

Why there exist no Division Algebras over \mathbb{R} of uneven dimension greater than 1

Oliver Lenz

Wednesday, 14th of May 2008

Definition. Identify the n -sphere S^n with all points in \mathbb{R}^{n+1} of euclidean norm 1. The n -sphere is said to be parallelisable if there exist n continuous maps

$$\phi_i : S^n \longrightarrow S^n$$

such that for every $a \in S^n$, $a, \phi_1(a), \phi_2(a), \dots, \phi_n(a)$ is linearly independent.

The concept of parallelisability is relevant to the existence of division algebras by way of the following implication:

Proposition. Suppose that for $n \geq 0$, there exists an n -dimensional division algebra A over \mathbb{R} . Then the $(n-1)$ -sphere is parallelisable.

In the uneven-dimensional case we can then show that parallelisability of the n -sphere leads to a contradiction using the *Brouwer degree* of a map from S^n to S^n :

Claim. Let $n \geq 0$. Let $f, g \in \text{Mor}(S^n, S^n)$. The Brouwer degree satisfies the following properties:

1. $\deg(g \circ f) = \deg(f)\deg(g)$.
2. $\deg(\text{Const}) = 0$.
3. $\deg(\text{Id}_{S^n}) = 1$.
4. If $f \sim g$, then $\deg(f) = \deg(g)$.
5. Let $0 \leq i \leq n$, then Refl_i is the map that sends a point $(v_0, v_1, \dots, v_i, \dots, v_n)$ to $(v_0, v_1, \dots, -v_i, \dots, v_n)$. We have $\deg(\text{Refl}_i) = -1$.

For the purpose of this talk, these properties will only be assumed, not proven, but it will be shown how this leads to a contradiction, and if there is time, the construction of the Brouwer degree will shortly be discussed.