fibres of pure dimension n. D is a relative Mumford divisor if

- there is $U \subseteq X$ with $\operatorname{codim}_{X_s}(X_s \setminus U) \ge 2$ and $D|_U$ is relative Cartier.
- D_s does not contain any codim 1 singular points of X_s
- $D = \overline{D|_U}$.

The moduli space is way too big.

Example

Let $D = (x = 0) \subset \mathbb{A}^2_{x,y}$. A deformation of D over $\frac{k[\epsilon]}{(\epsilon^2)}$ is also allowed to be non-Cartier at (0, 0).

$$D^g_{\epsilon} = \operatorname{Zeroes}(x^2, xy + \epsilon g, \epsilon x).$$

Let f be flat with S_2 fibres of pure dimension n. D is a relative Mumford divisor if

- there is $U \subseteq X$ with $\operatorname{codim}_{X_s}(X_s \setminus U) \ge 2$ and $D|_U$ is relative Cartier.
- D_s does not contain any codim 1 singular points of X_s
- $D = \overline{D|_U}$.

The moduli space is way too big.

Example

Let $D = (x = 0) \subset \mathbb{A}^2_{x,y}$. A deformation of D over $\frac{k[\epsilon]}{(\epsilon^2)}$ is also allowed to be non-Cartier at (0, 0).

 $D_{\epsilon}^{g} = \text{Zeroes}(x^{2}, xy + \epsilon g, \epsilon x).$ Away from (0, 0), $D_{\epsilon}^{g} = (x + \epsilon y^{-1}g = 0)$, hence Cartier.

Let f be flat with S_2 fibres of pure dimension n. D is a relative Mumford divisor if

- there is $U \subseteq X$ with $\operatorname{codim}_{X_s}(X_s \setminus U) \ge 2$ and $D|_U$ is relative Cartier.
- D_s does not contain any codim 1 singular points of X_s
- $D = \overline{D|_U}$.

The moduli space is way too big.

Example

Let $D = (x = 0) \subset \mathbb{A}^2_{x,y}$. A deformation of D over $\frac{k[\epsilon]}{(\epsilon^2)}$ is also allowed to be non-Cartier at (0, 0).

 $D_{\epsilon}^{g} = \text{Zeroes}(x^{2}, xy + \epsilon g, \epsilon x).$ Away from (0, 0), $D_{\epsilon}^{g} = (x + \epsilon y^{-1}g = 0)$, hence Cartier. For $g \notin (x^{2}, xy) D_{\epsilon}^{g}$ has no embedded points.
Relative Mumford divisors

Let f be flat with S_2 fibres of pure dimension n. D is a relative Mumford divisor if

- there is $U \subseteq X$ with $\operatorname{codim}_{X_s}(X_s \setminus U) \ge 2$ and $D|_U$ is relative Cartier.
- D_s does not contain any codim 1 singular points of X_s
- $D = \overline{D|_U}$.

The moduli space is way too big.

Example

Let $D = (x = 0) \subset \mathbb{A}^2_{x,y}$. A deformation of D over $\frac{k[\epsilon]}{(\epsilon^2)}$ is also allowed to be non-Cartier at (0, 0).

 $D_{\epsilon}^{g} = \text{Zeroes}(x^{2}, xy + \epsilon g, \epsilon x).$ Away from (0, 0), $D_{\epsilon}^{g} = (x + \epsilon y^{-1}g = 0)$, hence Cartier. For $g \notin (x^{2}, xy)$ D_{ϵ}^{g} has no embedded points. Two such deformations D_{ϵ}^{g} and $D_{\epsilon}^{g'}$ are equivalent iff $g - g' \in (x^{2}, xy)$.

Relative Mumford divisors

Let f be flat with S_2 fibres of pure dimension n. D is a relative Mumford divisor if

- there is $U \subseteq X$ with $\operatorname{codim}_{X_s}(X_s \setminus U) \ge 2$ and $D|_U$ is relative Cartier.
- D_s does not contain any codim 1 singular points of X_s
- $D = \overline{D|_U}$.

The moduli space is way too big.

Example

Let $D = (x = 0) \subset \mathbb{A}^2_{x,y}$. A deformation of D over $\frac{k[\epsilon]}{(\epsilon^2)}$ is also allowed to be non-Cartier at (0, 0).

 $D_{\epsilon}^{g} = \text{Zeroes}(x^{2}, xy + \epsilon g, \epsilon x).$ Away from (0, 0), $D_{\epsilon}^{g} = (x + \epsilon y^{-1}g = 0)$, hence Cartier. For $g \notin (x^{2}, xy)$ D_{ϵ}^{g} has no embedded points. Two such deformations D_{ϵ}^{g} and $D_{\epsilon}^{g'}$ are equivalent iff $g - g' \in (x^{2}, xy)$.

The deformation space is infinite dimensional.

• The moduli functor is defined for reduced schemes.

- The moduli functor is defined for reduced schemes.
- In general techniques from Hilbert schemes: does not ignore embedded point.

- The moduli functor is defined for reduced schemes.
- In general techniques from Hilbert schemes: does not ignore embedded point.
- Techniques from Cayley-Chow: works only over seminormal base.

D is called *K*-flat if for every finite morphism $\pi: X \to \mathbb{P}^n_S$, π_*D is a y Cartier divisor.

D is called *K*-flat if for every finite morphism $\pi: X \to \mathbb{P}^n_S$, π_*D is a y Cartier divisor.

Definition: $\pi_*(D)$

D is called *K*-flat if for every finite morphism $\pi: X \to \mathbb{P}^n_S$, π_*D is a y Cartier divisor.

Definition: $\pi_*(D)$

If $D_{\rm red} \rightarrow \pi(D)_{\rm red}$ is birational and

D is called *K*-flat if for every finite morphism $\pi: X \to \mathbb{P}^n_S$, π_*D is a y Cartier divisor.

Definition: $\pi_*(D)$

If $D_{\text{red}} \rightarrow \pi(D)_{\text{red}}$ is birational and π generically étale on the fibres D_s .

D is called *K*-flat if for every finite morphism $\pi: X \to \mathbb{P}^n_S$, π_*D is a y Cartier divisor.

Definition: $\pi_*(D)$

If $D_{\text{red}} \to \pi(D)_{\text{red}}$ is birational and π generically étale on the fibres D_s . then $\pi_*D :=$ scheme theoretic image of D.

D is called *K*-flat if for every finite morphism $\pi: X \to \mathbb{P}^n_S$, π_*D is a y Cartier divisor.

Definition: $\pi_*(D)$

If $D_{\text{red}} \to \pi(D)_{\text{red}}$ is birational and π generically étale on the fibres D_s . then $\pi_*D :=$ scheme theoretic image of D.

In general, define it to be the divisorial support $DSupp(\pi_* \mathcal{O}_D)$.

D is called *K*-flat if for every finite morphism $\pi: X \to \mathbb{P}^n_S$, π_*D is a y Cartier divisor.

Definition: $\pi_*(D)$

If $D_{\text{red}} \to \pi(D)_{\text{red}}$ is birational and π generically étale on the fibres D_s . then $\pi_*D :=$ scheme theoretic image of D.

In general, define it to be the divisorial support $DSupp(\pi_* \mathcal{O}_D)$.

Key Theorem [Kollár, Moduli Book, Theorem 2.93]

D is relatively Cartier iff $\tau^{[*]}(D)$ is relatively Cartier for all Artin subscheme $\tau: A \hookrightarrow S$.

Relative Notion

We assume \mathcal{F} is generically flat over *S*, and dim Supp(\mathcal{F}) = dim X - 1.

Relative Notion

We assume \mathcal{F} is generically flat over S, and dim Supp $(\mathcal{F}) = \dim X - 1$. Establish a definition on the locus U where \mathcal{F} is flat and Cohen-Macaulay.

Relative Notion

We assume \mathcal{F} is generically flat over S, and dim Supp $(\mathcal{F}) = \dim X - 1$. Establish a definition on the locus U where \mathcal{F} is flat and Cohen-Macaulay. Define $DSupp_{S}(\mathcal{F}) := \overline{DSupp_{S}(\mathcal{F}|_{U})}$

Relative Notion

We assume \mathcal{F} is generically flat over S, and dim $\operatorname{Supp}(\mathcal{F}) = \dim X - 1$. Establish a definition on the locus U where \mathcal{F} is flat and Cohen-Macaulay. Define $\operatorname{DSupp}_{S}(\mathcal{F}) := \overline{\operatorname{DSupp}_{S}(\mathcal{F}|_{U})}$

Compatibility

Relative Notion

We assume \mathcal{F} is generically flat over S, and dim $\operatorname{Supp}(\mathcal{F}) = \dim X - 1$. Establish a definition on the locus U where \mathcal{F} is flat and Cohen-Macaulay. Define $\operatorname{DSupp}_{S}(\mathcal{F}) := \overline{\operatorname{DSupp}_{S}(\mathcal{F}|_{U})}$

Compatibility

Let $h: T \to S$ then $\mathrm{DSupp}_{\mathcal{S}}(h_X^*\mathcal{F}) \simeq h^{[*]} \mathrm{DSupp}_{\mathcal{S}}(\mathcal{F}).$

Let *S* be a scheme and \mathcal{F} be a generically flat family of pure dimensional *d* coherent sheaves on \mathbb{P}_{S}^{n} . Then define

Let *S* be a scheme and \mathcal{F} be a generically flat family of pure dimensional *d* coherent sheaves on \mathbb{P}^n_S . Then define $\operatorname{Inc}_S := \{ [x, H_0, H_1, \cdots H_d] | x \in H_0 \cap \cdots H_d \}.$

Let *S* be a scheme and \mathcal{F} be a generically flat family of pure dimensional *d* coherent sheaves on \mathbb{P}_{S}^{n} . Then define $\operatorname{Inc}_{S} := \{(x, H_{0}, H_{1}, \cdots H_{d}) | x \in H_{0} \cap \cdots H_{d}\}$. Consider

$$\mathbb{P}^n_{S} \stackrel{\sigma}{\leftarrow} \operatorname{Inc}_{S} \stackrel{\pi}{\to} (\check{\mathbb{P}}^n)^{d+1}$$

Let *S* be a scheme and \mathcal{F} be a generically flat family of pure dimensional *d* coherent sheaves on \mathbb{P}_{S}^{n} . Then define $\operatorname{Inc}_{S} := \{(x, H_{0}, H_{1}, \cdots H_{d}) | x \in H_{0} \cap \cdots H_{d}\}$. Consider

$$\mathbb{P}^n_{S} \stackrel{\sigma}{\leftarrow} \operatorname{Inc}_{S} \stackrel{\pi}{\to} (\check{\mathbb{P}}^n)^{d+1}$$

Define $Ch(F) := DSupp_{S}(\pi_{*}\sigma^{*}\mathcal{F}).$

Let *S* be a scheme and \mathcal{F} be a generically flat family of pure dimensional *d* coherent sheaves on \mathbb{P}_{S}^{n} . Then define $\operatorname{Inc}_{S} := \{(x, H_{0}, H_{1}, \cdots H_{d}) | x \in H_{0} \cap \cdots H_{d}\}$. Consider

$$\mathbb{P}^n_{S} \stackrel{\sigma}{\leftarrow} \operatorname{Inc}_{S} \stackrel{\pi}{\to} (\check{\mathbb{P}}^n)^{d+1}$$

Define $Ch(F) := DSupp_{S}(\pi_{*}\sigma^{*}\mathcal{F}).$

Simple fix for divisors in \mathbb{P}_{S}^{n} : Only consider the Mumford divisors for which $Ch(\pi_{*} \mathcal{O}_{D})$ is relatively Cartier.

Let *S* be a scheme and \mathcal{F} be a generically flat family of pure dimensional *d* coherent sheaves on \mathbb{P}_{S}^{n} . Then define $\operatorname{Inc}_{S} := \{(x, H_{0}, H_{1}, \cdots H_{d}) | x \in H_{0} \cap \cdots H_{d}\}$. Consider

$$\mathbb{P}^n_{S} \stackrel{\sigma}{\leftarrow} \mathrm{Inc}_{S} \stackrel{\pi}{\to} (\check{\mathbb{P}}^n)^{d+1}$$

Define $Ch(F) := DSupp_{S}(\pi_{*}\sigma^{*}\mathcal{F}).$

Simple fix for divisors in \mathbb{P}_{S}^{n} : Only consider the Mumford divisors for which $Ch(\pi_{*} \mathbb{O}_{D})$ is relatively Cartier.

Theorem 61, Kollár'19.

 $Ch(\mathcal{F})$ is relatively Cartier iff $p_*(\operatorname{Supp}(\mathcal{F}))$ is relatively Cartier for all \mathcal{O}_S -linear projection $p: \mathbb{P}^n_S \dashrightarrow \mathbb{P}^{d+1}_S$ that is finite on $\operatorname{DSupp}(\mathcal{F})$.

K-flatness is Representable!

K-flatness is Representable!

Theorem 4

Let $f: X \to S$ be a flat, projective morphism with S_2 fibres of pure dimension *n*. Then the functor $KDiv_d(X/S)$ of K-flat relative Mumford divisors of degree *d* is representable by a separated scheme of finite type $KDiv_d(X/S)$.

1. K-flat deformations do not depend on the ambient variety.

- 1. K-flat deformations do not depend on the ambient variety.
- 2. Is there a universal deformation scheme for K-flat deformations of a reduced projective scheme?

- 1. K-flat deformations do not depend on the ambient variety.
- 2. Is there a universal deformation scheme for K-flat deformations of a reduced projective scheme?
- 3. K-flatness is equivalent to flatness wherever f is smooth.

- 1. K-flat deformations do not depend on the ambient variety.
- 2. Is there a universal deformation scheme for K-flat deformations of a reduced projective scheme?
- 3. K-flatness is equivalent to flatness wherever f is smooth.
- 4. Hard to check: Check all finite maps X → Pⁿ for all linear systems in X. Computed examples show checking for linear projections X ⊂ P^N --→ Pⁿ is enough.

- 1. K-flat deformations do not depend on the ambient variety.
- 2. Is there a universal deformation scheme for K-flat deformations of a reduced projective scheme?
- 3. K-flatness is equivalent to flatness wherever f is smooth.
- 4. Hard to check: Check all finite maps X → Pⁿ for all linear systems in X. Computed examples show checking for linear projections X ⊂ P^N --→ Pⁿ is enough.
- 5. The obstruction theory of K-flat is not known.

A family of stable pairs of volume ν is a morphism $f\colon (X,cD)\to S$ such that

• *f* is flat and projective,

A family of stable pairs of volume ν is a morphism $f\colon (X,cD)\to S$ such that

- *f* is flat and projective,
- *D* is a K-flat family of divisors,

A family of stable pairs of volume ν is a morphism $f\colon (X,cD)\to S$ such that

- *f* is flat and projective,
- *D* is a K-flat family of divisors,
- $K_X + cD$ is Q-Cartier, relatively ample,
A family of stable pairs of volume ν is a morphism $f\colon (X,cD)\to S$ such that

- *f* is flat and projective,
- *D* is a K-flat family of divisors,
- $K_X + cD$ is Q-Cartier, relatively ample,
- the fibres (X_s, cD_s) are semi-log canonical, and

A family of stable pairs of volume ν is a morphism $f:(X, cD) \to S$ such that

- *f* is flat and projective,
- *D* is a K-flat family of divisors,
- $K_X + cD$ is Q-Cartier, relatively ample,
- the fibres (X_s, cD_s) are semi-log canonical, and
- the volume v: $= (K_{X_s} + cD_s)^n$ is fixed.

Questions?

Thank You!