

How the Octonions Form a Division Algebra

Oliver Lenz

Wednesday, 2nd of April 2008

During the talk it will be shown that \mathbb{O} , that is the *Octonions*, form a *division algebra*.

Definition. An algebra A is said to be a *division algebra* if for any $a \in A, a \neq 0$, the left multiplication l_a and right multiplication r_a

$$l_a, r_a : A \longrightarrow A$$

given for any $z \in A$ by, resp.,

$$z \longmapsto az$$

$$z \longmapsto za$$

are bijective.

In the finite dimensional case, this is equivalent to there existing no zero divisors in A .

We then construct \mathbb{O} starting off from the quaternions, \mathbb{H} , through the Cayley-Dickson construction. Since the conjugation on \mathbb{H} satisfies some nice properties, it then follows from direct computation that \mathbb{O} is *alternative*.

Definition. Let A be an algebra. A is said to be *alternative* if

$$\begin{aligned} (aa)b &= a(ab), \\ (ab)a &= a(ba), \\ (ba)a &= b(aa). \end{aligned}$$

We can now prove that \mathbb{O} is a division algebra using Artin's Lemma in conjunction with the equally nice properties of conjugation on \mathbb{O} .

Artin's Lemma An algebra A is alternative iff every subalgebra generated by two of its elements is associative.