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Introduction

Dans la premìere partie de cette introduction, nous donnons des précisions sur le contenu du
présent volume ; dans la deuxième, sur l’ensemble du “Śeminaire de Ǵeoḿetrie Alǵebrique du
Bois-Marie”, dont le pŕesent volume constitue le tome premier.

1. Le pŕesent volume pŕesente les fondements d’une théorie du groupe fondamental en
Géoḿetrie Algébrique, dans le point de vue “kroneckerien” permettant de traiter sur le même
pied le cas d’une variét́e alǵebrique au sens habituel, et celui d’un anneau des entiers d’un
corps de nombres, par exemple. Ce point de vue ne s’exprime d’une façon satisfaisante que
dans le langage des schémas, et nous utiliserons librement ce langage, ainsi que les résultats
principaux expośes dans les trois premiers chapitres desEléments de Ǵeoḿetrie Alǵebriquede
J. DIEUDONNE et A. GROTHENDIECK, (cit́e EGA dans la suite). L’étude du pŕesent vo-
lume du “Śeminaire de Ǵeoḿetrie Alǵebrique du Bois-Marie” ne demande pas d’autres connais-
sances de la Ǵeoḿetrie Algébrique, et peut donc servir d’introduction aux techniques actuelles
de Ǵeoḿetrie Algébrique,̀a un lecteur d́esireux de se familiariser avec ces techniques.

Les expośes I à XI de ce livre sont une reproduction textuelle, pratiquement inchangée, des
notes miḿeographíees du Śeminaire oral, quíetaient distribúees par les soins de l’Institut des
Hautes Etudes Scientifiques1. Nous nous sommes bornésà rajouter quelques notes de bas de page
au texte primitif, de corriger quelques erreurs de frappe, et de faire un ajustage terminologique,
le mot “morphisme simple” ayant notammentét́e remplaće entretemps par celui de “morphisme
lisse”, qui ne pr̂ete pas aux m̂emes confusions.

Les expośes Ià IV présentent les notions locales de morphismeétaleet de morphismelisse;
ils n’utilisent gùere le langage des schémas, expośe dans le Chapitre I desEléments2. L’expośe V
présente la description axiomatique du groupe fondamental d’un schéma, utile m̂eme dans le
cas classique òu ce sch́ema se ŕeduit au spectre d’un corps, où on trouve une reformulation fort
commode de la th́eorie de Galois habituelle. Les exposés VI et VIII présentent lathéorie de
la descente, qui a pris une importance croissance en Géoḿetrie Algébrique dans ces dernières
anńees, et qui pourrait rendre des services analogues en Géoḿetrie Analytique et en Topologie.

1Ainsi que les notes des séminaires faisant suitèa celui-ci. Ce mode de distribution s’étant av́eŕe impraticable
et insuffisant̀a la longue, tous les “Śeminaire de Ǵeoḿetrie Alǵebrique du Bois-Marie” parâıtront d́esormais sous
forme de livre comme le présent volume.

2Uneétude plus complète est maintenant disponible dans lesEléments, Chap IV,§§ 17 et 18.



Il convient de signaler que l’exposé VII n’avait pasét́e ŕediǵe, et sa substance se trouve incor-
poŕe dans un travail de J. Giraud (Méthode de la Descente, Bull. Soc. Math. France, Mémoire 2,
1964, viii + 150 p.). Dans l’exposé IX, onétudie plus sṕecifiquement la descente des morphismes
étales, obtenant une approche systématique pour des théor̀emes du type de VAN KAMPEN
pour le groupe fondamental, qui apparaissent ici comme de simples traductions de théor̀emes de
descente. Il s’agit essentiellement d’un procéd́e de calcul du groupe fondamental d’un schéma
connexeX, muni d’un morphisme surjectif et propre, disonsX ′ → X, en termes des groupes
fondamentaux des composantes connexes deX ′ et des produits fibŕesX ′×XX ′,X ′×XX ′×XX ′,
et des homomorphismes induits entre ces groupes par les morphismes simpliciaux canoniques
entre les sch́emas pŕećedents. L’expośe X donne la th́eorie de lasṕecialisation du groupe fon-
damental, pour un morphisme propre et lisse, dont le résultat le plus frappant consiste en la
détermination (̀a peu de chose près) du groupe fondamental d’une courbe algébrique lisse en
caract́eristiquep > 0, grâce au ŕesultat connu par voie transcendante en caractéristique nulle.
L’expośe XI donne quelques exemples et compléments, en explicitant notamment sous forme
cohomologique la th́eorie des rev̂etements deKUMMER, et celle d’ARTIN–SCHREIER. Pour
d’autres commentaires sur le texte, voir l’Avertissement̀a la version multigraphiée, qui fait suite
à la pŕesente Introduction.

Depuis la ŕedaction en 1961 du présent Śeminaire aét́e d́evelopṕe, en collaboration par
M. ARTIN et moi-même, le langage de latopologieétaleet une th́eorie cohomologique cor-
respondante, exposée dans la partie SGA 4 “Cohomologieétale des sch́emas” duŚeminaire de
Géoḿetrie Alǵebrique, à parâıtre dans la m̂eme śerie que le pŕesent volume. Ce langage, et les
résultats dont il dispose dèsà pŕesent, fournissent un outil particulièrement souple pour l’étude
du groupe fondamental, permettant de mieux comprendre et de dépasser certains des résultats
expośes ici. Il y aurait donc lieu de reprendre entièrement la th́eorie du groupe fondamental
de ce point de vue (tous les résultats-clefs figurant en fait dès à pŕesent dans loc. cit.). C’est
ce qui était projet́e pour le chapitre desElémentsconsacŕe au groupe fondamental, qui devait
contenirégalement plusieurs autres développements qui n’ont pu trouver leur place ici (s’ap-
puyant sur la technique de résolution des singularités) : calcul du “groupe fondamental local”
d’un anneau local complet en termes d’une résolution des singularités convenable de cet anneau,
formules de K̈unneth locales et globales pour le groupe fondamental sans hypothèse de propreté
(cf. Exp. XIII), les ŕesultats de M. ARTIN sur la comparaison des groupes fondamentaux locaux
d’un anneau local hensélien excellent et de son complét́e (SGA 4 XIX). Signalonśegalement la
nécessit́e de d́evelopper une th́eorie du groupe fondamental d’un topos, qui engloberaà la fois la
théorie topologique ordinaire, sa version semi-simpliciale, la variante “profinie”dévelopṕe dans
l’expośe V du pŕesent volume, et la variante pro-discrète un peu plus ǵeńerale de SGA 3 X 7
(adapt́ee au cas de schémas non normaux et non unibranches). En attendant une refonte d’en-
semble de la th́eorie dans cette optique, l’exposé XIII de Mme RAYNAUD, utilisant le langage
et les ŕesultats de SGA 4, est destiné à montrer le parti qu’on peut tirer dans quelques ques-
tions typiques, en ǵeńeralisant notamment certains résultats de l’expośe X à des sch́emas relatifs
non propres. On y donne en particulier la structure du groupe fondamental “premierà p” d’une
courbe alǵebrique non complète en car. quelconque (que j’avais annoncé en 1959, mais dont une
démonstration n’avait paśet́e publíeeà ce jour).
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Malgré ces nombreuses lacunes et imperfections (d’autres diront :à cause de ces lacunes et
imperfections), je pense que le présent volume pourrâetre utile au lecteur qui d́esire se familia-
riser avec la th́eorie du groupe fondamental, ainsi que comme ouvrage de référence, en attendant
la rédaction et la parution d’un texteéchappant aux critiques que je viens d’énuḿerer.

2. Le pŕesent volume constitue le tome 1 du “Śeminaire de Ǵeoḿetrie Alǵebrique du Bois-
Marie”, dont les volumes suivants sont prévus pour parâı tre dans la m̂eme śerie que celui-ci. Le
but que se propose leŚeminaire, parall̀element au trait́e “Elements de Ǵeoḿetrie Algébrique”
de J. DIEUDONNE et A. GROTHENDIECK, est de jeter les fondements de la Géoḿetrie
Algébrique, suivant les points de vue dans ce dernier ouvrage. La référence standart pour tous
les volumes duŚeminaireest constitúee par les Chapitres I, II, III des “Eléments de Ǵeoḿetrie
Algébrique(cités EGA I, II, III), et on suppose le lecteur en possession du bagage d’algèbre com-
mutative et l’alg̀ebre homologique que ces chapitres impliquent3. De plus, dans chaque volume
du Śeminaireil sera ŕeféŕe librement, dans le mesure des besoins,à des volumes antérieurs du
mêmeŚeminaire, ouà d’autres chapitres publiés ou sur le point de paraı̂ tre des “Eĺements”.

Chaquepartie du Śeminaireest centŕee sur un sujet principal, indiqué dans le titre du ou
des volumes correspondants ; le séminaire oral porte ǵeńeralement sur une année acad́emique,
parfois plus. Les exposésà l’intérieur de chaque partie duŚeminairesont ǵeńeralement dans une
dépendance logiquéetroite les uns par rapport aux autres ; par contre, les différentes parties du
Śeminairesont dans une large mesure logiquement indépendants les uns par rapport aux autres.
Ainsi, la partie “Sch́emas en Groupes”està peu pr̀es entìerement ind́ependante des deux parties
du Śeminairequi la pŕec̀edent chronologiquement ; par contre, elle fait un fréquent appel aux
résultats de EGA IV. Voici la liste des parties duŚeminairequi doivent parâı tre prochainement
(cités SGA 1̀a SGA 7 dans la suite) :

SGA 1. Rev̂etementśetales et groupe fondamental, 1960 et 1961.

SGA 2. Cohomologie locale des faisceaux cohérents et th́eor̀emes de Lefschetz locaux et glo-
baux, 1961/62.

SGA 3. Sch́emas en groupes, 1963 et 1964 (3 volumes), en coll. avec M. DEMAZURE.

SGA 4. Théorie des topos et cohomologieétale des sch́emas, 1963/64 (3 volumes), (en coll.
avec M. ARTIN et J.L. VERDIER).

SGA 5. Cohomologiel-adique et fonctionsL, 1964 et 1965 (2 volumes).

SGA 6. Théorie des intersections et théor̀eme de Riemann-Roch, 1966/67 (2 volumes) (en coll.
avec P. BERTHELOT et L. ILLUSIE).

SGA 7. Groupes de monodromie locale en géoḿetrie alǵebrique.

Trois parmi cesŚeminairespartiels ontét́es diriǵes encollaborationavec d’autres math́e-
maticiens, qui figureront comme co-auteurs sur la couverture des volumes correspondants. Quant
aux autres participants actifs duŚeminaire, dont le r̂ole (tant au point de vue rédactionnel que
de celui du travail de mise au point mathématique) est allé croissant d’anńee en anńee, le nom

3Voir l’Introduction à EGA I pour des pŕecisions̀a ce sujet.
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de chaque participant figure en tête des exposés dont il est responsable comme conférencier ou
comme ŕedacteur, et la liste de ceux qui figurent dans un volume détermińe se trouve indiqúe sur
la page de garde dudit volume.

Il convient de donner quelques précisions sur les rapports entre leŚeminaireet lesEléments.
Ces dernierśetaient destińes en principèa donner un exposé d’ensemble des notions et tech-
niques juǵees les plus fondamentales dans la Géoḿetrie Algébrique,à mesure que ces notions
et techniques elles-m̂emes se d́egagent, par le jeu naturel d’exigences de cohérence logique et
esth́etique. Dans cette optique, ilétait naturel de considérer leŚeminairecomme une version
préliminaire desEléments, destińeeà être englob́eeà peu pr̀es totalement, tôt ou tard, dans ces
derniers. Ce processus avait déjà commenće dans une certaine mesure il y a quelques années,
puisque les exposés I à IV du pŕesent volume SGA 1 sont entièrement englob́es par EGA IV,
et que les exposés VI à VIII devaient l’̂etre d’ici quelques anńees dans EGA VI. Cependant,à
mesure que se développe le travail d’́edification entrepris dans lesElémentset dans leŚeminaire,
et que les proportions d’ensemble se précisent, le principe initial (d’après lequel leŚeminairene
constituerait qu’une version préliminaire et provisoire) apparaı̂t de moins en moins réaliste en
raison (entre autres) des limites imposées par la pŕevoyante naturèa la duŕee de la vie humaine.
Compte tenu du soin géńeralement apporté dans la ŕedaction des diff́erentes parties duŚeminaire,
il n’y aura lieu sans doute de reprendre une telle partie dans lesEléments(ou des trait́es qui en
prendraient la relève) que lorsque des progrès ult́erieursà la ŕedaction permettront d’y apporter
des aḿeliorations tr̀es substantielles, aux prix de modifications assez profondes. C’est le cas dès
à pŕesent pour le présent śeminaire SGA 1, comme on l’a dit plus haut, etégalement pour SGA 2
(grâce aux ŕesultats ŕecents de Mme. RAYNAUD). Par contre, rien n’indique actuellement qu’il
en sera ainsi dans un proche avenir pour aucune des parties citées plus haut SGA 3̀a SGA 7.

Les ŕeférences̀a l’intérieur du “Śeminaire de Ǵeoḿetrie Algébrique de Bois-Marie” sont
donńees ainsi. Uneréf́erence int́erieureà une des parties SGA 1à SGA 7 du Śeminaire est donńee
dans le style III 9.7, òu le chiffre III désigne le nuḿero de l’expośe, qui figure en haut de chaque
page de l’expośe en question, et 9.7 le numéro de l’́enonće (ou de la d́efinition, remarque, etc.)
à l’intérieur de l’expośe. Le caśech́eant, des nombres décimaux plus longs peuventêtre utiliśes,
par exemple 9.7.1, 9.7.2 pour désigner par exemple les diversesétapes dans la démonstration
d’une proposition 9.7. La référence III 9 d́esigne la paragraphe 9 de l’exposé III. Le nuḿero de
l’expośe est omis pour les références internes̀a un expośe. Pour uneréf́erenceà une autredes
partiesdu Śeminaire, on utilise les m̂emes sigles, mais préćed́es de la mention de la partie en
question des SGA, SGA 1 III 9.7. De même, la ŕeférence EGA IV 11.5.7 signifie : Eléments de
Géoḿetrie Algébrique, Chap. IV,́enonće (ou d́efinition etc. . .) 11.5.7 ; ici, le premier chiffre arabe
désigne encore le nuḿero du paragraphe. A part ces conventions en vigueur dans l’ensemble des
SGA, la bibliographie relativèa un expośe sera ǵeńeralement rassembléeà la fin de celui-ci, et il
y sera ŕeféŕe à l’intérieur de l’expośe par des nuḿeros entre crochets comme [3], suivant l’usage.

Enfin, pour la commodité du lecteur, chaque fois que cela semblera nécessaire, nous joindrons
à la fin des volumes des SGA un index des notations, et un index terminologique contenant s’il
y a lieu une traduction anglaise des termes français utilisés.

Je tiens̀a joindreà cette introduction un commentaire extra-mathématique. Au mois de no-

vi



vembre 1969 j’ai eu connaissance du fait que l’Institut des Hautes Etudes Scientifiques, dont j’ai
ét́e professeur essentiellement depuis sa fondation, recevait depuis trois ans des subventions du
Ministère des Arḿees. D́ejà comme chercheur débutant j’ai trouv́e extr̂emement regrettable le
peu de scrupules que se font la plupart des scientifiques pour accepter de collaborer sous une
forme ou une autre avec les appareils militaires. Mes motivationsà ce moment́etaient essen-
tiellement de nature morale, donc peu susceptibles d’êtres prises au sérieux. Aujourd’hui elles
acquìerent une force et une dimension nouvelle, vu le danger de destruction de l’espèce humaine
dont nous menace la prolifération des appareils militaires et des moyens de destruction massives
dont ces appareils disposent. Je me suis expliqué ailleurs de façon plus détaillée sur ces ques-
tions, beaucoup plus importantes que l’avancement de n’importe quelle science (y compris la
math́ematique) ; on pourra par exemple consulterà ce sujet l’article de G. Edwards dans le no 1
du journal Survivre (Aôut 1970), ŕesumant un exposé plus d́etaillé de ces questions que j’avais
fait ailleurs. Ainsi, je me suis trouvé travailler pendant trois ans dans une institution alors qu’elle
à mon insùa un mode de financement que je considère comme immoral et dangereux4. Etantà
présent seul̀a avoir cette opinion parmi mes collèguesà l’IHES, ce qui a condamné à l’échec
mes efforts pour obtenir la suppression des subventions militaires du budget de l’IHES, j’ai pris
la décision qui s’imposait et quitte l’IHES le 30 septembre 1970 et suspendségalement toute
collaboration scientifique avec cette institution, aussi longtemps qu’elle continueraà accepter de
telles subventions. J’ai demandé à M. Motchane, directeur de l’IHES, que l’IHES s’abstienne
à partir du 1er octobre 1970 des textes mathématiques dont je suis auteur, ou faisant partie du
Séminaire de Ǵeoḿetrie Algébrique du Bois Marie. Comme il áet́e dit plus haut, la diffusion
de ce śeminaire vaêtre assuŕee par la maison Julius Springer, dans le série des Lecture Notes.
Je suis heureux de remercier ici la maison Springer et Monsieur K. Peters pour l’aide efficace et
courtoise qu’ils m’ont apportée pour rendre possible cette publication, en se chargeant en parti-
culier de la frappe pour la photooffset des nouveaux exposés rajout́es aux anciens séminaires, et
des expośes manquants des séminaires incomplets.

Je remerciéegalement M. J.P. Delale, qui s’est chargé du travail ingrat de compiler l’index
des notations et l’index terminologique.

Massy, aôut 1970.

4Il va de soi que l’opinion que je viens d’exprimer n’engage que ma propre responsabilité, et non pas celle de la
maison d’́edition Springer quíedite le pŕesent volume.
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AVERTISSEMENT

Chacun des exposés rediǵes donne la substance de plusieurs exposés oraux conśecutifs. Il n’a
pas sembĺe utile d’en pŕeciser les dates.

L’expośe VII, auquel il est ŕeféŕe à diverses reprises au cours de l’exposé VIII, n’a pasét́e
rédiǵe par le conf́erencier, qui dans les conférences orales s’était borńe à esquisser le langage de
la descente dans les catégories ǵeńerales, en se plaçantà un point de vue strictement utilitaire
et sans entrer dans les difficultés logiques soulevées par ce langage. Il est apparu qu’un exposé
correct de ce langage sortirait des limites des présentes notes, ne serait-ce que par sa longueur.
Pour un expośe en forme de la th́eorie de la descente, je renvoieà un article en pŕeparation de
Jean GIRAUD. En attendant sa parution5, je pense qu’un lecteur attentif n’aura pas de peineà
suppĺeer par ses propres moyens aux références fantômes de l’Expośe VIII.

D’autres expośes oraux, se plaçant après l’Expośe XI, et auxquels il est fait allusioǹa certains
endroits du texte, n’ont pas non plusét́e ŕediǵes, etétaient destińesà former la substance d’un
Expośe XII et d’un Expośe XIII. Les premiers de ces exposés oraux reprenaient, dans le cadre des
sch́emas et des espaces analytiques avecéléments nilpotents (tels qu’ils sont introduits dans le
Séminaire Cartan 1960/61) la construction de l’espace analytiqueà un pŕesch́ema localement de
type fini sur un corps valúe completk, les th́eor̀emes du type GAGA dans le cas où k est le corps
des complexes, et l’applicationà la comparaison du groupe fondamental défini par voie transcen-
dante et le groupe fondamentalétudíe dans ces notes (comparer A. Grothendieck, Fondements
de la Ǵeoḿetrie Algébrique, Śeminaire Bourbaki no 190, page 10, d́ecembre 1959). Les derniers
expośes oraux esquissaient la géńeralisation des ḿethodes d́evelopṕees dans le texte pour l’étude
des rev̂etements admettant de la ramification modéŕee, et de la structure du groupe fondamental
d’une courbe complète priv́ee d’un nombre fini de points (comparer loc. cit., no 182, page 27,
théor̀eme 14). Ces exposés n’introduisent aucune idée essentiellement nouvelle, c’est pourquoi il
n’a pas semblé indispensable d’en donner une rédaction en forme avant la parution des chapitres
correspondants des Eléments de Ǵeoḿetrie Algébrique6.

Par contre, les th́eor̀emes du type Lefschetz pour le groupe fondamental et le groupe de Pi-
card, tant au point de vue local que global, ont fait l’objet d’un Séminaire śepaŕe en 1962, qui áet́e

5Actuellement paru : J. GIRAUD,Méthodes de la descente, Mémoire no 2 de la Socíet́e math́ematiques de
France, 1964.

6Ils sont inclus dans le présent volume dans l’Exp. XII de Mme Raynaud avec une démonstration diff́erente de
la démonstration originale exposée dans le Śeminaire oral (cf. introduction).



compl̀etement ŕediǵe et est̀a la disposition des usagers7. Signalons que les résultats d́evelopṕes
tant dans le pŕesent Śeminaire que dans celui de 1962 seront utilisés de façon essentielle dans la
parution de plusieurs résultats clefs dans la cohomologieétale des pŕesch́emas, qui feront l’objet
d’un Śeminaire (conduit par M. Artin et moi-m̂eme) en 1963/64, actuellement en préparation8.

Les expośes I à IV, de nature essentiellement locale et très élémentaire, seront absorbés
entìerement par le chapitre IV desEléments de Ǵeoḿetrie Alǵebrique, dont la premìere par-
tie està l’impression et qui sera sans doute publié vers fin 64. Ils pourront ńeanmoinŝetre utiles
à un lecteur qui d́esirerait se mettre au courant des propriét́es essentielles des morphismes lisses,
étales ou plats, avant d’entrer dans les arcanes d’un traité syst́ematique. Quant aux autres ex-
pośes, ils seront absorbés dans le chapitre VIII9 des “Eĺements”, dont la publication ne pourra
guèreêtre envisaǵee avant plusieurs années.

Bures, juin 1963.

7Cohomologiéetale des faisceaux cohérents et th́eor̀emes de Lefschetz locaux et globaux(SGA 2), paru dans
North Holland Pub. Cie.

8Cohomologiéetale des sch́emas(cité SGA 4),à parâı tre dans cette m̂eme śerie.
9En fait, par suite de modification du plan initialement prévu pour lesEléments, l’ étude du groupe fondamental

y est report́eeà un chapitre ult́erieurà celui qu’on vient d’indiquer. Comparer l’introduction qui préc̀ede le pŕesent
“Avertissement”.
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1 Espaces projectifs, variét́es unirationnelles . . . . . . . . . . . . . . . . . . . 208
2 Variét́es ab́eliennes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
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Schreier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
7 Bibliographie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
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Expośe I

Morphismes étales

1
Pour simplifier l’exposition, on suppose que tous les présch́emas envisaǵes sont localement

noeth́eriens, du moins après le nuḿero 2.

1 Notions de calcul diff́erentiel

SoitX un pŕesch́ema surY , soit ∆X/Y ou ∆ le morphisme diagonalX → X ×Y X. C’est
un morphisme d’immersion, donc un morphisme d’immersion fermée deX dans un ouvertV
deX×Y X. SoitIX l’id éal du sous-pŕesch́ema ferḿe correspondantà la diagonale dansV (N.B.
si on veut faire les choses intrinsèquement, sans supposerX sépaŕe surY – hypoth̀ese qui serait
canularesque – on devrait considérer l’image inverse ensembliste deOX×X dansX, et d́esigner
parIX l’id éal d’augmentation dans ce dernier. . .). Le faisceauIX/I 2

X peutêtre regard́e comme
un faisceau quasi-cohérent surX, on le d́enote parΩ1

X/Y . Il est de type fini siX → Y est de
type fini. Il se comporte bien par rapportà extension de la baseY ′ → Y . On introduit aussi
les faisceauxOX×YX/I

n+1
X = Pn

X/Y , ce sont des faisceaux d’anneauxsurX, faisant deX un
présch́ema qu’on peut d́enoter par∆n

X/Y et appeler le n.ème voisinage infinitésimal deX/Y . Le
sorite en est d’une trivialité totale, bien qu’il soit assez long1 ; il serait prudent de n’en parler
qu’au moment òu on en dit quelque chose de serviable, avec les morphismes lisses.

2 Morphismes quasi-finis

Proposition 2.1 Soit A → B un homomorphisme local (N.B. les anneaux sont maintenant
noethériens), m l’idéal maximal de A. Conditions équivalentes :

(i) B/mB est de dimension finie sur k = A/m.
1cf. EGA IV 16.3.
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(ii) mB est un idéal de définition, et B/r(B) = κ(B) est une extension de k = κ(A).

(iii) Le complété B̂ est fini sur celui Â de A.

On dit alors queB est quasi-finisurA. Un morphismef : X → Y est dit quasi-fini enx (ou le2
Y -presch́emaf est dit quasi-fini enx) si Ox est quasi-fini surOf(x). Cela revient aussìa dire que
x estisolé dans sa fibref−1(x). Un morphisme est dit quasi-fini s’il l’est en tout point2.

Corollaire 2.2 Si A est complet, quasi-fini équivaut à fini. On pourrait donner le sorite (i) (ii)
(iii) (iv) (v) habituel pour les morphismes quasi-finis, mais ce ne semble pas indispensable ici.

3 Morphismes non ramifiés ou nets

Proposition 3.1 Soit f : X → Y un morphisme de type fini, x ∈ X , y = f(x). Conditions
équivalentes :

(i) Ox/myOx est une extension finie séparable de κ(y).

(ii) Ω1
X/Y est nul en x.

(iii) Le morphisme diagonal ∆X/Y est une immersion ouverte au voisinage de x.

Pour l’implication (i)⇒(ii), on est rameńe aussit̂ot par Nakayama au cas où Y = Spec(k),
X = Spec(k′), où c’est bien connu et d’ailleurs trivial sur la définition de śeparable ; (ii)⇒(iii)
d’apr̀es une caractérsiation agŕeable et facile des immersions ouvertes, utilisant Krull ; (iii)⇒(i)
car on est encore ramené au cas òuY = Spec(k) et òu le morphisme diagonal est une immersion
ouverte partout. Il faut alors prouver queX est fini d’anneau śeparable surk, on est rameńe pour
ceci au cas òu k est alǵebriquement clos. Mais alors tout point fermé deX est isoĺe (car identique
à l’image inverse de la diagonale par le morphismeX → X ×k X défini parx), d’où le fait que
X est fini. On peut supposer alorsX réduit à un point, d’anneauA, doncA ⊗k A → A est un
isomorphisme, d’òuA = k cqfd.

Définition 3.2 a) On dit alors que f est net, ou encore non ramifíe, en x, ou que X est net,
ou encore non ramifié, en x sur Y .

b) Soit A → B un homomorphisme local, on dit qu’il est net, ou non ramifíe, ou que B
est une algèbre locale nette, ou non ramifíeesur A, si B/r(A)B est une extension finie
séparable de A/r(A) i.e. si r(A)B = r(B) et k(B) est une extension séparable de k(A)3.

3

Remarques. Le fait queB soit net surA se reconnâıt déjà sur les complét́es deA et deB. Net
implique quasi-fini.

Corollaire 3.3 L’ensemble des points où f est net est ouvert.

2Dans EGA II 6.2.3 on suppose de plusf de type fini.
3Cf. remords dans III 1.2
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Corollaire 3.4 Soient X ′, X deux préschémas de type fini sur Y , et g : X ′ → X un Y -
morphisme. Si X est net sur Y , le morphisme graphe Γg : X ′ → X ×Y X est une immersion
ouverte.

En effet, c’est l’image inverse du morphisme diagonalX → X ×Y X par

g ×Y idX′ : X
′ ×Y X → X ×Y X.

On peut aussi introduire l’id́eal annulateurdX/Y deΩ1
X/Y , appeĺe idéal différente deX/Y ; il

définit un sous-pŕesch́ema ferḿe deX qui, ensemblistement, est l’ensemble des points oùX/Y
est ramifíe, i.e. non net.

Proposition 3.5 (i) Une immersion est nette.

(ii) Le composé de deux morphismes nets l’est.

(iii) Extension de base dans un morphisme net en est un autre.

Se voit indiff́eremment sur (ii) ou (iii) (le deuxième me semble plus amusant). On peut bien
entendu aussi préciser, en donnant desénonćes ponctuels ; ce n’est plus géńeral qu’en apparence
(sauf dans le cadre de la définition b)), et barbant. On obtient comme d’habitude des corollaires :

Corollaires 3.6 (iv) Produit cartésien de deux morphismes nets en est un autre.

(v) Si gf est net, f est net.

(vi) Si f est net, fréd est net.

Proposition 3.7 Soit A → B un homomorphisme local, on suppose l’extension résiduelle
k(B)/k(A) triviale ou k(A) algébriquement clos. Pour que B/A soit net, il faut et il suffit que B̂
soit (comme Â-algèbre) un quotient de Â.

Remarques. – Dans le cas òu on ne suppose pas l’extension résiduelle triviale, on peut se
ramener̀a ce cas en faisant une extension finie plate convenable surA qui détruise ladite
extension.

– Donner l’exemple òu A est l’anneau local d’un point double ordinaire d’une courbe,B
d’un point du normaliśe : alorsA ⊂ B, B est net surA à extension ŕesiduelle triviale, et4
Â→ B̂ est surjectif maisnon injectif. On va donc renforcer la notion de netteté.

4 Morphismesétales. Rev̂etementsétales

On va admettre tout ce qui nous sera nécessaire sur les morphismes plats ; ces faits seront
démontŕes ult́erieurement, s’il y a lieu4.

4Cf. Exp. IV.
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Définition 4.1 a) Soit f : X → Y un morphisme de type fini. On dit que f est étaleen x si
f est plat en x et net en x. On dit que f est étale s’il l’est en tous les points. On dit que X
est étale en x sur Y , ou que c’est un Y -préschéma étale en x etc. . .

b) Soit f : A→ B un homomorphisme local. On dit que f est étale, ou que B est étale sur A,
si B est plat et non ramifié sur A.5

Proposition 4.2 Pour que B/A soit étale, il faut et il suffit que B̂/Â le soit.

En effet, c’est vrai śepaŕement pour “net” et pour “plat”.5

Corollaire 4.3 Soit f : X → Y de type fini, et x ∈ X . Le fait que f soit étale en x ne dépend que
de l’homomorphisme local Of(x) → Ox, et même seulement de l’homomorphisme correspondant
pour les complétés.

Corollaire 4.4 Supposons que l’extension résiduelle k(A) → k(B) soit triviale, ou que k(A)

soit algébriquement clos. Alors B/A est étale sss Â→ B̂ est un isomorphisme.

On conjugue la platitude et 3.7.

Proposition 4.5 Soit f : X → Y un morphisme de type fini. Alors l’ensemble des points où il
est étale est ouvert.

En effet, c’est vrai śepaŕement pour “net” et “plat”.

Cette proposition montre qu’on peut laisser tomber lesénonćes “ponctuels” dans l’étude des
morphismes de type finiétales quelque part.

Proposition 4.6 (i) Une immersion ouverte est étale.

(ii) Le composé de deux morphismes étales est étale.

(iii) Extension de la base.

En effet, (i) est trivial, et pour (ii) et (iii) il suffit de noter que c’est vrai pour “net” et pour
“plat”. A vrai dire, il y a aussi deśenonćes correspondants pour les homomorphismes locaux
(sans condition de finitude), qui en toutétat de cause devront figurer au multiplodoque (à com-
mencer par le cas : net).

Corollaire 4.7 Un produit cartésien de deux morphismes étales est itou.

Corollaire 4.8 Soient X et X ′ de type fini sur Y , g : X → X ′ un Y -morphisme. Si X ′ est non
ramifié sur Y et X étale sur Y , alors g est étale.

5Cf. remords dans III 1.2.

4



I

En effet,g est le compośe du morphisme grapheΓg : X → X ×Y X ′ qui est une immer-
sion ouverte par 3.4, et du morphisme de projection qui estétale car d́eduit du morphisméetale
X → Y par le “changement de base”X ′ → Y .

Définition 4.9 On appelle revêtement étale (resp. net) de Y un Y -schéma X qui est fini sur Y et
étale (resp. net) sur Y .

La premìere condition signifie queX est d́efini par un faisceau cohérent d’alg̀ebresB surY . La
deuxìeme signifie alors queB est localement libre surY (resp. rien du tout),etque de plus, pour
touty ∈ Y , la fibreB(y) = By⊗Oy k(y) soit une alg̀ebre śeparable (= composé fini d’extensions
finies śeparables) surk(y).

Proposition 4.10 Soit X un revêtement plat de Y de degré n (la définition de ce terme méritait
de figurer dans 4.9) défini par un faisceau cohérent localement libre B d’algèbres. On définit de
façon bien connue l’homomorphisme trace B → A (qui est un homomorphisme de A -modules,
où A = OY ). Pour que X soit étale, il f et s que la forme bilinéaire trB/A xy correspondante
définisse un isomorphisme de B sur B, ou ce qui revient au même, que la section discriminant

dX/Y = dB/A ∈ Γ(Y,
n∧

B̌ ⊗A

n∧
B̌)

soit inversible, ou enfin que l’idéal discriminant défini par cette section soit l’idéal unité.

En effet, on est ramené au cas òu Y = Spec(k), et alors c’est un critère de śeparabilit́e bien
connue, et trivial par passageà la cl̂oture alǵebrique dek.

6

Remarque. On aura uńenonće moins trivial plus bas, quand on ne suppose pas a priori queX
est plat surY mais qu’on fait une hypoth̀ese de normalité.

part 1

5 La propri été fondamentale des morphismeśetales

Théorème 5.1Soit f : X → Y un morphisme de type fini. Pour que f soit une immersion
ouverte, il f et s que ce soit un morphisme étale et radiciel.

Rappelons que radiciel signifie : injectif,à extensions ŕesiduelles radicielles (et en peut
aussi rappeler que cela signifie que le morphisme reste injectif par toute extension de la base).
La nécessit́e est triviale, reste la suffisance. On va donner deux démonstrations diff́erentes, la
premìere plus courte, la deuxième pluśelémentaire.

1) Un morphisme plat est ouvert, donc on peut supposer (remplaçantY parf(X)) quef est
un hoḿeomorphismesûr. Par toute extension de base, il restera vrai quef ′ est plat, radiciel, sur-
jectif, donc un hoḿeomorphisme, a fortiori ferḿee. Doncf estpropre. Doncf estfini (référence :
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théor̀eme de Chevalley) d́efini par un faisceau cohérentB d’algèbres.B est localement libre, de
plus en vertu de l’hypoth̀ese il est partout de rang1, doncX = Y , cqfd.

2) On peut supposerY et X affines. On se ram̀ene de plus facilement̀a prouver ceci : si
Y = Spec(A), A local, et sif−1(y) est non vide (y étant le point ferḿe deY ) alorsX = Y
(en effet, cela impliquera que touty ∈ f(X) a un voisinage ouvertU tel queX|U = U ). On
auraX = Spec(B), on veut prouverA = B. Mais pour ceci, on est ramené à prouver l’assertion
analogue en remplaçantA parÂ, B parB ⊗A Â (compte tenu quêA est fid̀element plat surA).
On peut donc supposerA complet. Soitx le point au-dessus dey, d’apr̀es le corollaire 2.2Ox est
fini surA donc (́etant plat et radiciel surA) est identiquèaA. Donc on aX = Y qX ′ (somme
disjointe). CommeX est radiciel surY ,X ′ est vide. On a fini.

Corollaire 5.2 Soit f : X → Y un morphisme d’ immersion ferḿeeet étale. Si X est connexe,
f est un isomorphisme de X sur une composante connexe de Y .

En effet,f est aussi une immersion ouverte. On en déduit :
7

Corollaire 5.3 Soit X un Y -schéma net, Y connexe. Alors toute section de X sur Y est un
isomorphisme de Y sur une composante connexe de X . Il y a donc correspondance biunivoque
entre l’ensemble de ces sections, et l’ensemble des composantes connexes Xi de X telles que
la projection Xi → Y soit un isomorphisme, (ou, ce qui revient au même par 5.1, surjectif et
radiciel). En particulier, une section est connue quand en connaı̂t sa valeur en un point.

Seule la premìere assertion demande une démonstration ; d’après 5.2 il suffit de remarquer
qu’une section est une immersion fermée (carX est śepaŕe surY ) et étale en vertu de 4.8.

Corollaire 5.4 Soient X et Y deux préschémas sur S, X net séparé sur S et Y connexe. Soient
f , g deux S-morphismes de Y dans X , y un point de Y , on suppose f(y) = g(y) = x et les
homomorphismes résiduelles k(x) → k(y) définis par f et g identiques (“f et g coı̈ncident
géométriquement en y”). Alors f et g sont identiques.

Résulte de 5.3 en se ramenant au cas où Y = S, en remplaçantX parX ×S Y .

Voici une variante particulièrement importante de 5.3.

Théorème 5.5Soient S un préschéma,X et Y deux S-préschémas, S0 un sous-préschéma fermé
de S ayant même espace sous-jacent que S, X0 = X ×S S0 et Y0 = Y ×S S0 les “restrictions”
de X et Y sur S0. On suppose X étale sur S. Alors l’application naturelle

HomS(Y,X)→ HomS0(Y0, X0)

est bijective.

On est encore ramené au cas òu Y = S, et alors cela ŕesulte de la description “topologique”
des sections deX/Y donńee dans 5.3.

6
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Scholie Ce ŕesultat comporte une assertion d’unicitéet d’existencedemorphismes. Il peut aussi
s’exprimer (lorsqueX et Y sont tous deux priśetales surS) que le foncteurX 7→ X0 de la
cat́egorie desS-sch́emasétales dans la catégorie desS0-sch́emasétales estpleinement fid̀ele,
i.e. établit uneéquivalencede la premìere avec unesous-cat́egorie pleinede la seconde. Nous
verrons plus bas que c’est même unéequivalence de la première et de la seconde (ce qui sera un
théor̀eme d’existence deS-sch́emaśetales).

La forme suivante, plus géńerale en apparance, de 5.5. est souvent commode :8

Corollaire 5.6 (“Théor̀eme de prolongement des relèvements”).Considérons un diagramme
commutatif

X ←− Y0y y
S ←− Y

de morphismes, oùX → S est étale et Y0 → Y est une immersion fermée bijective. Alors on peut
trouver un morphisme unique Y → X qui rende les deux triangles correspondants commutatifs.

En effet, remplaçantS parY etX parX×S Y , on est rameńe au cas òu Y = S, et alors c’est
le cas particulier de 5.5 pourY = S.

Signalons aussi la conséquence imḿediate suivant de 5.1 (que nous n’avons pas donné en
corollaire 1 pour ne pas interrompre la ligne d’idées d́evelopṕeeà la suite de 5.1) :

Proposition 5.7 Soient X , X ′ deux préschémas de type finis et plats sur Y , et soit g : X → X ′

un Y -morphisme. Pour que g soit une immersion ouverte (resp. un isomorphisme) il faut et il
suffit que pour tout y ∈ Y , le morphisme induit sur les fibres

g ⊗Y k(y) : X ⊗Y k(y) −→ X ′ ⊗Y k(y)

le soit.

Il suffit de prouver la suffisance ; comme c’est vrai pour la notion de surjection, on est ramené
au cas d’une immersion ouverte. D’après 5.1, il faut v́erifier queg estradiciel, ce qui est trivial,
et qu’il estétale, ce qui ŕesulte du corollaire 5.9 ci-dessous.

Corollaire 5.8 (devrait passer au No 3) Soient X et X ′ deux Y -préschémas, g : X → X ′ un
Y -morphisme, x un point de X et y sa projection sur Y . Pour que g soit quasi-fini (resp. net)
en x, il f et s qu’il en soit de même de g ⊗Y k(y).

En effet, les deux alg̀ebres surk
(
g(x)

)
qu’il faut regarder pour s’assurer que l’on a bien un

morphisme quasi-fini resp. net enx sont les m̂emes pourg etg ⊗Y k(y).
9

Corollaire 5.9 Avec les notations de 5.8., supposons X et X ′ plats et de type fini sur Y . Pour
que g soit plat (resp. étale) en x, il f et s que g ⊗Y k(y) le soit.

7
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Pour “plat” l’énonće n’est mis que pour ḿemoire, c’est un des critères fondamentaux de
platitude6. Pourétale, cela en résulte ; compte tenu de 5.8.

6 Application aux extensionsétales des anneaux locaux com-
plets

Ce nuḿero est un cas particulier de résultats sur les présch́emas formels, qui devront figurer
dans le multiplodoque. Ńeanmoins, on s’en tire icìa meilleur compte, i.e. sans la détermination
locale explicite des morphismesétales au No 7 (utilisant le Main Theorem). C’est peut-être une
raison suffisante de garder le présent nuḿero (m̂eme dans le multiplodoque)à cette place.

Théorème 6.1Soit A un anneau local complet (noethérien bien sûr), de corps résiduel k. Pour
toute A-algèbre B, soit R(B) = B ⊗A k considéré comme k-algèbre, elle dépend donc foncto-
riellement de B. Alors R définit une équivalencede la catégorie des A-algèbres finies etétales
surA avec la catégorie des algèbres de rang fini śeparablessur k.

Tout d’abord, le foncteur en question est pleinement fidèle, comme il ŕesulte du fait plus
géńeral :

Corollaire 6.2 SoientB,B′ deuxA-algèbres finies surA. SiB est étale surA, alors l’application
canonique

HomA-alg(B,B
′)→ Homk-alg

(
R(B), R(B′)

)
est bijective.

On est rameńe au cas òu A est artinien (en remplaçantA parA/mn), et alors c’est un cas
particulier de 5.5.

Il resteà prouver que pour toutek-algèbre finie et śeparable (pourquoi ne pas dire :étale, c’est
plus court)L, il existe unB étale surA tel queR(B) soit isomorphèaL. On peut supposer que
L est une extension séparable dek, comme telle elle admet un géńerateurx, i.e. est isomorphe
à une alg̀ebrek[t]/Fk[t] où F ∈ k[t] est un polyn̂ome unitaire. On relèveF en un polyn̂ome
unitaireF1 dansA[t], et on prendB = A[t]/F1A[t].

7 Construction locale des morphismes non ramifíes etétales
10

Proposition 7.1 Soient A un anneau noethérien, B une algèbre finie sur A, u un générateur
de B sur A, F ∈ A[t] tel que F (u) = 0 (on ne suppose pas F unitaire), u′ = F ′(u) (où F ′ est le

6Cf. IV 5.9.
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polynôme dérivé), q un idéal premier de B ne contenant pas u′, p sa trace sur A. Alors Bq est net
sur Ap.

En d’autres termes, posantY = Spec(A), X = Spec(B), Xu′ = Spec(Bu′), Xu′ est non
ramifié surY . L’ énonce ŕesulte du suivant, plus précis :

Corollaire 7.2 L’idéal différente de B/A contient u′B, et lui est égal si l’homomorphisme natu-
rel A[t]/FA[t]→ B (appliquant t dans u) est un isomorphisme.

Soit J le noyau de l’homomorphismeC = A[t] → B, ce noyau contientFA[t], et lui est
égal dans le deuxième cas envisagé dans 7.2. Comme il est surjectif,Ω1

B/A s’identifie au quotient
de Ω1

C/A par le sous-module engendré parJΩ1
C/A et d(J) (il aurait fallu expliciter au No 1 la

définition de l’homomorphismed, et le calcul deΩ1 pour une alg̀ebre de polyn̂omes). Identifiant
Ω1
C/A àC grâceà la basedt, on trouveB/B ·J ′ donc la diff́erente est engendrée par l’ensembleJ ′

des images dansB des d́erivés desG ∈ J , (et il suffit de prendre desG engendrantJ). Comme
F ∈ J , resp.F est un ǵeńerateur deJ , on a fini. (N.B. On devrait mettre 7.2. en prop. et 7.1. en
corollaire). On trouve :

Corollaire 7.3 Sous les conditions de 7.1., supposant F unitaire et que A[t]/FA[t]→ B est un
isomorphisme, pour que Bq soit étale sur Ap, il f et s que q ne contienne pas u′.

En effet, commeB est plat surA, étaleéquivautà net, et on peut appliquer 7.2.

Corollaire 7.4 Sous les conditions de 7.3. pour que B soit étale sur A il f et. s. que u′ soit
inversible, ou encore que l’idéal engendré par F , F ′ dans A[t] soit l’idéal unité.

Le dernier crit̀ere ŕesulte du premier et de Nakayama (dansB).

Un polyn̂ome unitaireF ∈ A[t] ayant la propríet́e énonćee dans le corollaire 7.4 est dit11
polyn̂ome śeparable(si F n’est pas unitaire, il faudrait au moins exiger que le coefficient de son
terme dominant soit inversible ; dans le cas oùA est un corps, on retrouve la définition usuelle).part 2

Corollaire 7.5 Soit B une algèbre finie sur l’anneau local A. On suppose que K(A) est in-
fini ou que B soit local. Soit n le rang de L = B ⊗A K(A) sur K(A) = k. Pour que B
soit net (resp. étale) sur A, il faut et il suffit que B soit isomorphe à un quotient de (resp. iso-
morphe à) A[t]/FA[t], où F est un polynôme unitaire séparable, qu’on peut supposer (resp. qui
est nécessairement) de degré n.

Il n’y a qu’à prouver la ńecessit́e. SupposonsB net surA, doncL séparable surk, il résulte
alors de l’hypoth̀ese faite queL/k admet un ǵeńerateurξ, donc lesξi (0 ≤ i < n) forment une
base deL sur k. Soit u ∈ B relevantξ, alors par Nakayama lesui (0 ≤ i < n) engendrent
leA-moduleB (resp. en forment une base), en particulier on peut trouver un polynôme unitaire
F ∈ A[t] tel queF (u) = 0, etB sera isomorphèa un quotient de (resp. isomorpheà)A[t]/FA[t].

9
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Enfin, en vertu de 7.4. appliqué à L/k, F et F ′ engendrentA[t] modulemA[t], donc (d’apr̀es
Nakayama dansA[t]/FA[t]) F etF ′ engendrentA[t], on a fini.

Théorème 7.6Soient A un anneau local, A → O un homomorphisme local tel que O soit
isomorphe à une algèbre localisée d’une algèbre de type fini sur A. Supposons O net sur A.
Alors on peut trouver une A-algèbre B, entière sur A, un idéal maximal n de B, un générateur u
de B sur A, un polynôme unitaire F ∈ A[t], tels que n 63 F ′(u) et que O soit isomorphe (comme
A-algèbre) à Bn. Si O est étale sur A, on peut prendre B = A[t]/FA[t].

(Bien entendu, on a là des conditions aussi suffisantes...)

Signalons d’abord les agréables corollaires :

Corollaire 7.7 Pour que O soit net surA, il f et s que O soit isomorphe au quotient d’une algèbre
analogue et étalesur A.

En effet, on prendraO ′ = B′n′, oùB′ = A[t]/FA[t] et òu n′ est l’image inverse den dansB′.
12

Corollaire 7.8 Soit f : X → Y un morphisme de type fini, x ∈ X . Pour que f soit net en x, il
f. et s. qu’il existe un voisinage ouvert U de x tel que f |U se factorise en U → X ′ → Y , où la
première flêche est une immersion fermée et la seconde un morphisme étale.

C’est une simple traduction de 7.7.

Montrons comment le jigon de 7.6 résulte de l’́enonće principal : en effet, il existe par 7.7 un
épimorphismeO ′ → O, où O a les propríet́es voulues ; mais commeO ′ et O sontétales surA,
le morphismeO ′ → O estétale par 4.8 donc un isomorphisme.

Démonstration de 7.6. Elle reprend une démonstration du śeminaire Chevalley. D’après le
Main Theoremon auraO = Bn, où B est une alg̀ebre finie surA et n en est un id́eal maxi-
mal. AlorsB/n = K(O) est une extension séparable donc monogène dek ; si ni (1 ≤ i ≤ r)
sont les id́eaux maximaux deB distincts den, il existe donc uńelémentu deB qui appartient̀a
tous lesni, et dont l’image dansB/n en est un ǵeńerateur. OrB/n = Bn/nBn = Bn/mBn (où
m est l’idéal maximal deA). Admettons un instant le

Lemme 7.9 Soient A un anneau local, B une algèbre finie sur A, n un idéal maximal de B, u
un élément de B dont l’image dans Bn/mBn l’engendre comme algèbre sur k = A/m, et qui
se trouve dans tous les idéaux maximaux de B distincts de n. Soit B′ = B[u], n′ = nB′. Alors
l’homomorphisme canonique B′n′ → Bn est un isomorphisme.

Lemme 7.10 (aurait dû figurer en corollaire à 7.1. avant 7.5. qu’il implique). Soit B une algèbre
finie sur A engendrée par un élément u, soit n un idéal maximal de B tel que Bn soit non ramifié
sur A. Alors il existe un polynôme unitaire F ∈ A[t] tel que F (u) = 0 et F ′(u) /∈ n.

10
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Soit en effetn le rang de lak-algèbreL = B ⊗A k, d’apr̀es Nakayama il existe un polynôme
unitaire de degŕe n dansA[t], tel queF (u) = 0. Soit f le polyn̂ome d́eduit deF par ŕeduction
modm, alorsL estk-isomorphèa k[t]/fk[t], donc par 7.3f ′(ξ) n’est pas contenu dans l’idéal
maximal deL qui correspond̀a n (ξ désignant l’image det dansL, i.e. l’image deu dansL).
Commef ′(ξ) est l’image deF ′(u), on a fini.

Le théor̀eme 7.6 ŕesulte maintenant de la conjonction de 7.9 et 7.10. Resteà prouver 7.9.13
PosonsS ′ = B′ − n′, doncB′S ′−1 = B′n′.

B −→ BS ′−1 −→ BS−1 = Bnx x
B′ −→ B′S ′−1 = B′n′

Soit de m̂eme S = B − n, donc BS−1 = Bn, on a donc un homomorphisme naturel
BS ′−1 → BS−1 = Bn, prouvons que c’est un isomorphisme, i.e. que leséléments deS sont
inversibles dansBS ′−1, i.e. que tout id́eal maximalp de ce dernier ne rencontre pasS, i.e. in-
duit n surB. En effet, commeBS ′−1 est fini surB′S ′−1 = B′n′, p induit l’unique id́eal maximal
n′Bn′ deB′n′, donc induit l’id́eal maximaln′ deB′ ; commeB est fini surB′, l’id éalq deB induit
parp étant au-dessus den′, est ńecessairement maximal, et ne contient pasu, donc est identique
à n. (On vient d’utiliser queu appartientà tout id́eal maximal deB distinct den). Prouvons
maintenant queBS ′−1 égaleB′S ′−1 : comme il est fini sur ce dernier, on est ramené par Na-
kayamàa prouver l’́egalit́e modn′BS ′−1 et a fortiori il suffit de prouver l’́egalit́e modmBS ′−1 ;
or BS ′−1/mBS ′−1 = Bn/mBn est engendré surk paru (on utilise ici l’autre propríet́e deu)
donc l’image deB′ (et a fortiori deB′S ′−1) dedans est tout (comme sous-anneau contenantk et
l’image deu).

Remarque. On doit pouvoiŕenoncer le th́eor̀eme 7.6 pour un anneauO qui est seulement semi-
local, de façoǹa coiffer aussi 7.5 : on fera l’hypothèse queO/mO est unek-algèbremonog̀ene;
on pourra donc trouver unu ∈ B dont l’image dansB/mB est un ǵeńerateur, et appartenantà
tous les id́eaux maximaux deB ne provenant pas deO. Les lemmes 7.9 et 7.10 doivent s’adapter
sans difficult́e. Plus ǵeńeralement, ...

8 Rel̀evement infinitésimal des sch́emas étales. Application
aux sch́emas formels

Proposition 8.1 Soient Y un préschéma, Y0 un sous-préschéma, X0 un Y0-schéma étale, x un
point de X0. Alors il existe un Y -schéma étale X , un voisinage U0 de x dans X0, et un Y0-
isomorphisme U0

∼→ X ×Y Y0.

Soit en effety la projection dex dansY0, appliquant 7.6 au homomorphisme localétale
A0 → B0 des anneaux locaux dey etx dansY0 etX0 : on trouve un isomorphisme14

11
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B0 = C0n0
C0 = A0[t]/F0A0[t]

où F0 est un polyn̂ome unitaire etn0 est un id́eal maximal deC0 ne contenant pas la classe
deF ′0(t) dansC0. SoitA l’anneau local dey dansY , soit F un polyn̂ome unitaire dansA[t]
donnantF0 par l’homomorphisme surjectifA→ A0 (on rel̀eve les coefficients deF0), soit enfin
C = A[t]/FA[t] et n l’id éal maximal deC image inverse den0x par l’épimorphisme naturel
C → C ⊗A A0 = C0. Posons

B = Cn

Il est immédiat par construction et 7.1 queB est étale surA, et qu’on a un isomorphisme
B ⊗A A0 = A0. On sait (Chap. I) qu’il existe unY -sch́ema de type finiX et un pointz deX
au-dessus dey tel queOz soitA-isomorphèaC ; comme ce dernier estétale surA = Oy, on peut
(en prenantX assez petit) supposer queX estétale surY . SoitX ′0 = X ×Y Y0, alors l’anneau
local dez dansX ′0 s’identifie à Oz ⊗A A0 = B ⊗A A0, donc est isomorphèaB0. Cet isomor-
phisme est d́efini pas un isomorphisme d’un voisinageU0 dex dansX0 sur un voisinage dez
dansX ′0 (loc. cité), qu’on peut supposer identiqueàX ′0 en prenantX assez petit. On a fini.

Corollaire 8.2 Enoncé analogue pour des revêtementśetales, en supposant le corps résiduel
k(y) infini.

La démonstration est la m̂eme, 7.5 remplaçant 7.6.

Théorème 8.3Le foncteur envisagé dans 5.5 est une équivalencede cat́egories.

En vertu du th́eor̀eme 5.5, il restèa montrer que toutS0-sch́emaétaleX0 est isomorphèa un
S0-sch́emaX×SS0, oùX est unS-sch́emaétale. L’espace topologique sous-jacentàX devraêtre
nécessairement identiqueà celui deX0,X0 s’identifiant de plus̀a un sous-pŕesch́ema ferḿe deX.
Le probl̀eme est donćequivalent au suivant : trouver sur l’espace topologique sous-jacent|X0|
àX0 un faisceau d’alg̀ebresOX surf ∗0 (OS) (oùf0 est la projectionX0 → S0, regard́ee ici comme
application continue des espaces sous-jacents), faisant de|X0| unS-présch́emaétaleX, et un ho-
momorphisme d’alg̀ebresOX → OX0, compatible avec l’homomorphismef ∗0 (OS) → f ∗0 (OS0)
sur les faisceaux de scalaires, induisant un isomorphismeOX ⊗f∗0 (OS) f

∗
0 (OS0)

∼→ OX0. (Alors
X sera unS-présch́emaétale se ŕeduisant suivantX0, donc sera śepaŕe surS puisqueX0 l’est15
surS0, etX répondà la question). Si d’ailleurs(Ui) est un recouvrement deX0 par des ouverts, et
si on a trouv́e une solution du problème dans chacun desUi, il résulte du th́eor̀eme d’unicit́e 5.5
que ces solutions se recollent (i.e. les faisceaux d’algèbres qui les d́efinissent, munis de leurs
homomorphismes d’augmentation, se recollent), et on constate aussitôt que l’espace annelé ainsi
construit au-dessus deS est unS-présch́emaétaleX muni d’un isomorphismeX ×S S0

∼← X0.
Il suffit donc de trouver une solution localement, ce qui est assuré par 8.1.

Corollaire 8.4 Soient S un préschéma formel localement noethérien, muni d’un idéal de
définition J , soit S0 =

(
|S|,OS/J

)
le préschéma ordinaire correspondant. Alors le foncteur

X 7→ X ×S S0 de la catégorie des revêtements étales de S dans la catégorie des revêtements
étales de S0 est une équivalence de catégories.

12
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Bien entendu, on appelera revêtement́etale d’un pŕesch́emaformelS un rev̂etement deS, i.e.
un pŕesch́ema formel surS défini à l’aide d’un faisceau coh́erent d’alg̀ebresB, tel queB soit
localement libreet que les fibres résiduellesBs ⊗Os k(s) deB soient des alg̀ebresséparables
surk(s). Si on d́esigne parSn le pŕesch́ema ordinaire

(
|S| OS/J

n+1
)
, la donńee d’un faisceau

coh́erent d’alg̀ebresB surS équivautà la donńee d’une suite de faisceaux cohérents d’alg̀ebres
Bn sur lesXn, munis d’un syst̀eme transitif d’homomorphismesBm → Bn (m ≥ n) définissant
des isomorphismesBm ⊗OSm

OSn
∼→ Bn. Il est imḿediat queB est localement libre si et seule-

ment si lesBn sur lesSn le sont, et que la condition de séparabilit́e est v́erifiée si et seulement si
elle l’est pourB0, ou encore pour tous lesBn. Ainsi, B estétale surS si et seulement si lesBn

sur lesSn le sont. Compte tenu de cela, 8.4 résulte aussitôt de 8.3.

Remarque. Il n’ était pas ńecessaire dans 8.4 de se borner au cas desrevêtements. C’est cepen-
dant le seul utiliśe pour l’instant.

part 3

9 Propri étés de permanence

Soit A → B un homomorphisme local etétale, nous examinons ici quelques cas où une
certaine propríet́e pourA entrâıne la m̂eme propríet́e pourB, ou ŕeciproquement. Un certain16
nombre de telle propositions sont déjà conśequences du simple fait queB estquasi-finiet plat
surA, et nous nous borneronsà en “rappeler” quelques-unes :A et B ont m̂eme dimension
de Krull, et m̂eme profondeur(“codimension cohomologique” de Serre, dans la terminologie
encore courante). Il en résulte par example queA est Cohen-Macaulay si et suelment siB l’est.
D’ailleurs, pour tout id́eal premierq deB, induisantp surA, Bq sera encore quasi-fini et plat
surAp, pourvu qu’on suppose queB soit localiśee d’une alg̀ebre de type fini surA (cela ŕesulte du
fait que l’ensemble des points où un morphisme de type fini est quasi-fini resp. plat est ouvert) ;
et d’ailleurstout idéal premierp deA est induit par un id́eal premierq deB (carB estfidèlement
plat surA). Il en résulte par example quep et q ont m̂eme rang; et encore queA est sans id́eal
premier immerǵe si et seulement siB l’est.

Nous allons nous borner donc aux propositions plus spéciales au cas des morphismesétales.

Proposition 9.1 Soit A→ B un homomorphisme local étale. Pour que A soit régulier, il faut et
il suffit que B le soit.

En effet, soitk le corps ŕesiduel deA, L celui deB. CommeB est plat surA et queL = B⊗A k
i.e. n = mB (où m, n sont les id́eaux maximaux deA, B) la filtration m-adique surB est
indentiquèa sa filtrationn-adique et on aura

gr∗(B) = gr∗(A)⊗k L.

Il s’ensuit quegr∗(B) est une alg̀ebre de polyn̂omes surL si et seulement sigr∗(A) est une
algèbre de polyn̂omes surk. cqfd. (N.B. on n’a pas utiliśe le fait queL/k est śeparable).
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Corollaire 9.2 Soit f : X → Y un morphisme étale. Si Y est régulier, X l’est, la réciproque
étant vraie si f est surjectif.

Proposition 9.2 Soit f : X → Y un morphisme étale. Si Y est réduit, il en est de même de X ,
la réciproque étant vraie si f est surjective.

Celaéquivaut au

Corollaire 9.3 Soit f : A → B un homomorphisme local étale, B étant isomorphe à une A-17
algèbre localisée d’une A-algèbre de type fini. Pour que A soit réduit, il faut et il suffit que B le
soit.

La nécessit́e est triviale, puisqueA→ B est injectif (B étant fid̀element plat surA). Suffisance :
soientpi les id́eaux premiers minimaux deA, par hypoth̀ese l’application naturelleA→

∏
iA/pi

est injective, donc tensorisant avec leA-module platB, on trouve queB →
∏

iB/piB est
injective, et on est ramenerà prouver que lesB/piB sont ŕeduits. CommeB/piB estétale sur
A/pi, on est ramener au casA intègre. SoitK son corps des fractions, alorsA→ K étant injectif,
il en est de m̂eme (B étantA-plat) deB → B ⊗A K, on est ramener̀a prouver que ce dernier
anneau est réduit. Or,B étant localiśee d’uneA-algèbre de type fini surA, est l’anneau local
d’un pointx d’un sch́ema de type fini et́etaleX = Spec(C) surY = Spec(A), doncB⊗AK est
un anneau localiśe (par rapport̀a un ensemble multiplicativement stable convenable) de l’anneau
C ⊗A K deX ⊗A K. CommeX ⊗A K estétale surK, son anneau est un produit fini de corps
(extensions śeparables deK), il en est donc de m̂eme deB ⊗A K. cqfd.

Corollaire 9.4 Soit f : A → B un homomorphisme local étale, supposons A analytiquement
réduit (i.e. le complété Â de A sans élément nilpotent). Alors B est analytiquement réduit, et
a fortiori réduit.

En effet,B estfini et étale surÂ, et on applique 9.3.

Théorème 9.5Soit f : A → B un homomorphisme local, B étant isomorphe à une A-algèbre
localisée d’une A-algèbre de type fini. Alors

(i) Si f est étale, A est normal si et seulement si B l’est.

(ii) Si A est normal, f est étale si et seulement si f est injectif et net (et alors B est normal par
(i)).

Nous allons donner deux démonstrations diff́erentes de (i), la première utilise certaines des
propríet́es des morphismes plats quasi-finis (rappelés au d́ebut du nuḿero) sans utiliser 7.6 (et par
là, le Main Theorem) ; c’est l’inverse pour la deuxième d́emonstration. Enfin, pour (ii) il semble
qu’on ait besoin du Main Theorem en tous cas.
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Première démonstration. On utilise la condition ńecessaire et suffisante suivante de normalité18
d’un anneau local noethérienA de dimension6= 0.

Crit ère de Serre: (i) Pour tout idéal premier p de A de rang 1, Ap est normal (ou ce
qui revient au même, régulier) ; (ii) Pour tout idéal premier p de A de rang ≥ 2, on a
profondeur Ap ≥ 2.7

Nous admettrons ici ce critère, qui est censé figurer au par. des plats. Son principal avan-
tage est qu’il ne suppose pas a prioriA réduit, ni a fortiori int̀egre. Ici, on peut d́ejà supposer
dimA = dimB 6= 0.

D’apès les rappels du début du nuḿero, les id́eaux premiersp deA qui sont de rang1 (resp.
de rang≥ 2) sont exactement les traces surA des id́eaux premiersq deB qui sont de rang1 (resp.
de rang≥ 2). Enfin, sip etq se correspondent,Bq estétale surAp, donc a m̂eme profondeur que
Ap, et est ŕegulier si et seulement siAp l’est (9.1). Appliquant le crit̀ere de Serre, on trouve que
A est normal si et suelment siB l’est.

Deuxième d́emonstration. SupposonsB normal, soitL son corps des fractions,K celui deA
(A est int̀egre puisqueB l’est). On a vu dans la d́emonstration de 9.3 queB⊗AK est un compośe
fini de corps, comme il est contenu dansL c’est un corps, et comme il contientB c’estL. Un
élément deK entier surA est entier surB, donc est dansB puisqueB est normal, donc dansA
carB ∩K = A (comme il ŕesulte du fait queB est fid̀element plat surA).

Supposons maintenantA normal, prouvons queB l’est. En vertu de 7.6 on auraB = B′n,
où B′ = A[t]/FA[t], F et n étant comme dans 7.6. DoncL = B ⊗A K sera un localiśe
de B′ ⊗A K = K[t]/FK[t], et un produit de corps ; extensions finies séparables deK ce
dernier produit (comme chaque fois qu’on localise un anneau artinien, iciB′K par rapportà
un ensemble multiplicativement stable) est un facteur direct deB′K , correspondant donc̀a une
décompositionF = F1F2 dansK[t], le ǵeńerateur deL correspondant̀a t étant annuĺe d́ejà par
F1. Or,A étant normal, lesFi sont dansA[t] (supposant qu’ils sont unitaires). Remarquant que
B → L = B ⊗A K est injectif (A → K l’ étant etB étant plat surA) il s’ensuit qu’on aura
déjàF1(u) = 0. Supposant qu’on ait prisF de degŕe minimum, il s’ensuivra queF2 = 1 (N.B.
on auraF ′(u) = F ′1(u)F2(u) + F1(u)F ′2(u) = F ′1(u)F2(u) puisqueF1(u) = 0, d’où F ′1(u) 6= 0
puisqueF ′(u) 6= 0.

Donc on a19

(∗) L = B ⊗A K = K[t]/FK[t]

F étant par suite un polynôme śeparable dansK[t] (maisévidemment par ńecessairement dans
A[t]). (N.B. Pour l’instant, on a seulement montré, essentiellement, que dans 7.6 on peut choisir
F et de telle façon que — avec les notations prises ici —B′ → B′n = B soit injectif ; on s’est
servi pour cela de la normalité deA ; je ne sais pas si cela reste vrai sans hypothèse de normalité).

7Cf. EGA IV 5.8.6.
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Rappelons maintenant le lemme bien connu, extrait du Cours de Serre de l’an dernier :

Lemme 9.6 SoitK un anneau, F ∈ K[t] un polynôme unitaire séparable, L = K[t]/FK[t], u la
classe de t dans L (de sorte que F ′(u) est un élément inversible de L). Alors on a les formules
(où n = degF ) :

trL/K u
i/F ′(u) = 0 si 0 ≤ i < N − 1,

trL/K u
n−1/F ′(u) = 1.

Corollaire 9.7 Le déterminant de la matrice (uj.ui/F ′(u))0≤i,j≤n−1 est égal à (−1)n, donc in-
versible dans tout sous-anneau A de K.

Corollaire 9.8 Soit A un sous-anneau de K, V le A-module engendré par les ui (0 ≤ i ≤ n−1)
dans L, V ′ le sous-A-module de L formé des x ∈ L tels que trL/K(xy) ∈ A pour tout y ∈ V (i.e.
pour y de la forme ui, 0 ≤ i ≤ n − 1). Alors V ′ est le A-module ayant pour base les ui/F ′(u)
(0 ≤ i ≤ n− 1).

Corollaire 9.9 Suppons queK soit le corps des fractions d’un anneau intègre normalA, F ayant
ces coefficients dans A. Alors avec les notations de 9.8, V ′ contient la clôture normale A′ de A
dans L, qui est donc contenu dans A[u]/F ′(u) et a fortiori dans A[u][F ′(u)−1].

Appliquons ce dernier corollairèa la situation que nous avions obtenue dans la démonstra-
tion : commeF ′(u) est inversible dansB qui contientA[u], B contientA′. D’après le Main
Theorem, (oùa partir du fait queB = A[u]n) B est une alg̀ebre localiśee deA′. CommeA′ est
normal, il en est de m̂eme deB.

Démonstration de (ii). — On proc̀ede comme dans la démonstration qui pŕec̀ede pour prouver20
qu’on peut, dans 7.6, choisirF de telle façon que l’on ait encore (∗). Le seul obstacle a priori est
que,B n’étant plus supposé plat surA, on ne peut plus affirmer queB → L est injectif, de sorte
que le raisonnement ne s’appliquera a priori qu’à l’imageB1 deB par ledit homomorphisme. Il
s’ensuit aussit̂ot queB1 est plat surA (comme localiśee d’une alg̀ebre libre surA). En vertu de
4.8 le morphismeB → B1 estétale, donc un isomorphisme, ce qui achève la d́emonstration.

(Du point de vue ŕedaction, il faudrait intervertir les deux dernières d́emonstrations, et mettre
dans un nuḿeroà part les calculs formels du lemme et de ces corollaires).

Corollaire 9.10 Soit f : X → Y un morphisme étale. Si Y est normal, X l’est, la réciproque est
vraie si f est surjective.

Corollaire 9.11 Soit f : X → Y un morphisme dominant, Y étant normal et X connexe. Si f
est net, f est étale, donc X est normal et par suite (étant connexe) irréductible.

SoitU l’ensemble des points où f estétale, il est ouvert, et il suffit de montrer qu’il est aussi
fermé et non vide.U contient l’image inverse du point géńerique deY (car pour une alg̀ebre sur
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un corps, non ramifíe = étale) donc (X dominantY ) est non vide. Six appartient̀a l’adh́erence
deU , alors il appartient̀a l’adh́erence d’une composante irréductibleUi deU , doncà une com-
posante irŕeductibleXi

v
= Ūi deX qui rencontreU , et par suite domineY (car toute composante

deU , plat surY , domineY ). Par suite, siy est la projection dex surY , Oy → Ox est injectif
(compte tenu queOy est int̀egre). CommeOy est normal etOy → Ox net, on conclut̀a l’aide de
9.5(ii).

Corollaire 9.12 Soit f : X → Y un morphisme de type fini dominant, avec Y normal et X
irréductible. Alors l’ensemble des points où f est étale est identique au complémentaire du sup-
port de Ω1

X/Y , i.e. au complémentaire du sous-préschéma de X défini par l’idéal différente dX/Y .

(C’est cela l’́enonće “moins trivial” auquel ilétait fait allusion dans la remaque du No 4.21

Remarque. On se gardera de croire qu’un revêtement́etale connexe d’un schéma irŕeductible
soit lui-même irŕeductible, quand on ne suppose pas la base normale. Cette question seraétudíee
au No 11.

part 4

10 Rev̂etementsétales d’un sch́ema normal

Proposition 10.1 Soit X un préschéma étale séparé sur Y normal connexe de corps K. Alors
les composantes connexes de Xi de X sont intègres, leurs corps Ki sont des extensions finies
séparables de K, Xi s’identifie à une partie ouverte non vide du normalisé de X dans Ki (donc
X à une partie dense du normalisé de Y dans R(X) = L =

∏
Ki).

D’après 9.10X est normal, a fortiori ses anneaux locaux sont intègres, donc les composantes
connexes deX sont irŕeductibles. CommeXi est normal, et fini et dominant au-dessus deY , il
résulte d’un cas particulier (à peu pr̀es trivial d’ailleurs) du Main Theorem queXi est un ouvert
du normaliśe deX dans le corpsKi deX.

Corollaire 10.2 Sous les conditions 10.1, X est fini sur Y (i.e. un revêtement étale de Y ) si et
seulement si X est isomorphe au normalisé Y ′ de Y dans L = R(X) (anneaux des fonctions
rationnelles sur X).

En effet, on sait que ce normalisé est fini surY (Y étant normal etR/K séparable), inverse-
ment siX est fini surY il l’est surY ′, donc son image dansY ′ est ferḿee, d’autre part elle est
dense.

Une alg̀ebreL de rang fini surK sera ditenon ramifíee surX (ou simplement non ramifíee
surK, siX est sous-entendu) siL est une alg̀ebre śeparable surK, i.e. compośee directe d’ex-
tensions śeparablesKi, et si le normaliśeY ′ deY dansL (somme disjointe des normalisés deY
dans lesKi) est non ramifíe (= étale par 9.11) surY . Donc :
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Corollaire 10.3 Pour tout X fini sur Y et dont toute composante irréductible domine Y ,
soit R(X) l’anneau des fonctions rationnelles sur X (poduit des anneaux locaux des points22
génériques des composantes irréductibles de X), de sorte que X 7→ R(X) est un foncteur, à
valeurs dans les algèbres de rang fini sur K = R(Y ). Ce foncteur établit une équivalence de
la catégorie des revêtement étales connexes de Y avec la catégorie des extensions L de K non
ramifiées sur Y .

Le foncteur inverse est le foncteur normalisation.

SupponsY affine, donc d́efini par un anneau normalA de corps des fractionsK. SoitL une
extension finie deK compośe directe de corps, alors par définition la normalíeeY ′ deY dans
L est isomorphèa Spec(A′), où A′ est le normaliśe deA dansL. Dire queL est non ramifíe
sur Y signifie queA′ est non ramifíe (ou encore :́etale) surA. si A est local, il revient au
même de dire que les anneaux locauxA′n (où n parcourt l’ensemble fini des idéaux maximaux
deA′, i.e. de ses id́eaux premiers induisant l’id́eal maximalm deA) soient non ramifíe (= étale)
surX l’anneau localA. Enfin, notons aussi que le critère par le discriminant (4.10) peut aussi
s’appliquer dans cette situation (plus géńeralement, une variante dudit critère devrait s’́enoncer
ainsi, sans condition préliminaire de platitude lorsqueX domineY , Y étant ńeanmoins supposé
localement int̀egre :A → B etB → B ⊗A K = L sont injectifs — alorstrL/K est d́efinie —
et trL/K(xy) induit uneforme bilińeaire fondamentaleB × B → A, i.e. il existe desxi ∈ B
(1 ≤ i ≤ n, n = rang deL surK) tels quetr(xixj) ∈ A pour touti, j et det(tr(xixj)) est
inversible dansA).

Le sorite (4.6) implique aussitôt le sorite de la non ramification dans le cadre classique :

Proposition 10.4 Soient Y un préschéma normal intègre, de corps K. (i) K est non ramifié
sur Y . (ii) Si L est une extension de K non ramifiée sur Y , si Y ′ est un préschéma normal de
corps L et dominant Y (par exemple le normalisé de Y dans L) et M une extension de L non
ramifiée sur Y ′, alors M/K est non ramifiée sur X ( transitivit́e de la non ramification). (iii)
Soit Y ′ un préschéma normal intègre dominant Y , de corps K ′/K ; si L est une extension de K
non ramifiée sur Y , alors L ⊗K K ′ est une extension de K ′ non ramifiée sur Y ′ (propriété de
translation).

De plus :23

Corollaire 10.5 Sous les conditions de (iii), si Y = Spec(A), Y ′ = Spec(A′), alors le normalisé
A′ de Y ′ dans L′ = L⊗K K ′ s’identifie à Ā⊗A A′, où Ā est le normalisé de A dans L.

Habituellement, les gens (qui répugnent̀a la consid́eration d’anneaux non intègres, fussent-
ils compośes directs de corps)́enoncent la propriét́e de translation sous la forme (plus faible)
suivante :

Corollaire 10.6 Sous les conditions de (iii), soit L1 une extension composéede L/K (non ra-
mifiée sur Y ) et de K ′/K. Alors L1/K

′ est non ramifiée sur Y ′. Dans le cas où Y = Spec(A),
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Y ′ = Spec(A′), on aura de plus
A′ = A[A,A′]

i.e. l’anneau A′ normalisé de A′ dans L1 est la A-algèbre engendrée par A′ et le normalisé A de
A dans L.

Ce dernier fait est d’ailleurs faux sans hypothèse de non ramification, m̂eme dans le cas
d’extensions composées de corps de nombres. . .

Pour terminer ce nuḿero, nous allons donner l’interprétation de la notion de revêtement́etale
correspondant̀a l’image intuitive de cette notion : il doit y avoir le “nombre maximum” de points
au-dussus du point considéŕe y ∈ Y , et en particulier il ne doit pas y avoir “plusieurs points
confondus” au-dussus dey. Pour d́emontrer les ŕesultats dans ce sens avec toute la géńeralit́e
désirable, nous allons admettre ici la proposition 10.7 plus bas (dont la démonstration sera dans
le multiplodoque, Chap. IV, par. 15, et utilise la technique des ensembles constructibles de Che-
valley, et un petit peu de théorie de descente. . .)

Un mrophisme de type finif : X → Y est dituniversellement ouvertsi pour toute extension
de la baseY ′ → Y (avecY ′ localement noeth́erien) le morphismef ′ : X ′ = X ×Y Y ′ → Y ′

est ouvert, i.e. transforme ouverts en ouverts. On peut d’ailleurs se borner au cas où Y ′ est de
type fini surY (et même òu Y ′ est de la formeY [t1, . . . , tr], où lesti sont des ind́etermińees).
Un morphisme universellement ouvert est a fortiori ouvert (la réciproquéetant fausse), d’autre
part sif est ouvert,X etY étant irŕeductibles, alors toutes les composantes de toute les fibres de
f ont même dimension (savoir la dimension de la fibre géńeriquef−1(z), z le point ǵeńerique24
deY ). Enfin siY est normal, cette dernière condition implique d́ejà quef estuniversellement
ouvert (th́eor̀eme de Chevalley). Il s’ensuit par exemple que sif : X → Y est un morphisme
quasi-fini, avecY normal irŕeductible, alorsf est universellement ouverte (ou encore : ouverte)
si et seulement si toute composante irréductible deX domineY . Rappelons aussi qu’un mor-
phisme plat (de type fini)́etant ouvert, est aussi universellement ouvert. Ces préliminaires pośes,
“rappelons” la

Proposition 10.7 Soit f : X → Y un morphisme quasi-fini séparé universellement ouvert. Pour
tout y ∈ Y , soit n(y) le “nombre géométrique de points de la fibre f−1(y)”, égal à la somme
des degrés séparables des extensions résiduelles K(x)/K(y), pour les points x ∈ f−1(y). Alors
la fonction n 7→ n(y) sur Y est semi-continue supérieurement. Pour qu’elle soit constante au
voisinage du point y (i.e. pour qu’on ait n(y) = n(zi), où les zi sont les points génériques des
composantes irréductibles de Y qui contiennent y) il faut qu’il existe un voisinage U de y tel que
X|U soit fini sur U.8

Corollaire 10.8 Si y 7→ n(y) est constante et Y géométriquement unibranche 9, les composantes
irréductibles de X sont disjointes.

8Cf. EGA IV 15.5.1
9Pour la d́efinition, cf. ci-dessous no 11, p. 21
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Proposition 10.9 Soit f : X → Y un morphisme étaleséparé. Avec les notations 10.7 la fonc-
tion n 7→ n(y) est semi-continue supérieurement. Pour qu’elle soit constante au voisinage du
point y, (i.e. pour qu’on ait n(y) = n(zi), où les zi sont les points génériques des composantes
irréductibles de Y qui contiennent y) il faut et il suffit qu’il existe un voisinage ouvert U de y tel
que X|U soit fini sur U, i.e. soit un revêtement́etalede U .

Corollaire 10.10 Pour qu’un morphisme étale séparé f : X → Y , Y connexe, soit fini (i.e. fasse
de X un revêtement́etalede Y ) il faut et il suffit que toute les fibres de f aient même nombre
géométrique de points.

Dans 10.8 et son corollaire, il n’y avait pas d’hypothèse de normalité surY . Si on fait une
telle hypoth̀ese, on trouve l’́enonće plus fort (pris le plus souvent comme la définition de la non
ramification d’un rev̂etement) :

25

Théorème 10.11Soit f : X → Y un morphisme quasi-fini séparé. On suppose que Y est
irréductible, que toute composante de X domine Y , que X soit réduit (i.e. OX sans éléments
nilpotents). Soit n le degré deX sur Y (somme des degrés, sur le corpsK de Y , des corpsKi des
composantes irréductibles Xi de X). Soit y un point normal de Y . Alors le nombre géométrique
n(y) de points de X au-dessus de y est ≤ n, l’égalité ayant lieu si et seulement si il existe un
voisinage ouvert U de y tel que X|U soit un revêtement́etalede U .

Le “seulement si”́etant trivial, provons le “si”. Soitz le point ǵeńerique deY , on an(z) =
(somme des degrés śeparables desKi/K) ≤ n et par 10.7 on an(y) ≤ n(z) ≤ n, l’ égalit́e
impliquant queX|U estfini surU pour un voisinageU convenable dey. On peut donc supposer
X fini surY et la fonctionn(y′) surY constante. Enfin par 10.8X est alors ŕeunion disjointe de
ses composantes irréductibles et pour prouver qu’il est non ramifié eny, on est rameńe au cas òu
X est irŕeductible, donc int̀egre. Enfin on peut supposerY = Spec(Oy). Le th́eor̀eme se ŕeduit
alorsà l’énonće classique suivant :

Corollaire 10.12 Soient A un anneau local normal (noethérien comme toujours) de corps K,
L une extension finie de K de degré n, degré séparable ns, B un sous-anneau de L fini sur
A, de corps des fractions L, m l’idéale maximal de A et n′ le degré séparable de B/mB sur
A/mA = k (= somme des degrés séparables des extensions résiduelles de cet anneau). On a
n′ ≤ ns et a fortiori n′ ≤ n. Cette dernière inégalité est une égalité si et suelment si B est
non ramifié (= étale) sur A.

Il reste seulement̀a montrer quen′ = n implique queB est étale surA. Rappelons la
démonstration quandk est infini : on doit seulement montrer queR = B/mB est śeparable
surk ; s’il n’en était pas ainsi il en résulterait (par un lemme connu) qu’il existe unélémenta de
R dont le polyn̂ome minimal surk est de degŕe> n′. Cet élément provient d’uńelémentx de
B, dont le polyn̂ome minimal surK (en tant qu’́elément deL) est de degŕe≤ n ; d’autre part ce
dernier a ses coefficients dansA puisqueA est normal, et donne donc par réduction modm un
polynôme unitaireF ∈ k[t], de degŕe≤ n = n′, tel queF (a) = 0, absurde.
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Dans le cas ǵeńeral (k pouvantêtre fini), reprenant le langage géoḿetrique, on consid̀ere26
Y ′ = Spec(A[t]) qui est fid̀element plat surY , et le point ǵeńeriquey′ de la fibreSpec(k[t]) de
Y ′ sury. AlorsX est net surY eny si et seulement siX ′ = X ×Y Y ′ = Spec(B[t]) est net en
y′ surY ′, comme on constate aussitôt. D’autre part, d’apr̀es le choix dey′, son corps ŕesiduel est
k(t) donc infini. Commey′ est un point normal deY ′, on est rameńe au cas pŕećedent.part 5

11 Quelques compĺements

Nous avons d́ejà dit qu’un rev̂etement́etale connexe d’un schéma int̀egre n’est pas ńecessai-
rement int̀egre. Voici deux exemples de ce fait.

a) SoitC une courbe alǵebriqueà point double ordinairex, C ′ sa normaliśee,a et b les deux
points deC ′ au-dessus dex. SoientC ′i (i = 1, 2) deux copies deC ′, ai et bi le point deC ′i qui
correspond̀a a resp.b. Dans la courbe sommeC ′1 q C ′2, identifionsax1 et b2 d’une part,a2 et b1

d’autre part (on laisse au lecteur le soin de préciser le processus d’identification ; il sera expliqué
au Chap. VI du multiplodoque, mais dans le cas des courbes sur un corps algébriquement clos
est trait́e dans le livre de Serre sur les courbes algébriques). On trouve une courbeC ′′ connexeet
réductible, qui est un rev̂etement́etale de degré2 deC. Le lecteur v́erifiera que de façon géńerale,
les rev̂etementśetales connexes “galoisiens”C ′′ deC dont l’image inverseC ′′ ×C C ′ est un
revêtementtrivial deC ′ (i.e. isomorphèa la somme d’un certain nombre de copies deC ′) sont
“cycliques” de degŕen, et pour tout entiern > 0, on peut construire un revêtement́etale connexe
cyclique de degŕe n. Dans le langage du groupe fondamental qui sera dévelopṕe plus tard, cela
signifie que le quotient deπ1(C) par le sous-groupe invariant fermé engendŕe par l’image de
π1(C ′) → π1(C) (homomorphisme induit par la projection) est isomorphe au compactifié deZ.
De façon plus pŕecise, on doit pouvoir montrer que le groupe fondamental deC est isomorphe
au produit libre (topologique) du groupe fondamental deC par le compactifíe deZ. Notons que
ce sont des questions de ce genre qui ont donné naissancèa la “théorie de la descente” pour les
sch́emas.

b) SoitA un anneau local complet intègre, on sait que son normaliséA′ est fini surA (Na-27
gata), donc c’est un anneau semi-local complet, donc local puisqu’il est intègre. Supposons que
l’extension ŕesiduelleL/k qu’il définit soit non radicielle (dans le cas contraire, on dira que
A est ǵeoḿetriquement unibranche, cf plus bas). Ce sera le cas par exemple pour l’anneau
R[s, t]/(s2 + t2)R[s, t], où R est le corps des réels. Soit alorsk′ une extension galoisienne fi-
nie dek telle queL ⊗k k′ se d́ecompose ; et soitB une alg̀ebre finieétale surA correspondant
à l’extension ŕesiduellek′ (rapellons queB est essentiellement unique). AlorsB′ = A′ ⊗A B
surB a l’algèbre ŕesiduelleL ⊗k k′ qui n’est pas locale, doncB′ n’est pas un anneau local
donc (́etant complet) a des diviseurs de0. Comme il est contenu dans l’anneau total des frac-
tions deB (car libre surA′ donc sans torsion surA′ donc sans torsion surA, donc contenu dans
B′ ⊗A K = B′(K) = A′(K) ⊗K B(K) = B(K) puisqueA′(K) = K) il s’ensuit queB n’est pas
intègre. Dans le cas de l’anneauR[s, t]/(s2 + t2)R[s, t], prenantk′/k = C/R, on trouve pourB
l’anneau local de deux droites sécantes du plan en leur point d’intersection.
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Notons d’ailleurs que s’il existe un revêtement connexéetaleX deY intègre qui ne soit pas
irréductible, alors toute composante irréductible deX donne un exemple d’un revêtement non
ramifiéX ′ deY , dominantY , qui n’est paśetale surY . Dans le cas de l’exemple a), on obtient
ainsi queC ′ est non ramifíe surC, sanŝetreétale en les deux pointsa et b (comme on constate
d’ailleurs directement par inspection des complét́es des anneaux locaux dex et a : du point de
vue “formel”,C ′ au pointa s’identifieà un sous-sch́ema ferḿe deC au pointx, savoir l’une des
deux “branches” deC passant parx).

Dans a) et b), on voit que la non validité des conclusions de 9.5. (i) et (ii) est liée directe-
ment au fait qu’un point deY “ éclate” en des pointsdistinctsdu normaliśe (dans b, le fait que
l’extension ŕesiduelle soit non radicielle doitêtre interpŕet́ee ǵeoḿetriquement de cette façon).
De façon pŕecise, nous dirons qu’un anneau local intègreA est géoḿetriquement unibranche
si son normaliśe n’a qu’un seul id́eal maximal, l’extension résiduelle correspondanteétant ra-
dicielle ; un pointy d’un pŕesch́ema int̀egre est dit ǵeoḿetriquement unibranche si son anneau
local l’est. Exemples : un point normal, un point de rebroussement ordinaire d’une courbe, etc...
Il semble que siY admet un point qui n’est pas unibranche, il existe toujours de revêtement́etale28
connexe non irŕeductible deY ; c’est du moins ce que nous avons montré dans le cas b), lorsque
Y est le spectre d’un anneau local complet. On peut montrer par contre quesi tous les points deY
sont ǵeoḿetriquement unibranches, alors toutY -présch́ema non ramifíe connexe dominantY est
étaleet irreductible. La d́emonstration reprend celle de 9.5, en utilisant la géńeralisation suivante
du th́eor̀eme 8.3, qui sera démontŕee plus tard̀a l’aide de la technique de descente10 :

Soit Y ′ → Y un morphisme fini, radiciel, surjectif (i.e. ce qu’on pourrait appeler un
“homéomorphisme universel”). Considérons le foncteurX 7→ X×Y Y ′ = X ′ desY -présch́emas
dans lesY ′-présch́emas. Ce foncteur induit unéequivalence de la catégorie desY -sch́emas
étales avec la catégorie desY ′-sch́emaśetales.On pourra appliquer par exemple ce résultat dans
le cas òu Y ′ est le normaliśe deY , Y étant suppośe unibranche (etY ′ fini surY , ce qui est vrai
dans tous les cas qu’on rencontre en practique), ou au cas d’unY ′′ “en sandwich” entreY et son
normaliśe (qui n’a plus besoin d’être fini surY ).

10Cf. IX.4.10. Pour une d́emonstration plus directe, cf. EGA IV 18.10.3, utilisant une variante de 9.5 pour des
anneaux locaux ǵeoḿetriquement unibranches.
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Expośe II

Morphismes lisses : ǵenéralit és, propriétés
diff érentielles

29

Les renvois̀a l’expośe I sont indiqúes par I. On rappelle que les anneaux sont noethériens, et
les pŕesch́emas localement noethériens.

1 Généralit és

SoitY un pŕesch́ema, soientt1, . . . , tn des ind́etermińees, on pose

(1.1) Y [t1, . . . , tn] = Y ⊗Z Z[t1, . . . , tn] .

DoncY [t1, . . . , tn] est unY -sch́ema, affine au-dessus deY , défini par le faisceau quasi-cohérent
d’algèbresOY [t1, . . . , tn]. La donńee d’une section de ce présch́ema au-dessus deY équivaut
doncà la donńee den sections deOY (correspondant aux images desti par l’homomorphisme
correspondant). SiY ′ est au-dessus deY , on a

(1.2) Y [t1, . . . , tn]×Y Y ′ = Y ′[t1, . . . , tn] ,

(ce qui implique que la donnée d’unY -morphisme deY ′ dansY [t1, . . . , tn] équivaut̀a la donńee
den sections deOY ′), d’autre part on a

(1.3)
(
Y [t1, . . . , tn]

)
[tn+1, . . . , tm] = Y [t1, . . . , tm] ,

en vertu de de la formule analogue pour les anneaux de polynômes surZ. La formule (1.2)
implique queY [t1, . . . , tn] varie fonctoriellement avecY .

Y [t1, . . . , tn] est de type fini et plat au-dessus deY .
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Définition 1.1 Soit f : X → Y un morphisme, faisant de X un Y -préschéma. On dit que f est
lisse1 en x ∈ X , ou que X est lisse surY enx, s’il existe un entier n ≥ 0, un voisinage ouvert U
de x, et un Y -morphisme étale de U dans Y [t1, . . . , tn]. On dit que f (resp.X) est lisses’il est
lisse en tous les points de X . Une algèbre B sur un anneau A est dite lisse en un idéal premier
p de B, si Spec(B) est lisse sur Spec(A) aupoint p ; B est dite lisse sur A si elle est lisse sur A30
en tout idéal premier p de B. Enfin, un homomorphisme local A → B d’anneaux locaux est dit
lisse (ou B est dite lisse sur A) 2 si B est localisée d’une algèbre de type fini B1 lisse sur A.

On note que la notion de lissité deX surY est locale surX et surY ; siX est lisse surY , il
est localement de type fini surY .

Proposition 1.1 L’ensemble des points x de X en lesquels f est lisse est ouvert.

C’est trivial sur la d́efinition.

Corollaire 1.2 Si B est lisse sur A en p, alors il est lisse sur A en q pour tout idéal premier q

de B contenu dans p.

1.1 implique aussi que les deux dernières d́efinitions 1.1 cöıncident dans leur domaine com-
mun d’existence.

Proposition 1.3 (i) Un morphisme étale, en particulier une immersion ouverte, un morphisme
identique, est lisse. (ii) Une extension de la base dans un morphisme lisse donne un morphisme
lisse. (iii) Le composé de deux morphismes lisses est lisse.

(i) est trivial sur la d́efinition, on a plus pŕeciśement :

Corollaire 1.4 étale = quasi-fini + lisse.

(ii) r ésulte aussitôt du fait analogue pour les morphismesétales (I 4.6) et pour les projec-
tions Y [t1, . . . , tn] → Y (cf (1.2)). Pour (iii), cela ŕesulte formellement du fait que c’est vrai
sépaŕement pour “́etale” (I 4.6) et des projections du typeY [t1, . . . , tn] (cf (1.3)), et des deux
faits cit́es pour (ii) : SupposonsY lisse surZ etX lisse surY , prouvons queX est lisse surZ ;
on peut supposerY étale surZ[t1, . . . , tn] etX étale surY [s1, . . . , sm], la premìere hypoth̀ese
implique donc queY [s1, . . . , sm] estétale surZ[t1, . . . , tn][s1, . . . , sm] = Z[t1, . . . , sm], doncX
estétale surZ[t1, . . . , sm], cqfd.

Remarque 1.5 L’entier n qui figure dans d́ef. 1.1 est bien d́etermińe, car on constate aussitôt31
que c’est la dimension de l’anneau local dex dans sa fibref−1

(
f(x)

)
. On l’appelle “dimension

relative” deX surY . Elle se comporte additivement pour la composition des morphismes.
part 6

1Ancienne terminologie :f estsimpleenx, oux est un pointsimplepourf . Cette terminologie prêtaità confu-
sion dans divers contextes (algèbres simples, groupes simples) et a dû être abandonńee.

2Il vaut mieux dire alors, comme dans EGA IV 18.6.1, queB est “essentiellement lisse” surA.
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2 Quelques crit̀eres de lissit́e d’un morphisme

Théorème 2.1Soit f : X → Y un morphisme localement de type fini, soit x ∈ X et y = f(x).
Pour que f soit lisse en x, il faut et il suffit que (a) f soit plat en x, et (b) f−1(y) soit lisse sur
k(y) en x.

Le compośe de deux morphismes platsétant plats, etY [t1, . . . , tn]→ Y étant un morphisme
plat, on voit que lisse implique plat ; compte tenu de 1.3 (ii) cela prouve la nécessit́e. Supposons
(a) et (b) v́erifiées, soientV un voisinage affine dey d’anneauA, U un voisinage affine dex
au-dessus deV , d’anneauB. PrenantU assez petit, on peut supposer par (b) qu’il existe un
k(y)-morphisméetale

g : U |f−1(y)→ Spec k[t1, . . . , tn] (k = k(y))

d éfini parn sectionsgi du faisceau structural deU |f−1(y). On constate facilement qu’on peut
supposer que lesgi (qui a priori sont deśeléments deB ⊗A k = BS−1, où S = A− p, p l’id éal
premier deA correspondant̀ay) proviennent de sections du faisceau structural deV , donc queg
est induit par un morphisme, encore notég

g : V → Y [t1, . . . , tn]

(quitte à multiplier lesgi par un m̂emeélément non nul dek). Or V est plat surY par (a), il en
est de m̂eme deY [t1, . . . , tn], d’autre partg induit un morphisméetale entre les fibres au-dessus
dey, doncg estétale enx par (I 5.8), cqfd.

Corollaire 2.2 Soient S un préschéma, f : X → Y un S-morphisme de type fini, Y étant de
type fini et plat sur S, x ∈ X , s la projection de x sur S. Pour que f soit lisse en x, il faut et il
suffit que X soit plat (ou encore : lisse) sur S en x, et que le morphisme fs : Xs → Ys induit sur
les fibres de s soit lisse en x.

Seule la suffisance demande une démonstration, et résulte du crit̀ere 2.1, joint au crit̀ere de
platitude (I 5.9).

Pour énoncer le ŕesultat suivant, “rappelons” qu’un morphismef : X → Y localement de32
type fini est ditéquidimensionnelen le pointx ∈ X si (posanty = f(x)) on peut trouver un
voisinage ouvertU de x, dont toute composante domine une composante deY tel que, pour
tout y′ ∈ Y , les composantes irréductibles def−1(y′) ∩ U aient toutes une m̂eme dimen-
sion ind́ependante dey′. Il suffit d’ailleurs dans cette condition de prendre poury′ les points
géńeriques des composantes irréductibles deY passant pary, et le point y. Si par exempleX
et Y sont int̀egres etf dominant, la condition signifie que les composantes desf−1(y) passant
parx ont “la bonne” dimension, i.e. la dimension de la fibre géńerique (rappelons qu’elles sont
toujours≥ la dimension de la fibre ǵeńerique). Sif estéquidimensionnel enx, la dimension de
sa fibre enx étantn, et sig : U → Y ′ = Y [t1, . . . , tn] est unY -morphisme d’un voisinageU de
x, induisant un morphisme sur les fibres dey qui est quasi-fini enx (ou encore, ce qui revient au
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même, sig est quasi-fini enx), alors on montre que toute composante irréductible deU passant
parx domine une composante irréductible deY ′. D’ailleurs en vertu du “lemme de normalisa-
tion”, un tel g existe toujours (et ŕeciproquement, s’il existe unY -morphisme quasi-finig d’un
voisinage ouvertU dex dans unY -sch́ema de la formeY ′ = Y [t1, . . . , tn], tel que toute com-
posante deU passant parx domine une composante deY ′, alorsf estéquidimensionnel enx).
Ceci pośe :

Proposition 2.3 Soient f : X → Y un morphisme localement de type fini, x un point de X ,
y = f(x), on suppose Oy normal. Pour que f soit lisse en x, il faut et il suffit que f soit
équidimensionnel en x, et que f−1(y) soit lisse sur k(y) en x.

On voit aussit̂ot sur la d́efinition qu’un morphisme lisse estéquidimensionnel (N.B. un mor-
phisme plat de type fini n’est pas nécessairement́equidimensionnel enx, même si sa fibre enx
est irŕeductible). Prouvons la réciproque. Commef−1(y) est lisse surk(y) enx, on peut supposer
(remplaçant au besoinX par un voisinage convenable dex) qu’il existe unY -morphisme

g : X → Y [t1, . . . , tn] = Y ′

induisant un morphisméetale sur les fibres dey, et a fortiori quasi-fini enx. Donc g est non33
ramifié, et (f étantéquidimensionnel enx) les composantes irréductibles deX passant parx
dominent chacun une composante deY ′, a fortiori l’homomorphismeOy′ → Ox déduit deg (où
y′ = g(x)) est injectif. Cet homomorphisme est de plus non ramifié, etOy′ est normal puisque
localiśe de l’anneauOy[t1, . . . , tn], qui est normal puisqueOy l’est. Donc l’homomorphisme
Oy′ → Ox estétale (I 9.5 (ii)).

Remarques 2.4L’ énonće pŕećedent vaut encore en remplaçant l’hypothèse queOy est normal
par l’hypoth̀ese plus faible queY estgéoḿetriquement unibrancheeny, (cf.I 11)- puisque (I 9.5)
vaut sous cette hypothèse. Profitons de l’occasion pour signaler en même temps que si le corps
résiduel d’un anneau local intègreA est alǵebriquement clos, alors analytiquement intègre (i.e.
Â est int̀egre) implique ǵeoḿetriquement unibranche, la réciproqueétant vraie de plus dans
toute cat́egorie de “bons anneaux”, de façon précise dans une catégorie d’anneaux stable par les
opérations usuelles, et où la compĺetion d’un anneau local normal est normale (condition remplie,
en vertu du “th́eor̀eme de normalit́e analytique” de Zariski, dans la catégorie des alg̀ebres affines
et leurs localiśees)3.

“Rappelons” enfin dans le contexte actuel le résultat suivant , d̂u à Hironaka4 qui permet
parfois de s’assurer quef−1(y) est un sch́ema ŕeduit, i.e. que c’est aussi ce que de nombreux
géom̀etres alǵebristes consid́eraient abusivement comme la fibre (sans multiplicité) def au-
dessus dex (savoirf−1(y)réd) :

Proposition 2.5 Soient f : X → Y un morphisme dominant de type fini de préschémas réduits,
y un point de Y tel que Oy soit régulier. On suppose que toutes les composantes de f−1(y) sont

3Cf. EGA IV 7.8.
4Cf. EGA IV 5.12.10.
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de multiplicités 1 (cf définition plus bas), et que f−1(y)réd est normal. Alors f−1(y) est réduit
donc normal, X est normal en tous les points de f−1(y), enfin X est plat sur Y en tous les points
de f−1(y).

On dit qu’une composanteZ def−1(y) est demultiplicité1 si,x désignant le point ǵeńerique34
deZ, on a (i)dim Ox = dim Oy (i.e.Z n’est pas “composante excédentaire”, c’est-̀a-dire n’est
pas “de dimension trop grande” ; (ii) l’id́eal maximal deOx est engendŕe par l’idéal maximal de
Oy (qui a priori, en vertu du choix dex, engendre un id́eal de d́efinition deOx).

Compte tenu de 2.3 ou de 2.1 on trouve donc :

Corollaire 2.6 Soient f : X → Y un morphisme dominant de type fini de préschémas réduits,
y un point de Y tel que Oy soit régulier. Pour que f soit lisse aux points de X au-dessus de y,
il faut et il suffit que les composantes de f−1(y) soient de multiplicités 1, et que f−1(y)réd soit
lisse sur k(y).

Cette situatiońetait surtout consid́eŕee par le passé quandY était le spectre d’un anneau de
valuation discr̀eteA, etétait d́esigńee commuńement sous des vocables tels que : “si la réduction
deX par rapport̀a la valuation donńee est jolie”. . . De plus,X désignait alors un sous-schéma
(si on peut dire) ferḿe d’unPnK (K étant le corps des fractions deA) et faute d’un ad́equat, le
rôle plus intrins̀eque d’un objet “d́efini surA” (et non seulement surK) n’apparaissait gùere.

3 Propri étés de permanence

Proposition 3.1 Soit f : X → Y un morphisme, soit x ∈ X et y = f(x). Supposons f lisse
en x. Pour que Ox soit réduit (resp. régulier, resp. normal) il faut et il suffit que Oy le soit.

Ceténonće est en effet connu quandX est de la formeY [t1, . . . , tn], et il est d́emontŕe dans
(I,no 9) pour un morphisméetale ; le cas ǵeńeral s’en d́eduit aussit̂ot gr̂aceà la d́efinition 1.1.

Nous ne d́etaillons pas ici les autres propriét́es de permanence, résultant d́ejà de la seule
platitude, ou du fait queX est localement quasi-fini et plat au-dessus d’unY -présch́ema de
la formeY [t1, . . . , tn] (ou, comme nous dirons, queX est Cohen-Macauley au-dessus deY ).35
Signalons seulement que de ce dernier fait résulte que

(3.1) dim Ox = dim Oy + n− d, prof Ox = prof Oy + n− d

où n est la dimension de la fibre def enx, etd le degŕe de transcendance dek(x) surk(y), d’où
(posantcoprof = dim− prof)

(3.2) coprof Ox = coprof Oy (5)
5Pour ces formules, cf. EGA IV 6.1 et 6.3.
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Il en résulte par exemple queOx est Cohen-Macaulay (resp. sans composantes immergées) si et
seulement si il en est de même deOy.part 7

4 Propri étés différentielles des morphismes lisses

Pour simplifier, nous nous restreindrons pour l’essentiel au calcul différentiel d’ordre1, nous
bornantà de rapides indications pour l’ordre supérieur (òu les ŕesultats sont tout aussi simples).

Pour la d́efinition du faisceau des1-diff érentiellesΩ1
X/Y d’un d’un Y -présch́emaX, cf.

(I No 1). Supposons queX et Y soient desS-présch́emas, le morphisme structuralf : X → Y
étant unS-morphisme. Alorsf définit un homorphisme de Modules (compatible avecf )

(4.1) f ∗ : Ω1
Y/S → Ω1

X/S

en d’autres termes,Ω1
X/S estcontravarianten leS-présch́emaX. D’ailleurs (4.1)équivautà un

homorphisme de Modules surX

(4.1bis) f ∗
(
Ω1
Y/S

)
→ Ω1

X/S

également d́enot́e parf ∗ à d́efaut de mieux, et qui s’insère dans une suite exacte canonique
d’homorphismes de Modules

(4.2) f ∗
(
Ω1
Y/S

)
→ Ω1

X/S → Ω1
X/Y → 0

Tous ces homorphismes sont définis par la condition d’̂etre de nature locale (ce qui ramène au
cas affine) et de commuter avec les opérateursd. L’exactitude de (4.2) est classique et triviale,
et se transcrit dans le cas affine en la suite exacte (correspondantà un homorphismeB → C de
A-algèbres) :

(4.2bis) Ω1
B/A ⊗B C → Ω1

C/A → Ω1
C/B → 0

36

Lemme 4.1 Soit f : X → X un morphisme de S-préschémas. Si f est non ramifié (resp. étale)
alors f ∗

(
Ω1
Y/S

)
→ Ω1

X/S est surjectif (resp. un isomorphisme). La réciproque est vraie dans le
cas “non ramifié”, si f est supposé localement de type fini.

Le cas non ramifíe ŕesulte de la suite exacte (4.2) et de (I 3.1), mais peut aussi se voir direc-
tement dans le caśetale. Consid́erons le diagramme

X
∆X/Y// X ×Y X

��

// X ×S X

��
Y

∆Y/S // Y ×S Y
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dans lequelX ×Y X s’identifie au produit fibŕe deY etX ×S X surY ×S Y . Commef est non
ramifié,X → X ×Y X est une immersion ouverte, donc le faisceau “conormal” de l’immersion
compośee∆X/S de cette dernière avecX ×Y X → X ×S X est isomorphèa l’image inverse
surX du faisceau conormal pour l’immersionX ×Y X → X ×S X. D’autre part,X → Y
étantétale donc plat,X ×S X → Y ×S Y est plat, donc le faisceau conormal pour l’immersion
X ×Y X → X ×S X est isomorphèa l’image inverse du faisceau conormal pour l’immersion
Y → Y ×S Y , i.e. l’image inverse deΩ1

Y/S. La conclusion en ŕesulte.

Lemme 4.2 Soit X = Y [t1, . . . , tn], Y étant un S-préschéma. Alors la suite d’homorphismes
canoniques

0→ f ∗
(
Ω1
Y/S

)
→ Ω1

X/S → Ω1
X/Y → 0

est exacte et Ω1
X/Y est libre de base les dX/Y ti.

La vérification (purement affine) est immédiate. (N.B. on connaı̂t déjà l’exactitude de (4.2)).

Combinant ces deux́enonćes et d́efinition 1.1, on trouve

Théorème 4.3Soient f : X → Y un morphisme lisse de S-préschémas, alors :

(i) La suite d’homorphismes canoniques

0→ f ∗
(
Ω1
Y/S

)
→ Ω1

X/S → Ω1
X/Y → 0

est exacte.

(ii) Ω1
X/Y est localement libre, son rang n en x est égal à la dimension relative de f en x.
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Corollaire 4.4 L’homorphisme f ∗
(

Ω1
Y/S

)
→ Ω1

X/S est injectif, son image dans Ω1
X/S est loca-

lement facteur direct.

Soitu : F → G un homorphisme de Modules sur le présch́emaX, on dit qu’il estuniversel-
lement injectifenx ∈ X, si l’homorphismeFx → Gx deOx-modules est injectif, et reste tel par
tensorisation avec touteOx-algèbre (ou, ce qui revient au m̂eme d’ailleurs, avec toutOx-module).
Il suffit par exemple qu’il existe un voisinage ouvertU dex tel queu induise un isomorphisme de
F |U sur un facteur direct deG|U , cette condition est aussi nécessaire lorsqueF etG sont libres
(et de type fini) dans un voisinage dex, de façon pŕecise dans ce cas les conditions suivantes sont
équivalentes :

(i) u est injectif enx et Cokeru libre enx ;

(ii) Il existe un voisinage ouvertU de x tel queu induise un isomorphisme deF |U sur un
facteur direct deG|U ;

(iii) u est universellement injectif enx ;

(iv) l’homorphismeFx⊗k(x)→ Gx⊗k(x) sur les “fibres” restreintes induit paru est injectif ;

(v) L’homorphisme transposé Ǧ → F̌ est surjectif au pointx (ou, encore, ce qui revient au
même, au voisinage dex).
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(Démonstration circulaire, (iv)⇒(v) résulte de Nakayama, d’autre part (v)⇒(i) puisque un fais-
ceau quotient localement libre est nécessairement facteur direct). Géoḿetriquement, la situation
envisaǵee signifie queu correspond̀a un isomorphisme du fibré vectoriel dont le faisceau des
sections estF , sur un sous-fibŕe du fibŕe vectoriel analogue défini parG. Bien entendu, il ne
suffit pas pour cela queF → G soit injectif.

Corollaire 4.5 Soit f : X → Y un morphisme de S-préschémas, localement de type fini, x ∈ X ,
y = f(x), s la projection de x et y sur S. On suppose Y lisse en y sur S. Conditions équivalentes :

(i) f est lisse en x.

(ii) X est lisse sur Y en x, et f ∗
(

Ω1
Y/S

)
→ Ω1

X/S est universellement injectif en x, i.e. c’est

un homorphisme injectif en x et son conoyau Ω1
X/Y est libre en x).

La nécessit́e ŕesulte de 1.3 (iii) et de 4.3 (i) (ii), prouvons la suffisance. Comme lesdg
(g ∈ Ox) engendrent le moduleΩ1

X/Y en x, on peut trouver desgi (1 ≤ i ≤ n) tels que38

les images desdgi dans
(

Ω1
X/Y

)
x

forment une base de ce module. PrenantX assez petit, on

peut supposer que lesgi proviennent de sections deOX , et d́efinissent donc unY -morphisme
g : X → Y ′ = Y [t1, . . . , tn]. Utilisant l’hypoth̀ese et lemme 4.2, on voit facilement que l’ho-

morphisme correspondantg∗
(

Ω1
Y ′/S

)
→ Ω1

X/S est bijectif enx, ce qui nous ram̀eneà prouver

le

Corollaire 4.6 Soit f : X → Y un morphisme de S-préschémas lisses. Pour que f soit étale en
x ∈ X , il faut et il suffit que f ∗

(
Ω1
Y/S

)
→ Ω1

X/S soit un isomorphisme en x.

On sait que c’est ńecessaire par 4.1, et cette condition implique quef est non ramifíe enx
par le m̂eme lemme. En vertu de 2.2, on est ramené au cas òu S = Spec(k). CommeY est lisse
surk, il est ŕegulier, donc a fortiori normal, et en vertu de (I 9.5 (ii)) on est ramené à prouver
queOy → Ox est injectif, ou encore queOy etOx ont même dimension. Or ces dimensions sont
respectivement les rangs deΩ1

Y/k et Ω1
X/k eny resp.x, doncégaux en vertu de l’hypothèse.

Remarques 4.7X et Y étant suppośes lisses surS, le critère 4.5 (ii) de lissit́e def : X → Y
peut encore s’énoncer en disant que pour toutx ∈ X, l’application tangente(relativement̀a la
baseS) def enx, i.e. le transpośee de l’homorphisme desk(x) espaces vectoriels de dimension

finie, fibres restreintes def ∗
(

Ω1
Y/S

)
et Ω1

X/S enx, estsurjective. C’est l̀a une hypoth̀ese bien

familière en particulier parmi les gens travaillant avec les espaces analytiques. L’hypothèse de
non singularit́e qu’ils font d’ordinaire (qui signifie queX et Y sont “lisses surC ”, cf No 5)
ne semble due qu’à la peur qu’inspirent encorèa bien des ǵeom̀etres les points singuliers des
variét́es alǵebriques ou espaces analytiques.

Signalons le cas particulier suivant de 4.6 :
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Corollaire 4.8 Soient X un S-préschéma, g : X → S[t1, . . . , tn] un S-morphisme, défini par les
sections gi (1 ≤ i ≤ n) de OX , x un point de X tel que X soit lisse sur S en x. Pour que g soit
étale en x, il faut et il suffit que les dgi (1 ≤ i ≤ n) forment une base de Ω1

X/S en x (ou, ce qui39

revient au même, que leurs images dans Ω1
X/S(x) =

(
Ω1
X/S

)
x
⊗Ox k(x) forment une base de cet

espace vectoriel sur k(x)).

SoientX un pŕesch́ema,Y un sous-pŕesch́ema ferḿe deX défini par un faisceau cohérent
J d’idéaux. DoncJ /J 2 peutêtre consid́eŕe comme un faisceau cohérent surY (le faisceau
conormaldeY dansX). Si maintenantX est unS-présch́ema, on a une suite exacte canonique
de faisceaux quasi-cohérents surY

(4.3) J /J 2 d→ Ω1
X/S ⊗OX OY → Ω1

Y/S → 0

dont la partie de droite n’est autre que (4.2) (avec le rôle deX et Y interchanǵes, compte tenu
queΩ1

Y/X = 0), tandis que l’homomorphismeJ /J 2 → Ω1
X/S ⊗OX OY est d́eduit de l’homo-

morphisme (en ǵeńeral non lińeaire)g → dg par passage aux quotients. L’exactitude de (4.3)
est classique et d’ailleurs triviale, et s’interprète dans le cas affine par la suite exacte suivante
(correspondantèa un homomorphisme surjectifB → C deA-algèbres, de noyauJ) :

(4.3bis) J/J2 → Ω1
B/A ⊗B C → Ω1

C/A → 0 (C = B/J)

(suite exacte qui avait déjà ét́e utilisée implicitement dans la démonstration de (I 7.2) !).part 8

Proposition 4.9 Soient X un S-préschéma, Y un sous-préschéma fermé de X défini par un
faisceau cohérent J d’idéaux sur X , x un point de X , gi (1 ≤ i ≤ n) des sections de OX ,
définissant un S-morphisme

g : X → S[t1, . . . , tn] = X ′

enfin p un entier, 0 ≤ p ≤ n. On suppose X lisse surS en x. Les conditions suivantes sont
équivalentes :

(i) Il existe un voisinage ouvert X1 de x dans X tel que g|X1 soit étaleet que Y1 = Y ∩X1

(trace de Y sur X1) soit l’image inversedu sous-préschéma fermé Y ′ = S[tp+1, . . . , tn] de
X ′ = S[t1, . . . , tn] (i.e. les gi (1 ≤ i ≤ p) engendrent J |X1) :

Y1

��

// X1

étale
��

Y ′ = S[tp+1, . . . , tn] // X ′ = S[t1, . . . , tn]

40
(ii) Y est lisse surS en x, les gi (1 ≤ i ≤ p) définissent des éléments deJx, les dgi(x)

(1 ≤ i ≤ n) forment une base deΩ1
X/S(x) sur k(x), les dg′i(x) (p+1 ≤ i ≤ n) forment une

base deΩ1
Y/S(x) sur k(x) (où les g′i désignent les restrictions des gi à Y ; les différentielles

sont prises par rapport à S).
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(iii) Les gi (1 ≤ i ≤ p) définissent un syst̀eme de ǵeńerateursde Jx, et les dgi(x) (1 ≤ i ≤ n)
forment une base deΩ1

X/S(x) sur k(x).

(iv) Y est lisse surS en x, les gi forment un syst̀eme minimal de ǵeńerateurs deJx, les dg′i(x)
(p+ 1 ≤ i ≤ n) forment une base deΩ1

Y/S(x) sur k(x).

De plus, sous ces conditions, J /J 2 est un Module libre sur Y en x, admettant comme base
enx les classes des gi (1 ≤ i ≤ p), et l’homomorphismecanonique J /J 2 → Ω1

X/S ⊗ OY est
universellement injectif enx.

Remarque. Cela implique quep est bien d́etermińe par les autres conditions, soit commerang
du Module libreJ /J 2, surY enx, ou encore lenombre minimum de géńerateursdeJx sur
X, ou enfin par le fait que la dimension relative deY rel.S enx estn− p.

Démonstration. Supposont d’abord(i) vérifié. Alors par (I 4.6 (iii))Y1 estétale surY ′, donc
par d́efinition il est lisse surS enx (de dimension relativen − p), il en est donc de m̂eme de
Y . Il résulte alors de (4.8) que lesdgi (1 ≤ i ≤ n) forment une base deΩ1

X/S enx, et que les
dg′i (p + 1 ≤ i ≤ n) une base deΩ1

Y/S enx, d’où il résulte par la suite exacte (4.3) que lesgi
(1 ≤ i ≤ p) sont lińeairement ind́ependants dansJ /J 2 (consid́eŕe comme Module surY ) en
x ; comme lesgi (1 ≤ i ≤ p) engendrentJx, il s’ensuit que lesgi mod J 2

x forment unebase
deJ /J 2 enx. Cela implique d’une part que lesgi (1 ≤ i ≤ p) forment un syst̀ememinimal
de ǵeńerateurs deJx, d’autre part que l’homomorphismeJ /J 2 → Ω1

X/S ⊗ OY de (4.3) est
universellement injectif enx (car applique une base d’un Module libre enx sur une partie d’une
base d’un Module libre enx - N.B. il s’agit deY -Modules). Cela prouve que (i) implique (ii),
(iii), (iv), ainsi que les dernìeres assertions de proposition 4.9.

(iii) implique (i) en vertu de corollaire 4.8.

(ii) implique (i). En effet, la premìere hypoth̀ese dans (ii) signifie que (quittèa remplacerX41
par un voisinage ouvert dex dansX) g induit un morphismeh : Y → Y ′. D’après 4.8, les deux
autres hypoth̀eses de (ii) signifient queg est étale enx, et h étale enx. Soit alorsY ′′ l’image
inverse deY ′ parg. DoncY est un sous-présch́ema ferḿe deY ′′, qui estétale surY ′ enx par
(I 4.6 (iii)) puisqueg estétale enx. Donc le morphisme d’immersionY → Y ′′ est lui-m̂emeétale
(I 4.8) donc une immersion ouverte (I 5.8 ou I 5.2), donc remplaçant encoreX par un voisinage
ouvert convenableX1 dex, on obtient (i).

Ce qui pŕec̀edeétablit l’équivalence des conditions (i) (ii) (iii), et le fait qu’elles impliquent
(iv), il resteà prouver que (iv)⇒(ii), ce qui est imḿediat (compte tenu queΩ1

X/S est libre surX
enx) une fois qu’on sait que le fait queY est lisse surS enx implique queJ /J 2 est libre sur
Y enx, et l’homomorphismeJ /J 2 → Ω1

X/S ⊗ OY universellement injectif enx. Ce dernier
point est inclu dans le

Théorème 4.10Soient X un S-préschéma lisse, Y un sous-préschéma fermé de X défini par
un faisceau cohérent J d’idéaux sur X , x un point de X . Les conditions suivantes sont
équivalentes :
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(i) Y est lisse surS enx.

(ii) Il existe un voisinage ouvert X1 de x dans X et un S-morphisme étale

g : X1 → X ′ = S[t1, . . . , tn]

tel que Y1 = Y ∩ X1 (trace de Y sur X1) soit le sous-préschéma de X1 image inverse
par g du sous-préschéma fermé Y ′ = S[tp+1, . . . , tn] de X ′ = S[t1, . . . , tn], pour un p
convenable.

(iii) Il existe des géńerateursgi (1 ≤ i ≤ p) de Jx, tels que les dgi forment une partie
d’une base de Ω1

X/S en x (ou, ce qui revient au même, tel que les dgi(x) dans Ω1
X/S soient

linéairement indépendant sur k(x)).

(iv) Le faisceau J /J 2 est libre sur Y en x, et l’homomorphisme canonique

d : J /J 2 → Ω1
X/S ⊗ OY

est universellement injectif en x ; ou encore : la suite d’homomorphismes canoniques

0→J /J 2 → Ω1
X/S ⊗ OY → Ω1

Y/S → 0

est exacte en x, et Ω1
Y/S est localement libre en x.

42
Démonstration. On sait d́eja que (ii) implique (i), (iii), (iv) d’apr̀es ce qui pŕec̀ede. Prouvons
que (i)⇒(ii) (ce qui ach̀evera en m̂eme temps la d́emonstration de 4.9) En vertu de théor̀eme
4.3 (ii), les deux derniers termes dans la suite exacte (4.3) sont des Modules libres surY . Donc,
comme les images dansΩ1

X/S ⊗OX OY desdg (g ∈ OX) engendrent ce module enx, donc leurs
images dansΩ1

Y/S engendrent ce dernier enx, on peut trouver desgi (p + 1 ≤ i ≤ n) dansOX

tels que lesdg′i forment une base deΩ1
Y/S, puis (en vertu de l’exactitude de (4.3)) compléter le

syst̀eme desdgi (p + 1 ≤ i ≤ n) en une base du terme médian par deśeléments de la formedgi
(1 ≤ i ≤ n) où lesgi (1 ≤ i ≤ p) sont dansJx. Lesgi proviennent de sections deOX sur un
voisinage dex dansX, qu’on peut supposerégalàX. On est alors sous les conditions de 4.8 (ii),
et on aétabli que cela implique la condition 4.8 (i), d’où 4.10 (ii).

L’implication (iii)⇒(ii) dans 4.10 ŕesulte aussitôt de l’implication (iii)⇒(i) dans 4.8. Donc
(i) (ii) (iii) sont équivalents, et impliquent (iv). Enfin, il est trivial que (iv) implique (iii), compte
tenu que desgi ∈Jx qui forment une base deJx mod J 2

x engendrentJx (Nakayama).

De plus, la d́emonstration qui pŕec̀ede montre ceci :

Corollaire 4.11 Soient X un S-préschéma, Y un sous-préschéma fermé défini par un faisceau
cohérent J d’idéaux sur X , x un point de Y . On suppose X et Y lisses surS enx. Soient gi
des sections de J (1 ≤ i ≤ p). Les conditions suivantes sont équivalentes :

(i) Les gi engendrent Jx et les dgi(x) sont linéairement ind́ependantsdans Ω1
X/S(x) sur (x).

(ii) Les gi mod J 2 forment une base de J /J 2 en x.
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(iii) Les gi forment un système minimal de générateurs de Jx.

(iv) On peut trouver d’autres sections gi (p + 1 ≤ i ≤ n) de OX sur un voisinage X1 de
X , définissant avec les précédents un morphisme étaleX1 → X ′ = S[t1, . . . , tn] tel que
Y1 = Y ∩X1 soit l’image inversepar g du sous-préschéma fermé Y ′ = S[tp+1, . . . , tn] de
X ′ = S[t1, . . . , tn].

En particulier :43

Corollaire 4.12 SoientX un S-préschéma, F une section de OX , Y le sous-préschéma des zéros
de F (défini par l’Idéal cohérent F.OX), x un point de Y . On suppose X simple sur X en x. Pour
que Y soit lisse sur S en X , il faut et il suffit que ou bien F soit nul au voisinage de x, ou bien
que dF (x) 6= 0 (où dF (x) désigne l’image de dF dans l’espace vectoriel Ω1

X/S(x) sur k(x)).

C’est suffisant en vertu de 4.10 critère (iii). C’est ńecessaire, car commeJ est engendré par
un élément, il faut d’abord queJ /J 2 au pointx soit libre de rang≤ 1. Si ce rang est0, i.e.
J /J 2 = 0 enx, il s’ensuit queJ = 0 enx par Nakayama, i.e.F est nul au voisinage dex.
Si ce rang est1, alorsF forme un syst̀eme minimal de ǵeńerateurs deJ enx, et on conclut par
(4.11,équivalence de (i) et (iii)).

Corollaire 4.13 Soient Y un S-préschéma localement de type fini, S ′ un S-préschéma plat,
Y ′ = Y ×S S ′, x′ un point de Y ′ et x son image canonique dans Y . Pour que Y soit lisse sur S
en X , il faut et il suffit que Y ′ soit lisse sur S ′ en x′. En particulier, si S ′ → S est plat et surjectif,
Y est lisse sur S ssi Y ′ est lisse sur S ′.

Il n’y a à prouver que la suffisance (la nécessit́e aét́e vue dans 1.3 (ii)). On peut supposer
(remplaçantY par un voisinage convenable dex, Y ′ par l’image inverse de ce dernier) queY
est affine de type fini surS affine, doncY est isomorphèun sous-pŕesch́ema ferḿe d’un sch́ema
S[t1, . . . , tn]. Par suite,Y ′ s’identifieà un sous-pŕesch́ema ferḿe deX ′ = X ×S S ′. CommeX
est lisse surS, doncX ′ lisse surS ′, on peut appliquer les critères de lissit́e 4.10. Ici, le crit̀ere
(iv) donne le ŕesultat aussitôt.part 9

Remarques 4.14Le critère (iii) de th́eor̀eme 4.10 ḿerite d’̂etre appeĺe critère jacobien de lis-
sité. Il permet de reconnaitre, théoriquement, si unS-présch́ema donńe Y est lisse surS en un
pointx deY , puisque il existe toujours un voisinage deY isomorphèa un sous-pŕesch́ema d’un
S-présch́ema lisseX, par exempleX = S[t1, . . . , tn]. C’est d’ailleurs pourX = S[t1, . . . , tn],
S = Spec(A), qu’on énonce d’habitude le critère jacobien (bien entendu, dans le cas classique44
envisaǵe par Zariski,A était un corps). On laisse au lecteur de donner l’énonće relatifà la donńee
d’un idéalJ deA[t1, . . . , tn] et d’un id́eal premier le contenant, auquel on est ainsi conduit. No-
tons qu’il semble bien a l’heure actuelle (et surtout depuis que Nagata est parvenuà ǵeńeraliser
par des ḿethodes non-diff́erentielles le th́eor̀eme de Zariski disant que l’ensemble des points
réguliers d’un sch́ema alǵebrique est ouvert) que le critère jacobien n’a gùere d’int́er̂et que sous
la forme òu nous le donnons ici (i.e. en utilisant exclusivement des différentiellesrelativeset
non pas des diff́erentiellesabsolues, i.e. relatives̀a l’anneau de constantes absoluZ). Comme
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bien souvent, la considération des diff́erentielles est plus commode ici que celle des dérivations.
Notons enfin que siY est lisse surS enx, de dimension relativen, alors il existe un voisinage
ouvert dex dansY isomorpheà un sous-pŕesch́ema deX = S[t1, . . . , tn] avecn = m + 1,
comme il ŕesulte de la d́efinition et de I 7.6.

SoientA un anneau noethérien,xi (1 ≤ i ≤ n) deséléments deA, J l’id éal engendŕe par
lesxi. On dit que lesxi forment unsyst̀eme ŕegulier de ǵeńerateursdeJ si l’homomorphisme
surjectif canonique

(A/J)[t1, . . . , tn]→ grJ(A)

défini par lesxi (où le deuxìeme membre d́esigne l’anneau gradué assocíe à A filtr é par les
puissances deJ) est unisomorphisme. Cette condition signifie aussi que

(i) L’homomorphisme surjectif canonique

SA/J(J/J2)→ grJ(A)

(où, le premier membre désigne l’alg̀ebre syḿetrique duA/J-moduleJ/J2) est un iso-
morphisme, et

(ii) J/J2 est libre et admet pour base les classes desxi mod J2.

Sous cette forme, on voit que siJ 6= A, lesxi forment unsyst̀eme minimal de ǵeńerateursde
J , et quetout autre syst̀eme minimal de ǵeńerateursdeJ est un syst̀eme ŕegulier de ǵeńerateurs
(N.B. “minimal” est pris au sens strict : nombre minimum d’éléments, qui n’est́equivalent au
sens : minimal pour l’inclusion, que siA est local) ; d’autre part, siJ = A, tout syst̀eme de
géńerateurs deJ est ŕegulier.

La condition de ŕegularit́e d’un syst̀eme de ǵeńerateurs d’un id́eal est stable par localisation45
par un ensemble multiplicativement stable quelconque, et d’autre part on voit tout de suite que
pour que(xi) soit un syst̀eme minimal de ǵeńerateurs deJ , il suffit déja que pour tout id́eal
maximalm contenantJ , lesxi définissent un système ŕegulier de ǵeńerateurs deJAm dansAm.
Cela nous ram̀eme donc au cas oùA est un anneau local d’idéal maximalm, et òu lesxi sont dans
m. Alors lesxi forment un système ŕegulier de ǵeńerateurs deJ si et seulement si ils forment
uneA-suite au sens de Serre6, i.e. si pour touti tel que1 ≤ i ≤ n, xi est non-diviseur de0 dans
A/(x1, . . . , xi)A.

Enfin, dans le cas òu A est une alg̀ebre sur un anneauB, et òu A/J est isomorphe comme
B-algèbreàB (de sorte queJ est le noyau d’un homomorphisme deB-algèbresA→ B), alors
les xi forment un syst̀eme ŕegulier de ǵeńerateurs deJ si et seulement si l’homomorphisme
canonique

B[[t1, . . . , tn]]→ Â

défini par lesxi (où le deuxìeme membre d́esigne le complét́e śepaŕe lim←−A/J
n+1 deA pour la

topologie d́efinie par les puissances deJ) est unisomorphisme(il est en tout cassurjectif).
6Nous dirons maintenant plutôt “suiteA-régulìere”, cf. EGA0IV 15.1.7 et 15.1.11.
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Tous ces faits sont bien connus, et figurent sans doute dans le cours de Serre d’algèbre com-
mutative ŕediǵe par Gabriel,̀a peu de choses près. (Òu on trouveN autres caractérisations des
A-suites, dans le cas oùA est un anneau local).

SoitJ un idéal dans un anneau noethérienA. On dira queJ est unidéal réguliersi pour tout
idéal premierp deA, JAp admet un système ŕegulier de ǵeńerateurs. Il suffit́evidemment de le
vérifier pourp ⊃ J , et on peut de plus se bornerà p maximal. Plus ǵeńeralement, soitJ un
Idéal sur un pŕesch́ema localement nothérienX, on dit queJ est unIdéal réguliersi pour tout
x ∈ X, Jx est un id́eal deOx qui admet un système ŕegulier de ǵeńerateurs. Celáequivautà la
conjonction des deux conditions suivantes :

(a) L’homomorphisme canonique surjectif

SO/J (J /J 2)→ grJ (OX)

est un isomorphisme et

(b) Le faisceau deOX/J -ModulesJ /J 2 est localement libre.

On dit alors aussi que le sous-présch́emaY deX défini parJ (donc tel queOY prolonǵe46
par 0 soit isomorphèa OX/J ) estrégulìerement immerǵe dansX, et on d́efinit de m̂eme (de
façon évidente) la notion de morphisme d’immersion ŕegulìere, (resp.régulìere en un point
x), morphisme d’immersionY → X identifiantY (resp. un voisinage convenable dex), à un
sous-pŕesch́ema ferḿe ŕegulìerement immerǵe dans un ouvert deX. (Il ne faut pas dire : sous-
présch́ema ŕegulier, car cela signifierait que les anneaux locaux deY sont ŕeguliers). Enfin, des
sectionsxi deJ sont appeĺeessyst̀eme ŕegulier de ǵeńerateurssi pour toutx ∈ X, leséléments
correspondants deOx forment un syst̀eme ŕegulier de ǵeńerateurs deJx (terminologie compa-
tible avec celle introduite pour des géńerateurs d’un id́eal d’un anneau). Cela signifie aussi que
l’homomorphisme surjectif canonique

OY [t1, . . . , tn]→ grJ (OX)

défini par lesxi est un isomorphisme. Si on sait par avance que l’Idéal J est ŕegulier, cela
signifie aussi, simplement, que en tout pointx de Y , les xi définissent unebasede J /J 2

surOY,x. (N.B. cette condition est vide siY est vide). Ainsi, pour queJ admette un système
régulier de ǵeńerateurs, il faut et il suffit queJ soit ŕegulier, et leOY -Module J /J 2 soit
globalement libre (et non-seulement localement libre), i.e. que l’homomorphisme canonique
SOY (J /J 2)→ grJ (OX) soit surjectif, et que leOY -ModuleJ /J 2 soit globalement libre.

Un anneau augmenté est dit ŕeguliersi l’id éal de l’augmentation est régulier. Ainsi, siA est
un anneau local, considéŕe comme augmenté dans son corps résiduelk, alorsA est un anneau
local ŕegulier si et seulement si c’est un anneau augmenté ŕegulier.

(À vrai dire, il semble qu’iĺetait inutile de commencer par faire le sorite préliminaire pour les
anneaux, il y a int́er̂età commencer avec les faisceaux tout de suite. Si on veut quelque chose dans
le cas noeth́erien, c’est la d́efinition adopt́ee ici - a priori moins stricte que celle par lesA-suites
de Serre - qui semble préférable pour les besoins du calcul différentiel. Bien entendu, pour bien
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faire, il faudrait d́evelopper aussi au moins une partie de la théorie des morphismes lisses dans le
cadre non-noeth́erien7, probablement en partant du critère jacobien, de façoǹa obtenir si possible47
toutes les propriét́es formelles essentielles des morphismes lisses et des morphismesétales i.e.
lisses et quasi-finis ; les réciproques seules faisant appelà des hypoth̀eses noeth́eriennes).

Après ces longs préliminaires terminologiques, un petit théor̀eme :

Théorème 4.15Soient X un S-préschéma localement de type fini, Y un sous-préschéma fermé
deX défini par un faisceau cohérent J d’idéaux surX , x un point deX . On suppose maintenant
Y lisse surS enx (et rien sur X). Alors les conditions suivantes sont équivalentes :

(i) X est lisse sur S en x

(ii) L’immersion i : Y → X est régulière en x, i.e. Jx est un idéal régulier de Ox.

Corollaire 4.16 Supposons Y lisse sur S. Pour que X soit lisse sur S dans un voisinage de
Y (i.e. aux points de Y ) il faut et il suffit que Y soit régulièrement plongé dans X , i.e. que
l’immersion i : Y → X soit régulière.

Démonstration. (i) implique (ii). On applique 4.10 crière (ii), commeg : X1 → X estplat,
pour montrer que l’image inverse parg du sous-pŕesch́emaY ′ deX ′ est ŕegulìerement plonǵe,
on est rameńe à prouver queY ′ = S[tp+1, . . . , tn] est ŕegulìerement plonǵe dansS[t1, . . . , tn], ce
qui est trivial (lesti (1 ≤ i ≤ p) forment un sys̀eme ŕegulier de ǵeńerateurs de l’Id́eal d́efinissant
Y ′ dansX ′).

(ii) implique (i). Soit gi (1 ≤ i ≤ p) un syst̀eme ŕegulier de ǵeńerateurs deJx et soient
gi (p + 1 ≤ i ≤ n) deséléments deOX,x tels que leurs imagesg′i dansOY,x définissent un
morphisméetale

Y1 → Y ′ = S[tp+1, . . . , tn]

d’un voisinagesY1 deY dansY ′. Lesgi (1 ≤ i ≤ n) proviennent de sections (de même nom)
de OX sur un voisinageX1 dex, et on peut supposerX1 = X, Y1 = Y . On obtient ainsi un
morphisme

g : X → X ′ = S[t1, . . . , tn]

et tout revient̀a montrer que ce morphisme estétaleenx. PrenantX1 assez petit, on peut sup-48
poser que lesgi (1 ≤ i ≤ p) forment un syst̀eme ŕegulier de ǵeńerateurs deJ sur toutX. En
particulier, ils engendrentJ , donc le sous-présch́emaY deX s’identifieà l’image inverse parg
du sous-pŕesch́emaY ′ deX ′. Soitx′ = g(x), alors la fibre deX ′ → X enx′ est donc identiquèa
la fibre deY → Y ′ enx, donc est́etale surk(x′), doncg estnon ramifíeenx, resteà prouver que
g estplat enx. Or le gradúe assocíe à OX′,x′ filtr é par les puissances deJ ′

x estlibre surOY ′,x′

en tous degŕes, d’autre part le gradué assocíe à OX,x filtr é par les puissances deJx = J ′
xOX,x

est isomorphe (sous l’homomorphisme canonique) au produit tensoriel du préćedent parOY,x

7Comme il est dit dans l’avant-propos, c’est chose faite maintenant, cf. EGA IV 17, 18
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(puisque l’un et l’autre anneau sont des anneaux de polynômesàn− p indétermińees,̀a anneau
de constanteOY ′,x′, resp.OY,x), enfin surOX′,x′/J ′

x′ = OY ′,x′ OX,x/Jx = OY,x est plat.

D’après un crit̀ere ǵeńeral de platitude (valable pour un homomorphisme local d’anneaux
locaux noeth́eriensA′ → A,A′ étant muni d’un id́ealJ ′ 6= A′ tel que le gradúe assocíe soit libre
surA′/J ′ en toute dimension) il s’ensuit queX est plat surX ′ enx, cqfd.

Corollaire 4.17 Soient X un préschéma localement de type fini sur Y , i une section de X sur
Y , y un point de Y , x = i(y), J le faisceau d’idéaux sur X défini par le sous-préschéma i(Y )
(que nous supposons fermé pour simplifier l’énoncé, condition vérifiée si X est un schéma).

Les conditions suivantes sont équivalentes :

(i) X est lisse sur Y en x

(ii) i est une immersion régulière en y

(iii) La Oy-algèbre complétée de Ox pour la topologie définie par les puissances de Jx est
isomorphe à une algèbre de séries formelles Oy[[t1, . . . , tn]].

(iii bis) Il existe un voisinage ouvert U de y tel que le faisceau d’algèbres lim←− i
∗(OX/J n+1) sur

OY soit isomorphe à un faisceau de la forme OY [[t1, . . . , tn]] au-dessus de U .

(iv) Il existe un voisinage ouvert U de y, et un voisinage ouvert V de x, et enfin un Y -
morphisme g : V → U [t1, . . . , tn], tel que g soit étale, que s induise une section de V
sur U , transformée par g en la section nulle de U [t1, . . . , tn] sur U .

L’ équivalence de (i) et (ii) est un cas particulier de théor̀eme 4.15, en faisantY = S,49
l’ équivalence de(ii) et (iii) (et moralement de (ii) et (iii bis)) áet́e signaĺe avec les “rappels”.
quantà l’équivalence de (i) et (iv), elle se déduit facilement de th́eor̀eme 4.10 (́equivalence des
conditions (i) et (ii) dudit).part 10

Corollaire 4.18 Soit X un préschéma lisse au-dessus de S. Alors le morphisme diagonal

∆X/S : X → X ×S X

est une immersion ŕegulìere. ou comme on dit encore, X est “diff érentiablement lisse” sur S.

En effet, c’est un cas particulier de corollare 4.16, puisqueX etX×SX sont tous deux lisses
surS.

Remarques 4.18Rappelons (I 1) que siX est un pŕesch́ema au-dessus deS, on introduit les
faisceaux quasi-cohérents d’Alg̀ebresPn

X/S = OX×SX/I
n+1
X surX, (oùIX désigne le faisceau

d’Idéaux qui d́efinit la diagonale dansX ×S X), consid́eŕe comme faisceau deOX-algèbres
grâceà la premìere projectionpr1 : X ×S X → X. Les Pn

X/S forment un syst̀eme projectif
d’Algèbres surX, dont la limite projective est notéeP∞

X/S et n’est autre que le faisceau structural
du compĺet́e formel deX ×S X le long de la diagonale (en supposant maintenantX localement
de type fini surS, donc lesPn

X/S coh́erents). Dire queX est diff́erentiablement lisse surS
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(i.e. que le morphisme diagonal∆X/S est une immersion régulìere) signifie aussi queP∞
X/S est

régulier, en tant que faisceau d’algèbres augmenté versOX , i.e. queΩ1
X/S est localement libre et

l’homomorphisme surjectif canonique

SOX (Ω1
X/S)→ gr∗(P

∞
X/S)

est un isomorphisme, ou enfin que tout point deX à un voisinage ouvert sur lequel le faisceau
d’Algèbres augmentéesP∞

X/S soit isomorphèa un faisceauOX [[t1, . . . , tn]].

Soit s une section deX sur S, J le faisceau d’id́eaux surX qu’elle d́efinit (supposant
pour simplifier ques(S) est ferḿe), on a alors des isomorphismes canoniques deOX-algèbres50
augment́ees :

(4.4) s∗(Pn
X/S) = OX/J

n+1 , s∗(P∞
X/S) = lim←−

n

OX/J
n+1

Ces isomorphismes sont fonctoriels dans un sensévident par changement de base, et (compte
tenu de ce fait) redonnent une caractérisation des faisceaux d’algèbresPn

X/S sur S. Si par
exempleS = Spec(k), k un corps, alors la donnée d’une sections deX surS équivautà la
donńee d’un pointx deX rationnel surk, et les formules pŕećedentes signifient que l’on a un
isomorphisme dek-algèbres

(4.5) Pn
X/S(x) = Ox/m

n+1
x

ce qui justifie le nom :“faisceau des parties principales d’ordren surX rel. àS” donné àPn
X/S.

On voit de plus sur (4.4) quesiX est diff́erentiablement lisse surS en tout point des(S), alors
X est lisse surS en tout point des(S), (corollaire 4.17)la réciproqueétant également vraie
(corollaire 4.18). Compte tenu de 4.13, on en conclut facilement que siX est unS-présch́ema
localement de type fini,X est lisse surS si et seulement si il est plat surS et diff́erentiellement
lisse surS. (N.B. l’hypothèse de platitude est essentielle, comme on voit en prenant pourX un
sous-pŕesch́ema ferḿe deS).

Notons encore,̀a titre de rappel, qu’on obtient unedeuxìeme structure d’alg̀ebresurPn
X/S

grâceà la projectionpr2 : X ×S X → X, se d́eduisant d’ailleurs de la préćedenteà l’aide de
l’ involution canoniquedu faisceau d’anneauxPn

X/S, induit par l’automorphisme de syḿetrie de
X ×S X. On note pardnX/S ou simplementdn, l’homomorphisme de faisceaux d’anneaux

(4.6) dnX/S : OX →Pn
X/S

qui correspond̀a cette deuxìeme structure d’Alg̀ebre. Compte tenu de l’isomorphisme (4.4), cet
homomorphisme transforme une sectionf deOX en une sectiondn(f) dePn

X/S dont l’image
inverse par une sections deX surS s’identifieà l’image canonique def dansΓ(X,OX/J n+1).
Cela justifie le nom de “syst̀eme des parties principales d’ordren def ” donné àdnf , notamment
dans le cas òu S = Spec(k), envisaǵe dans la formule (4.5).51

Pour finir, notons que l’homomorphisme (4.6) peutêtre consid́eŕe comme l’opérateur
différentiel d’ordre≤ n (8) (relativement au présch́ema des constantesS) universelsur OX ,

8Pour tout ce qui concerne le présent alińea, on pourra consulter EGA IV 16.8à 16.12.
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en convenant d’appeler opérateur diff́erentiel d’ordre≤ n deOX dans un ModuleF , un homo-
morphisme de faisceauxD qui se factorise en

D : OX
dn−→Pn

X/S
u−→ F

où u est un homomorphismede OX-Modules, d’ailleurs uniquement d́etermińe parD. Cette
définition concorde avec la définition ŕecurrente intuitive (D est un oṕerateur diff́erentiel d’ordre
≤ n si pour toute sectiong deOX sur un ouvertU deX, f 7→ D(fg) −D(f) est un oṕerateur
diff érentiel d’ordre≤ n − 1 surU ). Il s’ensuit quesi X est diff́erentiablement lisse surS, le
faisceau d’anneaux des opérateurs diff́erentiels de tous ordres a la structure simple bien connue
en calcul diff́erentiel sur les variét́es diff́erentiables, et en particulier admet localement une base
deOX-Module ferḿe despuissances diviśeesen des oṕerateurs permutablesδ/δxi (1 ≤ i ≤ n).
Si S est un faisceau deQ-algèbres (Q = corps des rationnels) il suffit de prendre les polynômes
ordinaires en lesδ/δxi. Dans ce cas d’ailleurs, et très exceptionnellement, pour queX soit
diff érentiablement lisse surS, il suffit déjà queΩ1

X/S soit localement libre.

Remarque 4.19La terminologie “immersion ŕegulìere”, “idéal ŕegulier”, etc.. introduite dans
ce nuḿero a rencontŕe une opposition assez vive et géńerale (Chevalley, Serre). On a proposé
“id éal de Cohen-Macaulay” ou “idéal de Macaulay” ou “id́eal macaulayen”, ce qui moralement
obligerait à adopter aussi “immersion de Cohen-Macaulay” ou “imersion de Macaulay”. Cette
terminologie cependant conflicte avec une autre déjà emploýee dans de futures rédactions du
multiplodoque, òu un morphisme (de type fini) est dit “Cohen-Macaulay” en un point s’il est
plat en ce point, et si la fibre passant par ce point y a un anneau local qui soit un anneau de
Cohen-Macaulay. En attendant de trouver une solution satisfaisante, nous garderons sous toutes
réserves la terminologie introduite dans ce numéro9.

5 Cas d’un corps de base
52

Proposition 5.1 Soient k un corps, X un préschéma de type fini sur k, x un point de X et n la
dimension de X en x, f : X → Spec k[t1, . . . , tn] = Y un morphisme, défini par des éléments
fi ∈ Γ(X : OX). Les conditions suivantes sont équivalentes (et entraı̂nent que X est lisse sur k
en x, et a fortiori régulier en x d’après 3.1) :

(i) f est étale en x.

(ii) Les dfi forment une base de Ω1
X/k en x.

(iii) Les dfi engendrent Ω1
X/k en x.

Comme (i) implique que X est lisse sur k en x, l’implication (i)⇒(ii) est un cas particulier de
4.8, (ii)⇒(iii) est trivial, reste à prouver (iii)⇒(i). Or sir (iii) est vérifié, f est net en x en vertu
de lemme 4.1, donc (remplaçant x par un voisinage ouvert) quasi-fini, donc dominant par raison
de dimensions. Comme Y est régulier, il s’ensuit que f est étale par (I 9.5 (ii)) ou (I 9.11).

9C’est celle adopt́ee dans EGA0IV 15.1.7.
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Corollaire 5.2 Sous les conditions préliminaires de 5.1, supposons que κ(x) soit une extension
finie śeparablede k, et que les fi (1 ≤ i ≤ n) définissent des éléments de mx. Alors les conditions
précédentes équivalent à

(iv) Les fi forment un système de générateurs de mx (ou encore : les fi mod m2
x forment une

base de mx/m
2
x sur κ(x)).

En effet, (iv)⇒(iii) en vertu de la suite exacte

(5.1) mx/m
2
x → Ω1

Ox/k → Ω1
κ(x)/k → 0

et compte tenu de Ω1
κ(x)/k = 0 puisque κ(x) est étale sur k. D’autre part (ii) implique (iv), car

comme X et Spec(κ(x)) sont lisses sur k en x, on peut dans la suite exacte précédente mettre un
0 sur la gauche en vertu de 4.10 (iv).

Corollaire 5.3 Soit x un point de X (de type fini sur k). Si X est lisse sur k en x, alors Ox est
régulier, la réciproque étant vraie si κ(x) est une extension finie séparable de k.

En effet, la ŕeciproque ŕesulte de 5.2, en prenant un système ŕegulier(fi) de ǵeńerateurs de53
mx. (N.B. au lieu de 5.2, on peut aussi invoquer le théor̀eme 4.15). On conclut :

Proposition 5.4 Soit X un préschéma de type fini sur k. Si X est lisse sur k, il est régulier, la
réciproque étant vraie si k est parfait.

Pour la ŕeciproque, on note qu’en vertu de 5.3,X est lisse surk en tout point ferḿe, donc
partout puisque l’ensemble des points où il est lisse est ouvert.

Théorème 5.5Soient X un préschéma de type fini sur k, x un point de X , n la dimension de X
en x, k′ une extension parfaite de k. Les conditions suivantes sont équivalentes :

(i) X est lisse sur k en x.
(ii) Ω1

X/k est libre de rang n en x.

(iibis) Ω1
X/k est engendré par n éléments en x.

(iii) X est différentiablement lisse sur k en x.
(iv) Il existe un voisinage ouvert U de x tel que U ⊗k k′ soit régulier (i.e. les anneaux locaux

de ses points sont réguliers).

On a (i)⇒(ii) par 4.3, (ii)⇒(iibis) trivialement et (iibis)⇒(i) grâceà 5.1. CommeX est plat
surk, on a (i)⇔(iii) en vertu de 4.18. On a (i)⇒(iv) puisque lisse est invariant par extension de
la base et implique régulier, et (iv)⇒(i) car par Proposition 5.4, on voit queU ⊗k k′ est simple
surk′, doncU est simple surk par 4.13.

Prenant pourx le point ǵeńerique deX suppośe irréductible, on trouve :part 11

Corollaire 5.6 Soit K un anneau d’Artin local localisé d’une algèbre de type fini sur le corps k
(par example,K peut être une extension de type fini de k), soit n le degré de transcendance surK
de son corps résiduel. Conditions équivalentes :
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(i) K est une extension finie séparable d’une extension transcendante pure k(t1, . . . , tn) de k.54
(ii) Ω1

X/k est un K-module libre de rang n.

(ii bis) Ω1
X/k est un K-module admettant n générateurs.

(iii) Le complété O′ de K ⊗k K pour la topologie définie par les puissances de l’idéal d’aug-
mentation K ⊗k K → K est une K-algèbré augmentée “régulière”, i.e. isomorphe à une
algèbre de séries formelles en K (N. B. Si K est un corps, cela équivaut à dire que O′ est
un anneau local régulier).

(iv) K est une extension séparable de k.

En effet, on peut toujours considérerK comme l’anneau local du point géńerique d’un
sch́ema de type fini irŕeductibleX sur k, et les conditions envisagées sont les conditions de
même nom dans 5.5, en prenant dans (iv) pourk′ une extension alǵebriquement close dek. Seule
l’implication K séparable surk ⇒ X lisse surk enx, demande une démonstration. Or on est
aussit̂ot rameńe gr̂aceà 4.13 au cas òu le corps de base estk′, donc alǵebriquement clos, donc où
il existe un pointa deX rationnel surk. Mais alorsX est lisse surk ena d’apŕes 5.4, a fortiori
il est lisse surk en le point ǵeńeriquex, cfqd10.

On remarquera que dans le cas où K est une extension de type fini dek, l’ équivalence
de (i) (ii) (ii bis) (iv) est bien connue, mai que nous ne nous sommes servis d’aucune de ses
équivalence d́ejà connues. Bien entendu, la proposition 5.1 contient comme cas particulier qu’un
suite d’́elémentsxi (1 ≤ i ≤ n) est un “base de transcendance séparante” deK sur k si et
seulment si lesdxi forment une base duK-moduleΩ1

K/k, fait bien connu par ailleurs.

Corollaire 5.7 Soit X un préschéma de type fini sur un corps k. Pour que X soit lisse sur k, il
faut et il suffit que Ω1

X/k soit localment libre, et que les anneaux locaux des points génériques des
composantes irréductibles de X soient des extensions séparable de k. (cette dernière condition
étant automatiquement vérifiée si k est parfait et X réduit).

On peut supposerX connexe, soitn le rang deΩ1
X/k suppośe localment libre. D’apr̀es l’hy-

poth́ese et 5.6, c’est aussi le degré de trancendance des extensions dek définie par les anneaux55
locaux des points ǵeńeriques deX, donc toutes les composantes irréductibles deX sont de di-
mensionn. On conclut alors gr̂aceà 5.5.

On fera attention que siK est une extension finie (non nécessairement séparable) dek, alors
Ω1
K/k est unk-module libre, donc posantX = Spec(K), Ω1

X/k est un faisceau localement libre,
et X est ŕeduit, sans queX soit ńecessairement lisse surk. Etendant alors les scalairesà la
clôture alǵebrique dek, on trouve un exemple analogue, où k est alǵebriquement clos, maisX
en revanche n’étant pas ŕeduit.

Corollaire 5.8 Soient X un préschéma de type fini sur le corps k, x un point de X , n la dimen-
sion de X en x, p la dimension de Ox i.e. la codimension dans X de l’adhérence Y de x dans X ;

10Cf. Errataà la fin du pŕesent Exp. II (p. 44)
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donc n − p le degré de transcendance de κ(x) sur k. Soient fi (1 ≤ i ≤ n) des éléments de Ox,
tels que fi ∈ mx pour 1 ≤ i ≤ p. Les conditions suivantes sont équivalentes

(i) le germe de morphisme en x

X −→ Spec
(
k[t1, . . . , tn]

)
défini par les fi est étale en x.

(ii) Les fi (1 ≤ i ≤ p) engendrent mx i.e. forment un système régulier de paramètres de Ox, et
les classes dans κ(x) des fj (p+ 1 ≤ j ≤ n) forment une base de transcendance séparante,
(i.e. les df j (p+ 1 ≤ j ≤ n) forment une base de Ω1

κ(x)/k, ou encore engendrent Ω1
κ(x)/k).

Supposons (i) v́erifié. Il en ŕesulte que lesdfi(x) forment une base deΩ1
X/k(x) (4.8) donc leurs

imagesdf i(x) dansΩ1
κ(x)/k engendrent cet espace vectoriel surk. Comme lesf i pour1 ≤ i ≤ p

sont nuls, il s’ensuit qu’il suffit de prendre lesdf i(x) avecp + 1 ≤ i ≤ n. Comme le degŕe
de transcendance deκ(x) surk estn − p, il résulte alors du corollaire 5.6 critére (iii) (appliqúe
àK = κ(x)) queY est lisse surk en son point ǵeńeriquex, et que lesdf i(x) (p + 1 ≤ i ≤ n)
forment unebasedeΩ1

κ(x)/k surκ(x). Par suite, la condition (ii) de 4.9 est vérifiée, donc aussi
la condition (iii) et en particulier lesfi (1 ≤ i ≤ p) forment un syst̀eme de ǵeńerateurs demx.
CommeOx est de dimensionp, ils forment donc un système ŕegulier de param̀etres enx. Cela56
prouve (ii).

Supposons (ii) v́erifié. En vertu de la suite exact (5.1), il s’ensuit que lesdfi(x) en-
gendrentΩ1

X/k, d’où (i) grâceà prop. 5.1.

Corollaire 5.9 Soient X un préschéma de type fini sur le corps k, x un point de X , n la di-
mension de X en x, p la dimension de Ox i. .e la codimension de l’adhérence Y de x dans X ,
donc n− p le degré de transcendance de κ(x) sur k. Conditions équivalentes

(i) Ox est régulier et κ(x) est une extension séparable de k.

(ii) X est lisse sur k en x, et l’homomorphisme canonique

mx/m
2
x −→ Ω1

Ox/k ⊗Ox κ(x) = Ω1
X/k(x)

est injectif.

(iii) Il y a des fi ∈ Ox (1 ≤ i ≤ n) avec fi ∈ mx pour 1 ≤ i ≤ p, tels que le germe de
morphisme en x de X dans Spec

(
k[t1, . . . , tn]

)
défini par les fi soit étale en x (i.e. par 5.1

tels que les dfi(x) engendrent Ω1
X/k(x)).

(iv) Il y a des fi ∈ Ox (1 ≤ i ≤ n) tels que les fi (1 ≤ i ≤ p) engendrent mx et que les dfj(x)
(p+ 1 ≤ j ≤ n) engendrent Ω1

κ(x)/k sur κ(x).

L’ équivalence de (iii) et (iv) ŕesulte du corollaire 5.8, ces conditionséquivalent aussi
d’apŕes 4.9 au fait queX est lisse surk enx et que la condition (ii) de 4.10, est vérifiée. Donc
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elleséquivalent au fait queX est lisse surk enx et que la condition (iv) de 4.10 est vérifiée,
doncà 5.9 (ii). Ou au fait queX est lisse surk enx et que la condition (i) de 4.10 est vérifiée,
qui ici signifie simplement queκ(x) est śeparable surk. Cela implique 5.9 (i), il restèa prouver
que 5.9 (i) l’implique, i.e.̀a prouver le

Corollaire 5.10 Soit x un point d’une préschéma de type fini sur le corps k, tel que κ(x) soit
séparable sur k. Pour que X soit lisse sur k en x, il faut et il suffit qu’il soit régulier en x (i.e. que
l’anneau local Ox soit régulier).

En effet, s’il en est ainsi, on peutévidemment trouver desfi ∈ Ox (1 ≤ i ≤ n) satisfaisant la
condition 5.9 (iv).
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Errata Dans le pŕesent nuḿero, d́emonstration de 5.6, on a utilisé le fait qu’un sch́ema de
type fini ŕeduit non vide sur un corps algébriquement clos admet au moin un point régulier
(donc lisse), fait qui se d́emontre d’habitude par vois différentielle (via le th́eor̀eme de Zariski
que l’ensemble des points réguliers deX est ouvert). Si on veut́eviter un cercle vicieux, il
faut d́emontrer que siK/k est une extension séparable de type fini, et si lesfi ∈ K son tels
que dK/kfi forment une base deΩ1

K/k, (1 ≤ i ≤ n), alorsn est le degŕe de transcendance
deK surk i.e. lesfi sont alǵebriquement ind́ependants. La d́emonstration de ce faità l’aide du
critère de Mac-Lane est bien connue, cf. Bourbaki, Algèbre, Chap. V par. 9 th. 2 : on prend un
polynômeg ∈ k[t1, . . . , tn] de degŕe minimal tel queg(f1, . . . , fn) = 0, on a donc∑ dg

dti
(f1, . . . , fn)dfi = 0

d’où (puisque lesdfi forment une base deΩ1
K/k) le fait que lesdg/dti annulent(f1, . . . , fn), donc

sont nuls d’apr̀es le caract̀ere minimal deg, donc sik est de caractéristique0 on ag = 0, et sik
est de caractéristiquep 6= 0 on ag = h(tp1, . . . , t

p
n). Utilisant le crit̀ere de Mac-Lane, on voit

que le polyn̂omeh ∈ k[t1, . . . , tn] annule aussi(f1, . . . , fn), d’où encoreg = 0 par le caract̀ere
minimal deg.
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Expośe III

Morphismes lisses : propríetés de
prolongement

58

1 Homomorphismes formellement lisses

Dans II, nous nous sommes bornés à la consid́eration d’homomorphismes de type fini, et
par conśequent, dans les homomorphismes locauxA → B d’anneaux locaux, au cas où B est
isomorpheà une alg̀ebre localiśee d’uneA-algèbre de type fini. Ce cas est insuffisant pour di-
verses applications, notamment en géoḿetrie formelle ou en ǵeoḿetrie analytique. Par exemple,
l’anneau de śeries formellesB = A[[t1, . . . , tn]] a (du point de vue de la géoḿetrie formelle)
les propríet́es d’une alg̀ebre lisse surA. En ǵeoḿetrie analytique, il en est de m̂eme de l’an-
neau local d’un point(y, z) d’un produitY × Cn consid́eŕe comme alg̀ebre sur l’anneau local
dey ; d’ailleurs, la compĺet́ee de cette alg̀ebre est isomorphèa l’algèbre des śeries formelles enn
indétermińees sur le complét́e de l’anneau de baseOx. C’est ce qui conduit̀a poser la d́efinition
qui suit.

Définition 1.1 Soit u : A → B un homomorphisme local d’anneaux locaux (noethériens, on
le rappelle). On suppose κ(B) fini sur κ(A). On dit que u est un homomorphisme formelle-
ment lisse, ou que l’alèbre B est formellement lisse surA, s’il existe une A-algèbre locale finie,
libre sur A, telle que les composants locaux de l’anneau semi-local B ⊗A A′ = B′ soient A′-
isomorphes à des algèbres des séries formelles sur A′ 1.

(On d́enote parA, B les anneaux complét́es deA, B). CommeB′ est fini et libre surB,
c’est bien un anneau semi-local, composé direct d’anneaux locaux complets, dont chacun est
encore un module libre surB, donc a m̂eme dimension queB donc queB. Il s’ensuit que
le nombre de variablesti dans les anneaux de séries formelles envisagés dans 1.1 est́egal à
dimB − dimA = dimB − dimA, et en particulier ind́ependant du composant local choisi. On59

1Pour une d́efinition plus ǵeńerale et plus conceptuelle, motiveée par 2.1 ci-dessous, c.f. EGA0IV 19.3.1.
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voit tout de suite que c’est aussi la dimension de l’anneauB ⊗ k = B/mB, où k = A/m est le
corps ŕesiduel deA ; on l’appellera ladimension relative deB par rapportàA.part 12

Remarques 1.2Il est évident que la d́efinition 1.1 ne d́epend que de l’homomorphisme sur les
compĺet́esA → B déduit deA → B, ce qui justifie dans une certaine mesure la terminolo-
gie. Nous nous repentons ici de la définition 3.2 b) et 4.1 b), qui risque d’induire en erreur, et
préférons dire “formellement non ramifié” et “formellementétale” dans les cas envisagés dans
ces d́efinitions, ŕeservant la terminologie “non ramifiée” et “́etale” au cas òuB est localiśee d’une
A-algèbre de type fini2. Le lecteur v́erifiera aussit̂ot que “formellement́etale” équivautà “for-
mellement lisse et quasi-fini”. Enfin, signalons qu’il y a une définition raisonnable de “formel-
lement lisse” sans aucune hypothèse pŕealable sur l’extension résiduelleκ(B)/κ(A) (suppośee
ici finie), englobant entre autres les homomorphismes locauxA → B tels queB soit plat surA
etB/mB uneextension śeparabledeA/m = k (pas ńecessairement de type fini) ; par exemple,
un p-anneau de Cohen est formellement simple sur l’anneau des entiersp-adiques. C’est la pro-
priét́e de rel̀evement des homomorphismes (comparer 2.1) qui doit devenir définition dans ce cas
géńeral. Pour les applications que nous avons en vue, le cas traité dans la d́efinition 1.1 nous suf-
fira ; par la suite, dans “formellement lisse” nous sous-entendrons “à extension ŕesiduelle finie”.

Lemme 1.3 Si B est formellement lisse sur A, B est plat sur A.

Comme la platitude est invariante par complétion, on peut supposerA etB complets. Comme
la platitude est invariante par extension plate locale (donc fidèlement plate) de l’anneau de base,
on est ramené en vertu de définition 1.1 au cas où B est une algèbre de séries formelles sur A.
Mais alors en tant que A-module, B est isomorphe à un produit de A-modules isomorphes à A,
donc (l’anneau de base A étant noethérien) est A-plat comme produit de A-modules plats.

Mettons-nous sous les conditions de 1.1. Comme les extensions résiduelles des composants lo-60
caux deB′ surA′ sont triviales, il s’ensuit queL ⊗k k′ est unek′-algèbre artinienne dont les
composants locaux ont des extensions résiduelles triviales (òu L, k, k′ sont les corps ŕesiduels
deA, B, A′). Cette condition ńecessaire pour que l’extension finie libreA′ satisfasse la condition
énonćee dans 1.1 est aussi suffisante, comme il résulte aussitôt de 1.4 (i) et 1.5 ci-dessous.

Proposition 1.4 SoitA→ B un homomorphisme local d’anneaux locaux, à extension résiduelle
finie soit A′ une A-algèbre finie locale sur A, de sorte que B′ = B⊗AA′ est finie sur B, donc un
anneau semi-local également noethérien. (i) Si B est formellement lisse sur A, alors les localisés
de B en ses idéaux maximaux sont formellement lisse sur A′. (ii) La réciproque est vraie si A′

est libre sur A.

On est aussitôt rameńe au cas òuA,B sont complets.

(i) Soit A′′ une extension finie libre locale deA telle que les composants locaux de
B′′ = B ⊗A A′′ soient des alg̀ebres de śeries formelles surA′′. Faisant l’extension des sca-
lairesA′′ → A′′ ⊗A A′ → A′′′, où A′′′ est un composant local deA′′ ⊗A A′, on voit que les

2Ou mieux, “essentiellement non ramifié” resp. “essentiellement nonétale”, comparer EGA IV 18.6.1.
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composants locaux deB′′ ⊗A′′ A′′′ = B ⊗A A′′′ sont des alg̀ebres de śeries formelles surA′′′. Or
on a aussiB ⊗A A′′′ = (B ⊗A A′)⊗A′ A′′′ = B ⊗A′ A′′′, d’autre part commeA′′ est libre surA,
A′′ ⊗A A′ est libre surA′ et il en est de m̂eme par suite deA′′′ qui en est facteur direct, ce qui
prouve queB′ est formellement lisse surA′.

(ii) Soit A′′ une A′-algèbre finie libre locale telle que les composants locaux de
B′ ⊗A′ A′′ = B ⊗A A′′ soient des alg̀ebres de śeries formelles surA′′. CommeA′ est libre
surA, A′′ l’est aussi, doncB est formellementlissesurA.

Proposition 1.5 SoitA→ B un homomorphisme local d’anneaux locaux, à extension résiduelle
triviale. Pour que B soit formellement lisse sur A, il faut et il suffit que B soit isomorphe à une
algèbre de séries formelles sur A.

Il n’y a à prouver que la ńecessit́e, et on peut supposerA etB complets. Soitm (n) l’id éal
maximal deA (B) et soientt1, . . . , tn deséléments den qui définissent une base de l’espace
vectoriel

(n/n2) / Im(m/m2) = n/(n2 + mB)

Ceséléments d́efinissent donc un homomorphisme deA-algèbres locales

B1 = A[[t1, . . . , tn]]→ B

prouvons que c’est un isomorphisme. Il suffit de prouver que pour toute puissancemq dem, on61
obtient un isomorphisme en réduisant mod mq (puisqueB1 et B sont les limites projectives
des anneaux correspondants réduits mod mq, q variable). CommeB etB1 sont desA-modules
plats donc les gradués associésà la filtrationm-adique s’obtiennent en tensorisant pargr(A), sur
k = A/m, les anneauxB1/mB1 resp.B/mB, on est rameńe à montrer queB1/mB1 → B/mB
est un isomorphisme. Compte tenu de 1.3, on est ainsi ramené au cas òuA est uncorpsk. D’autre
part, siA′ estA-algèbre finie libre locale telle queB ⊗A A′ soit une alg̀ebre de śeries formelles
surA′ (N.B. cette alg̀ebre est locale, puisque l’extension résiduelle deB surA est triviale), pour
prouver queB1 → B est un isomorphisme, il suffit de prouver queB1 ⊗A A′ → B ⊗A A′ l’est.
Cela nous ram̀ene au cas òuB est d́ejà une alg̀ebre de śeries formelles (il fallait commencer par
cette ŕeduction, avant de se ramener au cas d’un corps de base). Mais alorsB est un anneau local
régulierà corps de représentantsk, et il est bien connu (et imḿediat par consid́eration des gradúes
assocíesà la filtrationn1-adique etn-adique surB1 etB) queB1 → B est un isomorphisme, ce
qui ach̀eve la d́emonstration.

Corollaire 1.6 Si B est formellement lisse sur A, alors il existe une A-algèbre finie locale A′

telle que les composants locaux de B ⊗A A
′

= (B ⊗A A′) soient isomorphes à des algèbres de
séries formelles sur A′.

En effet, siL/k est l’extension ŕesiduelle deB/A, on consid̀ere une extensionk′/k, telle que
les extensions résiduelles dans lak′-algèbreL ⊗k k′ soient triviales. SoitA′ une alg̀ebre finie
libre surA telle queA′/mA′ = k′ (on sait qu’il en existe, par exemple en se ramenant de proche
en proche au cas où k′/k est monog̀ene, et alors on relève dansA les coefficients du polyn̂ome
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minimal d’un ǵeńerateur dek′ surk). Elle est locale. AlorsB ⊗A A′ a en ses id́eaux maximaux
des extensions résiduelles triviales au-dessus de cellek′ deA′, et on ach̀eveà l’aide de 1.5.

Corollaire 1.7 Soit A → B un homomorphisme local d’anneaux locaux. Pour que B soit for-
mellement lisse sur A, il faut et il suffit que B soit plat sur A et que B/BmB soit formellement
lisse sur k = A/m.

Faisant une extension finie libre localeA′ convenable deA et utilisant 1.4 (ii), on est ramené au
cas òu l’extesion ŕesiduelle deB/A est triviale. On sait d’ailleurs par 1.4 (i) et 1.3 que les condi-62
tions énonćees sont ńecessaires. Pour la suffisance, il suffit de remarquer que la démonstration
de 1.5 prouve, sous les hypothèses faites ici, queB est une alg̀ebre de śeries formelles surA
(supposantA etB complets, ce qui est loisible).

Remarque 1.8 Il ne serait pas difficile de d́evelopper, pour les homomorphismes formellement
lisses, l’analogue de toutes les propriét́es des morphismes lisses,étudíees dans II. Pour les pro-
priét́es diff́erentielles, cela demande cependant une modification de la définition habituelle des
diff érentielles de K̈ahler (cf. 1), les produits tensoriels complét́es remplaçant les produits tenso-
riels ordinaires. Nous nous contentons d’évoquer ici ces abı̂mes, ce qui pŕec̀edeétant suffisant
pour notre propos.

Il resteà faire le lien entre la lissité formelle, et la notion de lissité d́evelopṕee dans II (et
dont nous n’avons encore fait nul usage) :

Proposition 1.9 Soit A → B un homomorphisme local, B éntant localisée d’une A-algèbre de
type fini. Pour que B soit lisse sur A, il faut et il suffit qu’il soit formellement lisse sur A.

Utilisant 1.7 et 2.1, on est ramené au cas òuA est un corps.

Utilisant 1.4 (ii) et 4.13 une extension convenablek′ dek nous ram̀ene au cas òu l’extension
résiduelle pourB/k est triviale. En vertu de 1.5 (resp. 5.2)B est alors lisse surk (resp. formel-
lementlisse surk) si et seulement siB est un anneau local régulier (resp. son complét́e est une
algèbre de śeries formelles surk). Or il est bien connu que ces deux conditions sontéquivalentes
(l’extension ŕesiduelléetant triviale).part 13

2 Propri été de rel̀evement caract́eristique des homomorphis-
mes formellement lisses

Théorème 2.1Soit A → B un homomorphisme local d’anneaux locaux définissant une exten-
sion résiduelle finie. Les conditions suivantes sont équivalentes :63

(i) B est formellement lisse sur A
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(ii) Pour tout homomorphisme local A → C, où C est un anneau local complet, tout idéal
J de C contenu dans r(C), et tout A-homomorphisme local B → C/J , il existe un A-
homomorphisme (nécessairement local) B → C qui le relève.

(iii) Pour toute A-algèbre C (pas nécessairement un anneau noethérien) tout idéal nilpotent J
de C, et tout A-homomorphisme B → C continu (i.e. s’annulant sur une puissance de
r(B)), il existe un A-homomorphisme B → C (nécessairement continu lui aussi) qui le
relève.

(iv) Même énoncé que (ii) et (iii), mais C étant un anneau local artinien, fini au-dessus de A.
(iv bis) Comme (iv), mais J étant de plus de carré nul.

Remarque. Pour la suite de cet exposé, nous nous servirons seulement de l’implication (iv)
⇒ (i) ou (iv bis)⇒ (i) ; l’implication directe (i)⇒ (ii) sera prouv́ee par une autre ḿethode
au no suivant lorsqueB est localiśee d’une alg̀ebre de type fini surA. Rappelons que dans
la “bonne” th́eorie des th́eor̀emes de Cohen3, la propríet́e (ii) ou (iii) devient la d́efinition des
homomorphismes formellement lisses, alors que 1.1 devient une propriét́e caract́eristique valable
seulement dans le cas d’une extension résiduelle finie. On fera attention que des propiét́es (ii) et
(iii) aucune n’est plus ǵeńerale que l’autre. On pourrait donner une propriét́e (́equivalente) qui
les coiffe toutes deux, en introduisant un anneau linéairement topologiśeC, sépaŕe et complet,
un idéal fermé topologiquement nilpotentdeC, et un homomorphisme continuA → C (faisant
donc deC uneA-algèbre topologique) ; nous laisserons cette modification au lecteur.

Démonstration de 2.1. Nous prouverons (i)⇒ (iii) ⇒ (ii), puis (iv)⇒ (i). Comme (ii)⇒ (iv)
est trivial, et l’equivalence de (iv) et (iv bis) se voit par une récurence imḿediate sur l’entiern
tel queJn = 0, cela ach̀evera la d́emostration.

(i) ⇒ (iii). Une récurrence imḿediate nous ram̀ene au cas òu J2 = 0. CommeC est fini sur
A, il existe une puissancemq de l’ideal maximal deA qui annuleC. Divisant parmq, et notant
queB/mqB est encore formellement lisse surA/mq par 1.4 (i), on peut supposerA artinien.64
CommeB est plat surA par 1.3,B est libre surA puisqueA es artinien. Donc il existe un
homomorphisme deA-modules

w : B → C

qui rel̀eve l’homomorphisme donnéu : B → C/J . Posons

f(xy) = w(xy)− w(x)w(y) (x, y ∈ B)

alorsf(x, y) ∈ J , etf est donc une applicationA-bilinéaire deB×B dansJ . Pour qu’il existe un
relèvementv : B → C deu qui soit un homomorphisme d’algèbres, il faut et il suffit qu’il existe
une applicationA-linéaireg : B → J telle quev = w + g soit un homomorphisme d’algèbres,
ce qui s’ecrit

g(1) = 1− w(1)

g(x, y)− u(x)g(y)− u(y)g(x) = −f(x, y) (pourx, y ∈ B)

3Cf. EGA 0IV 19.3, 19.8

49



III

C’est l̀a un syst̀eme d’equationslinéairesdansHomA(B, J), à seconds membres dansJ , donc il
a une solution si et seulement si le système correspondant dansHomA(B, J) ⊗A A′, à seconds
membres dansJ ′ = J ⊗A A′, a une solution, —A′ dèsignant une alg̀ebre fid̀element plate sur
A. Or soitA′ une alg̀ebre finie et libre surA, locale, telle queB′ = B ⊗A A′ soit une alg̀ebre
de śeries formelles surA′ (N.B. on peut dans notre démonstration supposerA etB complets,
comme on constate aussitôt). CommeA′ est libre de type fini surA, on a

HomA(B, J)⊗A A′ = HomA′(B
′, J ′)

et on constate que le système d’́equations obtenu dansHomA′(B
′, J ′) est celui qui d́etermine

les homomorphismes deA′-algèbresB′ → C ′ = C ⊗A A′ qui rel̀event l’homomorphisme
u′ : B′ → C ′/J ′ déduit deu par extension des scalaires en “corrigeant” par un homomorphisme
deA′-modulesg′ : B′ → J ′ l’homomorphisme deA′-modulesw′ : B′ → C ′ déduit dew par
extension des scalaires. (Noter queB engendreB′ commeA′-module). On est ainsi ramené à
prouver (iii) lorsqueB est unealgèbre de śeries formellessurA, B = A[[t1, . . . , tn]]. Relevons
alors de façon quelconque les images dansC/J desti en deśelémentszi deC. Comme leszi
mod J sont nilpotents (u : B → C/J étant continu) il en est de m̂eme deszi (puisqueJ est
nilpotent), donc leszi définissent un homomorphisme continu deA-algèbres topologiques deB
dansC discret, relevant́evidemmentu, cqfd.

(iii) ⇒ (ii). Soit n l’id éal maximal deC, et pour tout entierq > 0, soit65

Cq = C/nq , Jq = (J + nq)/nq

doncCq/Jq s’identifie à une alg̀ebre quotient deC/J , d’autre part l’homomorphisme composé
uq : B → C/J → Cq/Jq est continu deB dansCq/Jq discret, etJq est un id́eal nilpotent dans
Cq. On construit alors de proche en proche desA-homomorphismes

vq : B → Cq

tels que (a)vq relèveuq et (b)vq relèvevq−1. La possibilit́e de la ŕecurrence se v́erifie aiśement,
car comme

uq : B → C/(J + nq) et vq−1 : B → C/nq−1

définissent le m̂eme homomorphisme

B → C/((J + nq) + nq−1) = C/(J + nq−1) = Cq−1/Jq−1

à savoiruq−1, ils définissent un homomorphisme

B → C/J ′q où J ′q = (J + nq) ∩ nq−1 ⊃ nq

(dont ils proviennent l’un et l’autre par réduction). On est donc ramené à relever un homomor-
phismeB → C/J ′q deB dans un quotient deCq par un id́eal J ′q/n

q contenu dansJq, donc
nilpotent, et cela est possible d’après l’hypoth̀ese (iii).
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Ceci fait, lesvq définissent un homomorphisme deB dans la limite projectiveC desCq.
CommeJ est ferḿe,J est la limite projective desJq, doncv relèveu, cqfd.

(iv) ⇒ (i). On constate d’abord aussitôt que si (iv) est v́erifié, (iv) reste v́erifié pour las
composants locaux deB ⊗A A′ surA′, siA′ est une alg̀ebre locale finie surA. PrenantA′ libre
surA et telle que les extensions résiduelles deB′ au-dessus deA′ soient triviales, on est ramené
grâceà 1.4 (ii) au cas òu la extension ŕesiduelle deB surA est triviale. Nous allons prouver alors
le résultat un peu précis :

Corollaire 2.2 Sous les conditions de 2.1, supposons de plus l’extension résiduelle de B au-
dessus deA triviale. Alors les conditions équivalentes de 2.1 équivalent aussi aux deux conditions66
suivantes (en supposant dans (v) A et B complets) :

(iv ter) Comme (iv), mais l’anneau local artinien C fini sur A étant restreint à avoir une extension
résiduelle triviale (et de plus, si on y tient, l’idéal J étant de carré nul).

(v) Il existe un A-homomorphisme local (où n = dim n/(n2 + mB))

u : B → B1 = A[[t1, . . . , tn]]

induisant un isomorphisme

n/(n2 + mB)
∼→ n1/(n

2
1 + mB1)

où n (n1) est l’idéal maximal de B (B1), m celui de A.

Démonstration. Comme (iv bis) impliquéevidemment (iv ter) — en faisant abstraction du
canular de l’id́eal de carŕe nul—, il suffira de prouver (iv ter)⇒ (v)⇒ (i).

(iv ter)⇒ (v). Choisissons une basea1 . . . an den/(n2 + mB), ce qui d́efinit donc un homo-
morphisme local deA-algèbres

B → B1/(n
2
1 + mB1) = k[t1, . . . , tn]/(t1, . . . , tn)2

qu’on peut relever de proche en proche, en vertu de (iv ter) en des homomorphismes deA-
algèbres deB dansB1/n

2
1, B1/n

3
1 etc, d’òu en passant̀a la limite projective l’homomorphisme

B → B1 ayant la propríet́e voulue.

(v)⇒ (i). Comme dans le diagramme commutatif

m/m2 // n/n2 //

��

n/(n2 + mB) //

��

0

m/m2 // n1/n
2
1

// n1/(n
2
1 + mB) // 0

les deux lignes sont exactes, et les flêches verticales extrêmes surjectives, la flêche ḿediane est
surjective et il s’ensuit (B étant complet) queB → B1 estsurjectif. Soientxi (1 ≤ i ≤ n)
deséléments deB qui rel̀event lesti. Ils définissent donc un homomorphisme deA-algèbre
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B1 → B, qui sera surjectif pour la m̂eme raison queu, et donc la compośe avecu est l’identit́e
par construction. DoncB1 → B est aussi injectif, et est par suite un isomorphisme. On trouve
donc67

Corollaire 2.3 Sous les conditions de 2.2 (v), u est nécessairement un isomorphisme.

Cela ach̀eve de prouver queB est formellement lisse surA. On a d’ailleurs en m̂eme temps
retrouv́e 1.5 (mais il n’y a gùere de ḿeriteà ça).

3 Prolongement infinitésimal local des morphismes dans un
S-sch́ema lisse

Théorème 3.1Soit f : X → Y un morphisme localement de type fini. Conditions équivalentes :

(i) f est lisse

(ii) Pour tout préschéma Y ′ sur Y , tout sous-préschéma fermé Y ′0 de Y ′ ayant même espace
sous-jacent que Y ′, tout Y -morphisme g0 : Y ′0 → X et tout z ∈ Y ′0 , il existe un voisinage
ouvert U de z dans Y ′ et un prolongement g de g0|Y ′0 ∩ U en un Y -morphisme U → X .

(ii bis) Pur Y ′, Y ′0 et z comme dans (ii) , posant X ′ = X ×Y Y ′, X ′0 = X ×Y Y ′0 , toute section de
X ′0 sur Y ′0 se prolonge en une section de X ′ au-dessus d’un voisinage ouvert U de z.

(iii) Pour tout Y -schema Y ′, spectre d’un anneau artinien local fini sur quelque Oy (y ∈ Y ),
tout sous-préschéma fermé non vide Y ′0 de Y ′, et tout Y -morphisme g0 : Y ′0 → X , il existe
un Y -morphisme g : Y ′ → X qui prolonge g0.

(iii bis) Pour tout Y ′, Y ′0 comme dans (iii) , posant X ′ = X ×Y Y ′, X ′0 = X ×Y Y ′0 , toute section
de X ′0 sur Y ′0 se prolonge en une section de X ′ sur Y ′.

Demonstration. L’́equivalence de (ii) et (ii bis) d’une part, de (iii) et (iii bis) d’autre part, est
triviale, ainsi que l’implication (ii)⇒ (iii). Il reste doncà prouver (i)⇒ (ii) et (iii) ⇒ (i).

(i) ⇒ (ii). Soit x = g0(z). RemplaçantX par un voisinage ouvert convenable dex,
et Y ′ par le pŕesch́ema induit sur l’ouvert image réciproque de ce dernier parg0, on peut
supposer queX est étale au-dessus deY [t1, . . . , tn]. Consid́erons leY -morphisme composé
Y ′0 → X → Y [t1, . . . , tn], il est d́efini parn sections du faisceauOY ′0

, qui peuvent donc se
prolonger au voisinage dez en des sections deOY ′, donc on peut supposer que le morphisme68
en question áet́e prolongúe en unY -morphismeY ′ → Y ′0 . En vertu de (5.6) il existe alors un
uniqueY -morphismeg : Y ′ → X qui rel̀eve le pŕećedent, et prolonge en m̂eme tempsg0, cqfd.

(iii) ⇒ (i). Comme l’ensemble des points où f est lisse est ouvert, il suffit de prouver qu’il
contient toutx ∈ X qui estfermé dans sa fibre. Soity = f(x), alorsOx est une alg̀ebre surOy,
localiśee d’une alg̀ebre de type fini,̀a extension ŕesiduelle finie. D’autre part, l’hypothese (iii)
implique que tout homomorphisme deOx dans una alg̀ebreA/J , oùA est une alg̀ebre artinienne
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locale finie surOy, etJ un idéal contenu dans son radical, se relève en un homomorphisme de
Ox dans l’alg̀ebreA (compte tenu qu’un morphisme d’unSpec(B), B anneau local, dansX est
détermińe biunivoquement par un homomorphisme local d’unOx (x ∈ X) dansB). Par 2.1 il
s’ensuit queOx est formellement lisse surOy, donc lisse surOy en vertu de 1.9.part 14

Corollaire 3.2 Soit f : X → Y comme dans 3.1. Conditions équivalentes :

(i) f est étale

(ii) On a la condition (ii) de 3.1 avec unicité du prolongement g de g0 à U .

(iii) On a la condition (iii) de 3.1 avec unicité de g.

Il suffit de noter, dans la d́emonstration de (i)⇒(ii) ci-dessus, qu’on ne peut avoir unicité
(quandY ′0 n’est pas identiquèa Y ′ au voisinage dez) que sin = 0 (condition qu’on sait̂etre
suffisante).

Corollaire 3.3 Soit X un préschéma localement de type fini sur un anneau local completA, y
le point fermé de Y = Spec(A) et x un point de f−1(y) rationnelsur κ(y). Si X est lisse surA
enx, alors il existe une section s de X sur Y “passant par x” i.e. telle que s(y) = x.

En particulier, siX est lisse surA, alors l’application naturelle

Γ(X/Y )→ Γ(X ⊗A k/k)

des sections deX surY dans l’ensemble des points de la fibref−1(y) = X⊗Ak rationnels surk,
est surjective. Ce fait́etait surtout bien connu et utilisé lorsqueA est un anneau de valuation
discr̀ete etX est propre surA (en fait, projectif surA), auquel cas les sections deX surY (i.e.69
les “points deX à valeurs dansA”) s’identifient aussi aux sections rationnelles, i.e. aux points
deX ⊗A K = XK (qui est un sch́ema propre et simple surK) à valeurs dansK = corps des
fractions deA i.e. aux points deX rationnels surK.

4 Prolongement infinitésimal local desS-sch́emas lisses

Théorème 4.1Soient Y un préschéma localement noethérien, Y0 un sous-préschéma fermé
ayant même espace sous-jacent, X0 un Y0-préschéma lisse, x un point de X0. Alors il existe
un voisinage ouvert U0 de x, un préschéma X lisse sur Y , et un Y0-isomorphisme :

h : U0
∼→ X ×Y Y0.

De plus, si (U ′0, X
′, h′) est une autre solution de ce problème, alors “elle est isomorphe à la

première au voisinage de x”.

On laisse au lecteur de préciser ce qu’on veut dire par là. On peut noter que pourU0 donńe,
une solution du Pb posé revientà la donńee, surU0, d’un faisceau d’alg̀ebresB sur f−1

0 (OY )
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(où f0 est l’application continue sous-jacente au morphisme structuralU0 → Y0), muni d’un ho-
momorphisme d’anneauxB → OU0 compatible avec l’homomorphismef−1(OY )→ f−1(OY0),
tels que

(a) cet homomorphisme induit un isomorphisme

B ⊗f−1(OY ) f
−1(OY0)

∼→ OY0 ;

(b)U0 muni deB devient unY -présch́ema lisse.

De cette façon, le sens précis de l’assertion d’unicité locale devient particulièrement́evident.

Démonstration. On peut supposer déjà queX0 estétale sur unY0[t1, . . . , tn] = Y ′0 . Or ce der-
nier peut̂etre consid́eŕe comme un sous-présch́ema ferḿe deY ′ = Y [t1, . . . , tn], ayant m̂eme es-
pace sous-jacent. Par (I 8.3), il existe unX étale surY ′, et unY ′0-isomorphismeX×Y ′ Y ′0

∼→ X ′.
On a gagńe pour l’existence. Pour l’unicité, on utilise la propríet́e 3.1 (ii) des morphismes lisses,70
en tenant compte du

Lemme 4.2 Soient Y un préschéma, Y0 un sous-préschéma fermé défini par un faisceau d’idéaux
J localement nilpotent, X et X ′ des Y -préschémas, u : X → X ′ un Y -morphisme. On suppose
X plat sur Y . Pour que u soit un isomorphisme, il faut et suffit que u0 : X ×Y Y0 → X ′×Y Y0 le
soit.

Démonstration facile, en passant au cas affine et regardant les gradués associés. On no-
tera d’ailleurs que l’́enonće analogue, obtenu en remplaçant “isomorphisme” par “immersion
fermée”, est́egalement valable, et sans hypothèse de platitude.

Remarque 4.3 Il est essentiel de noter que le prolongement localX obtenu dans 4.1n’est pas
canonique, en d’autres termes l’isomorphisme local entre deux solutions n’est pas unique, i.e.
il existe en ǵeńeral desY -automorphismes non triviaux deX induisant l’identit́e sur le sous-
présch́ema ferḿeX0 = X ×Y Y0. C’est pour cela qu’il faut s’attendre, pour la construction de
prolongements infinit́esimauxglobauxde pŕesch́emas simples,̀a l’existence d’une obstruction
de nature cohomologique, qui sera préciśee plus bas (no 6).

5 Prolongement infinitésimal global des morphismes

SoientT un espace topologique,G un faisceau de groupes surX, P un faisceau d’ensembles
surT sur lequelG opère (̀a droite, pour fixer les id́ees). On dit queP estformellement principal
homog̀enesousG , si l’homomorphisme bien connu

G ×P →P ×P

de faisceaux d’ensembles, déduit des oṕerations deG sur P, est unisomorphisme. Il revient
au m̂eme de dire que pour toutx ∈ T , Px estvide ou un espace principal homogènesous le
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groupe ordinaireGx, ou aussi que pour tout ouvertU deT , P(U) est vide ou un espace princi-
pal homog̀ene sous le groupe ordinaireG (U). On dit queP est unfaisceau principal homog̀ene
sousG s’il l’est formellement et si en plus lesPx sont non vides (en d’autres termes, sitousles
Px sont des espaces principaux homogènes, donc non vides, sous lesGx)4. Rappelons que l’en-71
semble des classes (à isomorphisme près) de faisceaux principaux homogènes sousG s’identifie
à l’ensemble de cohomologieH1(T,G ), qui est aussi le groupe de cohomologie usuel deT à
coefficients dansG lorsqueG est commutatif. On a ainsi, pour toutP principal homog̀ene, une
classe caractéristiquec(P) ∈ H1(T,G ), dont la trivialit́e est ńecessaire et suffisante pour queP
soit trivial (i.e. isomorphèaG , sur lequelG opère par translations̀a droite), ou encore pour que
P ait une section.

Proposition 5.1 Soient S un préschéma, X et Y des préschémas sur S, Y0 un sous-préschéma
fermé de Y défini par un Idéal J sur Y de carŕe nul. Soit g0 un S-morphisme de Y0 dans X , et
P(g0) le faisceau sur Y dont les sections sur un ouvert U sont les prolongements g : U → X de
g0|U ∩Y0 en un S-morphisme g. Alors P(g0) est un faisceau formellement principal homog̀ene
(de façon naturelle) sous le faisceau en groupes commutatif

G = HomOY0
(g∗0(Ω1

X/S),J )

PosonsP = P(g0). Nous devons d́efinir pour tout ouvertU deY une application

P(U)× G (U)→P(U)

de façon que (a) pourg ∈ P(U) fixé, l’applications 7→ gs deG (U) dansP(U) est bijective
(b) P(U) devient un ensemblèa groupe d’oṕerateursG (U) (c) les applications préćedentes sont
compatibles avec les opérateurs de restriction pour un ouvertV ⊂ U . La vérification de (c) sera
triviale, on peut donc pour simplifier supposerU = Y . La vérification de (b) (qui est, si on veut,
de nature locale) sera laissée au lecteur, nous nous bornerons donc, pour ung ∈P(Y ) donńe, de
définir une bijection naturelle deG (Y ) surP(Y ). Donc on suppose donné d́ejà unS-morphisme
g : X → Y , et on cherche une bijection canonique

(∗) HomOY0
(g∗0(Ω1

X/S),J )
∼→P(Y )

où P(Y ) est l’ensemble desS-morphismesg′ de Y dansX induisant le m̂eme morphisme
g0 : Y0 → X que g. La donńee d’un telg′ est équivalenteà la donńee d’unS-morphisme
h : Y → X ×S X tel quepr1 ◦ h = g, et h ◦ i = (g0, g0) , où pr1 : X ×S X est la premìere72
projection,i : Y0 → Y l’immersion canonique, et(g0, g0) : Y0 → X ×S X est le morphisme
∆X/Sg0 de composanteg0, g0 :

X ×S X
pr1

��

Y0
h0=(g0,g0)oo

i
��

X Y
goo

h
hhQ Q Q Q Q Q Q

4Il semble pŕeférable d’adopter le terme plus court et plus parlant de “torseur sousG”, introduit dans la th̀ese de
J. GIRAUD.
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Commeh0 se factorise par l’immersion diagonale∆X/S et queY est dans le voisinage infi-
nitésimal d’ordre1 deY0 (i.e.J 2 = 0) lesh cherch́es se factorisent nécessairement (de façon
unique) par le voisinage infinitésimal du premier ordre de la diagonale, lequel s’identifie (en
tant queX-présch́ema gr̂aceà pr1) au spectreX ′ du faisceau d’alg̀ebresOX + Ω1

X/S (où le
deuxìeme terme est considéŕe comme un Id́eal de carŕe nul), le morphisme diagonalX → X ′

correspondant̀a l’augmentation canonique de ce faisceau d’algèbres. PosonsY ′ = X ′ ×X Y ,
Y ′0 = Y ′×Y Y0 = X ′×X Y0, de sorte que lesh cherch́es sont en correspondance biunivoque avec
les sectionsu deY ′ surY qui prolongent une section donnéeu0 deY ′0 surY0. On peut d’ailleurs
identifierY ′ au spectre du faisceau d’algèbres surY A = g∗(OX + Ω1

X/S) = OY + g∗(Ω1
X/S), et

Y ′0 au faisceau d’alg̀ebresA0 = A ⊗OY OY0 = OY0+g∗0(Ω1
X/S), alors la sectionu0 est celle d́efinie

par l’augmentation canonique deA0 dansOY0. DoncP(Y ) s’identifieà l’ensemble des homo-
morphismes d’alg̀ebresA → OY qui induisent l’augmentation canoniqueA0 → OY0. Or les
homomorphismes d’alg̀ebresA → OY correspondant biunivoquement aux homomorphismes
de ModulesM → A (posant pour simplifierM = g∗(Ω1

X/S)), et on s’int́eressèa ceux qui
induisent l’homomorphismenul M0 → OY0 (où M0 = M ⊗OY OY0) i.e. qui appliquentM dans
l’id éalJ de l’augmentation. On trouve donc l’ensembleHomOY (M ,J ) = HomOY0

(M0,J )
(puisqueJ est annuĺe parJ ). C’est la bijection canonique cherchée (∗).

Tenant compte de l’implication (i)⇒(iii) dans 3.1, on trouve :part 15
73

Corollaire 5.2 Si X est lisse sur S (du moins aux points de g0(Y0)) alors P est même un fais-
ceau principal homog̀enesous le faisceau en groupes commutatifs G , qui en l’occurrence peut
aussi s’écrire

G = g∗0(gX/S)⊗OY0
J

où gX/S est le faisceau sur X dual de Ω1
X/S , i.e. le faisceau tangent(ou faisceau des d́erivations)

de X par rapport à S. (Cette dernière formule provient du fait que Ω1
X/S est alors libre de type

fini).

En particulier,̀a ce faisceau principal homogène correspond une classe de cohomologie dans
H1(Y0,G ), dont l’annulation est ńecessaire et suffisante pour l’existence d’unS-morphismeg
prolongeantg0. Et s’il existe un tel prolongement, l’ensemble de tous les prolongements possibles
est un espace homogène sous le groupeH0(Y0,G ).

Dans l’application des ḿethodes de la ǵeoḿetrie formelle, la situation est le plus souvent la
suivante : on donne deuxS-présch́emasX et Y , un Id́eal coh́erentI surS, on d́esigne parSn
le sous-pŕesch́ema ferḿe deS défini parI n+1, et on pose

Xn = X ×S Sn , Yn = Y ×S Sn.

On suppose qu’on a unSn-morphisme :

gn : Yn → Xn

(ou, ce qui revient au m̂eme, unS-morphismeYn → X ou encore unSn+1-morphisme
Yn → Xn+1, puisque un tel morphisme induit nécessairementYn → Xn), et on cherchèa le
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prolonger en unSn+1-morphisme

gn+1 : Yn+1 → Xn+1

(Si on peut continuer ind́efiniment, on obtient donc un morphismeŶ → X̂ pour les pŕesch́emas
formels compĺet́es deY et X pour les Id́eauxI OX et I OY ). On peut appliquer 5.1 en y
remplaçant(S,X, Y, Y0, g0) par (Sn+1, Xn+1, Yn+1, Yn, gn), le faisceauG devient ici le fais-
ceau des homomorphismes de Modules deg∗n(Ω1

Xn+1/Sn+1
) dansJ = I n+1OY /I n+2OY .

CommeJ est annuĺe parI OY , on peut remplacer alorsg∗n(Ω1
Xn+1/Sn+1

) par le faisceau qu’il74
induit surY0, savoirh∗0(Ω1

X/S), où h0 est le compośe Y0 → Yn → Xn+1, ou encore le composé
Y0 → X0 → Xn+1, où g0 : Y0 → X0 est induit pargn. Comme l’image inverse deΩ1

Xn+1/Sn+1

surX0 = Xn+1 ×Sn+1 S0 estΩ1
X0/S0

, on voit qu’on a aussi

G = HomOY0
(g∗0(Ω1

X0/S0
),I n+1OY /I

n+2OY )

Donc on obtient le

Corollaire 5.3 Soient S,X, Y,I , gn comme ci-dessus, soit P(gn) le faisceau sur Y dont
les sections sur un ouvert U sont les prolongements gn+1 de gn en un Sn+1-morphisme
Yn+1 → Xn+1. Alors P est un faisceau formellement principal homogène sous le faisceau
en groupes

G = HomOY0
(g∗0(Ω1

X0/S0
), grn+1

I OY
(OY ))

En particulier :

Corollaire 5.4 Si de plusX est lisse sur S (du moins aux points de g0(Y0)) alors P est même un
faisceau principal homogène. En particulier, il définit une classe d’obstruction dans H1(Y0,G ),
dont l’annulation est nécessaire et suffisante pour l’existence d’un prolongement global gn+1

de gn. Et s’il existe un tel prolongement, l’ensemble de tous les prolongements globaux est un
espace principal homogène sous H0(Y0,G ). Enfin, dans le cas envisagé, le faisceau G peut aussi
s’écrire

G = g∗0(gX0/S0)⊗OY0
grn+1

I OY
(OY )

Proćedant de proche en proche, on voit donc que si tous lesH1(Y0,Gn) son nuls (òu
Gn = g∗0(gX0/S0) ⊗ grnI OY

(OY )), alors partant avec ungk quelconque, on peut le prolonger
successivement engk+1, . . . . En particulier, siI est nilpotent, on pourra trouver un prolonge-
mentg degk à Y . La condition de nullit́e desH1 est v́erifiée en particulier siY0 est affine. On
trouve donc :75

Corollaire 5.5 Dans l’énoncé du théorème 3.1, on obtient une condition nécessaire et suffisante
équivalente aux autres en supposant que le Y ′ qui intervient dans (ii) (ou (ii bis)) est affine, et en
exigeant l’existence d’un prolongement globalg de g0 à tout Y ′.
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On notera que la d́emonstration de 3.1 ne pouvait pas nous donner ce résultat directement.

Un cas important est celui où Y estplat surS, alors on a donc

grn(OY ) = grn(OS)⊗OS0
OY0

et lorsque de plus lesgrn(OS) sontlocalement libres surS, on trouve

Gn = HomOY (g∗0(Ω1
X0/S0

),OY0)⊗OS0
grn(OS),

ou encore, siΩ1
X0/S0

est lui aussi localement libre (par exempleX lisse surS)

Gn = g∗0(gX0/S0)⊗OS0
grn(OS)

Si par exempleS est affine d’anneau affineA, I étant d́efini par un id́ealI deA, on trouve

Hi(Y0,Gn) = Hi(Y0,G0)⊗A grnI (A)

pour touti (en effet, la question est locale surS0, et on est rameńe au cas òu on tensorise par
un Module libre).Dans ce cas, la nullit́e deH1(Y0,G0) implique que toutes les obstructions aux
prolongements successifs degn sont nulles. On obtient donc :

Corollaire 5.6 Soient (S,X, Y,I , gn) comme plus haut, supposons de plus X lisse sur S, enfin
S affine, et les grn(OS) = I n/I n+1 localement libres. Alors l’obstruction à construire gn+1 se
trouve dans H1(Y0,G0) ⊗A grn+1

I (A) (où A est l’anneau de S, I l’idéal de A définissant I ), en
posant

G0 = g∗0(gX0/S0)

Si H0(Y0,G0) = 0, alors gn peut se prolonger en un Ŝ-morphisme ĝ : Ŷ → X̂ .

Bien entendu, ce résultat resterait valable tel quel, si on partait, au lieu deS-présch́emas
ordinairesX etY , deŜ-présch́emas formelŝI -adiquesX etY. Il permet de prouver par exemple76
que certains sch́emas formels propres sur un anneau local complet (par exemple) sont en fait
algébriques. En effet, procédant comme dans le lemme 4.2, on trouve :

Corollaire 5.7 Sous les conditions de 5.6, si g0 est un isomorphisme il en est de même de ĝ.

(N.B. le même ŕesultat vaut pour les immersions fermées).

On obtient ainsi :

Proposition 5.8 Soient A un anneau local complet d’idéal maximal m, corps résiduel k, soient
X et Y deux préschémas formels m-adiques sur A, plats sur A (i.e. pour tout n, Xn et Yn sont
plats sur An = A/mn), on suppose X0 = X ⊗A k lisse sur k et H1(X0, gX0/k) = 0. Alors tout
k-isomorphisme de Y0 sur X0 se prolonge en un A-isomorphisme de Y sur X ; ce prolongement
est unique si de plus H0(X0, gX0/k) = 0.
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Cela donne en particulier un résultat d’unicité de pŕesch́ema formel lisse surA se ŕeduisant
suivant un pŕesch́emaX0 donńe (moyennantH1(X0, gX0/k) = 0). De plus, siX etY proviennent
de sch́emas ordinaires propres surA, soientX et Y , alors on sait d’apŕes le th́eor̀eme d’exis-
tence de faisceaux en Géoḿetrie formelle (cf expośe au Śeminaire Bourbaki, No 182 (5)) qu’il
y a correspondance biunivoque entre lesA-isomorphismesY

∼→ X et leA-isomorphismes des
compĺet́es formels, donc

Corollaire 5.9 L’énoncé précédent 5.1 reste valable en y remplaçant X et Y par des A-schémas
ordinaires X et Y , propressur A.

Enfin, lorsqueX est un sch́ema formel propre surA, et queY est de la formêY où Y est
un sch́ema ordinaire propre surA, alors la proposition 5.8 donne des conditions suffisantes pour
qu’on puisse trouver un isomorphisme deX avecŶ , donc pour que le schéma formelX soit en
fait “algébrique” (i.e. isomorphèa unX̂, X un sch́ema ordinaire propre surA, lequel sera alors
canoniquement d́etermińe). C’est ce quìa lieu notamment siX0 = P

r
k (ou plus ǵeńeralement,

si X0 est un sch́ema de Śevéri–Brauer, i.e. devient isomorpheà l’espace projectif type sur la77
clôture alǵebrique dek) : tout sch́ema formel propre et plat surA, de fibrePrk, est alǵebrisable,
et de façon plus précise est isomorphe au complét́e formelm-adique dePrA. En particulier (gr̂ace
au th́eor̀eme d’existence) tout schéma ordinaire propre surA, de fibrePrk, est isomorphèaPrA (A
étant un anneau local complet ). Utilisant la théorie de la descente, on peut prouver que siA n’est
pas complet,X devient isomorphèaPr en faisant une extensionA→ A′ finie etétale de la base
(et sous cette forme, le résultat reste valable pour une fibre qui est un schéma de Śevéri–Brauer).

6 Prolongement infinitésimal global desS-sch́emas lisses

Sous les conditions du théor̀eme 4.1, on se propose de chercher s’il existe un présch́emaX
lisse surY tel queX×Y Y0 soitY0-isomorphèaX0, sachant qu’un tel schéma “existe localement
surX0”. Reprenant la ḿethode de construction de proche en proche, on est conduità remplacerY
par la lettreS, à supposer qu’on se donne un sous-présch́ema ferḿeS0 deS défini par un faisceau
d’idéauxI , (qu’il n’est plus ńecessaire de supposer localement nilpotent),à introduire les sous-
présch́emas ferḿesSn de S définis par lesI n+1, et à supposer qu’on s’est donné un sous-
présch́emaXn lisse surSn. On se propose de trouver unSn+1-présch́emaXn+1 “qui se ŕeduit
suivantXn”, i.e. muni d’un isomorphisme

Xn+1 ×Sn+1 Sn
∼← Xn

qui soit lissesurSn+1 (ou, ce qui revient au m̂eme par 2.1,plat surSn+1). Comme nous l’avons
signaĺe dans dans No 4, une telle donńee revient̀a la donńee d’un faisceau d’alg̀ebresB sur
f−1(OSn+1) ( où f est l’application continue sous-jacente au morphisme structuralXn → Sn),
muni d’une augmentationB → OXn compatible avec l’augmentationf−1(OSn+1)→ f−1(OSn),

5Cf. EGA III 5.4.1 pour la d́emonstration
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et satisfaisant̀a deux conditions (a) et (b) que nous ne réécrirons pas, nous bornantà noter
qu’elles sont denature localesur l’espace topologique sous-jacentà Xn. On sait d’apr̀es 4.1
qu’une solution existe localement. Elle est de plus uniqueà (non unique) isomorphisme près, du
moins localement. Commençons par préciser ce point :78

Proposition 6.1 Soit Xn+1 sur Sn+1 se réduisant suivant Xn sur Sn. Alors le faisceau (sur l’es-
pace topologique sous-jacent à Xn, ou encore à X0) des Sn+1-automorphismes de Xn+1 qui
induisent l’identité sur Xn est canoniquement isomorphe à

G = gX0/S0 ⊗OS0
grn+1

I (OS)

(en tant que faisceau de groupes).

En effet, par 5.4 et 4.2 ce faisceau est un faisceau principal homogène sousG . Comme il est
muni d’une section priviĺegíee (l’automorphisme identique deXn+1), il s’identifie donc comme
faisceau d’ensembles̀a G . Il faut vérifier que cette identification est compatible avec les struc-
tures de groupe. C’est facile, et d’ailleur un cas particulier d’un résultat plus ǵeńeral sur la com-
patibilité des structures de fibrés principaux, dans 5.1 et 5.3, avec la composition des morphismes
(résultat que nous n’énonçons pas ici, mais qui se doit de figurer dans le hyperplodoque ).

En particulier, le faisceau surX0 des germes d’automorphismes deXn+1 (avec les struc-
tures explicit́ees) estcommutatif. Il s’ensuit que siX ′n+1 est une autre solution du problème,
isomorpheàXn+1 au-dessus de l’ouvertU deX0, alors l’isomorphisme deAut(Xn+1)|U sur
Aut(X ′n+1)|U déduit par transport de structure d’un isomorphismeXn+1|U

∼→ X ′n+1|U , ne
dépend pasdu choix de ce dernier. (Ce n’est d’ailleur autre que l’isomorphisme identique deG ,
lorsque on identifie l’un et l’autre faisceau d’automorphismesàG grâceà 6.1).

On d́eduit de 6.1 :part 16

Corollaire 6.2 SoientXn+1,X ′n+1 lisses sur Sn+1 et “se réduisant suivantXn”. Alors le faisceau
(sur l’espace sous-jacent à X0) des Sn+1-isomorphismes de Xn+1 sur X ′n+1 induisant l’indentité
sur Xn, est de façon naturelle un faisceau principal homogène sous G .

Cela exprime en effet queXn+1 etX ′n+1 sont isomorphes localement, et que le faisceau des
germes d’automorphismes du premier estG .

Notons maintenant qu’en vertu de 4.1, on peut toujours trouver un recouvrement(Ui) deXn79
par des ouverts (qu’on peut supposer affines), et pour touti un sch́ema lisseX i sur Sn+1 se
réduisant suivantUi = Uin. Supposons pour simplifierXn sépaŕe, donc lesUij = Ui ∩ Uj
sont encore des ouvertsaffinesdeXn. Comme leH1 d’un tel ouvert,à valeurs dans le faisceau
quasi-coh́erentG , est nul, on en d́eduit par corollaire 6.2 queX i|Uij est isomorphèaXj|Uij ;
soit

fji : X i|Uij
∼→ Xj|Uij

un tel isomorphisme. Il est détermińe à une section près deG surUij. Posons, pour tout triple
d’indices :

f
(k)
ji = fji|Uijk oùUijk = Ui ∩ Uj ∩ Uk.
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Si on avait

(1) f
(i)
kj f

(k)
ji = f

(j)
ki ,

il s’ensuivrait que lesX i se “recollent” par lesfji, donc qu’ils d́efinissent une solutionX = Xn+1

du probl̀eme cherch́e. Une telle solution existe plus géńeralement, si on peut modifier lesfji en
desf ′ji :

(2) f ′ji = fjigji (gji ∈ Γ(Uij,G ))

de telle façon que lesf ′ji satisfassent la condition de transitivité ci-dessus. Cette condition suffi-
sante pour l’existence d’une solution est aussi nécessaire, comme on voit en se rappelant qu’une
telle solutionX doit, sur chaqueUi, être isomorphèa X i, ce qui permet donc de choisir des
isomorphismes

fi : X|Ui
∼→ X i

et de d́efinir des
f ′ji = (fj|Uij)(fi|Uij)−1 : X i|Uij

∼→ Xj|Uij
satisfaisant la condition de recollement.

Or posons

(3) fijk = (f
(j)
ki )−1f ikjf

k
ji;

c’est un automorphisme deX i|Uijk, que nous identifierons̀a une section deG grâceà 6.1. On
constate que c’est un2-cocyclef du recouvrement ouvertU = (Ui), à coefficients dansG , par80
un petit calcul formel laisśe au lecteur. Le m̂eme calcul montre que moyennant (2), la condition
de recollement (1)pour lesf ′ij équivautà la formule

(4) f = dg,

où g = (gij) est consid́eŕe comme une1-cochaine deU à coefficients dansG . Donc la condi-
tion nécessaire et suffisante pour l’existence d’une solution du problème est que la classe
de cohomologie dansH2(U ,G ) définie par le cocycle (3)soit nulle. Notons d’ailleurs que
puisqueU = (Ui) est un recouvrement affine deX0 qui est unsch́ema, H2(U ,G ) s’iden-
tifie à H2(X0,G ). Il est imḿediat d’ailleurs que la classe de cohomologie ainsi obtenue dans
H2(X0,G ) ne d́epend pas du recouvrement affine considéŕe. On l’appellera laclasse d’obstruc-
tion au prolongement deXn en un sch́emaXn+1 lisse surSn+1.

Supposons cette obstruction nulle. Alors un raisonnement esquissé plus haut montre que
toute solutionX = Xn+1 est isomorphèa une solution obtenue par recollementà partir d’iso-
morphismesf ′ji, qu’on peut supposer sous la forme (2), la condition de recollement n’étant autre
que (3). L’ensemble desg admissibles est donc un espace principal homogène sous le groupe
Z1(U ,G ) des1-cocycles deU à coefficients dansG . De plus, on constate tout de suite quedeux
cochainesg et g′ (telles quedg = dg′ = f ) définissent des solutions isomorphes si et seulement
si le cocycleg − g′ est de la formedh, où h = (hi) ∈ C0(U ,G ). On trouve donc :
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Théorème 6.3Soient (S,I , Xn) comme ci-dessus, Xn étant supposé séparé6. Alors on peut
définir canoniquement une classe d’obstruction dans H2(X0,G ) (où G est défini dans 6.1), dont
l’annulation est nécessaire et suffisante pour l’existence d’un schéma Xn+1 lisse sur Sn+1 se
réduisant suivant Xn. Si cette obstruction est nulle, alors l’ensemble des classes, à isomorphisme
près (induisant l’identité surXn) de Sn+1-préschémasXn+1 se réduisant suivantXn, est de façon
naturelle un espace principal homogène sous H1(X0,G ).

Remarques 6.4A partir de 6.1, les raisonnements faits ici sont purement formels, et se trans-
crivent avantageusement dans le cadre des catégories locales, ou m̂eme des catégories fibŕees81
géńerales. La classe d’obstructionà l’existence d’un objet “global” d’une catégorie (dont on
peut trouver un objet “localement”, et dont deux objets sont toujours “isomorphes localement”,
le groupe des automorphismes de tout objetétant commutatif) ainsi obtenu dans le contexte
géńeral, contient comme cas particulier le “deuxième homomorphisme bord” dans une suite
exacte de faisceaux de groupes non nécessairement commutatifs, (étudíe par exemple par Gro-
thendieck dans Kansas ou Tohoku). Le calcul béb̂ete par cocycles fait ici doit donĉetre regard́e
comme un pis-aller, d̂u à la non existence d’un texte de référence satisfaisant.

6.5 On notera que dans 6.3, il n’y a pas en géńeral d’́elément priviĺegíe dans l’espace princi-
pal homog̀ene envisaǵe sousH1(X0,G ). Cela se traduit notamment par le fait que l’on obtient
(localisant surS) un faisceau principal homogène surS0, de groupe structuralR1 f∗(G ), qui n’est
pas ńecessairement trivial, i.e. qui définit une classe de cohomologie dansH1(S0,R

1 f∗(G )) qui
n’est pas ńecessairement nulle. (Lorsque l’on suppose que la classed ∈ H2(X0,G ) n’est pas
nulle, mais nulle “localement au-dessus deS”, i.e. définit une section nulle deR2 f∗(G ), i.e. un
élément nul dansH0(S0,R

2 f∗(G ))).

6.6 On ne sait pour l’instant̀a peu pr̀es rien sur le ḿecanisme alǵebrique ǵeńeral des classes
de cohomologie introduites dans ce numéro et ses relations avec le numéro pŕećedent, et on ne
sait rien en dire de précis dans les cas particuliers les plus simples, tel le cas des schémas ab́eliens
sur des anneaux artiniens7. On esp̀ere qu’il se trouvera des gens pour chiader la question, qui
semble particulìerement int́eressante. Elle est intimement liée en particulier̀a la “théorie des
modules” des structures algébriques.

Corollaire 6.7 Supposons que H2(X0,G ) = 0, alors un Xn+1 existe, et il est unique à isomor-
phisme près si de plus H1(X0,G ) = 0.

En particulier, on en conclut, en procédant de proche en proche (et remarquant qu’un schéma
affine est acyclique pour un faisceau quasi-cohérent) :

82
6Cette condition est en fait inutile, et on peutéviter les calculs de cocycles plus haut. Cf. le livre de J. GIRAUD,

Cohomologie Non Ab́elienne (̀a parâıtre dans Springer Verlag 1971). Comparer remarques 6.4.
7On sait maintenant que cette obstruction est toujours nulle dans ce cas.

62



III

Corollaire 6.8 Sous les conditions du théorème 4.1, si X0 est affine, alors il existe un X lisse
sur Y se réduisant suivant X0, et cet X est unique à isomorphisme (non unique) près.

On notera que la d́emonstration directe du th. 4.1 ne pouvait nous donner ce résultat.

Corollaire 6.9 Sous les conditions de 6.3, supposons S affine d’anneau A, I défini par un
idéal I de A, enfin les grnI (OS) = I n/I n+1 localement libres. Alors Hi(X0,G ) s’identifie à
Hi(X0,G0)⊗A grn+1

I (A), où
G0 = gX0/S0 ,

donc la classe d’obstruction au prolongement de Xn se trouve dans H2(X0,G0)⊗A grn+1
I (A), et

si elle est nulle, l’ensemble des classes (à isomorphisme près) de solutions est un espace principal
homogène sous H1(X0,G0)⊗A grn+1

I (A).

En particulier :

Corollaire 6.10 Sous les conditions de 6.9 supposons

H2(X0, gX0/S0) = 0,

alors il existe un schéma formel Î-adique sur le complété formel I -adique Ŝ de S, qui soit “lisse
sur S” (i.e. les Xp sont lisses sur les Sp) et qui se réduise suivantXn, i.e. muni d’un isomorphisme

X×S Sn
∼← Xn.

Si de plus H1(X0, gX0/S0) = 0, alors un tel X est unique à isomorphisme près.

En effet, on construit de proche en procheXn+1, Xn+2, etc., d’òu X en passant̀a la limite
inductive desXi. L’assertion d’unicit́e figure d́ejà au no préćedent.part 17

7 Application à la construction de sch́emas formels et de
sch́emas ordinaires lisses sur un anneau local completA

Les ŕesultats du No préćedent permettent parfois de prouver l’existence d’un schéma formel83
m-adique sur un tel anneau, se réduisant suivant un schéma lisseX0 surk donńe. Distinguons
deux cas :

a)A est “d’égales caract́eristiques”(c’est le cas en particulier sik est de caractéristique0).
Alors on sait qu’il existe unsous-corps de représentants deA, i.e. un sous-corpsk′ tel queA→ k
induise un isomorphismek′

∼→ k. Alors il existe m̂eme un sch́ema ordinaire lisse surA se
réduisant suivantX0, savoirX = X0 ⊗k A, A étant consid́eŕe comme une alg̀ebre surk grâce
à l’homomorphismek → k′ → A défini park′. Il faut cependant noter que cette construction
n’est pas “naturelle” ; il est facile de se convaincre (déjà dans le cas òu A = k[t]/(t2), alg̀ebre
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des nombres duaux) qu’un autre homomorphisme de relèvementk → A (défini en l’occurence
par une d́erivation absolue dek dans lui-m̂eme) d́efinit unX ′ surA qui en ǵeńeral n’est pas
isomorpheà X (si H1(X0, gX0/k) 6= 0). Il serait d’ailleurs int́eressant d’́etudier (pourk de ca-
ract́eristique0, ou non parfait et de car.p > 0) quels sont lesX lisses surA qu’on obtient
ainsi,à quelle condition deux homomorphismesk → A définissent desA-sch́emas isomorphes.
Néanmoins, l’existence dek′ suffit à entrâıner que la première obstruction au relèvement deX0,
qui est dansH2(X0, gX0/k)⊗k m/m2, est ńecessairement nulle. Bien entendu, quand on a relevé
alorsX0 enX1 lisse surA/m2, la nouvelle obstructioǹa la construction deX2 ne sera en ǵeńeral
pas nulle : elle sera fonction d’uńelément variable dans un certain espace principal homogène
sousH1(X0,G0) ⊗ m/m2 et se trouve dansH2(X0,G0) ⊗ m2/m3 : il conviendrait d’́etudier la
situation de façon d́etaillée8

b) A est d’ińegales caract́eristiques.Dans ce cas, on ignore tout, (sauf si par chance
H2(X0, gX0/k) = 0, auquel cas on peut construire un schéma formelm-adique simple surA
se ŕeduisant suivantk). Même siA = Z/p2

Z et siX0 est un sch́ema “ab́elien” de dimension2,
on ne sait pas si on peut relever en unX = X1 lisse surA9, d’autre part, on n’a pas d’exemple
d’un X0 dont on ait prouv́e qu’il ne provient pas d’un schéma ordinaireX lisse surA. (J’ai
l’impression que cela doit exister, avecX0 une surface projective)10 Signalons simplement que
d’apr̀es le th́eor̀eme de Cohen, il existe unp-anneau de CohenB de corps ŕesiduelk et un ho-
momorphismeB → A induisant l’isomorphisme identique sur le corps résiduels ; par suite, le
résultat “le plus fort” de rel̀evement serait obtenu en prenant pourA unp-anneau de Cohen : s’il84
existe une solution (ordinaire ou formelle) au-dessus d’un tel anneau, il en existe une au-dessus
de tout anneau local complet de corps résiduelk. En particulier, comme pour unp-anneau de Co-
henm/m2 s’identifie canoniquement̀a k, on voit quepour tout sch́ema lisseX0 sur un corpsk
de caract́eristiquep > 0, il existe une classe de cohomologie dansH2(X0, gX0/k) premìere obs-
truction au rel̀evement deX0 en un sch́ema lisse sur unp-anneau de Cohen ; on ignore si elle
peutêtre non nulle11.

Même si on arrive de proche en procheà construire lesXn se ŕeduisant suivantX0, cela ne
donne en ǵeńeral qu’un sch́emaformelX lisse surA, se ŕeduisant suivantX0. LorsqueX0 est
propre surA, il reste la question siX est en fait alǵebrisable, pour pouvoir obtenir un schéma
ordinaire propre surA et simple surA, se ŕeduisant suivantX0. Le seul crit̀ere connu (signalé
dans le Śeminaire Bourbaki, et qui figure dans les Eléments, Chap. III, 4.7.1) est le suivant : siX

est propre surA, et siL est un faisceau inversible surX tel que le faisceau induitL0 surX0

soit ample (i.e. une puissance tensorielle convenableL ⊗n
0 , n > 0, provient d’une immersion

projective deX0) alors il existe un sch́emaX projectif surA, et un faisceau inversible ample
surX, tels que(X,L ) s’en d́eduise par complétion m-adique. Cela nous am̀ene donc,́etant
donńe un faisceau localement libreE0 surX0 (que nous choisirons inversible ample pour notre
propos), de le prolonger en un faisceau localement libreE sur X. Pour ceci, on est ramené à

8Elle est sans doute décrite par l’oṕeration crochet de Kodaira-Spencer (cf. Séminaire Cartan, 1960/61, Exp. 4).
9C’est maintenant prouvé, cf. note 7 page 62.

10Un tel exemple áet́e depuis construit par J.P. Serre (Proc. Nat. Acad. Sc. USA, vol. 47, No 1, pp 108–109, 1961),
du moins pour certaines dimensions. D. Mumford a donné un exemple (non publié) avec unesurfacealgébrique.

11Elle peutêtre non nulle, comme signalé en note 10̀a la page 64.
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construire de proche en proche des faisceaux localement libresEn sur lesXn. La discussion est
toute analoguèa celle du No 6, (cf. remarque 6.4), le rôle essentieĺetant joúe par lefaisceau des
automorphismesd’un En+1 qui induisent l’identit́e surEn : on montre aussitôt que ce faisceau
s’identifieà

(∗) G = HomOX0
(E0,E0 ⊗ grn+1

I (OX)) = HomOX0
(E0,E0)⊗ grn+1

I (OX)

qui est encore un faisceau en groupes commutatifs. On trouve :

Proposition 7.1 Soit S un préschéma muni d’un faisceau quasi-cohérent d’idéaux I , X un
préschéma sur S, Sn le sous-préschéma de S défini par I n+1, et Xn = X ×S Sn ( pour tout
entier n). Soit En un faisceau localement libre sur Xn, on se propose de le prolonger en un85
faisceau localement libre En+1 sur Xn+1. Alors En définit une classe d’obstruction canonique
dans H2(X0,G ), où G est le faisceau quasi-cohérent donné par la formule ci-dessus, classe dont
l’annulation est nécessaire et suffisante pour l’existence d’un En+1 prolongeant En. Si cette classe
est nulle, alors l’ensemble des classes, à isomorphisme près (induisant l’identité sur En) de solu-
tions En+1, est un espace principal homogène sous H1(X0,G ).

Cette proposition donne lieu aux corollaires habituels. Signalons seulement siX est plat
surS, alors on peut́ecrire

G = HomOX0
(E0,E0)⊗OS0

grn+1
I (OS)

d’où, siS est affine d’anneauA et si lesI n/I n+1 sont localement libres, la condition suffisante

H2(X0,G0) = 0 avec G0 = HomOX0
(E0,E0)

pour l’existence d’unEn+1, donc de proche en proche pour l’existence de prolongements succes-
sifsEm (m = n, n+ 1, etc. . .).

Revenant̀a la situation de d́epart, on trouve donc :

Proposition 7.2 Soient A un anneau local complet, X un schéma formel propre et plat sur A, tel
que X0 soit projectif et que H2(X0,OX0) = 0. Alors il existe un schéma X projectif sur A dont
le complété formel m-adique est isomorphe à X.

Conjuguant avec 6.10, on trouve :

Théorème 7.3Soient A un anneau local complet de corps résiduel k, X0 un schéma projectif et
lisse sur k, tel que

H2(X0, gX0/k) = H2(X0,OX0) = 0

Alors il existe un schéma lisse et projectif X sur A, se réduisant suivant X0.

Plus ǵeńeralement, si on se donne unXn lisse surAn = A/mn+1 se ŕeduisant suivantX0,
alors il existe unX lisse et propre surA et un isomorphismeX ⊗A An = Xn.
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Corollaire 7.4 Toute courbe lisse et propre sur k provient par réduction d’une courbe lisse et
propre sur A.

C’est ce ŕeultat qui sera l’outil essentiel (avec le théor̀eme d’existence de faisceaux en
Géoḿetrie Formelle) pouŕetudier le groupe fondamental deX0 par voie transcendante.86
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Expośe IV

Morphismes plats

87
Nous donnons ici surtout les propriét́es de platitude qui nous ont servi dans les exposés

précedents. Unéetude plus d́etaillée se trouvera au Chapitre IV des “Eléments de Ǵeoḿetrie
Algébrique” en pŕeparation1, où onétudie de façon systématique la situation suivante :X étant
localement de type fini surY localement noeth́erien, etF coh́erent surX etY -plat, donner des
relations entre les propriét́es deY , celles deF , et celles des faisceaux cohérents induits parF
sur les fibres deX → Y (du point de vue notamment de la dimension, de la dimension cohomolo-
gique, de la profondeur etc. . .). On a notamment une façon systématique d’obtenir des théor̀emes
du typeSeidenbergou Bertini (pour les sections hyperplanes). Le résultat essentiel pour l’appli-
cation des ḿethodes de platitude dans ce contexte est le suivant (qui sera démontŕe plus bas) :
Si Y est int̀egre,X de type fini surY , F coh́erent surX, il existe un ouvert non videU deY tel
queF soitY -plat aux points deX au-dessus deU . Une deuxìeme façon, sans doute encore plus
importante, dont la platitude s’introduit en Géoḿetrie Algébrique, est lathéorie de descente: voir
par exemple les deux exposés de Grothendieck sur le sujet au Séminaire Bourbaki2. La platitude
semble ainsi une des notions techniques centrales en Géoḿetrie Algébrique.

Rappelons que la notion de platitude et fidèle platitude áet́e introduite par Serre dans GAGA.
Un expośe des No 1 et 2 suivants se trouvera aussi dans Alg. Comm. de Bourbaki (qui bien en-
tendu, comme le titre du livre l’indique, ne se borne pas au cas d’anneaux de base commutatifs)3.

Contrairement aux exposés pŕećedents, nous ne supposons pas que les anneaux envisagés
sont ńecessairement noethériens.part 18

1 Sorites sur les modules plats

Un moduleM sur l’anneauA est ditplat (ouA-plat si on veut pŕeciserA) si le foncteur88
1Cf. EGA IV 11 et 12.
2et, pour un expośe plus d́etaillé, les Expośes VIII et IX plus bas.
3N. Bourbaki, Alg̀ebre Commutative, Chap. I (Modules Plats), Act. Sc. Ind 1290, Paris, Hermann (1961).
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TM : N 7→M ⊗A N

(qui est en tous cas exact a droite) estexact i.e. transforme monomorphismes en monomor-
phismes. Il revient au m̂eme de dire que le premier foncteur dérivé à droite, ou tous les foncteurs
dérivésà droite, sont nuls, i.e. que l’on a

TorA1 (M,N) = 0 pour toutN ,

resp. qu’on a
TorAi (M,N) = 0 pouri > 0, toutN .

Comme lesTori commutent aux limites inductives, il suffit d’ailleurs de vérifier ces conditions
pourN de type fini, et m̂eme (prenant alors une suite de composition deN à quotiens mo-
nog̀enes) que l’on ait

TorA1 (M,N) = 0

siN monog̀ene, i.e. de la formeA/I, I étant un id́eal deA. Notons d’ailleurs que

TorA1 (M,A/I) = 0⇐⇒ I ⊗AM →M = A⊗AM

estinjectif, comme on voit sur la suite exacte desTor, compte tenu deTorA1 (M,A) = 0. Donc
M plat équivautà dire que pour tout id́ealI, l’homomorphisme naturel

I ⊗AM → IM

est un isomorphisme. Il suffit d’ailleurs de le vérifier pourI de type fini, a fortiori il suffit de
vérifier que le foncteurM⊗ est exact sur les modulesde type fini.

Comme chaque fois qu’on a un foncteur exactT , si on identifie, pour un sous-objetN ′ deN ,
T (N ′) à un sous-objet deT (N), on a

T (N ′ ∩N ′′) = T (N ′) ∩ T (N ′′)

T (N ′ +N ′′) = T (N ′) + T (N ′′)

pour deux sous-objetsN ′,N ′′ deN .

Une somme directe de modules plats, un facteur direct d’un module plat, est plat. En particu-
lier, A étant plat, un modulelibre, donc aussi un moduleprojectif, est plat. Le produit tensoriel
de deux modules plats est plat, et siM est plat surA, alorsM ⊗A B est plat surB pour tout
changement de baseA B (à cause de l’associativité du produit tensoriel et du fait qu’un composé
de foncteurs exacts est exact). SiM est plat surB, B plat surA, alorsM est plat surA (même89
raison).

La suite exacte desTor, plus la “commutativit́e duTor, donne :

Proposition 1.1 Soit 0→M ′ →M →M ′′ → 0 une suite exacte de A-modules, M ′′ étant plat.
Alors

68



IV

(i) cette suite reste exacte par tensorisation par n’importe quel A-module N

(ii) pour que M soit plat, il faut et il suffit que M ′ le soit.

On peut donc dire que du point de vue du comportement par produits tensoriels, les modules
plats sont “aussi bons” que les modules libres ou projectifs (et la suite exacte de 1.1 en particulier
est “aussi bonne” que si elle splittait).

Soit S une partie multiplicativement stable deA, alors S−1A est plat surA, car
S−1A ⊗ N = S−1N est un foncteur exact enN . SiM estA-plat, alorsS−1M = S−1A ⊗M
estS−1A-plat, la ŕeciproquéetant vraie siM → S−1M est un isomorphisme, i.e. si less ∈ S
sont bijectifs dansM (à cause de la transitivité de la platitude,S−1A étant plat surA). Plus
géńeralement, le cas d’un morphisme de présch́emasX → Y et d’un faisceau quasi-coherentF
surX dont on veut́etudier la platitude par rapportàY conduità la situation avec deux anneaux :

Proposition 1.2 Soient A → B un homomorphisme d’anneaux, M un B-module, T une partie
multiplicativement stable de B.

(i) Si M est A-plat, alors T−1M est A-plat (donc aussi S−1A-plat pour toute partie multipli-
cativement stable S de A s’envoyant dans T ).

(ii) Inversement, si Mn est plat sur An pour tout idéal maximal n de B, Mn est plat sur A (ou,
ce qui revient au même, sur Am, où m est l’idéal premier de A image inverse de n) alors
M est A-plat.

On a en effet la formule, fonctorielle par rapport auA-moduleN :

T−1M ⊗A N = T−1(M ⊗A N)

car les deux membres sont fonctoriellement isomorphesà T−1B ⊗B M ⊗B N(B) (avec
N(B) = N ⊗A B) en vertu des formules d’associativité de⊗. Il s’ensuit aussit̂ot que siM ⊗A N
est exact enN , il en est de m̂eme deT−1M ⊗A N (comme compośe de deux foncteurs exacts),
d’où (i). Et il s’ensuit de m̂eme (ii), car pour v́erifier l’exactitude d’une suite deB-modules, il
suffit de v́erifier l’exactitude des localisés en tous les id́eaux maximaux deB.90

Proposition 1.3 (i) Soit M un A-module plat. Si x ∈ A est non diviseur de 0 dans A, il est
non-diviseur de 0 dans M . En particulier, si A est intègre, M est sans torsion.

(ii) Supposons que A soit intègre et que pour tout idéal maximal m de A, Am soit principal
(par exemple A anneau de Dedekind, ou même principal). Pour que le A-module M soit
plat, il faut et il suffit qu’il soit sans torsion.

On obtient (i) en notant que l’homothétie x dansM s’obtient en tensorisant parM l’ho-
moth́etiex dansA. Pour (ii), on peut supposer déjàA principal gr̂aceà 1.2 (ii) ; il faut montrer
que siM est sans torsion, alors pour tout idéalI deA, l’injection I → A tensoriśee parM est
une injection, ce qui signifie que le géńerateurx deI est non diviseur de0 dansM , O.K.
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2 Modules fidèlement plats

Un foncteurF d’une cat́egorie dans une autre est ditfidèlesi pour toutX, Y , l’application
Hom(X, Y ) → Hom(F (X), F (Y )) est injective. S’il s’agit d’un foncteur additif de catégories
additives, il revient au m̂eme de dire queF (u) = 0 implique u = 0, et cela implique que
F (X) = 0 impliqueX = 0. Pour queF soit fidèle et exact, il faut et il suffit que la condition
suivante soit v́erifiée : pour toute suiteM ′ → M → M ′′ de morphismes dansC , la suite trans-
forméeF (M ′)→ F (M)→ F (M ′′) est exactesi etseulement sila pŕećedente l’est. Ou encore :
F est exact, etF (X) = 0 impliqueX = 0. (N.B. pour pouvoir parler d’exactitude, il faut sup-
poser les catégories en jeuabéliennes). Supposons qu’on ait une famille(Mi) d’objets non nuls
deC tels que tout objet non nul deC ait un sous-objet admettant un quotient isomorpheà un
Mi. AlorsF fidèle et exact́equivautà :F exact, etF (Mi) 6= 0 pour touti. Si C est la cat́egorie
des modules sur un anneauA, on peut prendre par exemple pour(Mi) la famille desA/m, m

parcourant les id́eaux maximaux deA. (En effet, tout module non nul admet un sous-module
non nule monog̀ene, donc isomorphèa unA/I, I idéal 6= A, lequel par Krull admet un quotient
A/m). De ces sorites, on déduit en particulier :

Proposition 2.1 Soit M un A-module. Conditions équivalentes :

(i) Le foncteur M⊗A est fidèle et exact.91
(i bis) M est plat, et M ⊗A N = 0 implique N = 0

(i ter) M est plat, et M ⊗ A/m 6= 0 pour tout idéal maximal m de A.

(ii) Pour toute suite d’homomorphismes N ′ → N → N ′′, la suite tensorisée par M est exacte
si et seulement si la suite initiale l’est.

On dit alors queM est unA-modulefidèlement plat. En particulier, siM est fid̀element plat,
alorsN → N ′ est un monomorphisme (épimorphisme, isomorphisme) si et seulement si l’ho-
momorphisme tensorisé parM l’est. Un module fid̀element plat estfidèle, puisque l’homoth́etie
f dansM s’obtient en tensorisant parM l’homothétief dansA.

On voit comme dans 1. les propriét́es de transitivit́e habituelles : le produit tensoriel de
deux modules fid̀element plats est fid̀element plat, siM est fid̀element plat surA, M ⊗A B
est fid̀element plat surB pour toute extension de la baseA→ B, siB est uneA-algèbre qui est
fidèlement plate surA et siM est unB-module fid̀element plat, c’est unA-module fid̀element
plat.

Corollaire 2.2 Soit A → B un homomorphisme local d’anneaux locaux, M un B-module de
type fini. Pour que M soit fidèlement plat sur A, il faut et il suffit qu’il soit plat sur A et non nul.

Résulte du crit̀ere (i ter) et de Nakayama. En particulier,pour queB soitA-plat, il faut et il
suffit qu’il soit fid̀elementA-plat.
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Proposition 2.3 Soit A → B un homomorphisme d’anneaux, M un B-module qui est
fidèlement plat sur A. Pour tout idéal premier p de A, il existe un idéal premier q de B qui
l’induise.

Divisant parp, on est rameńe au cas òu p = 0. Localisant en l’id́eal premier0, on est rameńe
au cas òuA est un corps. MaisM étant fid̀element plat surA est non nul, a fortioriB 6= 0, donc
B a un id́eal premier, qui ne peut qu’induire l’unique idéal premier deA ! Géoḿetriquement, on
peut dire que l’existence d’un faisceau quasi-cohérentF surX = Spec(B) qui soit “fidèlement
plat” relativement̀aA, implique queX → Y = Spec(A) estsurjectif.

Corollaire 2.4 Supposons M plat sur A, de type fini sur B et supp. M = Spec(B) (i.e. Mq 6= 0
pour tout idéal premier q de B). Alors les idéaux premiers q de B contenant pB minimaux
induisent p.

On est encore ramené au casp = 0 (car les hypoth̀eses se conservent toutes en divisant), donc92
A intègre. On est ramené à l’énonće suivant :

Corollaire 2.5 M étant come dessus, tout idéal premier minimal q de B induit un idéal premier
p de A qui est minimal.

En effet, localisant enp et q, on est rameńe à prouver que siA etB sont locaux et l’homo-
morphismeA → B local,M unB-module non nul plat surA, et siB est de dimension0, alors
A est de dimension0. Par 2.2 et 2.3, on conclut que tout idéal premier deA est induit par un id́eal
premier deB, donc par l’id́eal maximal deA donc est l’id́eal maximal, cqfd. Ǵeoḿetriquement,
2.5 signifie que toute composante irréductible deX = Spec(B) domine quelque composante
irréductible deY = Spec(A) (moyennant l’existence d’un faisceau quasi-cohérent de type fini
surX, de supportX, et plat par rapport̀aY ).

On notera qu’on n’a pas eùa supposer dans 2.4M fidèlement plat surA, mais rien ne garantit
alors l’existence d’un id́eal premier contenantpB (donc d’un minimal parmi de tels).

Proposition 2.6 Soit i : A→ B un homomorphisme d’anneaux. Conditions équivalentes :

(i) B est un A-module fidèlement plat.

(ii) B est plat sur A, et Spec(B)→ Spec(A) est surjectif

(ii bis) B est plat sur A, et tout idéal maximal est induit par un idéal de B.

(iii) i est injectif et Coker i est un A-module plat.

(iv) Le foncteur M(B) = M⊗AB en le A-module M est exact, et l’homomorphisme fonctoriel
canonique M →M(B) est injectif.

(iv bis) Pour tout idéal I de A, I ⊗AB → IB est un isomorphisme, et l’image inverse de IB dans
A est égale à I .
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On a (i)⇒ (ii) par 2.3, (ii)⇒ (ii bis) est trivial, (ii bis)⇒ (i) par le crit̀ere (i ter) de 2.1. On a
(iii) ⇒ (iv) par 1.1, (iv)⇒ (iv bis) trivialement (en faisantM = A/I dans la deuxìeme condition
(iv bis)), et (iv bis)⇒ (i) en vertu du crit̀erede platitude par id́eaux vu au d́ebut de 1 et du critère
2.1 (iter). Enfin, (iv)⇒ (iii) par une ŕeciproque facile de 1.1, et (i)⇒ (iv) car siN est le noyau de93
M → M ⊗A B = T (M), alors (T étant exact)N → T (N) est nul d’òu T (N) = N ⊗A B = 0,
d’oùN = 0, cqfd.part 19

3 Relations avec la compĺetion

SoientA un anneau noethérien,I un idéal dansA, Â le śepaŕe compĺet́e deA pour la topolo-
gie I-préadique, et pour toutA-moduleM , soitM̂ son compĺet́e pour la topologieI-préadique.
C’est unÂ-module, d’òu un homomorphisme canonique

M ⊗A Â→ M̂.

LorsqueM parcourt les modulesde type fini, le foncteurM 7→ M̂ est exact, comme il résulte
facilement duthéor̀eme de Krull : SiN ⊂ M , la topologie deN est celle induite par la topo-
logie deM . CommeM ⊗A Â est exact̀a droite, on en conclut aisément (en ŕesolvantM par
L→ L′ →M , avecL etL′ libres de type fini) que l’homomorphisme fonctoriel plus haut est un
isomorphisme(M̂ étant aussi exactà droite) et par conséquent queM ⊗A Â est aussi un foncteur
exactenM . Par suite :

Proposition 3.1 Soient A un anneau noethérien, I un idéal de A, alors le complété séparé Â de
A (pour la topologie I-préadique) est plat sur A.

Corollaire 3.2 Pour que Â soit fidèlement plat sur A, il faut et il suffit que I soit contenu dans
le radical de A.

En effet, il suffit d’appliquer le crit̀ere 2.1 (i ter).

Ces ŕesultats ŕesument tout ce qu’on sait dire, du point de vue de l’algèbre lińeaire, sur les
relations entreA etÂ. Le corollaire 3.2 est surtout utilisé lorsqueA est un anneau local noethérien
et queI est contenu dans l’id́eal maximalm (et le plus souvent, lui estégal).

4 Relations avec les modules libres

Proposition 4.1 Soient A un anneau, I un idéal de A, M un A-module. Supposons qu’on soit
sous l’une ou l’autre des hypothèses suivantes :

(a) I est nilpotent

(b) A est noethérien, I est dans le radical de A, et M est de type fini.
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Pour que M soit libre sur A, il faut et il suffit que M ⊗ A/I soit libre sur A/I , et que
TorA1 (M,A/I) = 0.

C’est ńecessaire, prouvons la suffisance. Soit(ei) une famille d’́eléments deM dont l’image94
dansM ⊗A/I = M/IM y définit une base surA/I (c’est une famille finie dans le cas (b)). Soit
L le A-module libre construit sur le m̂eme ensemble d’indices, on a donc un homomorphisme
L → M tel que la tensorisationT parA/I induit un isomorphismeT (L)

∼→ T (M). Si Q est
le conoyau deL → M , on a doncT (Q) = 0, d’oùQ = 0 en vertu de Nakayama (valable sous
l’une ou l’autre condition (a) ou (b)). DoncL → M est surjectif, soitR son noyau, on a donc
une suite exacte

0→ R→ L→M → 0

d’où, commeTorA1 (M,A/I) = 0, une suite exacte0 → T (R) → T (L) → T (M) → 0, d’où
T (R) = 0, d’où encoreT (R) = 0 en vertu de Nakayama (tenant compte que dans le cas (b),R
est de type fini puisqueA était suppośe noeth́erien).

Corollaire. On peut remplacer la condition TorA1 (M,A/I) = 0 par : l’homomorphisme cano-
nique surjectif

(∗) gr0
I(M)⊗A/I grI(A)→ grI(M)

est un isomorphisme.

En effet, siM est libre, cela est certainement vérifié. Il faut donc prouver que siM ⊗ A/I est
libre surA/I et la condition sur lesgr vérifiée, alorsM est libre. On reprend la démonstration
ci-dessus en construisantL → M , il résulte de l’hypoth̀ese que cet homomorphisme induit un
isomorphisme pour les gradués associés, donc son noyau est contenu dans l’intersection desInL,
donc est nul (comme il est trivial dans (a), et bien connu dans (b)). Cqfd.

Corollaire 4.3 Supposons que A/I soit un corps. Alors les conditions suivantes sur M sont
équivalentes :

(i) M est libre

(ii) M est projectif

(iii) M est plat

(iv) TorA1 (M,A/I) = 0

(v) L’homomorphisme canonique (∗) est bijectif.

En effet, dans le cas envisagé,M ⊗ A/I est automatiquement libre.

Le résultat pŕećedent est valable dans les deux cas suivants :

(a) M est un modulequelconquesur un anneau localA dont l’idéal maximalI estnilpotent
(par exemple un anneau local artinien).

(b) M est un modulede type finisur un anneaulocal noeth́erien.
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Rappelons pour ḿemoire :95

Corollaire 4.4 Supposons queA soit un anneau local noeth́erien int̀egred’idéal maximal m = I ,
de corps résiduel k = A/I , de corps des fractions K. Soit M un module de type fini sur A. Alors
les conditions équivalentes (i) à (v) précédentes équivalent aussi à

(vi) M ⊗AK et M ⊗A k sont des espaces vectoriels de même dimension (i.e. le rang de M sur
A est égal au nombre minimum de générateurs du A-module M ).

Demonstration imḿediate : on laisse au lecteur le soin de géńeraliser au cas òuA est seulement
suppośe sanśeléments nilpotents : il faut alors exiger que les rangs deM pour les id́eaux premiers
minimaux deA soientégauxà la dimension de l’espace vectorielM ⊗A k.

5 Crit ères locaux de platitude

Proposition 5.1 Soit A un anneau muni d’un idéal I , M un A-module. Supposons

TorA1 (M,A/In) = 0 pour n > 0

alors l’homomorphisme canonique surjectif

(∗) gr0
I(M)⊗A/I grI(A)→ grI(M)

est un isomorphisme. La réciproque est vraie si I est nilpotent.

L’hypothèse signifie que les homomorphismes

In ⊗AM → InM

sont des isomorphismes, d’où aussit̂ot le fait que les homomorphismes

In/In+1 ⊗AM → InM/In+1M

sont des isomorphismes. Réciproquement, supposons cette condition vérifiée etI nilpotent, prou-
vonsTorA1 (M,A/In) = 0 pour toutn. C’est vrai pourn grand, proćedons par ŕecurrence des-
cendante surn, en le supposant prouvé pourn+ 1. On a un diagramme commutatif

M ⊗ In+1 //

��

M ⊗ In //

��

M ⊗ (In/In+1) //

��

0

0 //MIn+1 //MIn //MIn/MIn+1 // 0

où les lignes sont exactes. Par hypothèse, la dernière fl̀eche verticale est un isomorphisme, et96
l’hypothèse de ŕecurrence signifie aussi que la première fl̀eche verticale l’est. Il en est donc de
même de la fl̀eche verticale ḿediane, ce qui achève la d́emonstration.

La proposition suivante áet́e d́egaǵee au moment du Śeminaire par Serre ; elle permet des
simplifications substantielles dans le présent nuḿero.
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Proposition 5.2 Soient A → B un homomorphisme d’anneaux, M un A-module. Les condi-
tions suivantes sont équivalentes :

(i) Pour tout B-module N , on a TorA1 (M,N) = 0 ;

(ii) TorA1 (M,B) = 0, et M(B) = M ⊗A B est B-plat.

On a un isomorphisme fonctoriel

M ⊗A N = (M ⊗A B)⊗B N

qui exprime le premier membre, considéŕe comme foncteur enM , comme un composé de deux
foncteursM 7→ M ⊗A B etP 7→ P ⊗B N . Comme le premier transforme modules libres sur
A en modules libres surB, donc projectifs en projectifs, on a la suite spectrale des foncteurs
compośes

TorAn (M,N)⇐ TorBp (TorAq (M,B), N)

d’où une suite exacte pour les termes de bas degré

0← TorB1 (M ⊗A B,N)← TorA1 (M,N)← TorA1 (M,B)⊗A N

Si (i) est v́erifié, alors on conclut de cette suite exacteTorB1 (M ⊗A B,N) = 0 pour toutN , i.e.
M ⊗A B estB-plat, d’où (ii). Si inversement (ii) est v́erifié, alors dans la suite exacte les termes
entourantTorA1 (M,N) sont nuls, donc on a (i).

Corollaire 5.3 Supposons que B = A/I , alors les conditions précédentes équivalent à la sui-
vante :

(iii) TorA1 (M,N) = 0 pour tout A-module N annulé par une puissance de I .

En effet, (i) signifie qu’il en est ainsi siN est annuĺe parI. On en d́eduit (iii) en appliquant
l’hypothèse auxInN/In+1N .

Corollaire 5.4 Sous les conditions de 5.3, les conditions envisagées impliquent que l’homomor-97
phisme fonctoriel

(∗) gr0
I(M)⊗A/I grI(A)→ grI(M)

est un isomorphisme, et que M ⊗A A/I est plat sur A/I .

Il suffit d’appliquer (iii) et (5.1). Utilisant la ŕeciproque de 5.1 dans le casI nilpotent, on trouve :

Corollaire 5.5 SoientA un anneau muni d’un idéal nilpotent I ,M unA-module. Les conditions
suivantes sont équivalentes :

(i) M est A-plat

(ii) M ⊗A A/I est A/I-plat, et TorA1 (M,A/I) = 0
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(iii) M ⊗A A/I est A/I-plat, et l’homomorphisme canonique (∗) sur les gradués est un iso-
morphisme.

En effet, ce sont respectivement les conditions (iii) et (ii) préćedentes, et celles de corollaire 5.4.

Ne supposons plusI nilpotent, alors on aura seulement a priori dans 5.5 les implications (i)
⇒ (ii) ⇒ (iii). D’autre part, comme la condition (iii) reste stable en divisant par une puissance
deI, on voit en vertu de 5.5 qu’elle implique

(iv) pour tout entiern,M ⊗ A/In est plat surA/In.

On se propose de donner des conditions moyennant lesquelles on peut en conclure (i), i.e.
queM estA-plat. Je dis qu’il suffit pour ceci queA soit noeth́erien et queM satisfasse la
condition de finitude suivante :pour tout module de type finiN sur A, M ⊗A N est śepaŕe
pour la topologieI-préadique. (Il suffirait de le v́erifier siN est un id́eal de type fini dansA).
En effet, prouvons que sous ces conditions, siN ′ → N est un monomorphisme de modules de
type fini,M ⊗A N ′ → M ⊗A N est un monomorphisme. Il suffit en effet de montrer que le
noyau est contenu dans lesIn(M ⊗A N ′) = Im(M ⊗A InN ′ → M ⊗A N ′), ou encore dans les
Im(M ⊗A V ′n → M ⊗A N ′) = Ker(M ⊗A N ′ → M ⊗A (N ′/V ′n)), où V ′n parcourt un système
fondamental d́enombrable de voisinages de 0 dansN ′ (muni de sa topologieI-adique). D’apr̀es
le théor̀eme de Krull, la topologieI-adique deN ′ est induite par celle deN , on peut donc prendre
V ′n = N ′ ∩ InN . Consid́erons alors le diagramme commutatif

M ⊗A N ′ //

��

M ⊗A (N ′/V ′n)

��
M ⊗A N //M ⊗A (N/InN)

CommeN ′/V ′n etN/InN sont annuĺes parIn, le deuxìeme homomorphisme vertical s’identifie98
à celui d́eduit de l’homomorphismeinjectif N ′/V ′n → N/InN en tensorisant surA/In avec le
(A/In)-moduleplatM⊗AA/In, il est doncinjectif. Par suite, le noyau deM⊗AN ′ →M⊗AN
est contenu dans celui deM ⊗A N ′ →M ⊗A (N ′/V ′n), ce qu’on voulait.

La condition de “finitude” envisaǵee surM est v́erifiée en particulier siM est un module de
type fini sur uneA-algèbre noeth́erienne,B telle queIB soit contenu dans le radical deB : en
effet, alorsM ⊗A N est un module de type fini surB pour tout module de type finiN surA,
donc śepaŕe par Krull pour la topologieI-adique= sa topologie(IB)-adique. On trouve ainsi :part 20

Théorème 5.6Soient A → B un homomorphisme d’anneaux noethériens, I un idéal de A tel
que IB soit contenu dans le radical de B, M un B-module de type fini. Les conditions suivantes
sont équivalentes :

(i) M est A-plat
(ii) M ⊗A A/I est A/I-plat, et TorA1 (M,A/I) = 0

(iii) M ⊗A A/I est A/I-plat, et l’homomorphisme canonique

gr0
I(M)⊗A/I grI(A)→ grI(M)
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est un isomorphisme.

(iv) Pour tout entier n, M ⊗A A/In est plat sur A/In.

Ce ŕesultat s’applique surtout lorsqueA,B sont des anneauxlocauxnoeth́eriens,A→ B un
homomorphisme local, etI un idéal maximal (et on peut réduire aussit̂ot 5.6à ce cas). Un cas
intéressant est celui oùA/I est un corps, i.e.I maximal, auquel cas la condition queM⊗A (A/I)
est plat surA/I devient inutile ; de plus, comme alors lesA/In sont des anneaux locaux artiniens,
la condition (iv) signifie que lesM ⊗A (A/In) sontlibressur lesA/In.
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Corollaire 5.7 Soit A → B un homomorphisme local d’anneaux locaux noethériens,
u : M ′ → M un homomorphisme de B-modules de type fini, supposons M plat sur A. Alors
les conditions suivantes sont équivalentes :

(i) u est injectif, et Cokeru est plat sur A.

(ii) u⊗A k : M ′ ⊗A k →M ⊗A k est injectif

(où k désigne le corps résiduel de A).

(i)⇒(ii) en vertu de 1.1, prouvons la réciproque. Tout d’abordu est injectif, car il suffit de le
vérifier sur les gradues associés, òu cela ŕesulte d’un carŕe commutatif que le lecteurécrira. Soit
M ′′ sonCoker, on a donc une suite exacte

0→M ′ →M →M ′′ → 0

d’où par la suite exacte desTor, compte tenu de l’hypoth̀ese (ii) et deTorA1 (M,k) = 0, la relation
TorA1 (M ′′, k) = 0, doncM ′′ est plat surA par le th́eor̀eme 5.6.

Corollaire 5.8 Sous les conditions de 5.6, soit J un idéal de B contenant IB et contenu dans
le radical. Soient Â le complété I-adiques de A et B̂ et M̂ les complétés J-adiques de B et M .
Pour que M soit A-plat, il faut et il suffit que M soit Â-plat.

(N.B. la suffisance ŕesulterait d́ejà facilement de 3.2). On utilise le critère (iii) de 5.6 dans la
situation(A,B, I,M) et dans la situation(Â, B̂, IÂ, M̂). On constate que les conditions obte-
nues pour l’un et l’autre cas sontéquivalentes, grâceà 3.2.

Corollaire 5.9 Soient A → B → C des homomorphismes locaux d’anneaux locaux noethé-
riens,M unC-module de type fini (N.B.C n’intervient que pour pouvoir mettre une condition de
finitude surM ). On supposeB plat surA. Soit k le corps résiduel deA. Conditions équivalentes :

(i) M est plat sur B.

(ii) M est plat sur A, et M ⊗A k est plat sur B ⊗A k.

L’implication (i)⇒(ii) est triviale, prouvons (ii)⇒(i). On applique le crit̀ere (iii) de 5.6à
(B,C,mB = I,M), commeM ⊗B (B/I) = M ⊗B (B⊗A k) = M ⊗A k, la premìere condition
de ce crit̀ere signifie pŕeciśement queM⊗Ak est plat surB⊗Ak, parfait. La deuxìeme condition100
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du crit̀ere est v́erifiée parce queM est plat surA etB plat surA, par une formule d’associativité
du produit tensoriel. — Bien entendu, se référantà 5.5 au lieu de 5.6, on obtient unénonće
analogue sans condition noethérienne et de finitude, quand en suppose en revanche que l’idéalm
deA est nilpotent. (Le fait quem ait ét́e pris maximal n’est d’ailleurs pas intervenu ; mais c’est
en un sens le cas “m maximal” qui est “le meilleur possible”).

6 Morphismes plats et ensembles ouverts

Rappelons d’abord quelques résultats sur les ensembles constructibles, qui sont d’ailleurs
démontŕes dans des notes en circulation du Séminaire Dieudonńe-Rosenlicht sur les Schémas4.

SoitX un espace topologique. On dit avec Chevalley qu’une partie deX estconstructiblesi
elle est ŕeunion finie de parties localement fermées.

Lemme 6.1 Soit X un espace topologique noethérien, soit Z une partie de X . Pour que Z soit
constructible, il faut et il suffit que pour toute partie fermée irréductible Y de X , Z ∩ Y est non
dense dans Y ou contient une partie ouverte non vide de l’espace Y .

On en d́eduit, utilisant un lemme bien connu d’Algèbre Commutative :

Lemme 6.2 (Chevalley) Soit f : X → Y un morphisme de type fini de préschémas, avec Y
noethérien. Alors f(X) est constructible.

Lemme 6.3 Soient X un espace topologique noethérien dont toute partie fermée irréductible
admet un point générique, U une partie constructible de X , x ∈ X . Pour que U soit un voisinage
de x, il faut et il suffit que toute générisation y de x (i.e. tout y ∈ X tel que x ∈ ȳ) soit dans U .

En particulier

Corollaire 6.4 Soit X un espace topologique noethérien dont toute partie fermée irréductible
admet un point générique, U une partie de X . Pour que U soit ouverte, il faut et il suffit qu’elle
satisfasse les deux conditions suivantes :

(a) U contient toute générisation de chacun de ses points

(b) si x ∈ U , alors U ∩ x̄ contient une partie ouverte non vide de l’espace x̄.101

En effet, U est nécessairement constructible grâce à 6.1, et on applique le critère 6.2 qui
prouve que U est un voisinage de ses points.

Corollaire 6.5 Soit f : X → Y un morphisme de type fini de préschémas, avec Y localement
noethérien, x un point de X , y = f(x). Pour que f transforme toute voisinage de x en un
voisinage de y, il faut et il suffit que pour toute générisation y′ de y, il existe une générisation x′

de x telle que f(x′) = y′.
4Cf. EGA 0III 9, EGA IV 1.8 et 1.10.
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On peutévidemment supposer queX et Y sont affines, donc noethériens. La condition est
suffisante, car il suffit de prouver quef(X) est un voisinage dey, or f(X) est constructible par
6.1, et il suffit d’appliquer le crit̀ere 6.3. La condition est nécessaire, car soitY ′ = y′, et soitF
la réunion des composantes irréductibles def−1(Y ′) qui ne contiennent pasx. AlorsX − F est
un voisinage ouvert dex, donc son image est un voisinage dey, et a fortiori contienty′, donc
il existex′1 ∈ X − F tel quef(x′1) = y′. Consid́erons une composante irréductible def−1(Y ′)
contenantx′1, elle contient ńecessairementx (car autrement elle serait contenue dansF ), soitx′

son point ǵeńerique. C’est une ǵeńerisation dex, et f(x′) est une ǵeńerisation def(x′1) = y′

contenue dansY ′, donc est́egalày′, cqfd.

Théorème 6.6Soient f : X → Y un morphisme localement de type fini, avec Y localement
noethérien, F un faisceau cohérent sur X de support X , plat par rapport à Y . Alors f est un
morphisme ouvert (i.e., transforme ouverts en ouverts).

Il suffit de prouver le crit̀ere 6.5 pour tout pointx ∈ X. Or les ǵeńerisationsx′ dex corres-
pondent aux id́eaux premiers deOx, cellesy′ dey correspondent aux idéaux premiers deOy, et il
faut donc v́erifier que tout id́eal premier deOy est induit par une id́eal premier deOx. OrFx est
un Ox module non nul etOy plat, donc fid̀element plat surOy par 2.2. On peut donc appliquer
2.3, ce qui ach̀eve la d́emonstration.

Remarques. Comme la platitude se conserve par extension de la base, on voit que sous les
conditions de 6.5f est m̂emeuniversellement ouvert. J’ignore cependant, lorsqueY est int̀egre
et X de type fini surY , si f induit sur toute composanteXi deX un morphisme ouvert, ou
même seulement́equidimensionnel5 i.e. dont toutes les composantes des fibres ont même di-102
mension (on sait seulement queXi domineY ). La question est liéeà la suivante : soitA → B
un homomorphisme local d’anneaux locaux noethériens, tel queB soit plat surA etmB soit un
idéal de d́efinition deB, (ce qui implique d’ailleursdimB = dimA). Est-il vrai que pour tout
idéal premier minimalpi deB, on adimB/pi = dimB ? Signalons seulement que la réponsèa
la premìere question est négative quand on remplace l’hypothèse de platitude de 6.5 par la seule
hypoth̀ese quef soit universellement ouvert.

Lemme 6.7 Soient A un anneau intègre noethérien, B une A-algèbre de type fini, M un B-
module de type fini. Alors il existe un élément non nul f de A tel que Mf soit un module libre
(a fortiori plat) sur Af .

Soit K le corps des fractions deA, alorsB ⊗A K est une alg̀ebre de type fini surK, et
M ⊗AK un module de type fini sur cette dernière. Soitn la dimension du support de ce module,
nous raisonnerons par récurrence surn. Si n < 0 i.e. siM ⊗A K = 0, alors prenant un nombre
fini de ǵeńerateurs deM surB, on voit qu’il existe unf ∈ A qui annule ces ǵeńerateurs, donc
M , d’oùMf = 0 et on a gagńe. Supposonsn ≥ 0. On sait que leB-moduleM admet une suite
de composition dont les quotients successifs sont isomorphesà des modulesB/pi, lespi étant

5La réponseà la deuxìeme question est affirmative, celleà la premìere ńegative m̂eme sif est étale ; cf.
EGA IV 12.1.1.5 et EGA ErrIV 33.
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des id́eaux premiers deB. Comme une extension de modules libres est libre, on est ramené au
cas òuM lui-même est de la formeB/p, ou encore identiquèaB,B étant uneA-algèbreintègre.
Appliquant le lemme de normalisation de Noetherà laK-algèbreB ⊗A K, on voit facilement
qu’il existe unélémentf non nul deA tel queBf soit entier sur le sous-anneauAf [t1, . . . , tn],
où lesti sont des ind́etermińees. Donc on peut déjà supposerB est entier surC = A[t1, . . . , tn],
c’est donc unC-module de type fini sans torsion. Soitm son rang, il existe donc une suite exacte
deC-modules :

0→ Cm → B →M ′ → 0

où M ′ est unC-module de torsion. Il s’ensuite que la dimension de Krull duC ⊗A K-module
M ′ ⊗A K est strictement inf́erieur à cellen deC ⊗A K. D’après l’hypoth̀ese de ŕecurrence,
il s’ensuite que,̀a condition de localiser par rapportà unf non nul convenable deA, on peut
supposer queM ′ est unA-module libre. D’autre part,Cm est unA-module libre. DoncB est103
alors unA-module libre, on a fini.part 21

Lemme 6.8 Soient A un anneau noethérien, B une algèbre de type fini sur A, M un B-module
de type fini, p un idéal premier de B, q l’idéal premier qu’il induit sur A. On suppose Mp plat
sur Aq (ou sur A, c’est pareil). Alors il existe un g ∈ B − p tel que

(a) (M/qM)g est plat sur A/q.

(b) TorA1 (M,A/q)g = 0.

En effet, appliquant 6.7̀a (A/(q), B/qB,M/qM) on voit d’abord qu’il existe unf dans
A − q tel que (M/qM)f soit plat surA/q. D’autre part, commeMp est plat surA, on a
TorA1 (M,A/q)p = TorA1 (Mp, A/q) = 0, donc commeTorA1 (M,A/q) est unB-module de type
fini, il existe ung ∈ B − p tel qu’on ait (b). On peut alors (remplaçantg pargf ) supposer qu’on
a en m̂eme temps (a), ce qui prouve le corollaire.

Corollaire 6.9 Avec les notations de 6.8, pour tout idéal premier p′ de B contenant p et ne
contenant pas g, Mp′ est plat sur A (ou, ce qui revient au même, sur Aq′ , où q′ est l’idéal premier
de A induit par p′).

Il suffit d’appliquer le crit̀ere 5.6 (ii) au système (A,Bq′ , q,Mq′), en utilisant la localisation
desTor.

Théorème 6.10Soit f : X → Y un morphisme de type fini, avec Y localement noethérien, et
soit F un faisceau cohérent sur X . Soit U l’ensemble des points x ∈ X tels que Fx soit plat sur
Of(x). Alors U est un ensemble ouvert.

Démonstration : On peut supposerX et Y affines, d’anneauxB etA, doncF défini par un
B-moduleM de type fini. On applique le critère 6.4. La condition (a) est vérifiée trivialement
par 1.2 (i), restèa vérifier la condition (b) de 6.4. C’est ce qui aét́e fait dans le lemme 6.8 et le
corollaire 6.9.
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Dans beaucoup de questions, la forme plus faible suivante du théor̀eme 6.10 est suffisante
(qui résulte d́ejà du lemme 6.7, et ne nécessite donc ni la technique des constructibles, ni le104
théor̀eme 5.6) :

Corollaire 6.11 Sous les conditions de 6.10, si on suppose Y intègre, alors il existe un ouvert
non vide V dans Y tel que F soit plat relativement à Y en tous les points de f−1(V ).

En effet, l’ensemble ouvertU contient la fibre du point ǵeńerique deY (puisque l’anneau local
de ce point est un corps), donc il contient un ouvert de la formef−1(V ), X étant de type fini
surY . De 6.11, on conclut aussi facilement le résultat suivant, òuY est suppośe noeth́erien (mais
pas ńecessairement intègre) : il existe une partition deY en des parties localement ferméesYi
telles que (munissantYi de la structure ŕeduite induite)F induise sur chaqueXi = X ×Y Yi un
faisceau plat par rapportàYi.
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Expośe V

Le groupe fondamental : ǵenéralit és

105

0 Introduction

Le pŕesent Śeminaire est la suite du Séminaire 1960. Nous référonsà ce dernier par des sigles
tels que (SGA I 9.7) qui signifie : Śeminaire de Ǵeoḿetrie Algébrique, expośe I, No 9.7. Les
numéros des exposés de 1961 suivront ceux de 1960. Nous référons aux́Eléments de Ǵeoḿetrie
Algébrique de Dieudonńe-Grothendieck par des sigles tels que (EGA I 8.7.3).

Le pŕesent expośe ŕesume (avec de légers compĺements) les derniers exposés de 1960, qui
n’avaient paśet́e ŕediǵes.

Comme en 1961, nous nous limiterons en règle ǵeńerale à des pŕesch́emas localement
noeth́eriens, bien que souvent cette restriction soit inessentielle. Nous admettrons dans l’exposé
VI la théorie de la descente fidèlement plate, ŕesuḿee dans Śeminaire Bourbaki No 190. S’il y
a lieu, nous en donnerons un exposé plus d́etaillé dans un exposé ult́erieur1, une fois que le lec-
teur aura eu l’occasion de se convaincre de l’utilité de cette technique, pour la théorie du groupe
fondamental.

1 Présch́emaà groupe fini d’opérateurs, présch́ema quotient

SoientX un pŕesch́ema,G un groupe fini oṕerant surX par automorphismes,à droite pour
fixer les id́ees. SiX est affine d’anneauA,G opère donc par automorphismesà gauche surA.

Pour tout pŕesch́ema Z, G opère à gauche sur l’ensembleHom(X,Z), on peut donc
consid́erer l’ensemble

Hom(X,Z)G

1CF. Exp. VI et Exp. VIII
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des morphismes invariants parG. Il dépend fonctoriellement deZ, on peut se demander si ce
foncteur est “repŕesentable”, i.e. isomorphèa un foncteurZ 7→ Hom(Y, Z). Cela signifie qu’on106
peut trouver un pŕesch́emaY , et un morphisme invariant parG

p : X → Y

tel que pour toutZ, l’application correspondanteg 7→ gp

Hom(Y, Z)→ Hom(X,Z)G

soit bijective. On dit alors que(Y, p) est unprésch́ema quotientdeX parg (il est d́etermińe à
isomorphisme unique près).

Proposition 1.1 Soient A un anneau sur lequel le groupe fini G opère à gauche, B = AG le
sous-anneau des invariants de A, X = Spec(A) et Y = Spec(B), p : X → Y le morphisme
canonique (évidemment invariant par G). Alors

(i) A est entier sur B i.e. p est un morphisme entier.
(ii) Le morphisme p est surjectif, ses fibres sont les trajectoires de G, la topologie de Y est

quotient de celle de X .
(iii) Soit x ∈ X, y = p(x), Gx le stabilisateur de x, alors κ(x) est une extension algébrique

quasi-galoisienne de κ(y) et l’application canonique deGx dans le groupe Gal(κ(x)/κ(y))
des κ(y)-automorphismes de κ(x) est surjectif.

(iv) (Y, p) est un préschéma quotient de X par G.

Les énonćes (i) (ii) (iii) sont bien connus en algèbre commutative2 et sont mis seulement
pour ḿemoire, sauf l’assertion sur la topologie, qui provient du fait géńeral suivant, conśequence
facile du th́eor̀eme de Cohen-Seidenberg : un morphisme entier est fermé (i.e. transforme ferḿes
en ferḿes). Notons tous de suite :

Corollaire 1.2 Sous les conditions précédentes, l’homomorphisme naturel OY → p∗(OX)G est
un isomorphisme.

Cela ŕesulte aussitôt de la formule

(S−1A)G = S−1(AG)

valable pour toute partie multiplicativement stableS deB = AG (formule qui se module, et
s’énonce plus ǵeńeralement pour un changement de baseA→ A′ qui estplat), appliqúee au cas
où S est engendré par uńelémentf deB.

L’assertion (ii) et cor. 1.2 impliquent facilement (iv) ; plus géńeralement, on aura ceci :107

Proposition 1.3 Soient X un préschéma à groupe d’automorphismes finis G, p : X → Y un
morphisme affine invariant tel que OY

∼→ p∗(OX)G. Alors les conclusions (i) (ii) (iii) (iv) de 1.1
sont encore valables.

2Cf. N. Bourbaki, Alg. Comm. Chap. 5,§1 et§2, th. 2.
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En effet, pour (i) (ii) (iii) on peut supposerY doncX affine, et siB,A sont leurs an-
neaux, l’hypoth̀ese impliqueB = AG, il suffit d’appliquer 1.1. Pour (iv), on utilise (ii) et
OY = p∗(OX)G.

Corollaire 1.4 Sous les conditions de 1.3, pour tout ouvert U de Y , U est un quotient de
X|U = p−1(U) par G.

En effet,p−1(U)→ U induit parp satisfait aux m̂emes hypoth̀eses quep.

Si maintenantX est unZ-présch́ema et les oṕerations deG sont desZ-automorphismes,
alors par (iv)Y est unZ-présch́ema. Ceci dit :

Corollaire 1.5 Pour que X soit affine resp. séparé sur Z, il faut et il suffit que Y le soit. Si X
est de type fini sur Z, il est fini sur Y ; si de plus Z est localement noethérien, Y est de type fini
sur Z.

CommeX est affine et a fortiori śepaŕe surY , siY est affine resp. śepaŕe surZ,X l’est aussi.
Réciproquement, supposonsX affine surZ, prouvons queY l’est : on peut gr̂aceà 1.4 supposer
Z affine, et on est ramené à prouver que siX est affine,Y l’est, ce qui ŕesulte de la d́etermination
explicite deY commeSpec(A)G faite dans 1.1. De m̂eme, commep : X → Y est entier donc
universellement ferḿe, et surjectif, il s’ensuit que siX est śepaŕe surZ, Y l’est aussi (lemmèa
dégager !) ; en effet, dans le diagramme

X ×Z X
p×Zp // Y ×Z Y

X

∆X/Z

OO

p // Y

∆Y/Z

OO

le morphismeX×ZX → Y ×Z Y est ferḿe, donc transforme la diagonale (fermée) deX×ZX
en une partie ferḿee deY ×Z Y , qui n’est d’ailleurs autre que la diagonale de ce dernier puisque
p est surjectif. — SiX est de type fini surZ, il l’est a fortiori sur Y donc il est fini surY
(puisqu’il est d́ejà entier surY ). Supposons de plusZ localement noeth́erien, prouvons queY
est de type fini surZ. On peut gr̂aceà 1.4 supposerZ affine. Comme l’espace topologiqueX
est quasi-compact et quep : X → Y est surjectif,Y estégalement quasi-compact donc réunion
finie d’ouverts affines, et par 1.4 on est ramené au cas òu Y est affine, doncX affine. Mais alors108
l’anneauA deX est une alg̀ebre de type fini sur l’anneauC deZ qui est noeth́erien, et il est
connu queB = AG est alorśegalement une algèbre de type fini surC (carA sera entìere, donc
finie sur une sous-algèbreB′ deB de type fini surC, donc commeB′ est noeth́erien,B est
également finie surB′, donc de type fini surC).part 22

Corollaire 1.6 Pour que X soit affine resp. un schéma, il f et s que Y le soit.109

Définition 1.7 Soit X un préschéma où un groupe fini G opère à droite. On dit que G opère de
façon admissibles’il existe un morphisme p : X → Y ayant les propriétés de 1.3 (ce qui implique
que X/G existe et est isomorphe à Y ).
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Proposition 1.8 Soit X un préschéma où le groupe fini G opère à droite. Pour que G opère de
façon admissible, il faut et il suffit que X soit réunion d’ouverts affines invariants par G, ou
encore que toute trajectoire de G dans X soit contenue dans un ouvert affine.

Cette dernìere condition est́evidemment impliqúee par la première, età son tour elle l’im-
plique ; car soitT une trajectoire deG, U un ouvert affine la contenant, l’intersection des trans-
formés deU par lesg G est alors un ouvertU ′ stable parG, contenantT et contenu dans l’ouvert
affineU . Comme dansU , toute partie finie a un système fondamental de voisinages ouverts af-
fines, il existe un voisinage ouvert affineV deT contenu dansU ′. Ces transforḿes par lesg G
sont donc affines et contenus dansU ′ qui estsépaŕe, donc leur intersectionU ′′ est un ouvert affine
qui est invariant parG et contientT . — Ceci pośe, la condition envisaǵee dans 1.8 estnécessaire,
car on prendra les images inversesXi d’ouverts afiinesYi recouvrantY . Elle est suffisante, car
on peut alors par 1.1 construire les quotientsYi = Xi/G ; dans chaqueYi l’image deXi ∩ Xj

est un ouvertYij s’identifiant àXij/G par 1.4, en particulier on en déduit des isomorphismes
Yij

∼→ Yji permettant de recoller lesYi pour construireY . Serre pŕefère construire directement
l’espace topologique quotientY deX parG, mettre dessus le faisceeaup∗(OX)G et vérifier que
Y devient un pŕesch́ema et qu’on est alors sous les conditions de 1.3.

Corollaire 1.7 Si G opérant sur X est admissible, il en est de même pour tout sous-groupe H
de G (donc X/H existe).

Cela peut aussi se vérifier directement sur la situation 1.3, en notant qu’on peut toujours
supposerX affine sur unZ et less ∈ G opèrent parZ-automorphismes (on prend par exemple
Z = Y ) ; on en effet :

Corollaire 1.8 Supposons X affine sur Z, et les opérations de G des Z-automorphismes. Alors
G opère sur X de façon admissible. Si X est défini par un faisceau quasi-cohérent A d’algèbres,
Y est défini par le faisceau A G des invariants de A par G.

Proposition 1.9 Supposons que G opère de façon admissible sur X , et que X/G = Y soit
un préschéma sur Z. Considérons un morphisme de changement de base Z ′ → Z, posons
X ′ = X ×Z Z ′, Y ′ = Y ×Z Z ′, de sorte que G opère encore par transport de structure sur
X ′, le morphisme p′ : X ′ → Y ′ étant invariant. Si Z ′ est plat sur Z, alors p′ satisfait encore les
hypothèses de 1.3 i.e. O ′Y → p′∗(OX′)

G est un isomorphisme (p′ étant de toutes façons affine).
Donc G opère de façon admissible sur X ′, et (X/G)×Z Z ′ ≈ (X ×Z Z ′)/G.

On peutévidemment supposerZ = Y , on est rameńe au cas òu de plusY etY ′ sont affines.
Il faut montrer que siB est le sous-anneau des invariants deG opérant dansA, et siB′ est une
algèbre surB plate surB, alorsB′ est la sous-alg̀ebre des invariants deA′ = A ⊗B B′. C’est
immédiat, car la suite exacte

0 −→ B
i−→ A

j−→ A(G)

(où le dernier terme signifie une puissance deA, et òu j(x) est le syst̀eme dess · x− x, s ∈ G)
reste exacte par tensorisation parA′.

85



V

On fera attention que l’hypothèse de platitudéetait essentielle pour la validité du ŕesultat ; en
particulier, siY ′ est un sous-présch́ema ferḿe deX (par exemple m̂eme un point ferḿe deX),
X ′ son image inverse dansX, alorsY ′ ne s’identifie pasen ǵeńeralàX ′/G. Nous verrons qu’il
en est ńeanmoins ainsi siX estétale surY .

Pour finir, donnons un formalisme aussi commode que trivial. SoitY un pŕesch́ema. Comme
dans la cat́egorie des pŕesch́emas, les sommes directes existent, on peut pour tout ensembleE
consid́erer le pŕesch́ema somme d’une famille(Yi)i∈E de pŕesch́emas tous identiques̀a Y , ce
présch́ema sera notéY × E. Il est caract́eriśe par la formule110

(∗) Hom(Y × E,Z) = Hom(E,Hom(Y, Z))

où le deuxìemeHom désigneévidemment l’ensemble des applications de l’ensembleE dans
l’ensembleHom(Y, Z). On a un morphisme canonique

Y × E → Y

faisant deY ×E un pŕesch́ema surY . Comme les produits fibrés commutent aux sommes directes
(dans la cat́egorie des pŕesch́emas) on aura, siY est un pŕesch́ema sur un autreZ, pour un
changement de baseZ ′ → Z :

(Y × E)×Z Z ′ = (Y ×Z Z ′)× E

(formule surtout utile siZ = Y ). D’autre part, on conclut trivialement de la définition

(Y × E)× F = Y × (E × F ) = (Y × E)×Y (Y × F )

(la dernìere formule cependant résultant de la commutativité signaĺee plus haut)

PourY fixé, on peut regarderY ×E comme un foncteur enE, à valeurs dans les présch́emas
surY , foncteur qui commute aux produits finis d’après la formule pŕećedente, (ce qui permet par
exempleà tout groupe ordinaireG de faire correspondre un schéma en groupesY × G surY ,
qui sera fini surY si Y l’est, etc. . .). Plus ǵeńeralement, ce foncteur est “exactà gauche”, mais
nous n’aurons pas̀a nous en servir ici. Ce foncteur commute aussi trivialement aux sommes
directes, et il est aussi “exactà droite”, comme on voit aussitôt sur la formule de d́efinition (∗).
En particulier, si le groupe finiG opèreà droite dans l’ensembleE, alors il op̀ereà droite dans
Y × E, et on a

(Y × E)/G = Y × (E/G)

où en fait le quotient du premier membre satisfait aux conditions de 1.3 (c’est immédiat).

2 Groupes de d́ecomposition et d’inertie. Casétale

Soit G groupe fini oṕerantà droite sur le pŕesch́emaX. Si x ∈ X, on appellegroupe de111
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décomposition dex le stabilisateurGd(x) dex. Ce groupe op̀ere canoniquement (à gauche) sur
le corps ŕesiduelκ(x), et l’ensemble deśeléments deGd(x) qui op̀erent trivialement est appelé
groupe d’inertiedex, not́eGi(x).

Supposons queG opère surX de façon admissible et queY soit un pŕesch́ema sur un
présch́emaZ. Fixons-nous unz ∈ Z, et une extension algébriquement closeΩ deκ(z) ayant
un degŕe de transcendance supérieurà celui desκ(x)/κ(z), où x est un point deX au-dessus de
z. On peut regarderSpec(Ω) comme unZ-sch́ema, et les points deX à valeurs dansΩ corres-
pondent aux homomorphismes deκ(z)-algèbresκ(x)→ Ω, où x est un point deX au-dessus de
z ; commeΩ a ét́e prise assez grande, tout pointx deX au-dessus dez est la localit́e d’un point
deX à valeurs dansΩ. SiX(Ω) etY (Ω) désignent respectivement l’ensemble des points deX
etY à valeurs dansΩ, on a une application naturelle

X(Ω)→ Y (Ω),

d’autre part,G opère surX(Ω) et l’application pŕećedente est invariante parG. Ceci pośe, les
conclusions (ii) et (iii) de 1.3 s’interprètent aussi ainsi :l’application préćedente est surjective
et identifieY (Ω) au quotientX(Ω)/G. De plus, six est la localit́e dea ∈ X(Ω), alors le
stabilisateur dea dansG n’est autre que le groupe d’inertieGi(x). Tout ceci est d’ailleurs vrai
sans supposerΩ “assez grand”, cette dernière hypoth̀ese sert uniquementà assurer qu’on peut
caract́eriser le groupe d’inertie de toutélément deX au-dessus dez comme un stabilisateur
“géoḿetrique”. On en conclut par exemple aussitôt :

Proposition 2.1 Faisons une extension de la base Z ′ → Z, d’où X ′ = X×Z Z ′. Soit x′ un point
de X ′, x son image dans X , alors on a Gi(x) = Gi(x

′).

Il suffit, dans les consid́erations ci-dessus, de prendre pourΩ une extension assez grande de
κ(z′) (où z, z′ sont les images dex, x′ dansZ,Z ′).

Proposition 2.2 Sous les conditions de 1.3, supposons Y localement noethérien, X fini sur Y .
Soit H un sous-groupe de G, considérons X ′ = X/H (cf 1.7), soit x ∈ X , x′ son image dans X ′112
et y son image dans Y .

(i) Si H ⊃ Gd(x), alors l’homomorphisme Oy → Ox′ induit un isomorphisme sur les
complétés.

(ii) Si H ⊃ Gi(x), alors l’homomorphisme Oy → Ox′ est étale i.e. X ′ est étale sur Y en x′.

SoitY1 = Spec(Ôy), faisons le changement de baseY1 → Y , on trouve unX1 = X ×Y Y1 fini
surY1, sur lequelG opère, le quotient́etantY1 par 1.9. Soity1 l’unique point deY1 au-dessus de
y, commeκ(y) = κ(y1), il s’ensuit que la fibre deX eny est isomorphèa celle deX1 eny1, d’où
un unique pointx1 deX1 au-dessus dex. D’ailleurs par 1.9 on auraX1/H = X ′1 = X ′ ×Y Y1,
soit x′1 l’image dex1 dansX ′1, il est au-dessus dex′, et on v́erifie facilement (X ′ étant de type
fini sur Y ) que l’homomorphismeOx′ → Ox′1

induit un isomorphisme sur les complét́es. Donc
on est rameńe au cas òu Y est le spectre d’un anneau local complet, soitB, doncX le spectre

87



V

d’un anneau finiA surB, compośe d’un nombre fini d’anneaux locauxAx correspondants aux
pointsxi deX surY . SiA0 correspond̀ax = x0, alorsA s’identifieà l’anneauHomGd(G,A0)
des fonctionsf : G → A0 telles quef(st) = sf(t) pour s ∈ Gd, les oṕerations deG sur
ces fonctionśetant d́efinies par(uf)(t) = f(tu). On voit donc que siH est un sous-groupe
quelconque deG, alorsAH est l’anneau des fonctionsf : G→ A0 telles que

f(stu) = sf(t) pours ∈ Gd, u ∈ H

donc c’est un anneau semi-local dont les composants locaux correspondent aux doubles classes
GdaH dansG, à la double classe définie para ∈ G correspondant (grâce à l’application
f 7→ f(a)) le sous-anneauAH(a)

0 deA0, où H(a) = Gd ∩ aHa−1. D’ailleurs, le composant
local deAH correspondant̀a l’imagex′ de x est aussi celui correspondantà la double classe
GdH de l’élément neutre, son composant local est doncAGd∩H0 . Si doncGd ∈ H, on trouve
AGd0 = AG = B, ce qui prouve (i). Pour prouver (ii), on peut, en passantà une extension finie
plate convenable deA, et utilisant 2.1, se ramener au cas où l’extension ŕesiduelleκ(x)/κ(y) est
triviale. Mais alorsGi(x) = Gd(x), et on est rameńe au cas pŕećedent.part 23

113
Corollaire 2.3 Sous les conditions de 2.2, supposons Gi(x) = (e), alors X est étale sur Y en x.
Donc si Gi(x) = (e) pour tout x ∈ X , alors X → Y est un morphisme étale.

Il y a une ŕeciproque partielle :

Corollaire 2.4 Supposons X connexe et le groupe G fidelè sur X . Pour que p : X → Y = X/G
soit étale, il faut et il suffit que les groupes d’inertie des points de X soient réduits à l’élément
neutre. S’il en est ainsi, G s’identifie au groupe de tous les Y -automorphismes du Y -schéma X .

Compte tenu de 2.3, on peut supposerX étale surY . Mais si uns ∈ G est dans unGi(x), il
résulte alors de I 5.4 que s opère trivialement surG, donc est l’́elément unit́e puisqueG est fid̀ele,
ce qui prouve la première assertion. Soitu un Y -automorphisme deX, soitx ∈ X. D’après la
proposition 1.3, il existe uns ∈ G tel ques(x) = u(x), et induisant le m̂eme homomorphisme
résiduelκ(x) = κ(x′) queu. Par loc. cit. on a doncs = u, ce qui ach̀eve la d́emonstration.

Remarque 2.5 L’hypothèse queG opère fid̀element n’est́evidemment par surabondante dans le
corollaire 2.4. Il en est de m̂eme de l’hypoth̀ese queX est connexe, comme on voit par exemple
en prenantX = Y ×E,E étant un ensenble fini, etG le groupe des permutations deE :G opère
avec force inertie, ńeanmoins(Y ×E)/G = Y × (E/G) = Y , etX estétale surY . Prenant pour
G un groupe strictement plus petit que le groupe symétrique deE, mais oṕerant transitivement
surE, on voit qu’il y aura aussi desY -automorphismes deX ne provenant pas deG.

L’exemple type d’un groupeG opérant sant inertie est celui deY × G, sue lequel on fait
opérerG grâceà ses oṕerations sur le facteurG par translations̀a droite : unY -présch́emaX à
groupe d’oṕerteurs̀a droiteGest dittrivial s’il est isomorpèaY ×G.

Pour faire le lien entre le présch́emas̀a groupes finis d’oṕerateurs et la notion de fibré princi-
pal dans une catégorie(lien dont nous n’aurons pas besoin d’ailleurs pour la suite du séminaire,
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mais important dans d’autres contextes) les considérations suivantes sont utiles. Nous fixons un
présch́ema de baseY , et nous plaçons dans le catégorie desY -présch́emas. SiG est un groupe
fini, nous poserons pour abrégerGY = Y × G, c’est donc un sch́ema en groupes finis surY (cf114
n◦1), et siX est unY -présch́ema, on a

X ×Y GY = X ×G

(même ŕeférence). La donńee d’unY -morphismeX×Y GY → X équivaut donc̀a la donńee d’un
Y -morphismeX × G → X, i.e. à la donńee pour toutg ∈ G d’un Y -morphismeTg : X → X.
On constate aussitôt que pour que la donnée desTg définisse surX une structure de présch́ema
à groupe d’oṕerateursà droiteG, (i.e. Tgg′ = Tg′Tg, Te = idx) il faut et il suffit que leY -
morphisme correspondantX ×Y GY → X définisse surX une structure deY -présch́ema ‘a
Y -sch́ema en groupes d’opérateurs, (au sens géńeral des objets̀a C -groupe d’oṕerateurs dans
une cat́egorieC ). Supposons qu’il en soit ainsi. Rappelons queX est ditformellement principal
homog̀enesousGY

3 si le morphisme canonique

X ×Y GY → X ×Y X

dont les composantes sont respectivementpr1 et le morphisme de multiplication
π : X ×Y GY → X, est un isomorphisme. En l’occurence, identifiant le premier membreà
X ×G, le morphisme consid́eŕe est celui qui,̀a toutg ∈ G, associe le morphisne

(idX , Tg) = (idX ×Y Tg)∆X/Y : X → X ×Y X

et par suite, dire queX est formellement principal homogène sousGY signifie aussi queX×Y X
est isomorphèa la somme directe des transformées de la diagonale leśeléments(e, g) de
G × G(opérant surX ×Y X de façonévidente) òu e d́esigne l’́elément unit́e deG. Si on ne
veut pas distinguer la gquche et la droite et donner une formule qui reste applicable au produit de
plus de deux facteurs identiquesàX, on peut formuler la condition en disant que le morphisme
canonique

X ×G (G×G)→ X ×Y X

obtenu en attachant au couple(g, g′) le morphisme

(Tg, Tg′) = (Tg ×Y Tg′)∆X/Y : X → X ×Y X

et faisant oṕererG à qauche surG×G par l’homomorphisme diagonal ;

s(g, g′) = (sg, sg′),

est unisomorphisme.

La notion d’espace principal homogèneest d́eduite de celle de l’espace formellement prin-115
cipal homog̀ene en ajoutant un axiome supplémentaire, assurant que le “quotient” deX parGY

existe et est pŕeciśement l’object unit́e à droite de la catégorie, iciY . Cet axiome peut varier
3on dit plut̂ot maintenant :X est un pseudo-torseur sousGY .
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suivant le contexte, et s’explicite souvent le plus commodément (dans le yoga de la “descente”)
en exigeant que l’objet̀a oṕerateurs devienne “trivial” i.e. isomorphe au produitX ×Y GY (en
l’occurrenceX × G) par un changement de base convenable, de type préciśe (de telle façon,
en practique,̀a permettre la technique de descente ; cf. Grothendieck, Technique de descente et
théor̀emes d’existence en Géometrie Alǵebrique, Śem. Bourbaki No 190, pages 26 28)4. Dans
cet ordee d’id́ees, signalns ici la caractérisation des fibŕes principaux homog̀enes de groupeG
(au sens de loc.cit.) :

Proposition 2.6 Soient Y un préschéma localement noethérien, X un Y -préschéma à groupe
fini G d’opérateurs opérant à droite. Les conditions suivantes sont équivalentes :

(i) X est fini sur Y , Y = X/G, les groupes d’inertie des points de X sont réduits à l’unité.

(ii) Il existe un changement de base fidèlement plat et quasi-compact Y1 → Y tel que
X1 = X ×Y Y1 soit un Y1-préschéma à opérateurs trivial, i.e. isomorphie à Y1 ×G.

(ii bis) Comme (ii), mais Y1 → Y étant fini, étale, surjectif.

(iii) X est formellement principal homogène sous GY , et fidèlement plat et quasi-compact sur
Y .

Démonstration(i) ⇒ (ii bis) On prendraY1 = X, notant queX → Y est bien fini,́etale par 2.3
et surjectif. Montrons queX1 est alors trivial surY1, ce que ŕesultera du

Corollaire 2.7 Si (i) est vérifié et si X admet une section sur Y , alors X est un espace à
opérateurs trivial.

En effet, cette section permet de définir unG-morphismeX×G→ X, surjectif puisqueG est
transitif sur les fibres deX, injectif puisqueG opère sans inertie ; enfin, c’est un isomorphisme
local en virtu de I 5.3 puisqueX estétale surY . Donc c’est un isomorphisme.

(ii bis) implique trivialement (ii), qui implique (i) cas les ingrédients de (i) sont “invariants”116
par extension fidelèment plate quasi-compacte de la base (cf Séminaire Bourbaki cit́e plus haut
pour “fini” ; pour les groupes d’inertie, on applique 2.1 , et pourY = X/G, une ŕeciproque de
1.9 dans le cas d’un changement de basefidèlement plat, que nous avions oublié d’expliciter).

Nous avons prouv́e (i)⇒ (iii) en passant en prouvant (i)⇒ (ii bis). Enfin (iii) ⇒ (ii), cas la
premìere hypoth̀ese dans (iii) signifie préciśement puisqueX est fid̀element plat et quasi-compact
surY .

Définition 2.8 Un Y -préschéma X à groupe d’opérateurs à droite G satisfaisant les conditions
équivalentes de 2.6 est appelé un revêtement principal deY , de groupe de GaloisG.

4Cf. Exp. VIII pour la th́eorie de la descente plate.
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3 Automorphismes et morphismes de rev̂etementsétales

Proposition 3.1 Soit X étale séparé de type fini sur Y localement noethérien, soit G un groupe
fini opérant sur X par Y -automorphismes. Alors G opère de façon admissible et le préschéma
quotient X/Y est étale sur Y .

On ne suppose pasX fini sur Y , cependantX est quasi-projectif surY d’où l’existence de
X/G grâceà 1.8. Prouvons d’abord

Corollaire 3.2 Le morphisme X → X/G est étale.

On peut supposeŕevidemmentG transitif sur l’ensemble des composantes connexes deX,
puis par consid́eration du stabilisateur d’une composante connexe, queX est m̂eme connexe.
Enfin, on peut supposer queG opère fid̀element. Mais alors on voit comme dans 2.4 queG opère
sans inertie, donc par 2.3 il s’ensuit queX → X/G estétale. On conclut grâce au

Lemme 3.3 (remords à l’exposé I). Soient X → X ′ → Y des morphismes de type fini, x un
point de X , x′ et y ses images. On suppose Y localement noethéien. Si deux des morphismes
envisages sont étales aux points marqués, il en est de même de troisisième.

Il reste seulement̀a regarder le cas où X → X ′ etX → Y sontétales enx et prouver que
X ′ → Y l’est enx′ (ce qui est le cas dont nous avons besoin pour 3.1). Faisant une extension117
plate convenable de la baseY , on est rameńe au cas òu l’extension ŕesiduelleκ(x)/κ(y) est
triviale. Consid́erons les homomorphismesOy → Ox′ → Ox et les homomorphismes déduits par
passage aux complét́es, l’hypoth̀ese signifie quêOy → Ôx etÔx′ → Ôx sont des isomorphismes,
d’où aussit̂ot queÔy → Ôx′ en est un, ce qui prouve le lemme.

Corollaire 3.4 Si X est fini et étale sur Y , alors X/G est fini et étale sur Y .

Proposition 3.5 Soient X ,X ′ deux revêtements étales de Y . Alors tout Y -morphisme
f : X → X ′ se factorise en le produit d’un morphisme étale surjectifX → X ′′ et de l’immersion
canonique X ′′ → X ′ d’une partie X ′′ de X ′ à la fois ouverte et fermée.

On sait (I 4.8) quef estétale, donc un morphisme ouvert, d’autre partX étant fini surY , f
est ferḿe, doncf(X) = X ′′ est une partièa la fois ouverte et ferḿee deX ′. On a fini (N.B. il
suffisait queX ′, au lieu d’un rev̂etement́etale, soit non ramifíe surY ).

Corollaire 3.6 Avec les notations précédentes, X → X ′ est un épimorphisme strict dans la
catégorie des préschémas, et X ′ → X” est un monomorphisme (et même un monomorphisme
strict) dans la catégorie des préschémas.

La premìere assertion signifie par définition que la suite de morphismes

X ×X′′ X
pr1 //
pr2
// X // X ′′
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est exact, et cela résulte du fait queX → X ′′ est fini e t fid̀element plat, comme on voit facilement
(cf Grothendieck, loc cit). L’assertion duale pourX ′′ → X ′ est encore plus triviale.

Le corollaire 3.6 nous sera utile pour la théorie du groupe fondamental au No suivant ; il est
possible (pour ceux qui n’aiment pas la notion d’épimorphisme strict) de remplacer le corollaire
3.6 par telle variante que le lecteur arrangeraà son gôut personnal. Profitons seulemsnt de l’oc-
casion pour signaler qu’une factorisationf = f ′f ′′, avecf ′′ un épimorphisme strict etf ′ un118
monomorphisme, est nécessairement uniqueà isomorphisme unique près (dans toute catégorie) ;
cepandant, il peut exister en même temps une factorisationf = f1f2 ayant les propríet́es duals :
f2 est unépimorphisme,f1 un monomorphisme strict, (également uniquèa isomorphisme unique
près), qui ne soit pas isomorpheà la pŕećedente : il suffit de prendre par exemple la catégorie des
espaces vectoriels totologiques (sépaŕes, si on y tient), et pouru : X → X ′ un morphisme tel que
u(X) ne soit pas ferḿe.

Proposition 3.7 Soient Y un préschéma connexe localement noethérien, y un point de Y , Ω une
extention algébriquement close de κ(y). Pour tout X sur Y , on désigne par X(Ω) l’ensenble
des points de X à valueurs dans Ω. Soient X ,X ′ des revêtements étales de Y et u : X → X ′

un Y -morphisme tel que l’application correspondante X(Ω) → X ′(Ω) soit un isomorphisme.
Alors u est un isomorphisme.

On est imḿediatement ramené au cas òuX ′ est connexe. CommeX → X ′ est fini etétale,
on sait que le nombre géoḿetrique de points dans une fibre deX → X ′ est constant, et́egalà 1
si et seulment si le morphisme sonsidéŕe est un isomorphisme. Or ce nombre est aussi le nombre
d’éléments dans une fibre deX(Ω)→ X ′(Ω), d’où la conclusion.part 24

4 Conditions axiomatiques d’une th́eorie de Galois

Soit C une cat́egorie,F un foncteur covariant deC dans la cat́egorie des ensembles finis.
Supposons les conditions suivantes satisfaites :

(G 1) C a un objet final5 et le produit fibŕe de deux objets au-dessus d’un troisième dansC
existe (cet axiome peut aussi s’énoncer en disant que dansC les limites projectives finies
existent).

(G 2) Les sommes finies dansC existent (donc aussi un objet initialφC , jouant le r̂ole de l’en-
semble vide), ainsi que le quotient d’un objet deC par un groupe fini d’automorphismes.

(G 3) Soit u : X → Y un morphisme dansC , alors u se factorise en un produit

X
u′ // Y ′

u′′ // Y , avecu′ un épimorphismestrict et u′′ un monomorphisme, qui est
un isomorphisme sur un sommando direct deY .119

5Rappelons qu’un objete de C est appeĺe objet final si pour toutX dansC , Hom(X, e) a exactement un
élément. On d́efinit de façon duale un objet initial deC .
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(G 4) Le foncteurF est exact̀a gauche (i.e. transforme unité à droite en unit́e à droite, et com-
mute aux produits fibŕee).

(G 5) F commute aux sommes directes finies, transformeépimorphismes stricts eńepimor-
phismes, et commutee au passage au quotient par un groupe fini d’automorphismes.

(G 6) Soitu : X → Y un morphisme dansC tel queF (u) soit un isomorphisme, alorsu est un
isomorphisme.

Notre objet est construire un groupe topologiqueπ , limite projective de groupes finis, et une
équivalence de la catégorieC avec la cat́egorieC (π) des ensembles finis oùπ opère contin̂ument
(i.e. de telle façon que le stabilisateur d’un point soit un sous-goupe ouvert, ou encore qu’il
existe un groupe quotient discret qui opère d́ejà sur l’ensemble envisafé), l’équivalence construite
transformant le foncteur donnéF en le foncteur d’inclusiońevident deC (π) dans la cat́egorie
des ensembles finis. On notera tout de suite que la catégorieC (π) construitèa l’aide d’un groupe
topologiqueπ , et le foncteur d’inclusion préćedent, satisfont bien aux conditions (G 1)à (G 6).

Nous proćedons en plusieurśetapes.

a) Soitu : X → Y dansC . Pour queu soit un monomorphisme, il faut et il suffitF (u) le soit.
(Utilise (G 1), (G 4), (G 6)).
En effet, dire queu est un monomorphisme signifie que la projectionpr1 : X ×Y X → X
est un isomorphisme.

b) Tout objetX deC est artinien.
En effet, siX ′ → X ′′ → X sont des monomorphismes tels queF (X ′) et F (X ′′) aient
même image dansF (X), alors par a)F (X ′) → F (X ′′) est un isomorphisme, donc
X ′ → X ′′ est un isomorphisme par (G 6).

c) Le fonteurF est strictement pro-représentable. (cf. Grothendieck, Technique de descente
et th́eor̀emes d’existence en Géoḿetrie Algébrique, II, Śeminaire Bourbaki 195, février
1960).
En effet, d’apr̀es loc cit prop. 3.1 , cela résulte de b) et (G 4). On peut donc trouver un
syst̀eme projectif surI ordonńe filtrant :

P = (Pi)i∈I

dansC , consid́eŕe comme pro-objet deC , et un isomorphisme fonctoriel120

(∗) F (X) = HomPro(C )(P,X) = lim
−→
i

HomC (Pi, X)

Cet isomorphisme est réaliśe par uńelément

ϕ ∈ lim
←−
i

F (Pi) = F (P )
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On peut supposer de plus que les homomorphismes de transitionϕji : Pi → Pj(i ≥ j) sont
desépimorphismes, et quetout épimorphismePi → P ′ soit équivalent̀a unépimorphisme
Pi → Pj pourj ≤ i convenable (ce qui d́etermine le système projectifP de façon essen-
tiellement unigue).
Un objetX ∈ C est ditconnexes’il n’est pas isomorphèa la somme de deux objets deC
non isomorphes̀a l’objet initial φC .

d) LesPi sont connexes et non isomorphesà φC .
Si X est une unit́e à gauche, on aF (X) = ∅ par (G 5) appliqúe à la somme directe
d’une famille vide, et ŕeciproquement par (G 6). Donc siX ′ est un objet deC qui n’est
pas unit́e à gauche, i.e. tel queF (X ′) 6= ∅ , il n’existe aucun morphisme deX ′ dansX.
Donc si unPi est unit́e à gauche, alorsi est un plus grand́elément de l’snsemble d ;indices
ordonńe filtrant I, et la formule (∗) signifieraitF (X) = Hom(Pi, X) =ensemble ŕeduit
à unélément pour toutX, ce qui est absurde puisqueF (φC ) = ∅. Donc lesPi sont non
isomorphèaφC .
Supposons qu’on aitPi = F (A)q F (B), en particulier l’́elémentai deF (Pi), correspon-
dant par (∗) à l’homomorphisme identiquePi → Pi, est dansF (A) q F (B), par exemple
dansF (A). Cela signifie qu’il exisre unj ≥ i tel queϕij : Pj → Pi se factorise en
Pj → A → Pi = A q B, où la deuxìeme fl̀eche est le morphisme canonique. Donc
F (Pj) → F (Pi) se factorise enF (Pj) → F (A) → F (Pi) = F (A) q F (B), et comme
F (Pj)→ F (Pi) est surjectif par (G 5), il s’ensuit queF (B) = ∅ , doncB est isomophèa
φC .121

e) Tout morphismeu : X → Y dansC , avecX non isomorphèa φC et Y connexe, est un
épimorphisme strict. Tout endomorphisme d’un objet connexe est un automorphisme.
Consid́erons la factorisation (G 3) deu, commeX 6= φC il r ésulte de (G 6) queF (X) 6= ∅
doncF (Y ′) 6= ∅ doncY ′ 6= φC , doncY étant connexe,Y ′ s’identifie à Y , doncu est un
épimorphisme strict. Supposons queu soit un endomorphisme de l’objet connexeX, prou-
vons que c’est un automorphisme. En effet, on peut supposerX non isomorphèaφC , donc
u est unépimorphisme strict par ce qui préc̀ede, doncF (u) est unépimorphisme par (G
5), et commeF (X) est un ensemble fini,F (u) est bijectif. Doncu est un automorphisme
par (G 6).
En particulier,tout endomorphisme d’unPi est un automorphisme.

f) Les conditions suivantes sur unPi sont équivalentes: (i) L’application unjective naturelle
Hom(Pi, Pi) → Hom(P, Pi) ' F (Pi) est aussi surjective, i.e. pour toutu : P → Pi il
existe unv : Pi → Pi tel queu = vϕi (où ϕi est l’homomorphisme canoniqueP → Pi).
(ii) Le groupeAut(Pi) opère de façon transitive surF (Pi). (iii) Le groupeAut(Pi) opère
de façon simplement transitive surF (Pi).
En effet, identifiantHom(P, Pi) à F (Pi), l’application envisaǵee dans (i) n’est autre
que v � F (v)(ϕi). L’ équivalence des trois conditions provient alors du fait que
Hom(Pi, Pi) = Aut(Pi) et que l’application pŕećedente est d́ejà injective.
Un Pi satisfaisant les conditionśequivalences (i)(ii)(iii) de f) est appelégaloisien.
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g) Pour toutX dansC , il existe unPi galoisientel que toutu ∈ Hom(P,X) se factorise en

P
ϕi // Pi // X .

Soit J = Hom(P,X) = F (X), c’est un ensemble fini, donc il existe unPj tel que tout

u : P → X se factorise enP
j // Pj // X , ou encore tel que le morphisme naturel

P → XJ (J = Hom(P,X))

se factorise en

P
ϕj // Pj // XJ

En vertu de (G 3), le morphismePj → XJ se factorise en le produit d’un monomorphisme122
par unépimorphisme strict, que l’on peut prendre de la formeϕij : Pj → Pi. On est donc
rameńeà prouver quePi est galoisien. Soitk un indice≥ j tel que tout morphismeP → Pi
se factorise parP → Pk → Pi. Notons que le morphisme naturelPk → XJ se factorise
encore en le composé

Pk
ϕik // Pi

U // XJ

où la premìere fl̂eche est uńepimorphisme strict par e), et la deuxième un monomorphisme.
On veut prouver que pour un morphisme donnéψ : Pk → Pi , il existe ub endomorphismev
dePi tel queψ = vϕik. Mais pour toutu ∈ Hom(Pi, X) , consid́eronsuψ ∈ Hom(Pk, X)
, il est donc de la formeu′ϕik avec unu′ ∈ Hom(Pi, X) bien d́etermińe. L’application
u 7→ u′ deJ dansJ ainsi d́efinie parψ est d’ailleurs injective carψ est unépimorphisme
en vertu de e) ; elle est donc bijective puisque l’ensembleJ est fini. L’application bijective
u 7→ u′ deJ dansJ définit donc un isomorphismeα : XJ → XJ rendant commutatif le
diagramme

Pk
ϕik // Pi

U // XJ

α'
��

Pk
ψ // Pi

U // XJ

D’après les propríet́es d’unicit́e de la factorisation d’un morphisme en produit d’un mono-
morphisme par uńepimorphisme strict, il s’ensuit (puisqueψ lui aussi est uńepimorphisme
strict par e)) que l’on peut trouver un morphismev : Pi → Pi qui laisse le diagramme com-
mutatif, cqfd.
On en conclut en particulier queles Pi galoisiens forment un système cofinal dans le
syst̀eme des(Pj). On aura donc, puisque pour un objet galoisienPi on a

Hom(P, Pi) = Hom(Pi, Pi) = Aut(Pi),

par passagèa la limite :

Hom(P, P ) = lim
←−
i

Hom(P, Pi) = lim
←−
i

Hom(Pi, Pi) = lim
←−
i

Aut(Pi)

où la limite projective est prise sur lesPi galoisiens. D’ailleurs, moyennant l’identification123
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Hom(P, Pi) = F (Pi), et compte tenu queF transforméepimorphismes eńepimorphismes,
on voit que les homomorphismes de transition dans le système projectif pŕećedent sont
surjectifs. On conclut de tout ceci :

h) On a
Hom(P, P ) = Aut(P ) = lim

←−
i

F (Pi) = lim
←−
i

Aut(Pi),

où la limite projective est prise sur lesPi galoisiens.
En particulier,Aut(P ) apparâıt comme limite projective d’un système projectif de groupes
finis (les homomorphismes de transitionétant surjectifs), on le munira de la topologie li-
mite projective des topologies discrètes.On d́esignera parπ et on appellera groupe fon-
damental(deC muni deF ) le groupe oppośe à Aut(P ). Ce groupe op̀ere doncà droite
surP , c’est la limite projective de groupes finisπi opérantà droite sur lesPi galoisiens,
πi étant le groupe opposé à Aut(Pi).
Compte tenu de l’isomorphisme fonctoriel

F (X) = Hom(P,X)

et de la d́efinition deπ , on voit donc queπ opèreà gauchesurF (X) , et d’ailleurs de façon
continue d’apr̀es g) (cas avec les notations de g), c’est en faitπi qui op̀ere surF (X)). Il est
trivial que pour tout morphismeu : X → Y dansC , le morphismeF (u) : F (X)→ F (Y )
est compatible avec les opérations deπ. On peut donc consid́erer par la suiteF comme un
foncteur covariant

F : C → C (π)

où C (π) est la cat́egorie des ensembles finis où π opèreà gauche contin̂ument.
Nous allons maintenant définir un foncteur en sens inverse :

G : C ← C (π)

par la formule
G(E) = P ×π E,

où P ×π E est d́efini comme solution du problème univerel ŕesuḿe par

HomC (P ×π E,X) ∼ // Homπ(E,Hom(P,X))

(où dans le deuxième membreHom(P,X) = F (X) est consid́eŕe comme ensemble où π124
opèreà gauche). Il faut prouver l’existence de l’objetP ×π E.

i) SoitQ un objet deC où un groupe finiG opèreà droite, etE un ensemble fini òuG opèreà
gauche. AlorsG×G E existe, et l’application canonique

F (Q)×G E → F (Q×G E)

est un isomorphisme.
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Comme les sommes directes finies existent dansC par (G 2), et queF y commute par (G
5), on est rameńe aussit̂ot au cas òu G opère transitivement surE, car si lesEj sont les
trajectoires deG dansE, on aura

Q×G E = q
j
Q×G Ej.

Soit alorsa ∈ E, soitH son stabilisateur, on voit aussitôt sur la d́efinition queQ ×G E
s’identifie àQ/H. D’où l’existence, gr̂aceà (G 2), et la propríet́e de commutation pour
grâceà (G 5).

j) SoitE un objet deC (π), et soitPi galoisien tel queπi opère d́ejà surE. AlorsPi×πiE existe
et on a un isomorphisme canonique

E
∼ // F (Pi ×πi E)

Si j ≥ i est tel que Pj soit galoisien, alors l’homomorphisme canonique
Pj ×πj E → Pi ×πi E est un isomorphisme.
La premìere assertion est un cas particulier de i), compte tenu queπi opère de façon
simplement transitive surF (Pi) qui est d’un point marqúe ϕi, d’où un isomorphisme
F (Pi)×πi E ' E. Pour la deuxìeme assertion on utilise par exemple (G 6).
Soit, pout tout j, Cj la sous-cat́egorie pleine deC formée des X tels que
Hom(Pj, X) → Hom(P,X) ' F (X) soit bijectif. On sait par g) queC est ŕeunion
filtrante desCj. On a donc pourX ∈ Cj :

Homπ(E,Hom(P,X)) ' Homπ(E,Hom(Pj, X)) ' Homπj(E,Hom(Pj, X))

' Hom(Pj ×πj E,X)

et compte tenu de la dernière assertion dans j) on trouve un isomorphisme fonctoriel en125
l’objet X deCj :

Homπ(E,Hom(P,X)) ' Hom(Pi ×πi E,X)

Comme cela est vrai pour toutj et ces isomorphismes fonctoriels, pourj variable, s’in-
duisent mutuellement, on conclut :

k) Sous les conditions dej), le morphisme composé des morphismes canoniques

E → Hom(Pi, Pi ×πi E)→ Hom(P, Pi ×πi E)

fait dePi ×πi E une solution du problème univerel d́efinissantP ×π E , i.e. ce dernier
existe et on a un isomorphisme

P ×π E ∼ // Pi ×πi E

Cela ach̀eve la construction du foncteurG(E). On a d’autre part un homomorphisme fonc-
toriel

α : idC (π) → FG
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i.e. un homomorphisme fonctoriel en l’objetE deC (π) :

α(E) : E → FG(E) = F (P ×π E)

savoir le compośe des morphismes canoniques

E → F (P )×π E → F (P ×π E)

(où le premier provient du point marquéϕ ∈ F (P )). Conjuguant j) et k), on trouve :

l) L’homomorphismeα est un isomorphisme

On d́efinit de m̂eme un homomorphisme fonctoriel

β : GF → idC

i.e. un homomorphisme fonctoriel en l’objetX deC :

β(X) : P ×π F (X)→ X

comme associé auπ-homomorphisme126

F (X)→ Hom(P,X)

inverse de l’isomorphisme canoniqueHom(P,X) ∼ // F (X) .

m) Les compośes

F (X)
α(F (X))// FGF (X)

F (β(X))// F (X)

G(E)
G(α(E))// GFG(E)

β(G(E))// G(E)

sont les isomorphismes identiques.
Ane qui trotte.
Compte tenu de l) il s’ensuit :

n) L’homomorphismeβ est un isomorphisme

Nous avons ainsi obtenu le résultat promis :part 25

Théorème 4.1Soit C une catégorie satisfaisant les conditions (G 1), (G 2), (G 3) du début
du numéro, et F un foncteur covariant de C dans la catégorie des ensembles finis, satis-
faisant les conditions (G 4), (G 5) et (G 6). Alors les constructions canoniques précédentes
définissent des équivalences de catégories F : C → C (π) et G : C (π) → C quasi-inverses
l’une de l’autre. De façon précise, il existe un pro-objet P de C , et un isomorphisme fonc-
toriel F (X)

∼← Hom(P,X), π est le groupe opposé au groupe des automorphismes de P ,
topologisé de façon convenable, de façon que π opère de façon continue sur les ensembles
Hom(P,X) ' F (X). Enfin G est donné par G(E) ' P ×π E.
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Remarques 4.2L’ énonće des conditions (G 1)̀a (G 6) devient plus simple et plus sympathique
si on remplace (G 2) et (G 5) respectivement par :

(G’ 2) Les limites inductives finies dansC existent.

(G’ 5) Le foncteurF est exact̀a droite (i.e. commute aux limites inductives finies).

Ces conditions sont en apparence plus fortes que (G, 2) et (G 5), mais il résulte aussitôt du
théor̀eme de structure 4.1 qu’elles sont entraı̂nées par (G 1)̀a (G 6). On notera cependant que
dans les cas qui nous intéresseront, la v́erification de (G 2) et (G 5) semble effectivement plus
simple que celle de (G’ 2) et (G’ 5). J’ignore si dans la condition (G 3), le fait queu′′ soit un
isomorphisme sur un sommande direct deY ne pourrait̂etre omis.

5 Catégories galoisiennes
127

Définition 5.1 On appelle catégorie galoisienne une catégorie C équivalente à une catégorie
C (π), où π est un groupe compact, limite projective de groupes finis (i.e. totalement disconnexe).

Pour la définition de C (π), cf début du No 4. En vertu du th. 4.1, C est galoisienne si et
seulement si elle satisfait les conditions (G 1) à (G 3), et s’il existe un foncteur F de C dans
la catégorie des ensembles finis satisfaisant les conditions (G 4) à (G 6) (i.e. qui est exactet
conservatif, dans une terminologie générale). Un tel foncteur sera appelé foncteur fondamental
de la catégorie galoisienne C 6 ; il est pro-représentable par un pro-objet que nous noterons PF ;
un pro-objet P tel que le foncteur associé soit fondamental est appelé pro-objet fondamental. De
cette facçon, la catégorie des foncteurs fondamentaux sur C est anti-équivalente à la catégorie
des pro-objets fondamentaux ; si F et P se correspondent, le groupe AutF est donc isomorphe
à l’opposé du groupe AutP , donc le groupe noté π dans le numéro précédent n’est autre que
AutP . Rappelons qu’au numéro précédent nous avons construit, à partir d’un foncteur fonda-
mental donńeF , une équivalence de C avec C (π) (où π = Aut(F )) qui transforme le foncteur
F en le foncteur canonique de C (π)x dans la catégorie des ensembles finis. Dans ce cas type
C = C (π), F = foncteur canonique, le pro-objet fondamental associé à F n’est autre que le
système projectif des quotients discrets πi de π.

Il peut être utile d’expliciter la cat́egorie des pro-objets deC (π). On trouve :

Proposition 5.2 La catégorie Pro- C (π) est canoniquement équivalente à la catégorie C ′(π) des
espaces, à groupe topologique π d’opérateurs, qui sont compacts et totalement disconnexes.

Comme cette dernière contientC (π) comme sous-catégorie pleine (correspondant aux es-
paces̀a oṕerateurs compacts discrets) et que les limites projectives y existent, on a en tous cas
un foncteur canoniqueg : Pro- C (π) → C ′(π), au syst̀eme projectifQ = (Qi) correspondant
l’objet X = lim←−iQi de C ′(π). Pour d́efinir un foncteur en sens inverse, il suffit de définir un

6Il semble pŕeférable d’adopter le terme plus parlant de “foncteur fibre”.
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foncteur contravariant deC ′(π) dans la cat́egorie des foncteursC → (Ens) exactsà gauche, et
on prendra pour toutX ∈ C ′(π) le foncteurh(X)(E) = Hom(X,E) (le Hom étant pris dans128
C ′(π)). Il est imḿediat par d́efinition que les foncteursh etg sont adjoints l’un de l’autre, et que
hg est canoniquement isomorphe au foncteur identique dePro- C (π). Il resteà prouver (pour
établir queg et h sont quasi-inverses l’un de l’autre) que tout objet deC ′(π) est isomorphèa
un objet de la formeg(Q), oùQ ∈ Pro- C (π), en d’autres termes :tout espaceX à groupe to-
pologiqueπ d’opérateurs, qui est compact et totalement disconnexe, est isomorpheà une limite
projective d’espaces̀a oṕerateurs finis discrets. CommeX est limite projective de ses quotients
finis discrets (en tant qu’espace topologique sans opérateurs), on est ramené à montrer que dans
l’ensemble de ces quotients, il y a un système cofinal qui est invariant parπ. Il suffit pour cela de
montrer que pour un tel quotientX ′, l’ensemble des transforḿes de ce quotient par les opérations
deπ est fini, (on prendra alors le sup desdits transformés, qui sera un quotient invariant majorant
X ′). Ou encore, qu’il y a un sous-groupe invariant ouvertπ′ de π tel que leséléments de ce
sous-groupe invarientX ′. OrX ′ correspond̀a une partition finie deX en ensembles ouvertsXi.
Par raison de continuité et de compacité deπ, il existe un voisinageV de l’élément neutre deπ
tel ques ∈ V impliques.Xi ⊂ Xi pour touti, doncs invarieX ′. Or on sait que les sous-groupes
invariants ouverts deπ forment un syst̀eme fondamental de voisinage de l’élément neutre, ce qui
ach̀eve la d́emonstration.

Remarquons qu’on voit encore plus simplement que la catégorieIndC (π) est canoniquement
équivalentèa la cat́egorie des ensembles où π opère contin̂ument. Nous n’en aurons pas besoin
ici.

Proposition 5.3 Soient C une catégorie galoisienne, F un foncteur fondamental sur C,
P = (Pi) le pro-objet associé, normalisé de la façon habituelle. Soit X ∈ C ; pour que X
soit connexe, il faut et il suffit que π opère transitivement sur E = F (X).

On est rameńe au cas typeC = C (π), F = foncteur canonique, òu c’est trivial.

Corollaire 5.4 Conditions équivalentes sur X : (i) X est connexe et 6' ∅C (ii) le groupe π est
transitif sur E = F (X), et F (X) 6= ∅ (iii) X est isomorphe à un Pi.

L’ équivalence de (i) et (iii) ŕesulte aussi d́ejà facilement de No 4, e).129
part 26

Proposition 5.5 Soit Q = (Qi)i∈I un pro-objet de C, normalisé de la façon habituelle, et soit
G le foncteur correspondant G(X) = Hom(Q,X) de C (dans (Ens)). Les conditions suivantes
sont équivalentes :

(i) G commute aux sommes directes finies
(ii) G commute à la somme de deux objets

(iii) Les Qi sont connexes et 6' ∅C
(iv) Q est isomorphe à π/H , où H est un sous-groupe fermé de π.
(v) Le foncteur G est isomorphe au foncteur E 7→ EH (ensemble des invariants par H) défini

par un sous-groupe fermé H de π.
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N.B. dans l’́enonće de (iv) et (v), on suppose choisi un foncteur fondamental, permettant
d’identifierC à la cat́egorieC (π).

Démonstration. On peut supposerC = C (π). L’implication (i)⇒ (ii) est triviale, (ii)⇒ (iii)
se prouve comme la propriét́e d) du No 4. Prouvons (iii)⇒ (iv). En effet, on sait quelim←−iQi

est non vide comme limite projective d’ensembles finis non vides. Soita un point delim←−iQi, il
définit un homomorphisme d’espacesà oṕerateurs

π → Q

qui estsurjectif, car pour touti le compośe π → Q → Qi l’est, puisqueπ est transitif dansQi

en vertu de 5.3. Si doncH est le sous-groupe de stabilisateur dea, on obtient un isomorphisme
π/H

∼→ Q. Les implications (iv)⇒ (v) et (v)⇒ (i) sontà nouveau triviales.

Proposition 5.6 Soient C une catégorie galoisienne, P un pro-objet fondamental de C et F le
foncteur fondamental associé. Soit P ′ = (P ′i )i∈I un pro-objet de C , mis sous forme normale, et
F ′ le foncteur associé F ′(X) = Hom(P ′, X) et C dans (Ens). Conditions équivalentes :

(i) P ′ ' P , ou encore F ′ ' F .

(ii) P ′ est fondamental, ou encore que F ′ est fondamental.

(iii) F ′ transforme somme de deux objets en somme, et X 6' ∅C implique F (X) 6= ∅.130
(iv) Les objets de C connexes et 6= ∅C sont exactement les objets isomorphes à un P ′i .

On a trivialement (i)⇒ (iii) et (i) ⇒ (ii), de plus (ii)⇒ (iv) en vertu de 5.4 (appliqúe àP ′ au
lieu deP ). De plus (iii) ou (iv) implique en vertu de 5.5 queP ′ est de la formeπ/H oùH est un
sous-groupe ferḿe deπ. Dans le cas (iii), il existe pour tout sous-groupe invariant ouvertπ′ deπ
unπ-homomorphismeP ′ = π/H → π/π′, d’oùH ⊂ π′, d’oùH = (0) et par suite (i), cqfd.

Corollaire 5.7 Soit C une catégorie galoisienne. Les pro-objets fondamentaux sont isomorphes,
les foncteurs fondamentaux sont isomorphes.

En d’autres termes,la cat́egorie des foncteurs fondamentaux est un groupoı̈de connexeΓ,
qu’on peut appeler legroupöıde fondamentalde la cat́egorie galoisienneC . Si C = C (π), le
groupe des automorphismes d’un objet du groupoı̈de fondamental est isomorpheà π, cet iso-
morphismeétant bien d́etermińe à automorphisme intérieur pr̀es. (N.B. on appellegroupöıde
une cat́egorie òu tous les morphismes sont des isomorphismes, groupoı̈de connexegroupöıde
dont tous les objets sont isomorphes). Les pro-objets fondamentaux deC forment un groupöıde
connexeéquivalentà l’oppośe du groupöıde fondamental. SiF, F ′ sont deux foncteurs fonda-
mentaux, associés à des pro-objets fondamentauxP, P ′, alorsHom(F, F ′) = Isom(F, F ′) est
parfois not́e πF ′,F et joue le r̂ole d’un “ensemble declasses de cheminsdeF à F ′”. En parti-
culier, πF,F = πF n’est autre que legroupe fondamental deC enF construit dans le nuḿero
préćedent. Quant au pro-objetP assocíe àF , il joue le r̂ole d’un revêtement universel enF de
l’objet final eC deC .
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Il peut être commode d’avoir une description deC (à équivalence pr̀es) en termes de son
groupöıde fondamentalΓ, sans passer par un choix d’un objet particulierF de ce dernier. Or̀a
tout objetX deC est associé le foncteurEX sur le groupöıde fondamental, d́efini par

EX(F ) = F (X),

à valeurs dans(Ens). (Un tel foncteur est connu en topologie sous le nom de “système lo-
cal” sur le groupöıde) F (X) = EX(F ) peut être appeĺe la fibre deX en F , et le foncteur
EX le foncteur-fibre associé àX. Le foncteurEX a la propríet́e suivante :pour toutF , EX(F )131
est un ensemble fini où le groupe topologiqueπF = Aut(F ) opère contin̂ument. Pour un fonc-
teur covariant donńe ξ du groupöıde fondamental dans(Ens), la condition pŕećedentéequivaut
d’ailleursà la m̂eme condition pourunF fixé quelconque. Ceci posé :

Proposition 5.8 Le foncteur X 7→ EX est une équivalence de la catégorie C avec la catégorie
des foncteurs covariants du groupoı̈de fondamental Γ de C dans (Ens), qui satisfont la condition
soulignée plus haut.

En effet, soitF0 un objet du groupöıde fondamental, et soitπ0 = Aut(F0), alors le foncteur
ξ 7→ ξ(F0) est uneéquivalence de la deuxième cat́egorie envisaǵee dans 5.8 avec la catégorie
C (π0), comme on constate aussitôt. D’autre part, le composé de ce dernier et du foncteur
X 7→ EX est l’équivalence naturelleC → C (π0). Il en résulte que le foncteurX 7→ EX
lui-même est unéequivalence.

Corollaire 5.9 La catégorie Pro- C est équivalente canoniquement à la catégorie des foncteurs
covariants ξ du groupoı̈de fondamental Γ dans la catégorie des espaces topologiques, satisfaisant
la condition : pour tout objet F de Γ, ξ(F ) est un espace compact totalement disconnexe à groupe
topologique πF d’opérateurs.

Ici encore, on peut v́erifier cette condition surξ, il suffit de la v́erifier pour un F . La
démonstration est la m̂eme que pour 5.8.

Remarque 5.10Soit (Fs)s∈S une famille d’objet du groupoı̈de fondamentalΓ. Posons pour
s, s′ ∈ S :

Hom(s, s′) = Hom(Fs, Fs′)

de sorte queS devient lui-m̂eme un groupöıde connexe et l’applications 7→ Fs un foncteur
pleinement fid̀ele deS dansΓ, soit f . Consid́erant alors le foncteurX 7→ Ex ◦ f deC dans la
cat́egorie de foncteurHom(S, (Ens)), on obtient une variante de 5.8 (et 5.9) avecΓ remplaće
parS. L’ énonće ainsi obtenu se réduit au th́eor̀eme 4.1 lorsqueS est ŕeduit à un point, et n’est
autre que 5.8 lui-m̂eme siS est l’ensemble des objets deΓ.

Nous allons utiliser 5.9 pour définir un pro-objet canonique deC . Pour ceci, nous considérons
le foncteur deΓ dans la cat́egorie des espaces topologiques (et même des groupes topologiques) :132

f : F 7→ Aut(F ) = πF
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Ce foncteur satisfait la condition envisagée dans 5.8, l’espacèa oṕerateursf(F ) sousπF n’est
autre queπF , consid́eŕe comme espacèa oṕerateurs sous lui-m̂eme par les automorphismes
intérieurs. Donc le foncteurf correspond̀a un pro-objet deC détermińe à isomorphisme unique
près, qui est m̂eme un pro-groupe deC et qui est appelé lepro-groupe fondamental deC , jouant
le rôle d’un syst̀eme local de groupes fondamentaux. C’est donc un pro-groupeΠ deC défini
par la condition qu’on ait un isomorphisme fonctoriel enF

F (Π) ' πF

SiX est un pro-objet quelconque deC , on a un morphisme canonique

Π×X → X

qui fait deX un objetà groupe d’oṕerateurs̀a gaucheG dansPro- C . Il suffit pour ceci de noter
que pourF variable, on a une application canonique

Π(F )×X(F )→ X(F )

i.e.
Aut(F )× EX(F )→ EX(F ), ou πF × F (X)→ F (X)

qui est fonctorielle enF . Elle est aussi fonctorielle enX, donc pour tout morphismeX → Y de
pro-objets, le diagramme

Π×X −−−→ Xy y
Π× Y −−−→ Y

correspondant est commutatif.

Remarque 5.11On se gardera de confondre un pro-objet fondamentalP (qui n’est pas muni
d’une structure de groupe, et est connexe) avec le pro-groupe fondamental (qui un pro-groupe, et
en ǵeńeral non connexe). De façon précise,G est connexe si et seulement siπF opérant sur lui-
même par automorphismes intérieurs est transitif, i.e. siπ est ŕeduità l’élément neutre, ou encore
C équivalentèa la cat́egorie des ensembles finis. Une autre différence essentielle est queG est133
détermińeà isomorphisme unique près, etP n’est d́etermińe qu’̀a isomorphisme non unique près.

SoitE un ensemble fini et considérons le foncteur constant sur le groupoı̈deΓ, de valeurE :
il définit en vertu de 5.8 un objet deC , not́eEC , et qui peut aussi s’interpréter comme la somme
deE exemplaires de l’objet finaleC deC . On peut consid́ererEC comme un foncteur enE, de
la cat́egorie des ensembles finis dans la catégorieC , et ce foncteur estexact, donc transforme
groupes finis enC -groupes, etc... Si doncX est un objet deC sur lequel le groupe finiG opère
à droite, on voit qu’on peut considérerX comme un objet deC ayant unC -groupe d’oṕerateurs
à droiteGC . On dira donc par extension d’une terminologie géńerale relativèa des objets̀a C -
groupes d’oṕerateurs, queX estformellement principal homogènesousG siX est formellement
principal homog̀ene sousGC , i.e. si le morphisme canonique

X ×GC → X ×X
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déduit de l’oṕeration deGC surX à droite, est un isomorphisme. On dit queX est princi-
pal homog̀enesousG s’il l’est sousGC , i.e. s’il l’est formellement, et si de plus le quotient
X/G = X/GC esteC . Si on se fixe un foncteur fondamental, d’où uneéquivalence deC avec
une cat́egorieC (π),X correspond̀a un ensemble sur lequelπ opèreà gauche contin̂ument, soit
E = F (X). Faire oṕererG surX à droite revient alors̀a faire oṕererG sur l’ensembleE à
droite, de façon que les opérations deG commutentà celles deπ. On constate alors aussitôt
queX est principal homog̀ene sousG si et seulement si l’ensembleE est un espace principal
homog̀ene sousG i.e. si et seulement siG y opère de façon simplement transitive. (D’ailleursX
est formellement principal homogène sssE principal homog̀eneou vide). Comparant avec 5.3,
on voit que siX est principal homog̀ene sousG et connexe, alors l’homomorphisme donné de
G dans le groupe opposé à Aut(X) est unisomorphisme; et d’ailleurs pour qu’un objetX de
C soit connexe et principal homogène sous le groupe opposé à Aut(X), il faut et il suffit, avec
les notations du No 4, qu’il soit isomorphèa unPi galoisien. Dans le cas typeC = C (π), cela
signifie queX est isomorphèa un quotient deπ par un sous-groupe invariant.

Supposons toujours donné un foncteur fondamentalF . Alors la donńee d’unX principal134
homog̀ene sous un groupe finiG opérantà droite, et d’un pointa ∈ F (X), estéquivalentèa
la donńee d’un homomorphisme deπ dans le groupeG. En effet,à un tel homomorphisme on
fait correspondre l’ensembleE = G, en y faisant oṕererπ à gauche gr̂aceà l’homomorphisme
donńeπ → G et les translations̀a gauche deG, et en y faisant oṕererG à droite par translation
à droite, le point marqúe a deE étant l’́elément unit́e deG. Grâceà ce qui pŕec̀ede, on obtient
ainsi de façon essentiellement unique tout triple(X,G, a) ayant les propríet́es envisaǵees plus
haut, puisque un ensembleà point marqúe principal homog̀ene sous un groupeG s’identifieà ce
dernier. De cette façon, on a une interprétation ǵeoḿetrique directe du foncteurG 7→ Hom(π,G)
de la cat́egorie des groupes finis dans(Ens), foncteur qui est pro-représentablèa l’aide deπ, et
dont la consid́eration fournirait donc une autre construction du groupeπ assocíe àF .

part 27

6 Foncteurs exacts d’une cat́egorie galoisienne dans une autre

Proposition 6.1 Soient C , C ′ deux catégories galoisiennes, H : C → C ′ un foncteur covariant,
F ′ un foncteur fondamental sur C ′ et F = F ′ ◦H . Conditions équivalentes :

(i) H est exacte, i.e. exact à gauche et exacte à droite.

(ii) H est exacte à gauche, transforme sommes finies en sommes finies, et épimorphismes en
épimorphismes (ou encore : objets 6= ∅C en objets 6= ∅C ′).

(iii) F est un foncteur fondamental sur C .

L’implication (i)⇒(ii) est un fait ǵeńeral aux cat́egories. D’ailleurs la première forme donńee
à (ii) implique la seconde, comme on voit en notant que siX est un objet deC , alorsX est 6= ∅C
sss le morphismeX : eC est unépimorphisme ; on notera queF étant suppośe exactèa gauche
transformeeC eneC ′. La deuxìeme forme donńeeà (ii) implique (iii), carF étant exact̀a gauche
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donc pro-repŕesentable est justiciable de 5.6 critère (iii). Enfin (iii) implique (i), comme il ŕesulte
du fait queF est exact, et “conservatif” (i.e. satisfait l’axiome (G6) de numéro 4).

Soit alorsΓ le groupöıde fondamental deC , Γ′ celui deC ′. Donc siH est exact, alors135
F ′ 7→ F ′ ◦H est un foncteur du groupoı̈deΓ′ dans le groupöıdeΓ, qu’on d́enotera partH :

tH(F ′)(X) = F ′(H(X))

qu’on peut aussíecrire, avec la notationF (X) = EX(F ) introduite dans nuḿero 6 :

EH(X)(F
′) = EX(tH(F ′))

Cette dernìere formule montre, compte tenu de 5.8 ou 4.1, que le foncteur exactH est d́etermińe
(à isomorphisme unique près) quand on connaı̂t le focteur correspondanttH. Fixons-nous unF ′,
soitF = tH(F ′), alorstH définit un homomorphisme deΠF ′ = Aut(F ′) dansΠF = Aut(F ) :

tH : ΠF ′ → ΠF (F = tH(F ′) = F ′ ◦H).

D’ailleurs la formule plus haut montre (compte tenu de 5.8) que cet homomorphisme a la pro-
priét́e suivante : pour tout ensemble finiE où ΠF opère contin̂ument, le groupeΠF ′ opère
égalementcontin̂umentgrâceà l’homomorphisme pŕećedentΠF ′ → ΠF . Applicant ceci aux
quotients deΠF par ses sous-groupes invariants ouverts, on voit que la condition préćedente
signifie aussi que l’homomorphisme considéŕe est continu. Ŕeciproquement, donnons-nous un
objetF deΓ, un objetF ′ deΓ′ et un homomorphisme continu

u : ΠF ′ → ΠF ,

il lui correspond donc un foncteur deC (Π) dansC (Π′), manifestement exact, donc en vertu de
4.1 il lui correspond un foncteurH deC dansC ′ qui est exact, et tel quetH : ΠF ′ → ΠF soit
préciśementu. On peut aussi, au lieu d’un homomorphisme de groupes, partir d’unfoncteur

U : Γ′ → Γ

qui est tel que pourtout F ′ ∈ Γ′ (ou un F ′ ∈ Γ′, cela revient au m̂eme) l’homomorphisme
correspondantΠF ′ → ΠF soit continu : un tel foncteur est isomorpheà un foncteur de la forme
tH, oùH : C → C ′ est un foncteur exact détermińe à isomorphisme unique près. Ainsi :136

Corollaire 6.2 Pour qu’un foncteur H : C → C ′ de catégories galoisiennes soit exact, il faut et
il suffit qu’il existe des équivalences C (Π)→ C et C ′ → C (Π) qui transforme le foncteur H en
le foncteur C (Π)→ C (Π′) associé à un homomorphisme de groupes topologiques Π′ → Π.

Corollaire 6.3 Soient C , C ′ deux catégories galoisiennes, Γ, Γ′ leurs groupoı̈des fondamentaux.
Alors la catégorie des foncteurs exacts de C dans C ′ est équivalente à la catégorie des foncteurs
U : Γ′ → Γ ayant la propriété suivante : pour tout F ′ dans Γ′ (ou unF ′ dans Γ′, cela revient au
même), posant F = U(F ′), l’homomorphisme

ΠF ′ = Aut(F ′)→ ΠF = Aut(F )

défini par U est continu.
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Consid́erons le groupe fondamentalΠ deC , alors un foncteur exactH le transforme en un
pro-groupeH(Π) deC ′, nous allons d́efinir un homomorphisme

Π′ → H(Π)

(où Π′ est le pro-groupe fondamental deC ′), par la condition que pour tout objetF ′ de Γ′,
l’homomorphisme correspondant

F ′(Π′) = ΠF ′ → F ′(H(Π)) = ΠF (où F = F ′ ◦H = tH(F ′));

soit l’homomorphisme naturel

Aut(F ′)→ Aut(F ′ ◦H).

Comme ce dernier est fonctoriel enF ′, il définit bien en vertu de 5.8 un homomorphisme de
pro-objets, et en fait de pro-groupes, deC ′. Cet homomorphisme est ditassocíeau foncteurH.

Soit maintenantH ′ un deuxìeme foncteur exact, de la catégorieC ′ dans une catégorie galoi-
sienneC ′′. Il est trivial qu’on a

t(H ′H) = tH tH ′

(N.B. on a l̀a une identit́e de foncteurs, et non seulement un isomorphisme canonique). On a une
propríet́e de transitivit́e analogue pour les homomorphismes associés des pro-groupes fondamen-
taux.

Nous allons maintenant interpréter les propríet́es du foncteur exactH en termes de l’homo-137
morphisme correspondant

u : ΠF ′ → ΠF (où F ′ = F ′ ◦H).

Il est commode d’introduire la notion d’objet ponctúede la cat́egorie galoisienneC (muni de son
foncteur fondamentalF ) : c’est par d́efinition un objetX deC muni d’unélémenta deF (X). Il
s’interpr̀ete donc comme un ensemble fini où ΠF opère contin̂umentà gauche, muni d’un point
a. Donc les objets ponctuésconnexesdeC s’identifient en vertu de 5.3 aux sous-groupes ouverts
deΠF . SiU etV sont deux tels sous-groupes, correspondantsà des objets ponctués conexesX,
Y deC , alors il existe un homomorphisme ponctué deX dansY si et seulement siU ⊂ V , et
cet homomorphisme est alors unique. Bien entendu, le foncteurH transforme objets ponctués
en objets ponctúes (puisqueF = F ′ ◦ H). Notons d’autre part qu’un sous-groupe fermé d’un
groupe tel queΠF est l’intersection des sous-groupes ouverts qui le contiennent ; par suite,M ,
N sont deux sous-groupes fermés, alorsM ⊂ N si et seulement si tout sous-groupe ouvert qui
contientN contientégalementM . Grâceà ces remarques, on prouve facilement les résultats qui
suivent :

Proposition 6.4 Soit X un objet ponctué connexe de C , associé à un sous-groupe ouvert U de
ΠF . Pour que u contienne u(ΠF ′) il faut et il suffit que H(X) admette une section ponctuée
(resp. soit complètement décomposé).
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On appellerasection— sous-entendu : au-dessus de l’objet final — d’un objetX d’une
cat́egorie galoisienneC , un morphisme de l’objet finaleC dansX, ce qui revient̀a la donńee
d’un élémenta deF (X) invariant parΠF ; siX est ponctúe, on dit qu’on a unesection ponctúee
si elle est compatible avec les structures ponctuées surX et eC , i.e. sia est pŕeciśement l’objet
marqúe deF (X). Une telle section est donc unique, et existe si et seulement si l’objet marqué
deF (X) est invariant parΠF . Enfin, un objet d’un catégorie galoisienne est ditcompl̀etement
décompośe s’il est isomorphèa une somme d’objets finaux, i.e. siΠF opère trivialement dans
F (X) - conditionévidemment plus forte que l’existence d’une section ponctuée, lorsqueX est
ponctúe. La proposition 6.4 résulte trivialement des définitions et remarques préćedentes.
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Corollaire 6.5 Pour que u soit trivial, il faut et il suffit que pour tout objet X de C , H(X) soit
complètement décomposé.

Proposition 6.6 Soit X ′ un objet ponctué connexe de C ′, associé à un sous-groupe ouvert U ′

de ΠF ′ . Pour que U ′ contienne Keru, il faut et il suffit qu’il existe un objet ponctué connexe
X de C et un homomorphisme ponctué de la composante connexe ponctuée X ′0 de H(X) dans
X ′ (donc que X soit isomorphe comme objet ponctué à un quotient de la composante connexe
neutre de l’image inverse d’un objet ponctué de C ). Si u est surjectif, la condition précédente
équivaut aussi à la suivante : X est isomorphe à un H(X), où X est un objet ponctué de C .

(On appellecomposante connexe neutred’un objet ponctúeX d’une cat́egorie galoisienne
C , l’unique sous-objet connexe ponctué deX ; il correspondà la trajectoire sousΠF du point
marqúe deF (X), en vertu de 5.3). Comme le fait queU ′ contienneKeru ne d́epend pas de la
ponctuation choisie deX ′ (car une autre ponctuation revientà remplacerU par un sous-groupe
conjugúe àU ), on voit :

Corollaire 6.7 Pour que U ′ contienne Keru, il faut et il suffit qu’il existe un objet X de C
(qu’on peut supposer connexe) et un morphisme d’un composante connexe de H(X) dans X ′.
Si u est surjectif, cela signifie aussi que X ′ est isomorphe à un objet de la forme H(X).

Corollaire 6.8 Pour que u soit injectif, il faut et il suffit que pour tout objet X ′ de C ′ il existe un
objet X de C et un homomorphisme de d’un composante connexe de H(X) dans X ′.

Proposition 6.9 Les conditions suivantes sont équivalentes :

(i) L’homomorphisme u : ΠF ′ → ΠF est surjectif.

(ii) Pour tout objet connexe X de C , H(X) est connexe.

(iii) Le foncteur H est pleinement fidèle.

Ce dernier fait signifie que pour deux objetsX, Y deC l’application naturelle

Hom(X, Y )→ Hom(H(X), H(Y ))

est bijective.part 28
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Corollaire 6.10 Pour que u soit un isomorphisme, il faut et suffit que H soit une équivalence de
catégories, ou encore que les deux conditions suivantes soient vérifiées :

1. pour tout objet connexe X de C , H(X) est connexe

2. tout objet de C ′ est isomorphe à un objet de la forme H(X).

Proposition 6.11 Soient H : C → C ′ et H ′ : C → C ′′ des foncteurs exacts entre catégories ga-
loisiennes, F ′′ un foncteur fondamental sur C ′′, posons F ′ = F ′′H ′ et F = F ′H , et considérons
les homomorphismes associés

u′ : πF ′′ → πF ′ u : πF ′ → πF

Pour que Keru ⊂ Im(u′) i.e. pour que uu′ soit l’homomorphisme trivial, il faut et suffit que pour
tout objet X de C , H ′(H(X)) doit complètement décomposé. Pour que Ker(u) ⊃ Im(u′), il faut
et il suffit que pour tout objet ponctué connexe X ′ de C ′ tel que H ′(X ′) admette une section
ponctuée, il existe un objet X de C et un homomorphisme d’une composante de H(X) dans X ′.

La premìere assertion résulte de la dernière affirmation de 6.4. La deuxième ŕesulte de la
conjonction de 6.4 et 6.6.

Remarque 6.12 Il n’est pas vrai en ǵeńeral, sous les conditions de 6.8 queX ′ soit isomorphèa
un objet de la formeH(X). On peut montrer que pour que tout objet connexe (donc tout objet)
deC ′ soit isomorphèa un objet de la formeH(X), il faut et il suffit queu soit un isomorphisme
deπF ′ sur un sous-groupefacteur directdeπF . En pratique cependant, on construit directement
un homomorphismeπF → πF ′ inverseà droite deu à l’aide d’un foncteur exact convenable
deC ′ dansC .

Proposition 6.13 Soient C une catégorie galoisienne munie d’un foncteur fondamental F , S un
objet connexe de C , C ′ la catégorie des objets de C au-dessus de S. Alors C ′ est une catégorie
galoisienne, et le foncteur X 7→ H(X) = X × S de C dans C ′ est exact. Soit a ∈ F (S), et soit
F ′ le foncteur de C ′ dans la catégorie des ensembles finis défini par

F ′(X ′) = image inverse de a par F (X ′)→ F (S)

Alors on a un isomorphisme F ∼= F ′ ◦H , et l’homomorphisme correspondant

u : πF ′ → πF

est un isomorphisme de πF ′ sur le sous-groupe ouvert U de πF stabilisateur de l’élément marqué140
a de F (X).

La démonstration est laissée au lecteur.
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7 Cas des pŕesch́emas

SoitS un pŕesch́ema localement noethérien etconnexe, et soit

a : Spec(Ω)→ S

un point ǵeoḿetrique deS, à valeurs dans un corps algébriquement closΩ. On posera

C = cat́egorie des rev̂etementśetales deS

et pour un objetX deC , i.e. un rev̂etement́etaleX deS, on pose

F (X) = ensemble des points géoḿetriques deX au-dessus dea.

Ainsi, F devient un foncteur surC à valeurs dans la catégorie des ensembles finis. Les pro-
priét́es (G 1)à (G 6) sont satisfaites : pour (G 1), c’est contenu dans les sorites de I.4.6, (G 2)
résulte de 3.4, (G 3) de 3.5 et du début du No 2, enfin (G 6) est prouv́e dans 3.7. On peut
donc appliquer les résultats des No 4,5,6. Cela permet en particulier de définir un pro-objetP
de C repŕesentantF , appeĺe revêtement universel deS au pointa, et un groupe topologique
π = Aut(F ) = Aut0(P ), appeĺe groupe fondamental deS en a, et not́e π1(S, a). Le fonc-
teurF définit alors unéequivalence de la catégorieC avec la cat́egorie des ensembles finis où
π = π1(S, a) opère contin̂ument. Cettéequivalence permet donc d’interpréter les oṕerations cou-
rantes de limites projectives et limites inductives finies sur des revêtements (produits, produits
fibrés, sommes, passage au quotient, etc...) en termes des opérations analogues dansC (π), i.e. en
termes des oṕerationsévidentes sur des ensembles finis où π opère. Notons d’ailleurs, puisque
les composantes connexes topologiques d’un revêtement́etale sont́egalement des revêtements
étales, qu’un objetX deC est connexe dansC si et seulement si il est topologiquement connexe;
en vertu de 5.3, cela signifie donc queπ1 opère transitivement dansF (X). Notons que pour qu’un141
objetX deC soit fidèlement plat et quasi-compact surS (comme il est d́eja plat et quasi-compact
surS), il faut et suffit queX → S soit surjectif i.e. soit uńepimorphisme dansC , ou encore que
X 6= ∅. On conclut alors du critère 2.6 (iii) queX est un rev̂etement principal deX de groupe
G si et seulement si il est un espace principal homogène sousG dans la cat́egorieC , (tel qu’il a
ét́e d́efini dans No 5).

Si a′ est un autre point ǵeoḿetrique deS (correspondant̀a un corps alǵebriquement clos
Ω′, qui peutêtre diff́erent deΩ et qui peut m̂eme avoir une caractéristique diff́erente), il d́efinit
un foncteur fibreF ′ = Fa′ de C dans la cat́egorie des ensembles finis, qui est encore exact,
donc isomorphèa F = Fa. Par suite, les groupes fondamentauxπ1(S; a) poura variable sont
isomorphes entre eux. On désigne parπ1(S; a, a′) l’ensemble des isomorphismes (où ce qui
revient au m̂eme, l’ensembles des homomorphismes)Fa → Fa′ des foncteurs fibres associés, on
obtient ainsi ungroupöıdedont l’ensemble des objets est l’ensemble des points géoḿetriques de
S, les groupes fondamentauxétant les groupes d’automorphismes des objets dudit groupoı̈de.
L’ensembleπ1(S; a′, a) peutêtre appeĺe l’ensemble des classes de chemins dea à a′. Ces classes
se composent donc de façonévidente. Enfin, on peut définir un pro-groupeΠS

1 de C , qu’on
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pourra appelerpro-groupe fondamental deS ou syst̀eme local des groupes fondamentaux surS,
défini à isomorphisme unique près par la condition qu’on ait un isomorphisme, fonctoriel en le
point ǵeoḿetriquea deS :

Fa(Π
S
1 ) = π1(S; a)

(cf. remarque 5.10). En particulier, sis est un point ordinaire deS, la fibre deG en s est un
pro-groupe surk(s), limite projective de groupes finiśetales surk(s) ; on pourrait appeler ce pro-
groupele groupe fondamental deS en le point ordinaires deS, le noterπ1(S, s). Par d́efinition,
ses points̀a valeurs dans une extension algébriquement closeΩ de k(s) sont leséléments de
π1(S; a), où a est le point ǵeoḿetrique deS défini par ladite extension. En particulier, (prenant
pourS le spectre d’un corps)̀a tout corpsk est associé canoniquement et fonctoriellement un
pro-groupe surk, qu’on pourrait noterπ1(k), limite projective de groupes finiśetales surk, et
dont les points dans une extension algébriquement closeΩ dek s’indentifient aux́eléments du142
groupe de Galois topologique dēk/k, où k̄ est la cl̂oture galoisienne dek dansΩ (cf. 8.1). Ce
groupeπ1(k) ne semble pas encore avoir retenu l’attention des algébristes.

Soit maintenant
f : S ′ → S

un morphisme d’un pŕesch́ema connexe localement noethérien dans un autre, soita′ un point
géoḿetrique deS ′ et soita = f(a′) son image directe dansS. Alors le foncteur “image inverse”
induit un foncteur de la catégorieC (S) des rev̂etementśetales deS, dans la cat́egorieC (S ′) des
revêtementśetales deS ′ :

f • : C (S)→ C (S ′)

On a d’ailleurs un isomorphisme de foncteurs

Fa ∼= Fa′ ◦ f •,

de sorte quef • est un foncteurexact, auquel s’appliquent les résultats du No 6. On a en particulier
un homomorphisme canonique

u = π1(f ; a′) : π1(S ′, a′)→ π1(S; a)(a′ = f(a))

qui permet de reconstituer le foncteur image inverse, comme une opération de restriction des
groupes d’oṕerateurs. Les propriét́es du foncteurf • s’expriment de façon simple par les pro-
priét́es de l’homomorphisme de groupes associés, comme il áet́e explicit́e dans le No 6. Si en
particulierS ′ est un rev̂etement́etale deS, alors l’homomorphismeu est un isomorphisme de
π1(S ′, a′) sur le sous-groupe ouvert deπ1(S, a) qui définit le rev̂etement́etale connexe ponctué
S ′ deS (i.e. le stabilisateurU dea′ ∈ Fa(S ′) dansπ1(S;A)).

Si on d́esire interpŕeter les homomorphismesπ1(f ; a′) pour un point ǵeoḿetrique variablea′,
on doit, conforḿementà ce qui áet́e dit dans le No 6, consid́erer un homomorphisme

Π1(f) : ΠS′

1 → f •(ΠS
1 )

de pro-groupes surS, et prendre l’homomorphisme correspondant pour les fibres géoḿetriques.

110



V

8 Cas d’un présch́ema de base normale
143

Proposition 8.1 Soit S le spectre d’un corps k, et soit Ω une extension algébriquement close de
k, définissant un point géométrique a de S à valeurs dans Ω. Soit k̄ la clôture séparable de k dans
Ω. Alors il existe un isomorphisme canonique de π1(S, a) sur le groupe de Galois topologique
de k̄/k.

Soit k′ la clôture algébrique de k dans Ω, il correspond donc à un point géométrique b
de S, à valeurs dans k′. L’homomorphisme naturel de foncteurs Fb → Fa est évidemment
un isomorphisme, car un k-homomorphisme d’une extension finie séparable de k dans Ω
prend nécessairement ses valeurs dans k̄ et à fortiori dans k′. D’autre part, le groupe π′

des k-automorphismes de k′/k opère de façon évidente sur Fb, d’où un homomorphisme
π′ → Aut(Fb)

∼→ Aut(Fa) = π1(S; a). D’autre part, il est bien connu que l’homomorphisme
naturel de π′ dans le groupe π des automorphismes de k̄/k est un isomorphisme. On obtient ainsi
un homomorphisme canonique π → π1(S; a), reste à montrer que c’est un isomorphisme. En ef-
fet, cet homomorphisme est injectif, car un élément du noyau est un automorphisme de k̄/k qui
induit l’identité sur toute sous-extension séparable finie, donc est trivial. Cet homomorphisme
est surjectif, car si X est un revêtement étale connexede S, donc défini par une extension finie
séparable L/k, alors π est transitif sur l’ensemble des k-homomorphismes de L dans k′, comme
bien connu.

Proposition 8.2 Soient S un préschéma connexe, localement noethérien et normal, K = k(s)
son corps de fonctions = le corps résiduel en son point générique s, Ω une extension
algébriquement close de K, définissant un point géométrique a′ de S ′ = Spec(K) et un point
géométrique a de S. Alors l’homomorphisme π1(S ′; a′) → π1(S; a) est surjectif. Lorsqu’on
identifie le premier groupe au groupe de Galois de la clôture séparable K̄ de K dans Ω (cf.
8.1) alors le noyau de l’homomorphisme précédent correspond par la théorie de galois à la sous-
extension de K̄/K composée des extensions finies de K dans Ω qui sont non ramifiées sur S.

La premìere assertion signifie que l’image inverse surS ′ d’un rev̂etement́etale connexeX deS
est connexe, i.e. queX est int̀egre, ce n’est autre que (I.10.1). Le noyau de l’homomorphisme
préćedent s’interpr̀ete alors comme forḿe des automorphismes dēK/K qui induisent l’identit́e
sur les ensemblesFa(X), où on peut supposer le revêtement́etaleX deS connexe. Mais cela144
signifie que cet automorphisme induit l’identité sur les sous-extensions finies deK̄/K qui sont
non ramifíees surS, ce qui prouve la dernière assertion.

Remarque. Grâceà cette interpŕetation du groupe fondamental du présch́ema normalS en
termes de th́eorie des Galois habituelle, la définition était connue dans ce cas depuis longtemps.

part 29
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9 Cas des pŕesch́emas non connexes : catégories multigaloi-
siennes

Soit S un pŕesch́ema localement noethérien, et soient(Si)i∈I ses composantes connexes.
Alors la cat́egorieC (S) des rev̂etementśetales deS estéquivalentèa la cat́egorie produit des
C (Si), qui s’interpr̀etent en termes des groupes fondamentaux desSi, une fois choisie un point
géoḿetrique dans chaqueSi. Dans l’application de la th́eorie de la descente pour les morphismes
étales, il est parfois malcommode de faire choix pour toutSi d’un point ǵeoḿetri que deSi. Il
est plus commode alors de recourirà la ǵeńeralisation naturelle de 5.8 pour interpréterC (S)
comme une catégorie de foncteurs sur le groupoı̈de des points ǵeoḿetriques deS, consid́eŕe
comme somme des groupoı̈des correspondants aux composantes connexes deS ; les foncteurs
en question sont les foncteursà valeurs dans la catégorie des ensembles finis, satisfaisant la
propríet́e de continuit́e analoguèa celle invoqúee dans 5.8. En pratique, on aura une famille
(at)t∈E de points ǵeoḿetriques deS, telle que toute composante connexeSi deS en contienne
au moins un, et on pourra alors, comme dans 5.10, remplacer le groupoı̈de de tous les points
géoḿetriques deS par le groupöıde analogue dont l’ensemble sous-jacent estE. Bien entendu,
ces consid́erations devraient s’insérer dans des définitions ǵeńerales concernant les catégories
qui sontéquivalentes̀a des cat́egories produits de catégories de la formeC (π), et qu’on pourra
appelercat́egories multigaloisiennes. Nous en laisserons le détail au lecteur.
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Expośe VI

Catégories fibŕees et descente

145

0 Introduction

Contrairement̀a ce qui avait́et́e annonće dans l’introduction de l’exposé pŕećedent, il s’est
avéŕe impossible de faire de la descente dans la catégorie des pŕesch́emas, m̂eme dans des cas
particuliers, sans avoir dévelopṕe au pŕealable avec assez de soin le langage de la descente dans
les cat́egories ǵeńerales.

La notion de “descente” fournit le cadre géńeral pour tous les procéd́es de “recollement”
d’objets, et par conśequent de “recollement” de catégories. Le cas le plus classique de recol-
lement est relatif̀a la donńee d’un espace topologiqueX et d’un recouvrement deX par des
ouvertsXi ; si on se donne pour touti un espace fibré (disons)Ei au-dessus deXi, et pour tout
couple(i, j) un isomorphismefji deEi|Xij surEj|Xij (où on poseXij = Xi ∩Xj), satisfaisant
une condition de transitivité bien connue (qu’ońecrit de façon abréǵeefkjfji = fki), on sait
qu’il existe un espace fibré E surX, défini à isomorphisme près par la condition que l’on ait
des isomorphismesfi : E|Xi

∼→ Ei, satisfaisant les relationsfji = fjf
−1
i (avec l’abus d’́ecriture

habituel). SoitX ′ l’espace somme desXi, qui est donc un espace fibré au-dessus deX (i.e. muni
d’une application continueX ′ → X). On peut interpŕeter de façon plus concise la donnée desEi
comme un espace fibréE ′ surX ′, et la donńee desfji comme un isomorphisme entre les deux
images inverses (par les deux projections canoniques)E ′′1 etE ′′2 deE ′ surX ′′ = X ′ ×X X ′, la
condition de recollement pouvant alors s’écrire comme une identité entre isomorphismes d’es-
paces fibŕesE ′′′1 etE ′′′3 sur le produit fibŕe tripleX ′′′ = X ′×XX ′×XX ′ (oùE ′′′i désigne l’image
inverse deE ′ surX ′′′ par la projection canonique d’indicei). La construction deE, à partir de
E ′ et def , est un cas typique de procéd́e de “descente”. D’ailleurs, partant d’un espace fibréE146
surX, on dit queX est “localement trivial”, de fibreF , s’il existe un recouvrement ouvert(Xi)
deX tel que lesE|Xi soient isomorphes̀aF ×Xi, ou ce qui revient au m̂eme, tel que l’image
inverseE ′ deE surX ′ =

∐
iXi soit isomorphèaX × F .

Ainsi, la notion de “recollement” d’objets comme celle de “localisation”d’une propriét́e, sont
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li éesà l’étude de certains types de “changements de base”X ′ → X. En Ǵeoḿetrie Algébrique,
bien d’autres types de changement de base, et notamment les morphismesX ′ → X fidèlements
plats, doivent̂etre consid́eŕes comme correspondantà un proćed́e de “localisation” relativement
aux pŕesch́emas, ou autres objets, “au-dessus” deX. Ce type de localisation est utilisé tout autant
que la simple localisation topologique (qui en est un cas particulier d’ailleurs). Il en est de même
(dans une moindre mesure) en Géoḿetrie Analytique.

La plupart des d́emonstrations, se réduisant̀a des v́erifications, sont omises ou simplement
esquisśees ; le caśech́eant nous pŕecisons les diagrammes moinsévidents qui s’introduisent dans
une d́emonstration.

1 Univers, cat́egories,équivalence de cat́egories

Pouréviter certaines difficult́es logiques, nous admettrons ici la notion d’Univers, qui est un
ensemble “assez gros” pour qu’on n’en sorte pas par les opérations habituelles de la théorie des
ensembles ; un “axiome des Univers” garantit que tout objet se trouve dans un Univers. Pour des
détails, voir un livre en pŕeparation par C. Chevalley et le conférencier1. Ainsi, le sigle(Ens)
désigne, non pas la catégorie de tous les ensembles (notion qui n’a pas de sens), mais la catégorie
des ensembles qui se trouvent dans un Univers donné (que nous ne préciserons pas ici dans la
notation). De m̂eme,(Cat) désignera la catégorie des catégories se trouvant dans l’Univers en
question, les “morphismes” d’un objetX de (Cat) dans un autreY , étant par d́efinition les
foncteursdeX dansY .

Si C est une cat́egorie, nous d́esignons parOb(C ) l’ensemble des objetsde C , parFl(C )147
l’ensemble des fl̀echesdeC (ou morphismes deC ). Nousécrirons doncX ∈ Ob(C ) enévitant
l’abus de notation courantX ∈ C . Si C et C ′ sont deux cat́egories, unfoncteurdeC dansC ′

sera toujours ce qu’on appelle communément un foncteurcovariantdeC dansC ′ ; sa donńee
implique celle de la catégorie d’arriv́ee et la cat́egorie de d́epart,C et C ′. Les foncteurs deC
dansC ′ forment un ensemble, noté Hom(C ,C ′), qui est l’ensemble des objets d’une catégorie
not́eeHom(C ,C ′). Par d́efinition, unfoncteur contravariant deC dansC ′ est un foncteur de la
cat́egorie oppośeeC ◦ deC dansC ′.

Nous admettrons la notion delimite projectiveet delimite inductived’un foncteur

F : I → C ,

et en particulier les cas particuliers les plus courants de cette notion : produits cartésiens et
produits fibŕes, notions duales de sommes directes et de sommes amalgamées, et les propriét́es
formelles habituelles de ces opérations.

Par exemple, dans la catégorie(Cat) introduite plus haut, les limites projectives (relatives
à des cat́egoriesI se trouvant dans l’Univers choisi) existent ; l’ensemble d’objets (resp. l’en-

1Les auteurs d́efinitifs sont C. Chevalley et P. Gabriel. Le livre doit sortir en l’an 2000. Cf. aussi SGA 4 VI.7.1
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semble de fl̀eches) de la catégorie limite projectiveC desCi, s’obtient en prenant la limite pro-
jective des ensembles d’objets (resp. des ensemble des flèches) des catégoriesCi. Le cas le plus
connu est celui du produit d’une famille de catégories. Nous utiliserons constamment par la suite
le produit fibŕe de deux catégories sur une troisième.

Pour tout ce qui concerne les catégories et foncteurs, en attendant le livre en préparation d́ejà
signaĺe, voir [1] (qui est ńecessairement fort incomplet, même en ce qui concerne les géńeralit́es
esquisśees dans le présent nuḿero).

Prenons cette occasion pour expliciter la notion d’équivalence de catégories, qui n’est pas
expośee de façon satisfaisante dans [1]. Un foncteurF : C → C ′ est ditfidèle(resp.pleinement
fidèle) si pour tout couple d’objetsS, T deC , l’applicationu 7→ F (u) de Hom(F (S), F (T ))
est injective (resp. bijective). On dit queF est unéequivalencede cat́egories siF est pleinement148
fidèle, et si de plus tout objetS ′ deC ′ est isomorphèa un objet de la formeF (S). On montre
qu’il revient au m̂eme de dire qu’il existe un foncteurG deC ′ dansC quasi-inverse deF , i.e.,
tel queGF soit isomorphèa idC . Lorsqu’il en est ainsi, la donnée d’un foncteurG : C ′ → C et
d’un isomorphismeϕ : GF → idC ′ équivautà la donńee, pour toutS ′ ∈ Ob(C ′), d’un couple
(S, u) formé d’un objetS deC et d’un isomorphismeu : F (S) → S ′, soit (G(S), ϕ(S)). (Avec
ces notations, il existe un foncteur uniqueC ′ → C ayant l’application donńeeS 7→ G(S)
comme application-objets, et tel que l’applicationS 7→ ϕ(S) soit un homomorphisme de fonc-
teursFG → idC ′). Enfin, siG est un foncteur quasi-inverse deF , et si on choisit des isomor-
phismesϕ : FG

∼→ idC ′ et ψ : GF
∼→ idC , alors les deux conditions de compatibilités surϕ,

ψ énonćees dans [1, I.1.2] sont en faitéquivalentes l’unèa l’autre, et pour tout isomorphismeϕ
choisi, il existe un isomorphismeψ unique tel que lesdites conditions soient satisfaites.part 30

2 Catégories sur une autre

Soit E une cat́egorie dansUniv, c’est donc un objet deCat, et on peut consid́erer la
cat́egorieCat/E des “objets deCat au-dessus deE ”. Un objet de cette catégorie est donc un
foncteur

p : F → E

On dit aussi que la catégorieF , munie d’un tel foncteur, est unecat́egorie au-dessus deE , ou
uneE -cat́egorie. On appellera doncE -foncteur d’une cat́egorieF surE dans une catégorieG
surE , un foncteur

f : F → G

tel que
qf = p

où p etq sont les foncteurs-projection pourF resp.G . L’ensemble desE -foncteursf deF dans
G est donc en correspondance biunivoque avec l’ensemble des flèches d’origineF et d’extŕemit́e
G dansCat/E , sans pourtant qu’on ait là une identit́e (puisque la donńee d’unf comme dessus149
ne d́etermine pasF et G en tant que catégories surE ) ; mais bien enendu, comme dans toute
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autre cat́egorieC/S, on fera couramment l’abus de langage consistantà identifier lesE -foncteurs
(au sens explicit́e plus haut)̀a des fl̀eches dans une catégorieCat/E .

On d́esignera par
HomE (F ,G )

l’ensemble desE -foncteurs deF dansG . Bien entendu, un composé deE -foncteurs est unE -
foncteur (la composition en question correspondant par définition à la composition des fl̀eches
dansCat/E ).

Consid́erons maintenant deuxE -foncteurs

f, g : F → G

et un homomorphisme de foncteurs :
u : f → g

On dit queu est unE -homomorphismeou un “homomorphisme deE -foncteurs”, si pour tout
ξ ∈ Ob(F ), on a

q(u(ξ)) = idp(ξ) ,

en paroles : posantS = p(ξ) = qf(ξ) = qg(ξ) ∈ Ob E , le morphisme

u(ξ) : f(ξ)→ g(ξ)

dansG est unidS-morphisme. (De façon géńerale, pour tout morphismeα : T → S dansE ,
et toute cat́egorie G au-dessus deE , un morphismev dansG est appeĺe un α-morphisme
si q(v) = α, q désignant le foncteur projectionG → E ). Si on a un troisìemeE -foncteur
h : F → G et unE -homomorphismev : g → h, alorsvu estégalement unE -homormorphisme.
Ainsi, les E -foncteurs deF dansG , et lesE -homomorphismes de tels, forment une sous-150
cat́egorie de la cat́egorie Hom(F ,G ) de tous les foncteurs deF dansG , qu’on appellera
la cat́egorie desE -foncteurs deF dansG et qu’on notera

HomE /−(F ,G )

C’est aussi la sous-catégorie noyau du couple de foncteurs

R, S : Hom(F ,G ) ////Hom(F ,E ) ,

oùR est le foncteur constant défini par l’objetp deHom(F ,E ), et òuS est le foncteurf 7→ q◦f
défini parq : G → E .

Pour finir ces ǵeńeralit́es, il resteà d́efinir les accouplements naturels entre les catégories
HomE /−(F ,G ) par composition deE -foncteurs. En d’autres termes, on veut définir un “fonc-
teur composition” :

(i) HomE /−(F ,G )×HomE /−(G ,H )→ HomE /−(F ,H )
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lorsqueF , G , H sont trois cat́egories surE , de telle façon que ce foncteur induise, pour les
objets, l’application de composition(f, g) 7→ gf deE -foncteursf : F → G et g : G → H .
Pour ceci, rappelons qu’on définit un foncteur canonique :

(ii) Hom(F ,G )×Hom(G ,H )→ Hom(F ,H )

qui, pour les objets, n’est autre que l’application de composition(f, g) 7→ gf de foncteurs, et qui
transforme une fl̀eche(u, v), où

u : f → f ′ , v : g → g′

sont des fl̀eches dansHom(F ,G ) resp. dansHom(G ,H ), en la fl̀eche

v ∗ u : gf → g′f ′

définie par la relation :151

v ∗ u(ξ) = v(f ′(ξ)).g(u(ξ)) = g′(u(ξ)).v(f(ξ))

Il est bien connu que l’on obtient bien ainsi un homomorphisme degf dans g′f ′, et que (pour
f, g etu, v variables) on obtient ainsi un foncteur (ii), i.e. qu’on a

(I) idg ∗ idf = idgf ,

(II) (v′ ∗ u′) ◦ (v ∗ u) = (v′ ◦ v) ∗ (u′ ◦ u)

Rappelons aussi qu’on a une formule d’associativité pour les accouplements canoniques (ii), qui
s’exprime d’une part par l’associativité(hg)f = h(gf) de la composition de foncteurs, et d’autre
part par la formule

(III) (w ∗ v) ∗ u = w ∗ (v ∗ u)

pour les produits de composition d’homomorphismes de foncteurs (où u : f → f ′ et v : g → g′

sont comme dessus, et où on suppose donné de plus un homorphismew : h → h′ de fonc-
teursh, h′ : H → K ). Je dis maintenant quelorsqueF , G sont desE -cat́egories, le foncteur
composition canonique(ii) induit un foncteur(i). Comme on sait d́ejà que le compośe de deux
E -foncteurs est unE -foncteurs, cela revient̀a dire quelorsqueu : f → f ′ et v : g → g′ sont
des homomorphismes deE -foncteurs, alorsv ∗ u : gf → g′f ′ estégalement un homomorphisme
deE -foncteurs.Cela ŕesulte en effet trivialement des définitions. Comme les accouplements (i)
sont induits par les accouplements (ii), ils satisfontà la m̂eme propríet́e d’associativit́e, expriḿee
aussi dans les formules(hg)f = h(gf) et (w ∗ v) ∗ u = w ∗ (v ∗ u) pour desE -foncteurs et des
E -homomorphismes deE -foncteurs.

Pour compĺeter le formulaire (I), (II), (III), rappelons aussi les formules :

(IV) v ∗ idF = v et idG ∗ u = u ,
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où pour simplifier ońecrit v ∗ f ouu ∗ g au lieu dev ∗ u, lorsqueu resp.v est l’automorphisme152
identitique def resp.g.

De la d́efinition des accouplements (i) résulte queHomE /−(F ,G ) est un foncteur enE , G ,
de la cat́egorie produitCat/E

◦ × Cat/E dans la cat́egorieCat. Si en effetg : G → G1 est un
E -foncteur, i.e. un objet deHomE /−(G ,G1), alors faisant dans (i)H = G1, il lui correspond un
foncteur

g∗ : HomE /−(F ,G )→ HomE /−(F ,G1)

On d́efinit de la façon analogue, pour unE -foncteurf : F1 → F , un foncteur

f ∗ : HomE /−(F ,G )→ HomE /−(F1,G )

Pour abŕeger, on d́esigne ces foncteurs aussi par les siglesf 7→ g◦f resp.g 7→ g◦f (qui désignent
seulement, en fait, les applications correspondantes sur les ensembles d’objets). Il résulte de la
propríet́e d’associativit́e indiqúee plus haut que de cette façon, on obtient bien comme annoncé
un foncteurCat◦/E ×Cat/E → Cat.part 31

3 Changement de base dans les catégories surE

Comme dansCat les limites projectives (relativementà des cat́egoriesI éléments deUniv)
existent, il en est de m̂eme dansCat/E , en particulier les produits cartésiens y existent, qui
s’interpr̀etent comme des produits fibrés dansCat. Conforḿement aux notations géńerales, si
F etG sont des catégories au-dessus deE , on d́esigne par

F ×E G

leur produit dansCat/E , i.e. leur produit fibŕe au-dessus deE dansCat, en tant que catégorie153
au-dessus deE . Ainsi, F ×E G est muni de deuxE -foncteurspr1 et pr2, qui d́efinissent, pour
toute cat́egorieH au-dessus deE , une bijection

HomE (H ,F ×E G )
∼→ HomE (H ,F )× HomE (H ,G ) .

Cette bijection provient d’ailleurs d’un isomorphisme de catégories

HomE /−(H ,F ×E G )
∼→ HomE /−(H ,F )×HomE /−(H ,G )

en prenant les ensembles d’objets des deux membres, où le foncteurécrit est celui qui a pour
composantes les foncteursh 7→ pr1 ◦h eth 7→ pr2 ◦h du premier membre dans les deux facteurs
du second. On laisse au lecteur le soin de vérifier qu’on obtient bien ainsi un isomorphisme (le fait
analoguéetant vrai, plus ǵeńeralement, chaque fois qu’on a une limite projective de catégories –
et non seulement dans le cas d’un produit fibré).

Rappelons d’ailleurs qu’on a (comme il aét́e dit dans le No 1) :

Ob(F ×E G ) = Ob(F )×Ob(E ) Ob(G )

Fl(F ×E G ) = Fl(F )×Fl(E ) Fl(G ) ,
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la composition des fl̀eches se faisant d’ailleurs composante par composante.

Dans la suite, nous considérons un foncteur

λ : E ′ → E

et pour toute catégorieF au-dessus deE , on consid̀ereF ×E E ′ comme une catégorie au-
dessus deE ′ grâceàpr2 ; en d’autres termes, nous interprétons l’oṕeration “produit fibŕe” comme
une oṕeration “changement de base”, le foncteurλ : E ′ → E prenant le nom de“foncteur
de changement de base”. Conforḿement aux faits ǵeńeraux bien connus, on obtient ainsi un
foncteur, ditfoncteur changement de basepourλ :154

λ∗ : Cat/E → Cat/E ′ ,

(adjoint du foncteur “restriction de la base” qui,à toute cat́egorieF ′ au-dessus deE ′, de foncteur
projectionp′, associeF ′, consid́eŕe comme cat́egorie au-dessus deE par le foncteurp = λp′).
Comme il est bien connu dans le cas géńeral d’un foncteur changement de base dans une
cat́egorie, le foncteur changement de base “commute aux limites projectives”, et en particulier
“transforme” produits fibŕes surE en produits fibŕes surE ′.

SoientF etG deux cat́egories au-dessus deE , on va d́efinir un isomorphisme canonique:

(i) HomE ′/−(F ′,G ′)
∼→ HomE /−(F ×E E ′,G ) où F ′ = F ×E E ′, G ′ = G ×E E ′.

Pour ceci, consid́erons le foncteur

pr1 : G ′ = G ×E E ′ → G ,

et d́efinissons (i) par
F 7→ pr1 ◦ F ,

qui a priori d́esigne un foncteur

(ii) Hom(F ′,G ′)→ Hom(F ′,G )

Il faut donc v́erifier seulement que ce dernier induit un foncteur pour les sous-catégories (i), et
que ce dernier est un isomorphisme. Que (ii) induise une bijection

HomE ′/−(F ′,G ′)
∼→ HomE /−(F ×E E ′,G )

est la propríet́e caract́eristique du foncteur changement de base. Il reste doncà prouver que siF ,155
G sont desE ′-foncteursF ′ → G ′, alorsl’application

u 7→ pr1 ◦ u

induit une bijection
HomE ′(F,G)

∼→ HomE (pr1 ◦ F, pr1 ◦G) .
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La vérification de ce fait est imḿediate, et laisśee au lecteur.

Il r ésulte de cet isomorphisme (i), et de la fin du numéro pŕećedent, que

HomE ′/−(F ×E E ′,G ×E E ′)

peut-̂etre consid́eré comme un foncteur enE ′, F , G , de la cat́egorie
Cat◦/E × Cat◦/E × Cat/E dans la cat́egorie Cat, isomorphe au foncteur défini par l’ex-
pressionHomE /−(F ×E E ′,G ). En particulier, pourF , G fixés, on obtient un foncteur enE ′,
E ′ → HomE ′′/−(F ′,G ′) = HomE ′/−(F ×E E ′,G ×E E ′), et en particulier leE -foncteur de
projectionλ : E ′ → E définit un morphisme i.e. un foncteur

λ∗F ,G : HomE /−(F ,G )→ HomE ′/−(F ′,G ′)

que nous allons expliciter. Pour les ensembles d’objets des deux membres, c’est l’aplication

f 7→ f ′ = f ×E E ′

qui exprime la d́ependance fonctorielle deF×E E ′ de l’objetF surE . D’autre part, consid́erons
deuxE -foncteurs

f, g : F → G

et un homomorphisme deE -foncteurs

u : f → g ,

on va expliciter l’homomorphisme deE ′-foncteurs correspondant :156

u′ : f ′ → g′ .

Pour tout
ξ′ = (ξ, S ′) ∈ Ob(F ′)

avec
ξ ∈ Ob(F ), S ′ ∈ Ob(E ′), p(ξ) = λ(S ′) = S

le morphisme

u′(ξ′) : f ′(ξ′) = (f(ξ), S ′)→ g′(ξ′) = (g(ξ), S ′) dansG ′

est d́efini par la formule
u′(ξ′) = (u(ξ), idS′)

(ce qui est bien unS ′-morphisme dansG ′, carq(u(ξ)) = λ(idS′) = idS).

Consid́erons maintenant unE -foncteur quelconque

λ′ : E ′′ → E ′
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et le foncteur correspondant

HomE ′/−(F ×E E ′,G ×E E ′)→ HomE ′′/−(F ×E E ′′,G ×E E ′′) ,

je dis que ce foncteur n’est autre que le foncteur qu’on obtient par le procéd́e pŕećedent, en
partant deF ′ et G ′ surE ′ et en consid́erantE ′′ comme une catégorie surE ′, compte tenu des
isomorphismes de“transitivit é de changement de base”:

F ′ ×E ′ E
′′ ∼→ F ′′ = F ×E E ′′ et G ′ ×E E ′′

∼→ G ′′ = G ×E E ′′ ,

qui impliquent un isomorphisme canonique

HomE ′′/−(F ′ ×E ′ E
′′,G ′ ×E ′ E

′′)
∼→ HomE ′′/−(F ×E E ′′,G ×E E ′′)

La vérification de cette compatibilité est imḿediate, et laisśee au lecteur.157

Les foncteurs qu’on vient de définir sont compatibles avec les accouplements définis au
numéro pŕećedent, de façon précise, siF , G , H sont des catégories au-dessus deE et si on
pose

F ′ = F ×E E ′ , G ′ = G ×E E ′ , H ′ = H ×E E ′ ,

on a commutativit́e dans le diagramme de foncteurs suivant :

HomE /−(F ,G )×HomE /−(G ,H ) //

λ∗F,G×λ
∗
G ,H

��

HomE /−(F ,H )

λ∗F,H

��
HomE /−(F ′,G ′)×HomE ′/−(G ′,H ′) //HomE ′/−(F ′,H ′)

où les fl̀eches horizontales sont les foncteurs-composition définis au nuḿero pŕećedent. Cette
commutativit́e s’exprime par les formules

(gf)′ = g′f ′

pourf ∈ HomE (F ,G ), g ∈ HomE (G ,H ), (formule qui exprime simplement la fonctorialité
du changement de base), et la formule

(v ∗ u)′ = v′ ∗ u′

lorsque u : f → f1 est une fl̀eche deHomE /−(F ,G ) et v : g → g1 une fl̀eche de
HomE /−(G ,H ). La vérification de cette formule résulte facilement des définitions.

Dans la suite, nous nous intéresserons surtoutà HomE (F ,G ) (et certaines sous-catégories
remarquables de celle-ci) lorsqueF = E , et introduisons pour cette raisons une notation
sṕeciale :

Γ(G /E ) = HomE (E ,G ) , Γ(G /E ) = Ob(Γ(G /E )) = HomE (G ,E ) .
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158

Remarques. LorsqueE est une cat́egorie ponctuelle, i.e.Ob(E ) et Fl(E ) réduitsà un seul
élément, ce qui signifie aussi queE est un objet final de la catégorieCat, alors la donńee d’une
cat́egorie surE estéquivalentèa la donńee d’une cat́egorie tout court, (car il y aura un foncteur
unique deF dansE ). De façon plus pŕecise,Cat/E est alors isomorphèa Cat. De plus, les
cat́egoriesHomE /−(F ,G ) ne sont alors autres que lesHom(F ,G ). Rappelons alors que la
formule fondamentale

Hom(H ,Hom(F ,G ))
∼→ Hom(F ×H ,G )

(isomorphisme fonctoriel en les trois arguments qui y figurent), permet d’interpréter

Hom(F ,G )

axiomatiquement, en termes internesà la cat́egorieCat, de sorte que le formulaire connu des
cat́egoriesHom apparâıt comme un cas particulier d’un formulaire valable dans les catégories
telles queCat, où des “objetsHom” (définis par la formule pŕećedente) existent. Il y a une
interpŕetation analogue deHomE /−(F ,G ) lorsqu’on supposèa nouveauE quelconque, par la
formule

Hom(H ,HomE /−(F ,G ))
∼→ HomE (F ×H ,G )

(isomorphisme fonctoriel en les trois arguments). De cette façon, les propriét́es formelles ex-
pośees dans les No 2, 3 sont des cas particuliers de résultats plus ǵeńeraux, valables dans les
cat́egories òu les objetsHomE /−(F ,G ) (lorsqueF , G sont deux objets de la catégorie au-
dessus d’un troisième E ) existent.

part 32

4 Catégories-fibres ;équivalence deE -catégories

Soit F une cat́egorie surE , et soitS ∈ Ob E . On appellecat́egorie-fibre deF en S la
sous-cat́egorieFS deF image ŕeciproque de la sous-catégorie ponctuelle deE définie parS.159
Donc les objets deFS sont les objectsξ de F tels quep(ξ) = S, ses morphismes sont les
morphismesu de F tels quep(u) = idS, i.e. lesS-morphismes dansF . Bien entendu,FS

est canoniquement isomorphe au produit fibré F ×E {S}, où {S} désigne la sous-catégorie
ponctuelle deE définie parS, munie de son foncteur d’inclusion dansE . Il en résulte (compte
tenu de la transitivit́e du changement de base) que si on fait le changement de baseλ : E ′ → E ,
alors pour toutS ′ ∈ Ob(E ′), la projectionpr1 : F ′ = F ×E E ′ → F induit un isomorphisme

F ′
S′ → FS (où S = λ(S ′)).

Proposition 4.1 Soit f : F → G un E -foncteur. Si f est pleinement fidèle, alors pour tout
changement de base E ′ → E , le foncteur correspondant f ′ : F ′ = F ×E E ′ → G ′ = G ×E E ′

est pleinement fidèle.
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La vérification est imḿediate ; plus ǵeńeralement, on peut montrer que toute limite projec-
tive de foncteur pleinement fidèle (ici, f et les foncteurs identiques dansE ,E ′) est un foncteur
pleinement fid̀ele.

On notera que l’assertion analogueà 4.1, ou “pleinement fid̀ele” est remplaćee par “́equiva-
lence de cat́egories”, est fausse, déjà pourG = E . Cependant :

Proposition 4.2 Soit f : F → G un E -foncteur. Les conditions suivantes sont équivalentes :

(i) Il existe un E -foncteur g : G → F et des E -isomorphismes

gf
∼→ idF , fg

∼→ idG .

(ii) Pout toute catégorie E ′ sur E , le foncteur

f ′ = f ×E E ′ : F ′ = F ×E E ′ → G ′ = G ×E E ′

est une équivalence de catégories.160
(iii) f est une équivalence de catégories, et pout tout S ∈ Ob(E ), le foncteur fS : FS → GS

induit par f est une équivalence de catégories.

(iii bis) f est pleinement fidèle, et pour tout S ∈ Ob(E ) et tout η ∈ Ob GS , il existe un
ξ ∈ Ob(FS) et un S-isomorphisme u : f((ξ)→ η.

Démonstration. Evidemment (i) implique quef est unéequivalence de catégories (notion qui
se d́efinit par la m̂eme condition, mais òu les isomorphismes de foncteurs ne sont pas astreints
à être desE -morphismes). D’autre part, il résulte des fonctorialités du nuḿero pŕećedent que
la condition (i) est conservée apr̀es changement de baseE ′ → E . Il s’ensuit que (i)⇒ (ii).
Evidemment (ii)⇒ (iii), car il suffit de faireE ′ = E et E ′ = {S}. Il est encore plus trivial que
(iii) ⇒ (iii bis), resteà prouver que (iii bis)⇒ (i). Pour ceci, choisissons pour toutη ∈ Ob(G )
un g(η) ∈ Ob(F ) et un isomorphismeu(η) : f(g(η)) → η qui soit tel queq(u(η)) = idS,
où S = q(η). C’est possible gr̂aceà la deuxìeme condition (iii bis). Comme il est connu et
immédiat, le fait quef est pleinement fid̀ele implique queg peut de façon uniquêetre consid́eŕe
comme un foncteur deG dansF , de façon que lesu(η) définissent un homomorphisme (donc
un isomorphisme) fonctorielu : fg

∼→ idG . De plus, par constructiong est unE -foncteur etu
un E -homomorphisme. Aux données pŕećedentes correspond alors un isomorphisme fonctoriel
v : gf → idF , défini par la condition quef ∗ v = u ∗ f , et on constate tout de suite que c’est
également unE -morphisme, cqfd.

Définition 4.3 Si les conditions précédentes sont vérifiées, on dit que f est une équivalence de
catégories sur E , ou une E -équivalence.

Corollaire 4.4 Supposons que le foncteur projection p : F → E soit un foncteur transportable,
i.e. que pour tout isomorphisme α : T → S dans E et tout objet ξ dans FT , il existe un isomor-
phisme u dans F de source ξ tel que p(u) = α. Alors tout E -foncteur f : F → G qui est une
équivalence de catégories, est une E -équivalence.
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Résulte du crit̀ere (iii bis).161

Corollaire 4.5 Soit f : F → G une E -équivalence. Alors pour toute catégorie H sur E , les
foncteurs correspondants :

HomE /−(G ,H )→ HomE /−(F ,H )

HomE /−(H ,F )→ HomE /−(H ,G )

(cf. No 2) sont des équivalences de catégories.

Cela ŕesulte du crit̀ere (i) par le raisonnement habituel.

5 Morphismes cart́esiens, images inverses, foncteurs carté-
siens

SoitF une cat́egorie surE , de foncteur-projectionp.

Définition 5.1 Considérons un morphisme

α : η → ξ

dans F , et soient
S = p(ξ), T = p(η), f = p(α)

On dit que α est un morphisme cart́esiensi pour tout η′ ∈ Ob(FT ) et tout f -morphisme
u : η′ → ξ, il existe un T -morphisme unique u : η′ → η tel que u = α ◦ u.

Cela signifie donc que pour toutη′ ∈ Ob(FT ), l’applicationv 7→ α ◦ v :

(i) HomT (η′, η)→ Homf (η
′, ξ)

est bijective. Cela signifie aussi que le couple(η, α) représente le foncteur enη′ F ◦
T → Ens du

deuxìeme membre. Si pour un morphismef : T → S dansE donńe, et unξ ∈ Ob(FS) donńe,
il existe un tel couple(η, α), i.e. un morphisme cartésienα dansF de butξ, tel quep(α) = f ,162
alorsη est d́etermińe dansFT à isomorphisme unique près. On dit alors quel’image inverse deξ
par f existe, et un objetη deFT muni d’un f -morphisme cart́esienα : η → ξ est appeĺe une
image inverse deξ par f . Souvent on suppose choisi une telle image inverse chaque fois qu’elle
existe (F étant fix́e) ; on notera alors l’image inverse par des symboles tels quef ∗F (ξ), ou sim-
plementf ∗(ξ) où ξ ×S T lorsque ces notations n’entraı̂nent pas des confunsions ; le morphisme
canoniqueα : η → ξ sera alors noté, dans ce qui suit, parαf (ξ). Si pour toutξ ∈ Ob(FS),
l’image inverse deξ par f existe, on dira aussi quele foncteur image inverse parf dansF
existe, et f ∗(ξ) devient alors unfoncteur covariant enξ, deFS dansFT . Ceci provient du fait
que le deuxìeme membre dans (i) dépend de façon covariante deξ, i.e. de façon pŕecise d́esigne
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un foncteur deF ◦
T ×FS dansEns. Cette d́ependance fonctorielle pourf ∗(ξ) s’explicite ainsi :

consid́erons desf -morphismes cartésiens

α : η → ξ, α′ : η′ → ξ′

et unS-morphismeλ : ξ → ξ′, alors il existe unT -morphisme et un seulµ : η → η′ tel que l’on
ait

α′µ = λα

(comme il ŕesulte du fait queα′ est cart́esien).

Notons aussi le fait imḿediat suivant : consid́erons un diagramme commutatif

ξ
α←−−− η

λ

y yµ
ξ′

α′←−−− η′

dansF , oùα etα′ sont desf -morphismes, etλ unS-isomorphisme,µ unT -isomorphism.Pour163
queα soit cart́esien, il faut et il suffit queα′ le soit.

Définition 5.2 Un E -foncteur F : F → G est appelé un foncteur cart́esiens’il transforme mor-
phismes cartésiens en morphismes cartésiens. On désigne par Homcart(F ,G ) la sous-catégorie
pleine de HomE /−(F ,G ) formée des foncteurs cartésiens.

Par exemple, considérant E comme une catégorie sur E grâce au foncteur identique, tout
morphisme de E est cartésien, donc un foncteur cartésien de E dans F est un foncteur section
F : E → F qui transforme tout morphisme de E en un morphisme cartésien ; un tel foncteur
s’appelle une section cart́esiennede F sur E .

Proposition 5.3 (i) Un foncteur F : F → G qui est une E -équivalence, est un foncteur
cartésien. (ii) Soient F,G deux E -foncteurs isomorphesF → G . Si l’un est cartésien, l’autre
l’est. (iii) Le composé de deux foncteurs cartésiens F → G et G →H est un foncteur cartésien.

L’assertion (iii) est triviale sur la sur la définition, (ii) résulte de la remarque préćedant 5.2,
(i) résulte facilement de la définition et du crit̀ere 4.2 (iii) ; plus pŕeciśement, un morphismeα
dansF est cart́esien si et seulement siF (α) l’est.part 33

Corollaire 5.4 Soit F : F → G une E -équivalence. Alors pour toute catégorie H sur E , les
foncteurs correspondants G 7→ G ◦ F et G 7→ F ◦G induisent des équivalences de catégories :

Homcart(G ,H )
∼→ Homcart(F ,H )

Homcart(H ,F )
∼→ Homcart(H ,G )

Cela se d́eduit de la façon habituelle de 4.2 critère (i) et de 5.3 (i) (ii) (iii). On peut préciser164
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que le E -foncteurG : G → H est cart́esien si et seulement siG ◦ F l’est, et de m̂emeun
E -foncteurG : H → F est cart́esien si et seulement siF ◦G l’est.

Il r ésulte de 5.4 (iii) que si on considère la sous-catégorieCatcart
/E deCat/E dont les objets

sont les m̂emes que ceux deCat/E , et dont les morphismes sont les foncteurscartésiensalors
on a comme au No 2 des accouplements :

Homcart(F ,G )×Homcart(G ,H )→ Homcart(F ,H )

induit par ceux du No 2, permettant de considérerHomcart(F ,G ) comme un foncteur enF , G ,
de la cat́egorie

(
Catcart

/E

)◦ × Catcart
/E dansCat). Nous aurons besoin de cette remarque surtout

pour le cas òu F = G :

Définition 5.5 Soit F une catégorie sur E . On désigne par

Lim
←

F/E

la catégorie des E -foncteurs cartésiens E → F , i.e. des sections cartésiennes de F sur E .

D’après ce qu’on vient de dire,Lim
←

F/E est un foncteur enF , de la cat́egorieCatcart
/E dans

la cat́egorieCat.

Nous verrons plus bas les relations entre cette opérationLim
←

et la notion de limite projective

de cat́egories, ainsi que de nombreux exemples.

6 Catégories fibŕees et cat́egories pŕefibrées. Produits et chan-
gement de base dans icelles

Définition 6.1 Une catégorie F sur E est appelée une cat́egorie fibŕee (et on dit alors que le
foncteur F → E est fibrant) si elle satisfait les deux axiomes suivants :

– FibI Pour tout morphisme f : T → S dans E , le foncteur image inverse par f dans F165
existe.

– FibII Le composé de deux morphismes cartésiens est cartésien.
Une catégorie F sur E satisfaisant la condition FibI est appelée une cat́egorie pŕefibŕee surE .

Si F est une cat́egorie fibŕee (resp. pŕefibŕee) surE , une sous-catégorieG deF est appeĺee
unesous-cat́egorie fibŕee(resp. unesous-cat́egorie pŕefibŕee) si c’est une cat́egorie fibŕee (resp.
préfibŕee) surE , et si de plus le foncteur d’inclusion est cartésien. Si par exempleG est une
sous-cat́egoriepleinedeF , on voit que cela signifie que pour tout morphismef : T → S dans
E et pour toutξ ∈ Ob(GS), f ∗F (ξ) estT -isomorphèa un objet deGT . Un autre cas intéressant
est le suivant :F étant une catégorie fibŕee surE , consid́erons la sous-catégorieG deF ayant
mêmes objets, et dont les morphismes sont les morphismescartésiensdeF ; en particulier les

126



VI

morphismes deGS sont les isomorphismes deFS. On voit de suite que c’est bien une sous-
cat́egorie fibŕee deF , car dans la bijection

HomT (η′, η)
∼→ Homf (η

′, ξ)

relativeà unf -morphisme cart́esienα dansF , auxT -isomorphismes du premier membre corres-
pondent les morphismes cartésiens du second. Par définition, les sections cartésiennesE → F
(correspondent alors biunivoquement auxE -foncteurs quelconquesE → G (mais on notera que
le foncteur naturel

HomE /−(E ,G )→ Homcart(E ,F ) = Lim
←

(F/E )

est fid̀ele, mais en ǵeńeral n’est pas pleinement fidèle, i.e. n’est pas un isomorphisme).

Remarques. Soit F une cat́egorie surE . Les conditions suivantes sontéquivalentes : (i) Tous
les morphismes deF sont cart́esiens (ii)F est une cat́egorie fibŕee surE , et lesFS sont des
groupöıdes, (i.e. tout morphisme dansFS est un isomorphisme). On dit alors queF est une
cat́egoriefibrée en groupöıdessurE . Ce sont elles qu’on rencontre surtout en “théorie des mo-166
dules”. SiE est un groupöıde, on montre que les conditions (i) et (ii)équivalent aussìa la sui-
vante : (iii) F est un groupöıde, et le foncteur projectionp : F → E est transportable (cf. 4.4).
Par exemple, siE et F sont des groupoı̈des tels queOb E et Ob F soient ŕeduitsà un point,
de sorte queE et F sont d́efinis, à isomorphisme près, par des groupesE et F , et le foncteur
p : F → E est d́efini par un homomorphisme de groupesp : F → E, alorsF est fibŕe surE si et
seulement sip est surjectif, i.e. sip définit une extension du groupeE par le groupeG = Ker p.

Proposition 6.2 Soit F : F → G une E -équivalence. Pour que F soit une catégorie fibrée
(resp. préfibrée) sur E , il faut et il suffit que G le soit.

Résulte facilement des définitions et de la remarque signalée plus haut qu’un morphismeαx
dansF est cart́esien si et seulement siF (α) l’est.

Proposition 6.3 Soient F1, F2 deux catégories sur E , et soit α = (α1, α2) un morphisme dans
F = F1 ×E F2. Pour que α soit cartésien, il faut et il suffit que ses composantes le soient.

Soit en effetξi le but etηi la source deαi, et soitf : T → S le morphisme deE tel queα1 et
α2 soient desf -morphismes. Pour toutη′ = (η′1, η

′
2) dansFT , on a un diagramme commutatif

HomT (η′, η) //

��

Homf (η
′, ξ)

��
HomT (η′1, η1)× HomT (η′2, η2) // Homf (η

′
1, ξ1)× Homf (η

′
2, ξ2)

où les fl̀eches verticales sont des bijections. Donc si l’une des flèches horizontales est une bi-
jection, il en est de m̂eme de l’autre. Cela montre déjà que siα1, α2 sont cart́esiens (donc la
deuxìeme fl̀eche horizontale est bijective) alorsα l’est. La ŕeciproque se voit en faisant dans le
diagramme ci-dessusη′i = ηi d’où HomT (η′i, ηi) 6= ∅, d’abord pouri = 2 ce qui prouve queα1

est cart́esien, puis pouri = 1 ce qui prouve queα2 est cart́esien.
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167

Corollaire 6.4 Soit F = F1 ×E F2, et soit F = (F1, F2) un E -foncteur G → F . Pour que
F soit cartésien, il faut et il suffit que F1 et F2 le soient. On obtient ainsi un isomorphisme de
catégories

Homcart(G ,F1 ×E F2)
∼→ Homcart(G ,F1)×Homcart(G ,F2)

et en particulier (faisant G = E ) un isomorphisme de catégories

Lim
←

(F1 ×E F2/E )
∼→ Lim

←
(F1/E )× Lim

←
(F2/E )

Corollaire 6.5 Soient F1 et F2 deux catégories fibrées (resp. préfibrées) au-dessus de E , alors
leur produit fibré F = F1 ×E F2 est une catégorie fibrée (resp. préfibrée) sur E .

Ces ŕesultats s’́etendent d’ailleurs au cas du produit fibré d’une famille quelconque de
cat́egories surE .

Proposition 6.6 Soient F une catégorie sur E , de foncteur-projection p, et soit λ : E ′ → E un
foncteur, considérons F ′ = F ×E E ′ comme une catégorie sur E ′ par le foncteur-projection
p′ = p×E idE ′ . Soit α′ un morphisme de F ′, pour que α′ soit un morphisme cartésien, il faut et
il suffit que son image α dans F le soit.

La démonstration est imḿediate et laisśee au lecteur.

Corollaire 6.7 Pour tout foncteur cartésien F : F → G de catégories sur E , le foncteur
F ′ = F ×E E ′ de F ′ = F ×E E ′ dans G ′ = G ×E E ′ est cartésien.

Par suite, le foncteurHomE (F ,G ) → HomE ′(F ′,G ′) consid́eŕe dans No 3 induit un
foncteur

Homcart(F ,G )→ Homcart(F
′,G ′);

en d’autres termes, pourF , G fixés,on peut consid́erer

Homcart(F ×E E ′,G ×E E ′)

comme un foncteur enE ′ de la cat́egorieCat/E
◦ dansCat. Si on laisse varieŕegalementF , G ,168

on trouve, un foncteur de la catégorieCat/E
◦×
(
Catcart

/E

)◦×Catcart
/E dansCat. Lorsqu’on tient

compte de l’isomorphisme

HomE ′(F
′,G ′)

∼→ HomE (F ×E E ′,G )

envisaǵe au No 4, alors lesE ′-foncteurs cart́esiens deF ′ dansG ′ correspondent auxE -foncteurs
F ×E E ′ → G qui transforment tout morphisme dont la première projection est un morphisme
cart́esien deF , en un morphisme cartésien deG . FaisantF = E , on trouve (apr̀es changement
de notation) :
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Corollaire 6.8 Lim
←

(F ′/E ′) est isomorphe à la sous-catégorie pleine de HomE /−(E ′,F )

formée des E -foncteurs E ′ → F qui transforment morphismes quelconques en morphismes
cartésiens. En particulier, si F est une catégorie fibrée et si F̃ est la sous-catégorie de F dont
les morphismes sont des morphismes cartésiens de F , alors on a une bijection

Ob Lim
←

(F ′/E ′)
∼→ HomE /−(E ′, F̃ ).

Cela pŕecise la façon dont l’expressionLim
←

(F ×E E ′/E ′) doit être consid́eŕee comme un

foncteur enE ′ et enF , de la cat́egorieCat/E
◦ × Catcart

/E dans la cat́egorieCat. On verra
ultérieurement une d́ependance fonctorielle plus complète par rapport̀aE ′, lorsqueF est astreint
à être une cat́egorie fibŕee.

Corollaire 6.9 Soit F une catégorie fibrée (resp. préfibrée) sur E , alors F ′ = F ×E E ′ est une
catégorie fibrée (resp. préfibrée) sur E ′.

part 34

Proposition 6.10 Soient F , G des catégories préfibrées sur E , F un E -foncteur cartésien de
F dans G . Pour que F soit fidèle, resp. pleinement fidèle, (resp. une E -équivalence) il faut et169
il suffit que pour tout S ∈ Ob E , le foncteur induit FS : FS → GS soit fidèle (resp. pleinement
fidèle, resp. une équivalence).

Démonstration imḿediateà partir des d́efinitions.

Pour finir ce nuḿero, nous donnons quelques propriét́es des catégories fibŕees, utilisant
l’axiomeFibII.

Proposition 6.11 Soit F une catégorie préfibrée sur E . Pour que F soit fibrée, il faut et il suffit
qu’elle satisfasse la condition suivante :

FibII′ : Soit α : η → ξ un morphisme cartésien dans F au-dessus du morphisme f : T → S
de E . Pour tout morphisme g : U → T dans E , et tout ζ ∈ Ob FU , l’application u 7→ α ◦ u :

Homg(ζ, η)→ Homfg(ζ, ξ)

est bijective.

En d’autres termes, dans une catégoriefibrée sur E , les diagrammes cartésiens sont ca-
ract́eriśes par une propriét́e, plus forte a priori que celle de la définition, (qu’on obtient en faisant
g = idT dans l’́enonće qui pŕec̀ede).

Corollaire 6.12 Soient F une catégorie sur E , α un morphisme dans F . Pour que α soit un
isomorphisme, il faut que p(α) = f soit un isomorphisme et que α soit cartésien ; la réciproque
est vraie si F est fibrée sur E .
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En effet, siα est un isomorphisme il en estévidemment de m̂eme def = p(α) ; pour tout
η′ ∈ Ob FT , l’applicationu 7→ α ◦ u

Hom(η′, η)→ Hom(η′, ξ)

est bijective ; commef est un isomorphisme, on voit de suite que unélément du premier membre
est unT -morphisme si et seulement si son image dans le second est unf -morphisme, donc on
obtient ainsi une bijection

HomT (η′, η)→ Homf (η
′, ξ)

ce qui prouve la première assertion. Ŕeciproquement, supposons quef soit un isomorphisme170
et queα satisfasse la conditiońenonćee dansFibII′ (ce qui signifie donc, lorsqueF est fibŕee
sur E , queα est cart́esien), alors on voit tout de suite que pour toutζ ∈ Ob F , l’application
u 7→ α ◦ u deHom(ζ, η) dansHom(ζ, ξ) est bijective, doncα est un isomorphisme.

Corollaire 6.13 Soient α : η → ξ et β : ζ → η deux morphismes composables dans la catégorie
F fibrée sur E . Si α est cartésien alors β l’est si et seulement si αβ l’est.

On utilise la d́efinition des morphismes cartésiens sous la forme renforcée de 6.11.

7 Catégories cliv́ees surE

Définition 7.1 Soit F une catégorie sur E . On appelle clivagede F sur E une fonction qui
attache à tout f ∈ Fl(E ) un foncteur image inverse pour f dans F , soit f ∗. Le clivage est dit
normaliśe si f = idS implique f ∗ = idFS

. On appelle cat́egorie cliv́ee(resp. cat́egorie cliv́ee
normaliśee) une catégorie F sur E munie d’un clivage (resp. d’un clivage normalisé).

Il est évident queF admet un clivage si et seulement siF est pŕefibŕee surE , et alorsF
admet un clivage normalisé. L’ensemble des clivages surF est en correspondance biunivoque
avec l’ensemble des partiesK deFl(F ) satisfaisant les conditions suivantes :

a) Lesα ∈ K sont des morphismes cartésiens.

b) Pour tout morphismef : T → S dansE et toutξ ∈ Ob(FS), il existe unf -morphisme
unique dansK, de butξ.

Pour que le clivage d́efini parK soit normaliśe, il faut et il suffit queK satisfasse de plus la
condition

c) Les morhismes identiques dansF appartiennent̀aK.

Les morphismeśeléments deK pourrontêtre appeĺes lesmorphismes de transportpour le171
clivage envisaǵe.

La notion d’isomorphisme de catégories cliv́ees surE est claire. Plus ǵeńeralement, on peut
définir les morphismes deE -cat́egories cliv́ees comme les foncteurs deE -cat́egoriesF → G
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qui appliquent morphismes de transport en morphismes de transport. (Ce sont en particulier des
foncteurs cart́esiens). De cette façon les catégories cliv́ees surE sont les objets d’une catégorie,
la cat́egorie des cat́egories cliv́ees surE . Le lecteur explicitera l’existence de produits, liée au
fait que si une catégorie surE est produit de catégoriesFi surE munies chacune d’un clivage,
alorsF est muni d’un clivage naturel correspondant. On laisseégalement au lecteur d’expliciter
la notion de changement de base dans les catégories cliv́ees.

Nous d́esignerons parαf (ξ) le morphisme canonique

αf (ξ) : f ∗(ξ)→ ξ.

Il est, on l’a dit, fonctoriel enξ, i.e. on a un homomorphisme fonctoriel

αf : iTf
∗ → iS,

où pour toutS ∈ Ob(E ), iS désigne le foncteur d’inclusion

iS : FS → F

Consid́erons maintenant des morphismes

f : T → S et g : U → T

dansE , et soitξ ∈ Ob(FS), il existe alors un uniqueU -morphisme

cf,g(ξ) : g∗f ∗(ξ)→ (fg)∗(ξ)

rendant commutatif le diagramme172

f ∗(ξ)
αg(f∗(ξ))←− g∗(f ∗(ξ))

αf (ξ) ↓ ↓ cf,g(ξ)

ξ ←−
αfg(ξ)

(fg)∗(ξ)

(en vertu de la d́efinition de(fg)∗(ξ)). Pourξ variable, cet homomorphisme est fonctoriel, i.e. :
on a un homomorphisme

cf,g : g∗f ∗ → (fg)∗

de foncteursFS → FU . Notons tout de suite :

Proposition 7.2 Pour que la catégorie clivée F sur E soit fibrée, il faut et il suffit que les cf,g
soient des isomorphismes.

On en conclut, prenant pourf un isomorphisme, pourg son inverse, et en considérant les
isomorphismescf,g et cg,f :

Corollaire 7.3 Si F est une catégorie fibrée clivée sur E , alors pour tout isomorphisme
f : T → S dans E , f ∗ est une équivalence de catégories FS → FT .
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Proposition 7.4 Soit F une catégorie clivée sur E . On a

A)

{
cf,idT (ξ) = αidT (f ∗(ξ))
cidS ,f (ξ) = f ∗(αidS(ξ))

B) cf,gh(ξ) · cg,h(f ∗(ξ)) = cfg,h(ξ) · h∗(cf,g(ξ))

(Dans ces formules, f, g, h désignent des morphismes173

V → U → T → S

et ξ un objet de FS).

La premìere et seconde relation, dans le cas d’un clivage normalisé, prennent la forme plus
simple

A′) cf,idT = idf∗ , cidS ,f = idf∗ .

Quantà la troisìeme, elle se visualise par la commutativité du diagramme

(D)
h∗g∗f ∗(ξ)

cg,h(f∗(ξ))
−→ (gh)∗(f ∗(ξ))

h∗(cf,g(ξ)) ↓ ↓ cf,gh(ξ)

h∗(fg)∗(ξ)
cfg,h(ξ)
−→ (fgh)∗(ξ) .

Dans le cas des catégories fibŕees, (òu les cf,g sont des isomorphismes), cette commutativité
peut s’exprimer intuitivement par le fait quel’utilisation successive des isomorphismes de la
formecf,g ne conduit pas̀a des “identifications contradictoires”. On peut́ecrireégalement cette
formule sans argumentξ, par l’utilisation du produit de convolution de homomorphismes de
foncteurs :

cfg,h ◦ (h∗ ∗ cf,g) = cf,gh ◦ (cg,h ∗ f ∗).

La démonstration des deus premières formules 7.4 est triviale, esquissons celle de la
troisième. Pour ceci, considérons, en plus du carré (D), le carŕe d’homomorphismes :

(D′)
g∗f ∗(ξ)

αg(f∗(ξ))−→ f ∗(ξ)
cf,g(ξ) ↓ ↓ αf (ξ)

(fg)∗(ξ)
αfg(ξ)
−→ ξ

qui est commutatif par d́efinition decf,g(ξ). Consid́erons le diagramme obtenu en joignant les174
sommets de(D) aux sommets correspondants de(D′) par les homomorphismes de la formeα :

αh(g
∗f ∗(ξ)), αgh(f

∗(ξ))
αh((fg)∗(ξ)), αfgh(ξ).

Les quatre faces latérales du cube ainsi obtenu sontégalement commutatives : pour celle de
gauche, cela provient du fait que la colonne gauche de(D) se d́eduit de la colonne gauche de(D′)
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par application deh, et queαh est un homomorphisme fonctoriel ; pour les trois autres, ce n’est
autre que la d́efinition des oṕerationsc des trois ct́es restants de(D). Ainsi les cinq faces du cube
autres que la face supérieure sont commutatives. Il en résulte que les deux(fgh)-morphismes
h∗g∗f ∗(ξ) → (fgh)∗(ξ) définis par(D) ont un m̂eme compośe avecαfgh(ξ) : (fgh)∗(ξ) → ξ,
donc ils sont́egaux par d́efinition de(fgh)∗.

Bornons-nous pour la suite aux catégories cliv́eesnormaliśees. Une telle cat́egorie donne
naissance aux objets suivants :

a) Une applicationS 7→ FS deOb(E ) dansCat.

b) Une applicationf 7→ f ∗, associant̀a toutef ∈ Fl(E ), de sourceT et de butS, une foncteur
f ∗ : FS → FT .

c) Une application(f, g) 7→ cf,g, associant̀a tout couple de fl̀eches(f, g) deE , un homomor-
phisme fonctorielcf,g : g∗f ∗ → (fg)∗.

D’ailleurs ces donńees satisfont aux conditions exprimées dans les formulesA′) et B)
donńees plus haut. (N.B. Si on ne s’était pas borńe au cas d’un clivage normalisé, il aurait fallu
introduire un objet supplémentaire, savoir une fonctionS 7→ αS qui associèa tout objetS deE
un homomorphisme fonctorielαS : (idS)∗ → idFS

; la conditionA′) se remplacerait alors par la
conditionA)).

Nous allons montrer maintenant comment on peut reconstituer (à isomorphisme unique près)175
la cat́egorie cliv́ee normaliśeeF surE à l’aide des objets préćedents.part 35

8 Catégorie clivée d́efinie par un pseudo-foncteurE ◦ → Cat

Appelons, pour abréger,pseudo-foncteurdeE ◦ dansCat (il faudrait dire, pseudo-foncteur
normaliśe), un ensemble de données a),b),c) comme ci-dessus, satisfaisant les conditionsA′)
etB). Au nuḿero pŕećedent, nous avons associé, à une cat́egorie cliv́ee normaliśee surE , un
pseudo-foncteurE ◦ → Cat, ici nous allons indiquer la construction inverse. Nous laisserons au
lecteur la v́erification de la plupart des détails, ainsi que du fait que ces constructions sont bien
“inverses” l’une de l’autre. De façon précise, il y aurait lieu de considérer les pseudo-foncteurs
E ◦ → Cat comme les objets d’une nouvelle catégorie, et de montrer que nos constructions
fournissent deśequivalences, quasi-inverses l’une de l’autre, entre cette dernière et la cat́egorie
des cat́egories cliv́ees au-dessus deE , définie au nuḿero pŕećedent.

On pose
F◦ =

∐
S∈Ob(E )

Ob F (S),

ensemble somme des ensemblesOb F (S) (N.B. nous noterons iciF (S) et nonFS la valeur en
l’objet S deE du pseudo-foncteur donné, pouréviter des confusions de notation par la suite).
On a donc une applicatiońevidente :

p◦ : F◦ → Ob E .
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Soient
ξ = (S, ξ), η = (T, η) (avecξ ∈ Ob F (S), η ∈ Ob F (T ))

deuxéléments deF◦, et soitf ∈ Hom(T, S), on posera

hf (η, ξ) = HomF (T )(η, f
∗(ξ)).

Si on a de plus un morphismeg : U → T dansE , et unζ ∈ Ob F (U), on d́efinit une application,176
not́ee(u, v) 7→ u ◦ v :

hf (η, ξ)× hg(ζ, η)→ hfg(ζ, ξ),

i.e. une application

HomF (T )(η, f
∗(ξ))× HomF (U)(ζ, g

∗(η))→ HomF (U)(ζ, (fg)∗(ξ)),

par la formule
u ◦ v = cf,g(ξ) · g∗(u) · v,

i.e.u ◦ v est le compośe de la śequence

ζ
u−→ g∗(η)

g∗(u)−→ g∗f ∗(ξ)
cf,g(ξ)
−→ (fg)∗(ξ).

On posera d’autre part
h(η, ξ) =

∐
f∈HomT,S

hf (η, ξ),

et les accouplements préćedents d́efinissent des accouplements

h(η, ξ)× h(ζ, η)→ h(ζ, ξ),

tandis que la d́efinition desh(η, ξ) implique une applicatiońevidente :

pη,ξ : h(η, ξ)→ Hom(T, S).

Ceci dit, on v́erifie les points suivants :

1) La composition entréeléments desh(η, ξ) estassociative.177
2) Pour toutξ = (ξ, S) dansF◦, consid́erons l’́elément de

hidS(ξ, ξ) = HomFS
(id∗S(ξ), ξ) = HomFS

(ξ, ξ),

et son image dansh(ξ, ξ). Cet objet est uneunité à gauche et̀a droite pour la composition
entreéléments desh(η, ξ).
Cela montre d́ejà quel’on obtient une cat́egorieF , en posant

Ob F = F◦, Fl F =
∐

ξ,η∈F◦

h(η, ξ).

(N.B. on ne peut prendre simplement pourFl F la réuniondes ensemblesh(η, ξ), car ces
derniers ne sont pas nécessairement disjoints). De plus :
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3) Les applicationsp◦ : Ob F → Ob E etp1 = (pη,ξ) : Fl F → Fl E définissent unfoncteur
p : F → E . De cette façon,F devient une catégorie surE , de plus l’applicatiońevidente
hf (η, ξ)→ Hom(η, ξ) induit unebijection

hf (η, ξ)
∼→ Homf (η, ξ).

4) Les applicationśevidentes

Ob F (S)→ F◦ = Ob F , Fl F (S)→ Fl F ,

où la deuxìeme est d́efinie par les applicationśevidentes

HomF (S)(ξ, ξ
′) = hidS(ξ, ξ

′
)→ Hom(ξ, ξ

′
)

définissent unisomorphisme
iS : F (S)

∼→ FS.

5) Pour tout objetξ = (S, ξ) deF , et tout morphismef : T → S deE , consid́erons l’́elément178
η = (T, η) deFT , avecη = f ∗(ξ), et l’élémentαf (ξ) deHom(η, ξ), image deidf∗(ξ) par le
morphismeHomF (T )(f

∗(ξ), f∗(ξ)) = hf (η, ξ) → Homf (η, ξ). Cetélément est cartésien,
et c’est l’identit́e dansξ si f = idS, en d’autres termes, l’ensemble desαf (ξ) définit
un clivage normaliśe deF sur E . De plus, par construction, on a commutativité dans le
diagramme de foncteurs

F (S)
f∗−→ F (T )

iS ↓ ↓ iT
FS

f∗F−→ FT

où f ∗F est le foncteur image inverse parf , relatif au clivage consid́eŕe surF . Enfin :

6) les homomorphismescf,g donńes avec le pseudo-foncteur sont transformés, par les isomor-
phismesiS, en les homomorphismes fonctorielscf,g assocíes au clivage deF .

Nous nous bornons̀a donner la v́erification de 1) (qui est, si possible, mons triviale que les
autres). Il suffit de prouver l’associativité de la composition entre les objets d’ensembles de la
formehf (η, ξ). Consid́erons donc dansE des morphismes

S
f←− T

g←− U
h←− V

et des objets
ξ, η, ζ, τ

dansF (S),F (T ),F (U),F (V ), enfin deśeléments

u ∈ hf (η, ξ) = HomF (T )(η, f
∗(ξ))

v ∈ hg(ζ, η) = HomF (U)(ζ, g
∗(η))

w ∈ hh(τ , ζ) = HomF (V )(τ, h
∗(ζ)).
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On veut prouver la formule179
(u ◦ v) ◦ w = u ◦ (v ◦ w),

qui est unéegalit́e dansHomF (V )(τ, (fgh)∗(ξ)). En vertu des d́efinitions les deux membres de
cetteégalit́e s’obtiennent par composition suivant le contour supérieur et inf́erieur du diagramme
ci-dessous :

h∗(u ◦ v) : h∗(ζ)
h∗(v)−→ h∗g∗(η)

h∗g∗(u)−→ h∗g∗f ∗(ξ)
h∗(cf,g(ξ))
−→ h∗(fg)∗(ξ)

w ↑ cg,h(η) ↓ ↓ cg,h(f∗(ξ)) ↓ cfg,h(ξ)

τ
v◦w−→ (gh)∗(η)

(gh)∗(u)−→ (gh)∗f ∗(ξ)
cf,gh(ξ)
−→ (fgh)∗(ξ)

Or le carŕe médian est commutatif parce quecg,h est un homomorphisme fonctoriel, et le carré
de droite est commutatif en vertui de la conditionB) pour un pseudo-foncteur. D’où le ŕesultat
annonće.

Bien entendu, il restèa preciser, lorsque le pseudo-foncteur envisagé provient d́ejà d’une
cat́egorie cliv́ee normaliśeeF ′ surE , comment on obtient un isomorphisme naturel entreF ′ et
F . Nous en laissons le détail au lecteur.

Nous laissonśegalement au lecteur d’interpréter, en termes de pseudo-foncteurs, la notion
d’image inverse d’une catégorie cliv́eeF surE par un foncteur changement de baseE ′ → E .part 36

9 Exemple : cat́egorie clivée d́efinie par un foncteur
E ◦ → Cat ; catégories scind́ees surE

Supposons qu’on ait un foncteur

φ : E ◦ → Cat,

il définit alors un pseudo-foncteur en posant

F (S) = φ(S), f∗ = ϕ(f), cf,g = id(fg)∗

Donc la construction du nuḿero pŕećedent nous donne une catégorieF clivée surE , dite as-180
socíee au foncteurϕ. Pour qu’une catégorie cliv́ee surE soit isomorphèa une cat́egorie cliv́ee
définie par un foncteurϕ : E ◦ → Cat, il faut et il suffit manifestement qu’elle satisfasse les
conditions :

(fg)∗ = g∗f ∗, cf,g = id(fg)∗ .

En termes de l’ensembleK des morphismes de transport, cela signifie aussi simplement que
le compośe de deux morphismes de transport est un morphisme de transport. Un clivage d’une
cat́egorieF surE satisfaisant la condition préćedente est appelée unscindagedeF surE , et
une cat́egorieF surE munie d’un scindage est appelée unecat́egorie scind́ee surE . C’est donc
un cas particulier de la notion de catégorie cliv́ee. La cat́egorie des catégories scind́ees surE
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est donćequivalentèa Hom(E ◦,Cat). Noter qu’une cat́egorie scind́ee surE est a fortiori une
cat́egorie cliv́ee surE .

Si F est une cat́egorie fibŕee surE , il n’existe pas toujours de scindage surF . Supposons
par exemple queOb E et Ob F soient ŕeduitsà un élément, et que l’ensemble des endomor-
phismes dudit est un groupeE resp.F , de sorte que le foncteur projectionp est donńe par un
homomorphisme de groupesp : F → E, surjectif puisquep est fibrant. On v́erifie alors aussitt
que l’ensemble des clivages deF surE est en correspondence biunivoque avec l’ensemble des
applicationss : E → F telles queps = idE (i.e. l’ensemble des “systèmes de représentants”
pour les classes mod le sous-groupeG noyau de l’homomorphisme surjectifp : F → E). Un
clivage est un scindage si et seulement sis est un homomorphisme de groupes. Dire qu’il existe
un scindage signifie donc que l’extension de groupesF deE parG est triviale, ce qui s’exprime,
lorsqueG est commutatif, par la nullité d’une certaine classe de cohomologie dansH2(E,G) (où
G est consid́eŕe comme un groupe oùE opère).

Supposons cependant queF soit une cat́egorie fibŕee surE telle que lesFS soient des181
cat́egoriesrigides, i.e. le groupe des automorphismes de tout objet deFS est ŕeduit à l’identité.
Il est facile alors de prouver queF admet un scindage surE . En effet, on constate d’abord que
la question d’existence d’un scindage n’est pas modifiée si on remplaceF par une cat́egorieE -
équivalente, ce qui nous ramène en l’occurrence au cas où lesFS sont des catégories rigideset
réduites(i.e.deux objets isomorphes dansFS sont identiques). Mais siG est une cat́egorie rigide
et ŕeduite, tout isomorphisme de deux foncteursH → G (où H est une cat́egorie quelconque)
est une identit́e. Il s’ensuit que siF est une cat́egorie fibŕee surE , telle que les catégories-fibres
soient rigides et ŕeduites, alors il existe un clivageuniquedeF surE , qui est ńecessairement un
scindage. DoncF est isomorphèa la cat́egorie d́efinie par un foncteurϕ : E ◦ → Cat, tel que les
ϕ(S) soient des catégories rigides et discrètes, et le foncteurϕ est d́efini à isomorphisme près.

10 Cat́egories co-fibŕees, cat́egories bi-fibrées

Consid́erons une catégorieF au-dessus deE , avec le foncteur projection

p : F → E ,

elle d́efinit une cat́egorieF ◦ au-dessus deE ◦, par le foncteur projection

p◦ : F ◦ → E ◦.

Un morphismeα : η → ξ dansF est ditco-cart́esiensi c’est un morphisme cartésien pourF ◦

surE ◦. Explicitant, on voit que cela signifie que pour tout objetξ′ deFS, l’applicationu 7→ u◦α

HomS(ξ, ξ′)→ Homf (η, ξ
′)

est bijective. On dit alors aussi que(ξ, α) est uneimage directe deη parf , dans la cat́egorieF
surE . Si elle existe pour tourtη dansFT , on dit que le foncteur image directe parf existe, et on
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note ce foncteurfF
∗ ouf∗, une fois choisi. Il est donc défini par un isomorphisme de bifoncteurs182

surF ◦
T ×FS :

HomS(f∗(η), ξ)
∼→ Homf (η, ξ).

Si doncf∗ existe, pour quef ∗ existe, il faut et il suffit quef∗ admette un foncteur adjoint, i.e.
qu’il existe un foncteurf ∗ : FS → FT et un isomorphisme de bifoncteurs

HomE(f∗(η), ξ)
∼→ HomT (η, f∗(ξ)).

Soitg : U → T un autre morphisme dansE , et supposons que les images inverses et directes par
f, g etfg existent. Consid́erons alors les homomorphismes fonctoriels

cf,g : f∗g∗ ← (fg)∗
cf,g : g∗f ∗ → (fg)∗.

On constate que si on considèref∗g∗ et g∗f ∗ comme un couple de foncteurs adjoints, ainsi que
(fg)∗ et (fg)∗, les deux homomorphismes préćedents sont adjoints l’un de l’autre. Donc l’un est
un isomorphisme si et seulement si l’autre l’est. En particulier :

Proposition 10.1 Supposons que la catégorie F sur E soit préfibrée et co-préfibrée. Pour qu’elle
soit fibrée, il faut et il suffit qu’elle soit co-fibrée.

Bien entendu, on dit queF est co-pŕefibŕee resp. co-fibŕee surE , si F ◦ est pŕefibŕee resp.
fibrée surE . Nous dirons queF est bi-fibŕee surE , si elle est̀a la fois fibŕee et co-fibŕee surE .part 37

11 Exemples divers

a) Catégories des fl̀eches deE . SoitE une cat́egorie. D́esignons par∆1 la cat́egorie associée
à l’ensemble totalement ordonné à deuxéléments[0, 1] ; elle a donc deux objets 0 et 1, et183
en plus des deux morphismes identiques une flèche(0, 1) de source 0 et but 1. Soit

Fl(E ) = Hom(∆1,E )

on l’appelle lacat́egorie des fl̀eches deE . L’objet 1 de∆1 définit un foncteur canonique,
appeĺe foncteur-but

Fl(E )→ E

(le foncteur d́efini par l’objet 0 de∆1 est appeĺe foncteur-source). Pour tout objetS deE ,
la cat́egorie-fibreFl(E )S est canoniquement isomorpheà la cat́egorieE/S des objets deE
au-dessus deS.
Consid́erons un morphismef : T → S dansE , alors il lui correspond un foncteur cano-
nique

f∗ : E/T = FT → E/S = FS
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et un isomorphisme fonctoriel

HomS(f∗(η), ξ)
∼→ Homf (η, ξ)

qui fait donc def∗ un foncteur image directe pourf dansF . On a d’ailleurs ici

(idS)∗ = idFS
, (fg)∗ = f∗g∗, cf,g = id(fg),

i.e. F est muni d’un co-scindage surE . A fortiori, F est co-fibŕee surE . Notons main-
tenant que l’ensemble des morphismes dansF est en correspondance biunivoque avec
l’ensemble des diagrammes carrés commutatifs dansE .

X
f ′←− Y

u ↓ ↓ v
S

f←− T

Par d́efinition, le morphisme en question est cartésien si le carŕe est cart́esien dansE , i.e.184
s’il fait de Y un produit fibŕe deX et T surS. Le foncteur image inversef ∗ existe donc
si et seulement si pour tout objetX surS, le produit fibŕeX ×S T existe. Il ŕesulte de
10.1 que si le produit de deux objets sur un troisième existe toujours dansE , i.e. siF est
préfibŕee surE , alorsF est m̂eme fibŕee surE .

b) Catégorie des pŕefaisceaux ou faisceaux sur des espaces variables
SoitE = Top la cat́egorie des espaces topologiques. SiT est un espace topologique, nous
noteronsU (T ) la cat́egorie des ouverts deT , où les morphismes sont les applications
d’inclusion. SiC est une cat́egorie, un foncteurU (T )◦ → C s’appelle unpréfaisceau
surT à valeurs dansC , et unfaisceaus’il satisfait une condition d’exactitudèa gauche
que nous ne réṕetons pas ici. Lacat́egorieP(T ) des pŕefaisceaux surT à valeurs dans
C , est par d́efinition la cat́egorieHom(U (T )◦,C ), et la cat́egorieF (T ) des faisceaux
sur T à valeurs dansC est la sous-catégorie pleine dont les objets sont les objets de
Hom(U (T )◦,C ) qui sont des faisceaux. Sif : T → S est un morphisme dansE , i.e.
une application continue d’espaces topologiques, il lui correspond par l’application crois-
santeU 7→ f−1(U) un foncteurU (S)→ U (T ), d’où un foncteur

f∗ : Hom(U (T )◦,C )→ Hom(U (S)◦,C )

appeĺe foncteur image directe de préfaisceaux parf . On voit aussit̂ot que l’image directe
d’un faisceau est un faisceau, donc le foncteurf∗P(T ) → P(S) induit un foncteur,
également notéf∗ : P(T )→P(S). On v́erifie de plus trivialement (par l’associativité de
la composition des foncteurs) qu’on a, pour une deuxième application continueg : U → T ,
l’identité

(gf)∗ = g∗f∗, de m̂eme (idS)∗ = idP(S).

De cette façon, on a obtenu un foncteur

S 7→P(S)
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resp.
S 7→ F (S)

deE dansCat. En fait, nous nous intéressons au foncteur correspondant185

S 7→P(S)◦, resp.S 7→ F (S)◦.

Il définit une cat́egorie co-fibŕee, et m̂eme co-scind́ee, sur la catégorie des espaces topo-
logiques qu’on appelle lacat́egorie co-fibŕee des pŕefaisceaux(resp.faisceaux) à valeurs
dansC (sous-entendu : sur des espaces variables). Explicitant la construction du No 8, on
voit qu’un morphisme d’un préfaisceauB surT dans un pŕefaisceauA surS est un couple
(f, u) formé d’une application continue deT dansS, et d’un morphismeu : A → f∗(B)
dans la cat́egorieP(S). Cette description vaut́egalement pour les morphismes de fais-
ceaux,F étant une sous-catégorie pleine deP.
Dans les cas les plus importants, la catégorieP et la cat́egorieF au-dessus deE sont
aussi des catégories fibŕees, i.e. pour toute application continue, les foncteurs image di-
recteP(T ) → P(S) et F (T ) → F (S) ont un foncteur adjoint, qui est alors noté f ∗ et
appeĺe foncteur image inverse de préfaisceaux resp. foncteur image inverse de faisceaux,
par l’application continuef . Ce foncteur existe par exemple siC = Ens. On peut montrer
que le foncteurf ∗ : P(S) → P(T ) existe chaque fois que dansC les limites inductives
(relativesà des diagrammes dans l’Univers considéŕe) existent. La question est moins fa-
cile pourF ; on notera en effet que (m̂eme dans le casC = Ens) l’image inverse d’un
préfaisceau qui est un faisceau n’est en géneral pas un faisceau, en d’autres termes le fonc-
teur image invers de faisceau n’est pas isomorphe au foncteur induit par le foncteur image
inverse de pŕefaisceaux (malgré la notation communef ∗). Ainsi, F est une sous-catégorie
co-fibŕee deP, mais pas une sous-catégorie fibŕee, i.e.le foncteur d’inclusionF → P
n’est pas fibrant.
La cat́egorie co-fibŕeeP peut se d́eduire d’une cat́egorie co-fibŕee (ou plut̂ot fibrée) plus
génerale, obtenue ainsi. Pour toute catégorieU (dans l’Univers fix́e), on pose

P(U ) = Hom(U ,C )

et on note queU 7→ P(U ) est de façon naturelle un foncteur contravariant enU , de186
la cat́egorieCat dansCat. Il définit donc une catégorie scind́ee au-desus deE = Cat,
que nous noteronsCat//C . Les objets de cette catégorie sont les couples(U , p) d’une
cat́egorieU et d’un foncteurp : U → C , et un morphisme de(U , p) dans(V , q) est
essentiellement un couple(f, u), où f est un foncteurU → V et u un homomorphisme
de foncteursu : p → qf . Nous laissons au lecteur le soin d’expliciter la composition des
morphismes dansCat//C . Le foncteur-projection

F = Cat//C → E = Cat

associe au couple(U , p) l’objet U ; la cat́egorie-fibre enU est la cat́egorieHom(U ,C )
(à isomorphisme près). Lorsque dansC les limites inductives existent, on montre facile-
ment que la catégorie fibŕeeCat//C surCat estégalement co-fibrée surCat, i.e. on peut
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définir la notion d’image directe d’un foncteurp : U → C par un foncteurf : U → V .
La cat́egorie des pŕefaisceaux se d́eduit de la cat́egorie fibŕee pŕećedente par le changement
de base

Top◦ → Cat

(foncteurS 7→ U (S) défini plus haut), ce qui donne une catégorie fibŕee surTop◦, et
en passant̀a la cat́egorie oppośee, on obtient la catégorie co-fibŕeeP des pŕefaisceaux
au-dessus deTop. La notion d’image inverse d’un foncteur correspondà celle d’image
directe de pŕefaisceau, la notion d’image directe d’un foncteurà celle d’image inverse
d’un pŕefaisceau.

c) Objets à opérateurs au-dessus d’un objet̀a opérateurs
Soit F une categorie surE , et soitS un objet deE où un groupeG opère,à gauche pour
fixer les id́ees. Cet objet̀a oṕerateurs peut s’interpréter comme correspondantà un foncteur
λ : E ′ → E de la cat́egorie (̀a un seul objet, ayantG comme groupe d’endomorphismes)E ′

définie parG, dans la cat́egorieE , et d́efinie donc par changement de base une catégorie
F ′ au-dessus deE ′, qui est fibŕee resp. co-fibŕee lorsqueF l’est surE . Une section deE ′187
sur F ′ (nécessairement cartésienne, carE ′ est un groupöıde, et tout isomorphisme dans
F ′ est cart́esien en vertu de 6.12), peut aussi s’interpréter comme unE -foncteurE ′ → F
au-dessus deλ, ou aussi comme un objetà oṕerateursξ dansF “au-dessus” de l’objet̀a
opérateursS.

d) Couples de foncteurs adjoints quasi-inverses ; autodualités
Lorsque la cat́egorie-baseE est ŕeduiteà deux objetsa, b et, en plus des fl̀eches identiques,
à deux isomorphismesf : a→ b etg : b→ a invers l’un de l’autre (i.eE est un groupöıde
connexe rigide avec deux objets), une catégorie cliv́ee normaliśee surE est essentiellement
la même chose que le système forḿe par deux catégoriesFa et Fb et uncouple de fonc-
teurs adjointsG : Fa → Fb et F : Fb → Fa, qui soient deśequivalences de catégories
(donc quasi-inverses l’un de l’autre). On prendra pourFa et Fb les cat́egories fibres de
F , pourF etG les foncteursf ∗ etg∗, et les deux isomorphismes

u : FG
∼→ idFa v : GF

∼→ idFb

sontcg,f et cf,g. Les deux conditions usuelles de compatibilité entreu et v ne sont autres
que la condition 7.4B) pour les compośesfgf et gfg. Il est facile de montrer que ces
conditions suffisent̀a impliquer qu’on a bien un pseudo-foncteurE ◦ → Cat.
Un cas interessant est celui où l’on a

Fb = F ◦
a , G = F ◦, v = u◦.

On appelleautodualit́edans une catégorieC , la donńee d’un foncteurD : C → C ◦, et d’un
isomorphismeu : DD◦

∼→ idC , tels queu et l’isomorphismeu◦ : D◦D
∼→ idC ◦ fassent de

(D,D◦) un couple de foncteurs adjoints, (nécessairement quasi-inverses l’un de l’autre).
Cette condition s’́ecrit :

D(u(x)) = u(D(x)) pour toutx ∈ Ob(C ).
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188
e) Catégories au-dessus d’une catégorie discr̀eteE . On dit queE est unecat́egorie discr̀ete

si toute fl̀eche y est une fl̀eche identique, de sorte queE est d́efini à isomorphisme unique
près par la connaissance de l’ensembleI = Ob(E ). La donńee d’une cat́egorieF au-
dessus deE équivaut donc (̀a isomorphisme unique près) à la donńee d’une famille de
cat́egoriesFi(i ∈ I), les cat́egories fibres. Toute catégorieF sur E est fibŕee, toutE -
foncteurF → G est cart́esien, on a un isomorphisme canonique

HomE /−(F ,G )
∼→
∏
i

Hom(Fi,Gi).

En particulier, on obtient

Γ(F/E ) = Lim
←

F/E
∼→
∏
i

Ei.

f) Supposons queE ait exactement deux objetsS et T , et en plus desmorphismes iden-
tiques, un morphismef : T → S. Alors une cat́egorieF au-dessus deE est d́efinie,
à E -isomorphisme unique près, par la donńee de deux catégoriesFS et FT et d’un bi-
foncteurH(η, ξ) sur F ◦

T ×FS , à valeurs dansEns. En effet, siF est une cat́egorie
au-dessus deE , on lui associe les deux catégories-fibresFS et FT et le bifoncteur
H(η, ξ) = Homf (η, ξ). On laisse au lecteur le soin d’expliciter la construction en sense
inverse. Pour que la catégorie envisaǵee soit fibŕee (ou pŕefibŕee, cela revient au m̂eme) il
faut et il suffit que le foncteurH soi repŕesentable par rapportà l’argumentξ. Pour qu’elle
soit co-fibŕee, il faut et il suffit queH soit repŕesentable par rapport a l’argumentη.

g) SoitF = C × E , consid́eŕee comme catégorie au-dessus deE grceà pr2. Alors F est
fibrée et co-fibŕee surE , et est m̂eme munie d’un scindage et d’un co-scindage canonique,
correspondant au foncteur constant surE , resp. surE ◦, à valeurs dansCat, de valeurC .
On a

Γ(F/E ) ' Hom(E ,C )

etLim
←

F/E correspond̀a la sous-catégorie pleine forḿee des foncteursF : E → C trans-189

formant morphismes quelconques en isomorphismes.
part 38

12 Foncteurs sur une cat́egorie clivée

SoitF une cat́egorie cliv́ee normaliśee surE . Pour tout objetS deE on d́esigne par

iS : FS → F

le foncteur d’inclusion. On a donc un homomorphisme fonctoriel, pour tout morphisme
f : T → S dansE :

αf : iTf
∗ → iS,
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où f ∗ est le foncteur changement de baseFS → FT pourf défini par le clivage. Soit maintenant

F : F → C

un foncteur deF dans une catégorieC , posons, pour toutS ∈ Ob(E ),

FS = F ◦ iS : FS → C

et pour toutf : T → S dansE ,

ϕf = F ∗ αf : FTf
∗ → FS

On a ainsi,̀a tout foncteurF : F → C , assocíe une famille(FS) de foncteursFS → C , et une
famille (ϕf ) d’homomorphismes de foncteursFTf ∗ → FS. Ces familles satisfont aux conditions
suivantes :

a)ϕidS = idFS .

b) Pour deux morphismesf : T → S et g : U → T dansE , on a commutativit́e dans le carré
d’homomorphismes fonctoriels :

FUg
∗f ∗

FU∗cf,g//

ϕg∗f∗
��

FU(fg)∗

ϕfg

��
FTf

∗ ϕf // FS.

La premìere relation est triviale, et la deuxième relation s’obtient en appliquant le foncteurF au190
diagramme commutatif

g∗f ∗(ξ)
cf,g(ξ)

//

αg(f∗(ξ))
��

(fg)∗(ξ)

αfg(ξ)

��
f ∗(ξ)

αf (ξ)
// ξ

pour un objet variableξ dansFS.

Si G est un deuxìeme foncteurF → C , donnant naissancèa des foncteursGS : FS → C
et des homomorphismes fonctorielsψf : GTf → GS, et siu : F → G est un homomorphisme
fonctoriel, alors il lui correspond des homomorphismes fonctorielsu ∗ iS :

uS : FS → GS

et on constate aussitôt que pour tout morphismef : T → S dansE , on a commutativit́e dans les
carŕes

c)

FTf
∗ φf //

uT ∗f∗
��

FS

uS
��

GTf
∗ ψf // GS
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Proposition 12.1 Soit H (F ,C ) la catégorie dont les objets sont les couples de familles (FS)
(S ∈ Ob(F )) de foncteurs FS → C , et de familles (ϕf ) (f ∈ Fl(F )) d’homomorphismes fonc-
toriels FTf ∗ → FS , satisfaisant les conditions a) et b), et où les morphismes sont les familles (uS)
(S ∈ Ob(F )) d’homomorphismes FS → GS , vérifiant la condition de commutativité c) écrite191
plus haut, (la composition des morphismes se faisant par la composition des homomorphismes
de foncteurs FS → C ). Alors les deux lois explicitées plus haut définissent un isomorphismeK
de la catégorie Hom(F ,C ) avec la catégorie H (F ,C ).

Il est trivial qu’on a bien l̀a unfoncteurde la premìere cat́egorie dans la seconde. Ce foncteur
est pleinement fid̀ele, car pourF,G donńes,Hom(F,G)→ Hom(K(F ), K(G)) est trivialement
injectif ; pour montrer que c’est surjectif, il suffit de noter que la condition de commutativité c)
exprime la fonctorialit́e des applicationsu(ξ) = uS(ξ) : F (S) = FS(ξ) → G(ξ) = GS(ξ) pour
les homomorphismes de la formeαf (ξ) dansF , d’autre part on a la fonctorialité sur chaque
cat́egorie fibre i.e. pour les morphismes dansF qui sont desT -morphismes (T ∈ Ob(E )),
d’où la fonctorialit́e pour tout morphisme dansF , puisque unf -morphisme (òu f : T → S
est un morphisme dans (E ) est de façon unique) un composé d’un morphismeαf (ξ) et d’un
T -morphisme. Il reste donc̀a prouver que le foncteurK est bijectif pour les objets. L’argument
préćedent montre d́ejà queK est injectif pour les objets, resteà prouver qu’il est surjectif, i.e.
que si on part d’un système(FS), (ϕf ), satisfaisant a) et b) ; et si on définit une application
Ob F → Ob C par

F (ξ) = FS(ξ) pour ξ ∈ Ob FS ⊂ Ob F

et une applicationFl(F )→ Fl(C ) par

F (αf (ξ)u
′) = ϕf (ξ) FT (u′)

pour tout morphismef : T → S dansE , tout objetξ deFS et toutT -morphismeu′ de butf ∗(ξ),
alors on obtient unfoncteurF deF dansC . En effet, la relationF (idξ) = idF (ξ) est triviale, il
resteà prouver la multiplicativit́eF (uv) = F (u)F (v) lorsqu’on a unf -morphismeu : η → ξ et
ung-morphismev : ζ → ν, avecf : T → S etg : U → T des morphismes deE . Posantw = uv,
on aura

u = αf (ξ)u
′ , v = αg(η)v′ , w = αfg(ξ)w

′

avec192
w′ = cf,g(ξ)g

∗(u′)v′ (cf. No 8).

Avec ces notations, il faut prouver la commutativité du contour ext́erieur du diagramme ci-
dessous :

FU(ζ)
GF ED

F (w′)

��
Fu(v′) //

F (v) ((QQQQQQQQQQQQQQ FUg
∗(η)

Fug∗(u′) //

ϕg(η)

��

FUg
∗f ∗(ξ)

FU (cf,g(ξ))
//

ϕg(f∗(ξ))
��

FU(fg)∗(ξ)

ϕfg(ξ)

��
FT (η)@A BC

F (u)

OOFT (u′)
// FTf

∗(ξ)
ϕf (ξ)

// FS(ξ)
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Or le triangle gauche est commutatif par définition deF (v), le carŕe médian est commutatif car
déduit de l’homomorphismeu′ : ξ → f(η) par l’homomorphisme fonctorielαg, enfin le carŕe de
droite est commutatif en vertu de la condition b). La conclusion voulue en résulte.

Supposons maintenant queC soit également une catégorie cliv́ee normaliśee surE , que nous
appellerons dorénavantG , et que nous nous intéressons auxE -foncteurs deF dansG . SiF est
un tel foncteur, il induit des foncteurs

FS : FS → GS

pour les cat́egories fibres. D’autre part, pour tout morphismef : T → S dansE , et tout objetξ
dansFS, le f -morphismeF (αf (ξ)) se factorise de façon unique par unT -morphisme

ϕf (ξ) : FT (f ∗F (ξ))→ f ∗G (FS(ξ))

(où le F ou leG en indice indique la catégorie cliv́ee pour laquelle on prend le foncteur image
inverse), d’òu un homomorphisme fonctoriel de foncteurs deFS dansGT :

ϕf : FTf
∗
F → f ∗GFS.

Les deux syst̀emes(FS) et (ϕf ) satisfont les conditions suivantes :193

a’) ϕidS = idFS .

b’) Pour deux morphismesf : T → S et g : U → T dansE , on a commutativit́e dans le
diagramme d’homomorphismes fonctoriels suivant :

FUg
∗
Ff
∗
F FU∗cf,gF

//

ϕg∗f
∗
F

��

FU(fg)∗F

ϕfg

��

g∗GFTf
∗
F

g∗G ∗ϕf
��

g∗G f
∗
GFS cf,gG ∗FS

// (fg)∗GFS.

Nous en laissons la vérification au lecteur, ainsi que l’énonće et la d́emonstration de l’analogue
de la proposition 12.1, impliquant que l’on obtient ainsi une correspondance biunivoque entre
l’ensemble desE -foncteurs deF dansG , et l’ensemble des systèmes(FS),(ϕf ) satisfaisant les
conditions a’) et b’) ci-dessus. Bien entendu, dans cette correspondance, les foncteurs cartésiens
sont caract́eriśes par la propríet́e que les homomorphismesϕf sont des isomorphismes.

Remarque. Bien entendu, il y a int́er̂et le plus souvent̀a raisonner directement sur des
cat́egories fibŕees sans utiliser des clivages explicites, ce qui dispense en particulier de faire ap-
pel, pour la notion simple deE -foncteur ou deE -foncteur cart́esien,̀a une interpŕetation pesante
comme ci-dessus. C’est pouréviter des lourdeurs insupportables, et pour obtenir desénonćes
plus intrins̀eques, que nous avons dû renoncer̀a partir comme dans [2] de la notion de catégorie194
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clivée (appeĺee “cat́egorie fibŕee” dans loc. cit.), qui passe au second rang au profit de celle
de cat́egorie fibŕee. Il est d’ailleurs probable que, contrairementà l’usage encore prépond́erant
maintenant, líe à d’anciennes habitudes de pensée, il finira par s’av́erer plus commode dans les
probl̀emes universels, de ne pas mettre l’accent surunesolution suppośee choisie une fois pour
toutes, mais de mettre toutes les solutions sur un pied d’égalit́e.

13 Bibliographie

[1] A. Grothendieck, Sur quelques points d’algèbre homologique, Tohoku Math. Journal,
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Expośe VIII

Descente fid̀element plate

195
part 39 1 Descente des Modules quasi-cohérents

Soit Sch la cat́egorie des pŕesch́emas. Proćedant comme dans VI 11.b, on trouve que la
cat́egorie des couples(X,F ) d’un pŕesch́emaX et d’un ModuleF surX, (où les morphismes
sont d́efinis comme dans loc.cit.̀a l’aide de la notion d’image directe de Module par un mor-
phisme d’espaces annelés) peut̂etre consid́eŕee comme une catégorie fibŕee au-dessus deSch,
le foncteur de changement de base relativementà un morphismef : X → Y dansSch étant le
foncteur image inverse de Modules parf . (On notera que la catégorie fibre enX ∈ Ob(Sch)
de la cat́egorie pŕećedente est la catégorieoppośeeà la cat́egorie des Modules surX). Comme
l’image inverse d’un Module quasi-cohérent est quasi-cohérent, on voit que la sous-catégorie
pleine de la cat́egorie des couples(X,F ), formée des couples pour lesquelsF est quasi-coh́erent,
est une sous-catégorie fibŕee de la cat́egorie fibŕee pŕećedente. (Par contre, si on ne fait pas d’hy-
poth̀eses surf , l’image directe d’un Module quasi-cohérent n’est pas en géńeral un Module
quasi-coh́erent). On appellera simplement cette catégorie fibŕee lacat́egorie fibŕee des Modules
quasi-coh́erents sur les pŕesch́emas.

Rappelons d’autre part qu’un morphismef : X → Y d’espaces annelés est ditfidèlement plat
s’il est plat (i.e. pour toutx ∈ X, OX,x est un module plat surOY,f(x), (SGA IV)), etsurjectif.
On dit quef est un morphismequasi-compactsi l’image inverse parf de toute partie quasi-
compacte est quasi-compacte ; lorsquef est un morphisme de présch́emas, cela signifie aussi
que l’image inverse parf d’un ouvert affine deY est ŕeunionfinied’ouverts affines deX.

196

Théorème 1.1Soit F la catégorie fibrée des Modules quasi-cohérents sur les préschémas. Soit
g : S ′′ → S un morphisme de préschémas, fidèlement plat et quasi-compact. Alors g est un
morphisme de F -descente effective.

Rappelons1 que cela signifie deux choses :
1Nous admetterons ici la théorie ǵeńerale de la descente exposée expośee en d́etail dans l’article de J. GIRAUD
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Corollaire 1.2 (Descente d’homomorphismes de Modules). Soient g : S ′ → S un morphisme
de préschémas, fidèlement plat et quasi-compact, F et G deux Modules quasi-cohérents sur S,
F ′ et G′ leurs images inverses sur S ′, enfin F ′′ et G′′ leurs images inverses sur S ′′ = S ′ ×S S ′.
Considérons le diagramme d’applications d’ensembles défini par les foncteurs changement de
base par g, p1, p2 (où p1, p2 : S ′ ×S S ′ //// S ′ sont les deux projections) :

HomS(F,G) // HomS′(F
′, G′) //// HomS′′(F

′′, G′′).

Ce diagramme est exact, i.e. définit une bijection du premier ensemble sur l’ensemble des coı̈nci-
dences des deux applications écrites du deuxième dans le troisième.

En d’autres termes, le foncteur changement de base parf , F 7→ F ′, définit un foncteurplei-
nement fid̀elede la cat́egorie des Modules quasi-cohérents surS dans la cat́egorie des Modules
quasi-coh́erents surS ′ munis d’une donńe de descente relativementàf . De plus :

Corollaire 1.3 (Descente de Modules). Pour tout Module quasi-cohérent F ′ sur S ′, toute donnée
de descente sur F ′ relativement à g est effective, i.e. F ′ est isomorphe avec sa donnée de descente
à l’image inverse par g d’un Module quasi-cohérent sur S (déterminé à isomorphisme unique près
en vertu de 1.2).

En d’autres termes, le foncteur pleinement fidèle pŕećedent est m̂eme unéequivalence. Pra-
tiquement, cela signifie qu’il revient au même de se donner un Module quasi-cohérent surS, ou
un Module quasi-coh́erent surS ′ muni d’une donńe de descente relativementàg.

Démonstration de 1.1. Soit d’abordT unS-présch́ema qui estS-isomorphèa la somme d’une197
famille de ouverts induitsSi deS qui recouvrentS. Alors il estévident que le morphisme struc-
turalT → S est un morphisme deF -descente effective (cela signifie préciśement que la donńee
d’un Module quasi-coh́erentF surS équivautà la donńee de Modules quasi-cohérentsFi sur
lesSi, et d’isomorphismes de recollementϕji : Fi|Si∩Sj → Fj|Si∩Sj satisfaisant la condition de
cochaines bien connue). En vertu de VII, il s’ensuit que pour vérifier queg : S ′ → S est un mor-
phisme deF -descente effective, il suffit de le vérifier pour le morphismegT : T ′ = T×SS ′ → T
déduit deg par le changement de baseT → S. (Remarquer que l’hypothèse surT → S reste
stable par changement de base quelconque, donc queT → S est en fait un morphisme deF -
descente effectiveuniversel). Prenant pourSi des ouverts affines qui recouvrentS, on est donc
rameńe au cas òu S est affine.

Alors S ′ est ŕeunion finie d’ouverts affines, et prenant leS-sch́ema somme de ces derniers,
on trouve unS-sch́ema affineS1 et unS-morphismeS1 → S ′ plat et surjectif. DoncS1 est
aussi fid̀element plat surS. Si donc on prouve qu’un morphisme fidèlement plat et affine est
un morphisme deF -descente effective, donc un morphisme deF -descente strict universel,

cité dans la note en bas de page de l’Avertissement, travail que nous citerons [D] par la suite. Cf. aussi [ ] pour un
expośe succinct.
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(l’hypothèseétant en effet stable par changement de base), on en conclut en particulier que le
morphisme structuralS1 → S est un morphisme deF -descente strict universel, et comme il
existe unS-morphismeS1 → S ′, il en résultera bien, par [D], queg : S ′ → S est un morphisme
deF -descente strict.

Cela nous ram̀ene donc au cas où g est un morphisme affine, et comme on a vu on peut alors
de plus supposerS affine, doncon peut supposerS etS ′ affines. Dans ce cas, 1.2́equivaut au

Lemme 1.4 Soient A un anneau, A′ une A-algèbre fidèlement plate, M et N deux A-
modules, M ′ et N ′ les A′-modules déduits par changement d’anneau A → A′, et M ′′,N ′′

les A′′ = A′ ⊗A A′-modules déduits par changement d’anneau A → A′′. Alors la suite d’ap-
plications ensemblistes

HomA(M,N) // HomA′(M
′, N ′) //// HomA′′(M

′′, N ′′)

est exacte.

Comme l’homomorphismeN → N ′ est injectif (A′ étant fid̀element plat surA) on voit que198
la premìere fl̀eche est injective. Il restèa prouver que si unA′ homomorphismeu′ : M ′ → N ′ est
compatible avec les données de descente, alors il provient d’unA-homomorphismeu : M → N .
Or cela signifie aussi simplement queu′ applique le sous-ensembleM deM ′ dans le sous-
ensembleN deN ′ (l’application u : M → N induite sera alors automatiquementA-linéaire
puisqueu′ estA′-linéaire, et on voit de m̂eme queu′ est ńecessairement́egalà u ⊗A A′). Or si
x ∈ M , alorsu′(x) est unélément dans le noyau du couple d’applicationsN ′ // // N ′′ . On est
donc rameńe pour prouver 1.4 au cas particulier suivant (correspondant au cas oùM = A) :

Corollaire 1.5 Soit N un A-module, alors la suite d’applications ensemblistes

N // N ′
//// N ′′

est exacte.

Soit en effetA1 uneA-algèbre fid̀element plate. Pour montrer que la suite envisagée est
exacte, il suffit de prouver que la suite qui s’en déduit par le changement d’anneauA→ A1 l’est.
Or cette dernìere, comme on voit de suite, est celle relative auA -moduleN1 = N ⊗A A1 est
à laA1-algèbreA′1 = A1 ⊗A A′. Il suffit donc de trouver unA1 fidèlement plat surA, tel que
Spec(A′1) → Spec(A1) soit un morphisme deF -descente strict. Or il suffit en effet de prendre
A1 = A′, car alors le morphisme préćedent admet un morphisme inverseà droite, donc en vertu
de [D] c’est un morphisme de descente effective pour n’importe quelle catégorie fibŕee surSch.

Il reste enfinà montrer que siN ′ est unA′-module muni d’une donńee de descente
pourA→ A′, i.e. muni d’un isomorphisme

ϕ : N ′1
∼→ N ′2

entre les deux modules déduits deN par les changements d’anneauxA′ // // A′ ⊗A A′ , alors
N ′ est isomorphe avec sa donnée de descentèa un moduleN ⊗A A′. On voit facilement, compte199
tenu de 1.5, que ceténonće équivaut au suivant :part 40
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Lemme 1.6 Soit N ′ un A′-module muni d’une donnée de descente pour A→ A′ (où A′ est une
A-algèbre). Soit N le sous-A-module de N ′ formé des x tels que ϕ(x ⊗A′ 1A′) = 1A′ ⊗A′ x, et
considérons l’homomorphisme canonique

N ⊗A A′ → N ′ ,

(qui est alors compatible avec les données de descente). Si A′ est fidèlement plat sur A, cet
homomorphisme est un isomorphisme.

Démontrons ce lemme. Soit encoreA1 uneA-algèbre fid̀element plate, pour montrer que le
morphisme envisaǵe est un isomorphisme, il suffit de prouver qu’il le devient après le change-
ment d’anneauA1 → A. Or, utilisant la platitude deA1 surA, on voit que l’homomorphisme
ainsi obtenu n’est autre que celui qu’on obtiendrait directement en termes du moduleN ′ ⊗A A1

surA′1 = A′ ⊗A A1, muni de la donńee de descente relativementàA1 → A′1 qui se d́eduit cano-
niquement par changement d’anneau de celle quiétait donńee surN ′. Ainsi il suffit de trouver
unA1 fidèlement plat surA tel queSpec(A′1) → Spec(A1) soit un morphisme deF -descente
effective. On prend alors comme ci-dessusA1 = A′. Cela ach̀eve la d́emonstration de 1.6, et par
là la d́emonstration de 1.1.

Corollaire 1.7 (Descente de sections de Modules). Soit g : S ′ → S un morphisme de
préschémas, fidèlement plat et quasi-compact. Pour tout Module quasi-cohérent G sur S, soient
G′ et G′′ ses images inverses sur S ′ et S ′′ = S ′ ×S S ′, et considérons le diagramme d’homomor-
phismes de Modules sur S :

G // g∗G
′ //// h∗G

′′

(où h : S ′′ → S est le morphisme structural). Ce diagramme est exact.

En effet, cela signifie que pour tout ouvertU dansS, le diagramme correspondant formé200
par les sections surU est exact. On peut́evidemment supposer alorsU = S, et l’exactitude en
question est alors un cas particulier de 1.2, obtenu en faisantF = OS.

Comme le foncteur image inverse de Modules est exactà droite, on conclut formellementà
partir de 1.1 :

Corollaire 1.8 (Descente de Modules quotients). Avec les notations de 1.7, soit de plus, pour
tout Module quasi-cohérent F sur un préschéma, Quot(F ) l’ensemble des Modules quasi-
cohérents quotients de F . Avec cette convention, le diagramme d’applications d’ensembles :

Quot(G) // Quot(G′) //// Quot(G′′)

est exact.

(On aurait́evidemment le m̂emeénonće avec les sous-Modules au lieu de Modules quotients,
puisque les deux se correspondent biunivoquement). Faisant en particulierG = OS, on trouve :
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Corollaire 1.9 (Descente des sous-préschémas fermés). Pour tout préschémaX , soit H(X) l’en-
semble des sous-préschémas fermés de X . Avec cette notation, et sous les conditions de 1.7, le
diagramme d’applications d’ensembles suivant

H(S) // H(S ′) //// H(S ′′)

est exact.

Il y a lieu de compĺeter le th́eor̀eme 1.1 par le ŕesultat suivant :

Proposition 1.10 (Descente de propriétés de Modules). Soient g : S ′ → S un morphisme
fidèlement plat et quasi-compact, F un module quasi-cohérent sur S. Pour que F soit de type
fini, resp. de présentation finie, resp. localement libre et de type fini, il faut et il suffit que son
image inverse F ′ sur S ′ le soit.

Il n’y a qu’à prouver le “il suffit”. On peut́evidemment supposerS affine, et en remplaçant201
alorsS ′ par la somme d’ouverts affines recouvrantS ′, on est rameńe au cas òu S ′ estégalement
affine. Alors notréenonće équivaut au suivant :

Corollaire 1.11 Soient A un anneau, A′ une A-algèbre fidèlement plate, M un A-module, M ′

leA′-moduleM⊗AA′. Pour queM soit de type fini (resp. de présentation finie, resp. localement
libre et de type fini) il faut et il suffit que M ′ le soit.

En effet, on aM = lim−→
i

Mi, où lesMi sont les sous-modules de type fini deM . Par suite

M ′ = lim−→
i

M ′
i , et siM ′ est de type fini,M ′ estégalà l’un desM ′

i , donc par fid̀ele platitudeM est

égalàMi, doncM est de type fini. Par suite il existe une suite exacte

0→ R→ L→M → 0 ,

avecL libre de type fini, d’òu une suite exacte

0→ R′ → L′ →M ′ → 0 ,

avecL′ libre de type fini. Si doncM ′ est de pŕesentation finie,R′ est de type fini, donc d’après ce
qui pŕec̀edeR est de type fini, doncM est de pŕesentation finie. Enfin, dire queM est localement
libre et de type fini, signifie qu’il est de présentation finie et plat (cf. IV dans le cas noethérien ;
le cas ǵeńeral est laisśe au lecteur). Comme chacune de ces propriét́es se descend bien, il en est
de m̂eme de leur conjonction, ce qui achève la d́emonstration.

Remarque 1.12La conjonction de 1.1 et de 1.10 montre que l’énonće 1.1 reste encore valable,
quand on remplace la catégorie fibŕeeF par la sous-catégorie fibŕee forḿee des Modules quasi-
coh́erents de type fini, resp. de présentation finie, resp. localement libres de type fini, resp. loca-
lement libres de rang donnén.
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2 Descente des pŕesch́emas affines sur un autre
202

Comme le foncteur image inverse de Modules est compatible avec le produit tensoriel et
d’autres oṕerations tensorielles, le théor̀eme 1.1 implique diverses variantes, obtenues en en-
visageant, au lieu d’un seul Module quasi-cohérent, un Module quasi-cohérent ou un système
de Modules quasi-cohérents muni de structures supplémentaires diverses s’exprimantà l’aide
d’opérations tensorielles. Par exemple, la donnée de trois Modules quasi-cohérentsF , G, H
surS et d’un accouplement

F ⊗G→ H ,

équivautà la donńee de trois Modules quasi-cohérentsF ′, G′, H ′ surS ′, munis de donńees de
descente relativementàg : S ′ → S, et munis d’un accouplement

F ′ ⊗G′ → H ′ ,

“compatible” avec ces données de descente, au sensévident du terme. Par exemple, si
F = G = H, on voit que la donńee d’un Module quasi-cohérentF sur S muni d’une loi
d’algèbre (dont pour l’instant nous ne supposons pas qu’elle satisfasseà aucun axiome d’asso-
ciativité, commutativit́e ou d’existence d’une section unité), équivautà la m̂eme donńee surS ′,
munie en plus d’une donnée de descente. En utilisant les résultats du nuḿero pŕećedent, on
constate aussitôt que pour queF satisfassèa l’un des axiomes habituels auxquels on vient de
faire allusion, il faut et il suffit qu’il en soit ainsi pourF ′. Par exemple, la donnée d’une Alg̀ebre
quasi-coh́erenteA surS (par quoi nous sous-entendons désormais : associative, commutative,
à section unit́e) équivautà la donńee d’une Alg̀ebre quasi-coh́erenteA ′ sur S ′, munie d’une
donńee de descente relativementàG : S ′ → S. Si on se rappelle l’équivalence entre la catégorie
duale des Alg̀ebres quasi-coh́erentes surS, et de la cat́egorie desS-présch́emas affines surS,
(EGA II par.1), on trouve aussitôt :

Théorème 2.1Soit F ′ la catégorie fibrée des morphismes affines de préschémas f : X → S,
considérée comme sous-catégorie fibrée de la catégorie fibrée des flèches dans la catégorie des203
préschémas Sch (VI 11.a). Soit g : S ′ → S un morphisme de préschémas fidèlement plat et
quasi-compact. Alors g est un morphisme de F ′-descente effective.

3 Descente de propríetés ensemblistes et de propriétés de fini-
tude de morphismes2

Proposition 3.1 Soient f : X → Y un S-morphisme, g : S ′ → S un morphisme surjectif,
f ′ : X ′ = X ×S S ′ → Y ′ = Y ×S S ′ le morphisme déduit de f par le changement de base
à l’aide de g : S ′ → S. Pour que f soit surjectif (resp. radiciel), il faut et il suffit que f ′ le soit.

2Pour d’autres ŕesultats comme ceux traités dans les nuḿeros 3 et 4, Cf. EGA IV 2.3, 2.6, 2.7.
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On note quef ′ peut aussi s’obtenir par le changement de baseY ′ → Y , qui estégalement
surjectif puisque d́eduit deg : S ′ → S qui l’est. D’autre part, pour touty ∈ Y et touty′ ∈ Y ′

au-dessus dey, on a un isomorphisme

X ′y′
∼← Xy ⊗k(y) k(y′) ,

oùXy désigne la fibre deX eny, etX ′y′ celle deX ′ eny′. Il en résulte queXy est non vide (resp.
a au plus un point, et ce dernier correspondà une extension résiduelle radicielle) si et seulement
siX ′y′ a la m̂eme propríet́e. Cela prouve 3.1.

Corollaire 3.2 Sous les conditions de 3.1, si f ′ est injectif (resp. bijectif), alors f l’est également.

Cela provient du fait que siX ′y′ a au plus un point (resp. exactement un point) il en est de
même deXy ; il en est bien ainsi, puisque le morphismeX ′y′ → Xy est surjectif (car d́eduit de
Spec(k(y′))→ Spec(k(y)) qui l’est).part 41

Proposition 3.3 Avec les notations de 3.1. Supposons que g : S ′ → S soit surjectif et quasi-
compact (resp. fidèlement plat et quasi-compact). Pour que f soit quasi-compact (resp. de type
fini), il faut et il suffit que f ′ le soit.

Il y a à prouver seulement le “il suffit”. On peutévidemment supposerS = Y , puisque204
l’hypothèse faite surg : S ′ → S est conserv́ee pourY ′ → Y . De plus on peut supposerY
affine. AlorsY ′ est quasi-compact, doncX ′ est quasi-compact (puisquef ′ l’est par hypoth̀ese).
Soit (Xi)i∈I une famille d’ouverts affines deX recouvrantX, alors lesX ′i sont des ouverts
deX ′ recouvrantX ′, donc il y a une sous-famille finie qui recouvreX ′. CommeX ′ → X est
surjectif, il s’ensuit que lesXi correspondants recouvrent déjaX, doncX est quasi-compact, i.e.
f est quasi-compact. Supposons maintenantf ′ de type fini, prouvons quef l’est, en supposantg
fidèlement plat. RemplaçantY ′ par la somme d’une famille d’ouverts affines le recouvrant, on
peut supposerY ′ affine. Enfin,X étant recouvert par un nombre fini d’ouverts affinesXi par ce
qui pŕec̀ede, il faut montrer qu’ils sont de type fini surY sachant queX ′i est de type fini surY ′.
Cela nous ram̀ene alors au

Corollaire 3.4 Soient B une A-algèbre, A′ une A-algèbre fidèlement plate, B′ = B⊗AA′ la A-
algèbre déduite de B par changement d’anneau. Pour que B soit de type fini, il faut et il suffit
que B′ le soit.

Il y a à prouver seulement le “il suffit”. On aB = lim−→
i

Bi, où lesBi sont les sous-alg̀ebres

de type fini deB. On a doncB′ = lim−→
i

B′i, et siB′ est de type fini surA′, alorsB′ estégalà un

desB′i, doncB estégalàBi, donc est de type fini.

Corollaire 3.5 Supposons encore le morphisme de changement de base g : S ′ → S fidèlement
plat et quasi-compact. Pour que f soit quasi-fini, il faut et il suffit que f ′ le soit.

153



VIII

En effet, la propríet́e “quasi-fini” est par d́efinition la conjonction de “type fini” et “̀a fibres
finies”, dont chacune se descend bien parg, la premìere en vertu de 3.3, la seconde par le raison-
nement de 3.1 (n’utilisant que le fait queg soit surjectif).

Remarques 3.6SoientA un anneau,X unA-présch́ema. On voit facilement que les conditions205
suivantes sont́equivalentes :

(i) Il existe un anneau noethérienA0 (qu’on peut si on veut supposer un sous-anneau de
type fini deA), un A0-présch́ema de type finiX0, un homomorphismeA → A0 et un
A-isomorphismeX

∼→ X0 ×A0 A.

(ii) Le morphisme diagonalX → X ×Spec(A) X est quasi-compact (condition vide siX
est śepaŕe surA), X est ŕeunion finie d’ouverts affinesXi dont les anneauxBi sont des
algèbres de pŕesentation finie surA, i.e. quotients d’alg̀ebres de polyn̂omesà un nombre
fini d’indétermińees, par des id́eaux de type fini.

Si X est lui-m̂eme affine, d’anneauB, ces conditions signifient simplement queB est une
algèbre de pŕesentation finie surA.

Un morphismef : X → Y est ditmorphisme de présentation finie, et on dit encore queX
est de pŕesentation finie surY , si Y est ŕeunion d’ouverts affinesYi, tel queX|Yi en tant que
Yi-présch́ema satisfasse aux conditionséquivalentes préćedentes. Il en est alors de même pour
X|Y ′ pourtout ouvert affineY ′ dansY . C’est l̀a une propríet́e stable par changement de base, et
d’ailleurs le compośe de deux morphismes de présentation finie est de présentation finie.

Ces notions pośees, on voit sur (ii), proćedant comme dans 1.10, que ceténonće reste valable
en y remplaçant les mots “de type fini” par “de présentation finie”.

4 Descente de propríetés topologiques

Théorème 4.1Soient g : Y ′ → Y un morphisme, et Z une partie de Y . On suppose que g est
plat, et qu’il existe un morphisme quasi-compact f : X → Y tel que Z = f(X) (N.B. si Y est
noethérien, cette dernière condition est impliquée par Z est constructible). Alors on a

g−1(Z) = g−1(Z) .

On peut supposerY affine, puisY ′ affine. CommeY est affine,X est réunion finie d’ou-206
verts affinesXi, et remplaçantX par la somme desXi, on peut supposeŕegalementX affine.
SoientA,A′, B les anneaux deY, Y ′, X, B′ = B ⊗a A′ celui deX ′ = X ×Y Y ′, I le noyau
deA → B, I ′ le noyau deA′ → B′, donc les parties ferḿees deY et Y ′ définies par ces
idéaux sont respectivement l’adhérence deZ = f(X) et l’adhérence deZ ′ = f ′(X ′) = g−1(Z).
On veutétablir que cette dernière estégaleà g−1(Z), ce qui ŕesultera deI ′ = IA′, lui-même
conśequence de la platitude deA′ surA.
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Corollaire 4.2 Soient g : Y ′ → Y un morphisme plat et quasi-compact, et Z ′ une partie
fermée de Y ′ saturée pour la relation d’équivalence ensembliste définie par g. Alors on a
Z ′ = g−1(g(Z ′)).

On a en effetZ ′ = g−1(Z), avecZ = g(Z ′). On peut alors appliquer 4.1, en notant que la
condition mise surZ dans 4.1 est bien vérifiée en prenant pourX le pŕesch́emaZ ′ muni de la
structure ŕeduite induite parY ′. (Le fait queg soit quasi-compact assure alors que le morphisme
induit f : Z ′ → Y est quasi-compact).

L’ énonće 4.2 signifie aussi quela topologie deg(Y ′) induite parY est quotient de celle deY ′.
En particulier :

Corollaire 4.3 Soit g : Y ′ → Y un morphisme fidèlement plat et quasi-compact. Alors g fait
de Y un espace toplogique quotient de Y ′, i.e. pour une partie Z de Y , Z est fermée (resp.
ouverte) si et seulement si Z ′ = g−1(Z) l’est.

Rappelons maintenant que deuxélémentsa, b, deY ′ ont même image dansY si et seulement
si ils sont de la formep1(c), p2(c) pour unélément convenablec dansY ′′ = Y ′ ×Y Y ′. Il en
résulte que sig est surjectif, on a un diagrammeexactd’ensembles

P(Y ) //P(Y ′) ////P(Y ′′) ,

où pour tout ensembleE, on d́esigne parP(E) l’ensemble de ses parties. Ceci posé, 4.3 peut
aussi s’interpŕeter ainsi :

207

Corollaire 4.4 (Descente des parties ouvertes resp. fermées). Soit g : Y ′ → Y comme dans
4.3. Pour tout préschéma X , soit Ouv(X) resp. Fer(X) l’ensemble de ses parties ouvertes resp.
fermées. Alors on a des diagrammes exactsd’applications ensemblistes (déduits de g et des deux
projections de Y ′′ = Y ′ ×Y Y ′) :

Ouv(Y ) // Ouv(Y ′) //// Ouv(Y ′′)

Fer(Y ) // Fer(Y ′) //// Fer(Y ′′)

On a le compĺement suivant̀a 4.3 :

Corollaire 4.5 Soit g : Y ′ → Y comme dans 4.3, et soit Z une partie de Y telle qu’il existe un
morphisme quasi-compact f : X → Y d’image Z (par exemple Z constructible, Y noethérien).
Pour que Z soit une partie localement fermée de Y , il faut et il suffit que Z ′ = g−1(Z) soit une
partie localement fermée de Y ′.

Il suffit de prouver le “il suffit”. SoitY1 le sous-pŕesch́ema ferḿe deY , adh́erence deZ muni
de la structure ŕeduite induite, et soitY ′1 = Y1 ×Y Y ′ le sous-pŕesch́ema ferḿe deY ′ image
réciproque deY1. Son ensemble sous-jacent est l’image inverseg−1(Y1) = g−1(Z), donc est́egal
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en vertu de 4.1̀aZ ′. CommeZ ′ est localement ferḿe dansY ′, il est ouvert dansZ ′ donc ouvert
dansY ′1 . Or ce dernier est fid̀element plat et quasi-compact surY1, donc en vertu de 4.3 on en
conclut queZ est ouvert dansY1, i.e. dansZ, ce qui signifie queZ est localement ferḿe.

Corollaire 4.6 Soit g : Y ′ → Y un morphisme fidèlement plat et quasi-compact, f : X → Y un
S-morphisme, f ′ : X ′ → Y ′ le S ′-morphisme qui s’en déduit par changement de base. Supposons
que f ′ soit une application ouverte (resp. une application fermée, resp. quasi-compact et un
homéomorphisme dans, resp. un homéomorphisme sur) ; alors f a la même propriété.

CommeY ′ est fid̀element plat et quasi-compact surY , on peut supposerY = S. SoitQ une208
partie deX, on a alors (en d́esignant parh le morphisme de projectionX ′ → X) :

g−1(f(Q)) = f ′(h−1(Q)) .

SiQ est ouvert (resp. ferḿe), il en est de m̂eme deh−1(Q), donc aussi def ′(h−1(Q)) si on
supposef ′ une application ouverte (resp. fermée), donc il en est de m̂eme def(Q) en vertu de la
formule pŕećedente et de 4.3. Cela prouve les deux premières assertions dans 4.6, il resteà exa-
miner le cas òu f ′ est un hoḿeomorphisme dans, et prouver alors quef est un hoḿeomorphisme
dans. (Le cas d’un hoḿeomorphisme sur résultera alors de 3.1). En vertu de 3.1f est injectif, il
resteà prouver que l’applicationX → f(X) est ouverte. On sait déja quef est quasi-compact en
vertu de 3.3. Il suffit de prouver que pour toute partie ferméeZ deX, on aZ = f−1(f(Z)), ce qui
équivaut̀a la formule analogue pour les images inverses par l’application surjectiveh : X ′ → X,
i.e. à

Z ′ = f ′−1(g−1(f(Z)) ,

où on poseZ ′ = h−1(Z). Or en vertu de 4.1 appliqué à la partie f(Z) de Y , on a
g−1(f(Z)) = g−1(f(Z)), et la formuleà prouveŕequivautà

Z ′ = f ′−1(f ′(Z)) ,

qui résulte de l’hypoth̀esef ′ est un hoḿeomorphisme dans.

N.B. Dans ce dernier raisonnement, supposant déja quef est quasi-compact, on a pas utilisé
queg est quasi-compact, mais seulement queg′ est fid̀element plat. Donc c’est sous cette hy-
poth̀ese qu’on peut descendre la propriét́e “homéomorphisme dans”, ou “hoḿeomorphisme sur”,
ou encore gr̂ace au raisonnement préćedent, la propríet́e “f ′ est quasi-compact et fait def ′(X ′)
un espace topologique quotient deX ′”.

Nous dirons qu’un morphismef : X → Y de pŕesch́emas estuniversellement ouvert
(resp.universellement ferḿe, resp.universellement bicontinu, etc...) si pour tout changement
de baseY ′ → Y , f ′ : X ′ → Y ′ est un morphisme ouvert (resp. fermé, resp. un hoḿeom. sur
l’espace image). On tire alors de 4.6 :part 42

209
Corollaire 4.7 Sous les conditions de 4.6, pour que f soit universellement ouvert, (resp. univer-
sellement fermé, resp. un homéomorphisme dans universel, resp. un homéomorphisme univer-
sel), il faut et il suffit que f ′ le soit.
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Corollaire 4.8 Sous les conditions de 4.6, pour que f soit séparé (resp. propre) il faut et il suffit
que f ′ le soit.

Dire quef est śepaŕe signifie que le morphisme diagonalX → X ×Y X est ferḿe ou aussi
universellement ferḿe, et la premìere assertion 4.8 résulte donc de 4.7. Dire quef est propre
signifie quef satisfait les conditions a)f est de type fini b)f est śepaŕe c)f est universellement
fermé. La condition a) se descend bien en vertu de 3.3, b) aussi d’après ce qu’on vient de voir,
enfin c)également par 4.7.

Remarques 4.9Rappelons que lorsqueg : Y ′ → Y est un morphisme plat de type fini, avecY
localement noeth́erien, alorsg est un morphisme ouvert (VI 6.6) ce qui est un résultat plus pŕecis
que 4.3. On notera cependant que sif est un morphisme fid̀element plat et quasi-compact de
présch́emas noeth́eriens, alorsf n’est pas en ǵeńeral un morphisme ouvert. Soit par exemple
Y un sch́ema irŕeductible dont le point ǵeńeriquey n’est pas ouvert (par exemple une courbe
algébrique), et prenons pourY ′ le sch́ema sommeY q Spec(k(y)), alors l’image par le mor-
phisme structuralY ′ → Y de la partie ouverteSpec(k(y)) n’est pas une partie ouverte deY .
Le lecteur remarqueráegalement que diverśenonćes du pŕesent expośe deviennent faux si on y
abandonne l’hypoth̀ese que le morphisme fidèlement plat envisagé est aussi quasi-compact, le
cas type mettant leśenonćes en d́efaut étant celui òu on prend pourY ′ le sch́ema somme des
spectres des anneaux locaux des points deY . Par exemple, prenant encore pourY une courbe
algébrique irŕeductible, et pourZ la partie deY réduite au point ǵeńerique, son image inverse
dansY ′ est ouverte, sans queZ soit ouverte.

210

4.10 Divers énonćes du pŕesent expośe restent valables en y remplaçant l’hypothèse queY ′

soit plat surY par la suivante : il existe un Module de type finiF surY ′, de supportY ′, plat
par rapportà Y ; l’hypothèse de fid̀ele platitude sera alors remplacée par la pŕećedente, plus
l’hypothèse queY ′ → Y est surjectif. Ceci s’applique aux deux premières assertions dans 1.10,
à 3.3, 3.5, 4.1 et par suitèa tous les ŕesultats du pŕesent nuḿero.

5 Descente de morphismes de présch́emas

Proposition 5.1 Soit g : S ′ → S un morphisme de préschémas.

a) Supposons que g soit surjectif, et que l’homomorphisme

g∗ : OS → g∗(OS′)

soit injectif, alors g est un épimorphisme dans la catégorie des préschémas, et même dans
la catégorie des espaces annelés.

b) Supposons que g soit surjectif et fasse de S un espace topologique quotient de S ′.
Soit S ′′ = S ′ ×S S ′ et soit h : S ′′ → S le morphisme structural, considérons le diagramme
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d’homomorphismes canonique :

OS
// g∗(OS′)

//// h∗(OS′′) ,

et supposons ce diagramme exact. Alors g est un épimorphisme effectif dans la catégorie
des préschémas (et aussi dans la catégorie des espaces annelés), i.e. le diagramme

S S ′oo S ′′oooo

est exact.

Démonstration. a) Il faut montrer qu’un morphisme d’espaces annelésf : S → Z est connu
quand on connaı̂t fg. Or commeg est surjectif, on connaı̂t l’application ensemblistef0 sous-
jacenteà f , resteà d́eterminer l’homomorphisme de faisceaux d’anneauxOZ → OS, ou ce qui
revient au m̂eme l’homomorphisme de faisceaux d’anneaux211

u : f−1
0 (OZ)→ OS

défini parf . On connâıt déja l’homomorphisme

(fg)−1
0 (OZ) = g−1

0 (f−1
0 (OZ))→ OS′

défini parfg, ou ce qui revient au m̂eme, on dispose d’un homomorphisme

f−1
0 (OZ)→ g0∗(OS′) = g∗(OS′) .

On constate aussitôt que ce dernier n’est autre que le composé deg∗ : OS → g∗(OS′) et deu,
et commeg∗ est injectif,u est connu quand on connaı̂t g∗u. [N.B. on a pas utiliśe évidemment
queg : S ′ → S est un morphisme de présch́emas, l’́enonće vaudrait pour un morphisme quel-
conque d’espaces annelés ; la m̂eme remarque vaut pour b), tant dans la catégorie des espaces
anneĺes, que dans la catégorie des espaces annelés en anneaux locaux. Noter aussi que sig est
un morphisme de présch́emas pas ńecessairement surjectif, mais tel queg∗ : OS → g∗(OS′) soit
injectif, alors pour deux morphismesf1, f2 de S dans unsch́emaZ tel quef1g = f2g, on a
f1 = f2 ; en effet, siI est l’Idéal surS qui définit le sous-pŕesch́ema deS des cöıncidences
def1, f2 (image inverse du sous-présch́ema diagonal deZ × Z par (f1, f2)), on voit queI est
contenu dansKer(g∗)].

b) On doit montrer que pour tout espace anneléZ, le diagramme suivant d’applications

Hom(S, Z) // Hom(S ′, Z) //// Hom(S ′′, Z)

est exact, et qu’il en est de même lorsqueZ est un espace annelé en anneaux locaux et qu’on
se borne aux homomorphismes d’espaces annelés en anneaux locaux. Comme on sait déja par
a) que la premìere application est injective, il resteà voir que sif ′ : S ′ → Z est un homomor-
phisme d’espaces annelés tel quef ′p1 = f ′p2, alorsf ′ est de la formefg, où f : S → Z est un212
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homomorphisme d’espaces annelés. Commeg est surjectif, il est alorśevident que sif ′ est un
morphisme d’espaces annelés en anneaux locaux, il en sera de même pourf .

De l’hypoth̀ese surf ′ résulte que l’application ensembliste sous-jacentef ′0 est constante sur
les fibres de l’applicationg0, donc comme cette dernière est surjective,f ′0 se factorise de façon
unique enf ′0 = f0g0, où f0 : S → Z est une application, nécessairement continue puisqueg0

identifieS à un espace topologique quotient deS ′. Consid́erons maintenant l’homomorphisme

f−1
0 (OZ)→ g∗(OS′)

déduit de l’homomorphisme(f0g0)−1(OZ) → OS′ correspondant̀a f ′. L’hypothèsef ′p1 = f ′p2

s’interpr̀ete alors en disant que les composés de l’homomorphisme préćedent avec les deux ho-
momorphismesg∗(OS′)

//// h∗(OS′′) sont les m̂emes donc d’après l’hypoth̀ese b) il se facto-
rise par un morphisme

f−1
0 (OZ)→ OS .

Ce dernier d́efinit un morphisme d’espaces annelésf : S → Z, qui est le morphisme cherché.

Théorème 5.2Soit F la catégorie fibrée des flèches dans la catégorie Sch des préschémas
(VI 11.a). Alors tout morphisme g : S ′ → S fidèlement plat et quasi-compact est un morphisme
de F -descente (ou encore, comme on dit, un morphisme de descente dans Sch).

Cela signifie donc ceci : soitS ′′ = S ′×SS ′, et pour deux pŕesch́emasX, Y surS, consid́erons
leurs images inversesX ′, Y ′ surS ′ et leurs images inversesX ′′, Y ′′ surS ′′, d’où un diagramme
d’applications

HomS(X, Y ) // HomS′(X
′, Y ′) //// HomS′′(X

′′, Y ′′) ;

ces notations posées, 5.2 signifie que ce diagramme est exact. On notera qu’il n’est pas vrai en213
géńeral queg soit un morphisme de descente effective, i.e. que pour tout présch́emaX ′ surS ′,
toute donńee de descente surX ′ relativement̀a g : S ′ → S soit effective. La question de l’effec-
tivit é, souvent d́elicate, sera examinée au No 7.

On a vu [D], (compte tenu que dansSch les produits fibŕes existent) que l’énonće 5.2équivaut
au suivant :

Corollaire 5.3 Un morphisme fidèlement plat et quasi-compact de préschémas est un épimor-
phisme effectif universel.

Comme un morphisme fidèlement plat et quasi-compact reste tel par toute extension de la
base, on est ramenéà prouver que c’est uńepimorphisme effectif. On applique alors le critère 5.1
b), qui donne le ŕesultat voulu, compte tenu de 4.3 et 1.7.

Corollaire 5.4 Soit g : S ′ → S un morphisme fidèlement plat et quasi-compact, f : X → Y
un S-morphisme, f ′ : X ′ → Y ′ le S ′-morphisme qui s’en déduit par le changement de
base S ′ → S. Pour que f soit un isomorphisme, il faut et il suffit que f ′ le soit.
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En effet, sif ′ est un isomorphisme, c’est aussi un isomorphisme pour les structures de des-
cente naturelles surX ′, Y ′, et comme le foncteurX 7−→ X ′ de Sch/S dans la cat́egorie des
présch́emas surS ′ munis d’une donńee de descente relativementàg est pleinement fid̀ele par 5.2,
la conclusion voulue apparaı̂t.part 43

Corollaire 5.5 Sous les conditions de 5.4, pour que f soit une immersion fermée (resp. une
immersion ouverte, resp. une immersion quasi-compacte) il faut et suffit que f ′ le soit.

On peut supposer comme d’habitudeY = S, et il y a à prouver seulement le “il suffit”.
Notons que le fait queX ′/Y ′ soit muni d’une donńee de descente relativementà g : Y ′ → Y ,
et que le morphisme structuralf ′ : X ′ → Y ′ soit une immersion donc un monomorphisme,
implique que les deux sous-objets deY ′′ images inverses deX ′/Y ′ par l’une et l’autre projection214
deS ′′ dansS ′ sont les m̂emes. Sif ′ est une immersion ferḿee, il en ŕesulte en vertu de 1.9 qu’il
existe un sous-présch́ema ferḿeX1 deY dont l’image inverse parg : Y ′ → Y estX ′. Donc par
unicité de la solution d’un problème de descente relativementà un morphisme deF -descente,
résulte queX1 estY -isomorphèaX, doncf : X → Y est une immersion ferḿee. On proc̀ede
de m̂eme pour une immersion ouverte, en utilisant 4.4. Si enfinf ′ est une immersion quasi-
compacte,f est quasi-compact en vertu de 3.3, donc on peut appliquerà la partief(X) deY le
critère 4.5, qui prouve quef(X) est localement ferḿe puisque son image inversef ′(X ′) dansY ′

l’est. Remplaçant alorsY par une partie ouverte dans laquellef(X) soit ferḿee, on est ramené
au cas òu f ′ est une immersion ferḿee, doncf l’est en vertu de ce qui préc̀ede.

Corollaire 5.6 Sous les conditions de 5.4, pour que f soit affine, il faut et il suffit que f ′ le soit.

On proc̀ede comme dans 5.5, en utilisant 2.1 (On peut aussi utiliser le critère cohomologique
de Serre [EGA II 5.2], qui d́emontre 5.6 sans utiliser de technique de descente).

Corollaire 5.7 Sous les conditions de 5.4, pour que f soit entier (resp. fini, resp. fini et locale-
ment libre) il faut et il suffit que f ′ le soit.

Il y a à prouver seulement le “il suffit”, et comme d’habitude on peut supposerY = S,
Y affine, etY ′ affine. Comme l’hypoth̀ese implique quef ′ est affine, il en est de m̂eme def
d’apr̀es 5.6, doncX et par suiteX ′ sont affines. SoientA,A′, B,B′ = B ⊗A A′ les anneaux
deY, Y ′, X,X ′. On aB = lim−→

i

Bi, oùBi parcourt les sous-A-algèbres deB qui sont de type fini

surA, d’oùB′ = lim−→
i

B′i, où lesB′i sont des sous-algèbres de type fini de laA′-algèbreB′. SiB′

est entier surA, lesB′i sont des modules de type fini surA′, doncA′ étant fid̀element plat surA,
lesBi sont des modules de type fini surA, i.e.B est entier surA. On voit de m̂eme que siB′ est
fini surA′,B l’est surA. Même conclusion pour “localement libre de type fini”, cf. 1.11.

215

Corollaire 5.8 Sous les conditions de 5.4, supposons f quasi-compact et soient L un Module
inversible sur X , et L ′ son image inverse sur X ′. Pour que L soit ample (resp. très ample)
relativement à f , il faut et il suffit que f ′ soit ample (resp. très ample) relativement à f ′.
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Il y a à prouver seulement le “il suffit”. L’hypoth̀ese surL implique en tous cas quef ′ est
sépaŕe, doncf est śepaŕe par 4.8, et commef est quasi-compact, etg : Y ′ → Y est plat, le calcul
des images directes par recouvrements affines montre qu’on a des isomorphismes

g∗(f∗(L
⊗n))

∼→ f ′∗(L
′⊗n)

pour tout entiern, donc on a un isomorphisme

g∗(S )
∼→ S ′ ,

où S (resp.S ′) désigne l’Alg̀ebre gradúee quasi-coh́erente surY (resp. surY ′) somme directe
desf∗(L ⊗n) (resp. desf ′∗(L

′⊗n)) pour n ≥ 0. Notons que pour toutn ≥ 0, le conoyau de
l’homomorphisme canoniquef ′∗(S ′

n) → L ′⊗n est l’image inverse parX ′ → X du conoyau
de f ∗(Sn) → L ⊗n, donc son supportZ ′n est l’image inverse du supportZn. Si f est ample
l’intersection desZ ′n est vide, donc commeX ′ → X est surjectif, l’intersection desZn est vide,
i.e. on a un morphisme canonique

j : X → Proj(S )

(EGA II 3). D’ailleurs, le morphisme analogue

j′ : X ′ → Proj(S ′)

n’est autre que celui qui est déduit du pŕećedent par le changement de baseY ′ → Y (loc.cit.).
Ceci pośe, dire queL ′ est ample relativementà f ′ signifie quej′ est une immersion, d’ailleurs
nécessairement quasi-compacte puisquef ′ est quasi-compact. Donc en vertu de 5.5j est une
immersion, i.e.L est ample relativementà f . - On proc̀ede de façon toute analogue dans le cas
de “très ample”, en se bornant ci-dessusàn = 1, et en remplaçant la considération deProj(S )216
par celle du fibŕe projectifP(S1) assocíe àS1.

Rappelons (EGA II 5.1.1) qu’un morphisme quasi-compactf est ditquasi-affinesi pour tout
ouvert affineU dansY , f−1(U) est un pŕesch́ema isomorphèa un sous-sch́ema ouvert d’un
sch́ema affine. On montre (loc.cit.) qu’il revient au même de dire queOX est ample (ou aussi :
très ample) relativementàf . Donc 5.8 implique :

Corollaire 5.9 Sous les conditions de 5.4, et supposant f quasi-compact, pour que f soit quasi-
affine, il faut et il suffit que f ′ le soit.

Remarques 5.10L’exemple de varíet́e non projective de Hironaka montre qu’on peut avoir un
morphisme propref : X → Y de varíet́es alǵebriques non singulières (avecY projective), tel
queY soit ŕeunion de deux ouvertsYi tels queXi = X ×Y Yi soit projectif surYi, maisf
n’étant pas projectif. Donc posantY ′ = Y1 q Y2, Y ′ est fid̀element plat et quasi-compact (et
même quasi-fini) surY , f ′ : X ′ → Y ′ est projectif, maisf n’est pas projectif. Il faut donc faire
attention que pour appliquer 5.8, et déduire du fait quef ′ est projectif la m̂eme conclusion surf ,
il faut disposer d́eja surX ′ d’un Module inversibleL ′ ample pourf ′, muni d’une donńee de
descente relativementàX ′ → X, (ce qui permet de considérerL ′ comme l’image inverse d’un
Module inversibleL surX, qui sera alors ample pourf grâceà 5.8). Lorsqueg : S ′ → S est
fini et localement libre, voir cependant 7.7.
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6 Application aux morphismes finis et quasi-finis3

Nous allons d́emontrer les deux th́eor̀emes suivants :

Théorème 6.1Soit f : X → Y un morphisme propre à fibres finies, avec Y localement
noethérien. Alors f est fini.

Théorème 6.2Soit f : X → Y un morphisme quasi-fini et sépaŕe, avec Y localement
noethérien. Alors f est quasi-affine, et à fortiori quasi-projectif.

217

Remarques 6.3Le théor̀eme 6.1 est bien connu, et dû à Chevalley dans le cas des variét́es
algébriques ; on en trouvera aussi une démonstration simple dans [EGA III 4], utilisant le
“théor̀eme des fonctions holomorphes”. La démonstration donńee ici n’utilise pas ce dernier
théor̀eme, mais par contre la théorie de la descente ; nous la donnons comme prime au lecteur,
car on l’a “pour rien” en m̂eme temps que celle de 6.2. Rappelons aussi ([EGA III 4] ou [1]) que
la forme globale du “Main Theorem” de Zariski, déduit du “th́eor̀eme des fonctions holomor-
phes”, affirme que sif : X → Y est quasi-fini etquasi-projectif, Y étant noeth́erien, alorsX est
Y -isomorpheà un sous-pŕesch́ema ouvert d’unY -présch́emafini Z. La conjonction du “Main
Theorem” et de 6.2 s’énonce donc ainsi :

Corollaire 6.4 Soit f : X → Y un morphisme quasi-fini et séparé, avec Y noethérien. Alors X
est Y -isomorphe à un sous-préschéma ouvert d’un Y -préschéma fini Z.

Une autre conśequence int́eressante de 6.2 pour la théorie de la descente sera donnée avec 7.9.

Démonstration de 6.1et 6.2. Nous admettrons le fait suivant, dont la démonstration est facile4 :

Lemme 6.5 Soit X un préschéma de type fini sur Y localement noethérien, et soit y ∈ Y . Pour
qu’il existe un voisinage ouvert U de y tel que X|U soit fini (resp. quasi-affine, resp. ...) sur U ,
il faut et il suffit que X ×Y Spec(Oy) soit fini (resp. quasi-affine, resp. ...) sur Spec(Oy).

Comme d’autre part la propriét́e pourf : X → Y d’être fini, resp. quasi-affine, est locale
surY , on est rameńe pour prouver 6.1 et 6.2 au cas où Y est le spectre d’un anneau local, et est a
fortiori de dimension finie. (N.B. on appelledimension d’un pŕesch́emaY le sup des dimensions
de Krull de ses anneaux locaux). Nous procédons par ŕecurrence sur

n = dim(Y ) ,

l’assertion étant triviale pourn < 0. Nous pouvons donc supposern ≥ 0, et l’assertion218
démontŕee pour les dimensionsn′ < n. On peutà nouveau supposer queY est le spectre d’un

3Cf. EGA IV 18.12 pour des ǵeńeralisations̀a des pŕesch́emas non ńecessairement localement noethériens
4Cf. EGA IV 8
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anneau local noethérienA, de dimensionn. Notons que les hypothèses faites dans 6.1 et 6.2 sont
stables par changement de base (on s’en est déja servi dans la réduction du d́ebut), elles resteront
vraies apr̀es le changement de baseSpec(Â)→ Spec(A). Comme ce dernier est fidèlemeent plat
et quasi-compact, leśenonćes 5.7 et 5.9 nous ram̀enent au cas òuA est de plus complet. Utilisant
alors le fait que tout anneau local noethérienB surA quasi-fini surA est fini surA, et le fait
queX est śepaŕe surY et la fibre dey est forḿee de points isolés, on trouve une décomposition

X = X ′ qX ′′

oú X ′ est fini sur Y , et òu la fibre deX ′′ en y est vide. SiX est propre surY , il en est de
même deX ′′, donc son image dansY est ferḿee, et comme elle ne contient pasy, elle est vide,
doncX ′′ = ∅ doncX = X ′, ce qui montre queX est fini surY et d́emontre 6.1 (N.B. l’hypoth̀ese
de ŕecurrence est ici inutile). SiX est quasi-fini surY ,X ′′ l’est aussi, orX ′′ se trouve en fait sur
l’ouvert Y − (y) deY , qui est de dimension< n. En vertu de l’hypoth̀ese de ŕecurrence,X ′′ est
quasi-affine surY − (y), donc aussi surY , il en estévidemment de m̂eme deX ′, donc aussi de
leur sommeX, ce qui prouve 6.2.

Remarque 6.6 Les th́eor̀emes 6.1 et 6.2 restent valables si on ne suppose plusY localement
noeth́erien,à condition de sṕecifier que l’on supposef de pŕesentation finie (cf 3.6). En effet,
on peut encore supposerY affine, et alors on v́erifie sans dificult́e que la situationf : X → Y
est d́eduit, par un changement de baseY → Y0, d’une situationf0 : X0 → Y0 satisfaisant les
mêmes hypoth̀eses quef , avecY0 noeth́erien. Donc d’apr̀es le ŕesultat 6.1 resp. 6.2,f0 est fini
resp. quasi-affine, donc il en est de même def . Ce genre de raisonnement est souvent utile
pour se d́ebarrasser d’hypothèses noeth́eriennes, (qui finissent toujours parêtre ĝenantes dans les219
applications.

part 44

7 Crit ères d’effectivité pour une donńee de descente

Consid́erons comme d’habitude un morphisme de présch́emas

g : S ′ → S

et unS-présch́emaX ′. Conforḿement aux faits ǵeńeraux (SGA VII, 9), la donńee d’une donńee
de descente surX ′, relativement̀ag, estéquivalentèa la donńee d’un couple d’́equivalence [3] :

q1, q2 : X ′′ //// X ′

tel que le morphisme structuralX ′ → S ′ soit compatible avec ce couple et le couple
d’équivalence

p1, p2 : S ′′ = S ′ ×S S ′ //// S ′
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défini parg, et tel que les deux carrés (ou l’un des deux, cela revient au même par raison de
symétrie) extraits du diagramme correspondant

X ′

��

X ′′oooo

��
S ′ S ′′oooo

(en utilisant soitp1, q1, soit p2, q2), soit cartésien. Une solution du problème de descente posé
par cette donńee de descente, i.e. un objetX surS muni d’un isomorphismeX ×S S ′

∼← X ′

compatible avec les données de descente,équivautà la donńee d’un carŕecartésien

X

��

X ′
hoo

��
S S ′

goo

satisfaisanthq1 = hq2.

Comme l’ensemble des morphismes fidèlement plats et quasi-compacts est stable par change-220
ment de base, et qu’un morphisme fidèlement plat et quasi-compact est unépimorphisme effectif
en vertu de 5.3, il ŕesulte de la th́eorie ǵeńerale [D] :

Proposition 7.1 Supposons g : S ′ → S fidèlement plat et quasi-compact. Pour qu’une don-
née de descente sur X ′ relativement à g soit effective, il faut et il suffit que la relation
d’équivalence R = (q1, q2) qu’elle définit soit effective (i.e. le quotient X ′/R existe et X ′′ de-
vient le carré fibré de X ′ sur X ′/R), et que le morphisme canonique X ′ → X ′/R soit fidèlement
plat et quasi-compact.

Ainsi la question de l’effectivit́e d’une donńee de descente est un cas particulier de la question
d’effectivité d’un graphe d’́equivalence, et divers critères d’effectivit́e donńes dans ce nuḿero
peuvent s’obtenir de cette façon. Néanmoins on dispose dans le contexte de la descente du
théor̀eme 2.1, qui implique quesi X ′ est affine surS ′, toute donńee de descente surX ′ rela-
tivementà g est effective, énonće qui n’a pas d’analogue pour le passage au quotient par un
graphe d’́equivalence plat ǵeńeral. Tous les crit̀eres d’effectivit́e que nous donnons ici peuvent
aussiêtre consid́eŕes comme d́eduits du pŕećedent.

Soit U ′ un sous-pŕesch́ema deX ′ (ou plus ǵeńeralement un sous-objet deX ′ dans la
cat́egorieSch) ; on dit queU ′ eststable par la donńee de descentesurX ′, si on peut trouver
surU ′ une donńee de descente relativementà g, telle que l’immersionU ′ → X ′ soit compatible
avec les donńees de descente. Cela signifie aussi que les images inverses deU ′ dansX ′′ parq1

etq2 sont les m̂emes (ou aussi, comme on dit, queU ′ eststable par la relation d’́equivalenceR),
et bien entendu la donnée de descente en question surU ′ est alors unique, et ditedonńee de
descente induitepar celle deX ′. Ceci pośe :

Proposition 7.2 Soit (X ′i) un recouvrement de X ′ par des ouverts X ′i stables par la donnée de221

164



VIII

descente. Pour que la donnée de descente sur X ′ soit effective, il faut et il suffit qu’il en soit de
même des données de descente induites dans les X ′i.

C’est l̀a une conśequence facile de 7.1 par exemple, et le détail de la d́emonstration est laissé
au lecteur.

Corollaire 7.3 Soit (Si) un recouvrement ouvert de S, et pour tout i soient S ′i etX ′i déduits de S ′

de X ′ par le changement de base Si → S. Pour que la donnée de descente sur X ′ soit effective,
il faut et il suffit que, pour tout i, la donnée de descente sur X ′i relativement à gi : S ′i → Si soit
effective.

Ce crit̀ere nous ram̀ene toujours pratiquement au cas où S est affine. Dans le cas où S ′ est
également affine, ce qui est le cas le plus fréquent dans les applications, on a :

Corollaire 7.4 Supposons S et S ′ affines. Pour que la donnée de descente sur X ′ soit effective,
il faut et il suffit que X ′ soit réunion d’ouverts X ′i affines et stables par la donnée de descente.

La suffisance provient de 7.2 et du fait que siX ′i est affine, il est affine surS ′ et on peut
appliquer 2.1. Pour la ńecessit́e, on note que siX ′ provient deX, et siX est recouvert par des
ouverts affinesXi, alors lesX ′i = Xi ×S S ′ sont des ouverts affines stables par les données de
descente et recouvrantX ′.

Corollaire 7.5 Soit g : S ′ → S un morphisme fidèlement plat, quasi-compact et radiciel. Alors g
est un morphisme de descente effective, i.e. pour tout X ′ sur S ′, toute donnée de descente sur X ′

relativement à g : S ′ → S est effective.

En effet, en vertu de 7.3 on peut supposerS affine, donc commeS ′ est radiciel surS donc
sépaŕe,S ′ est śepaŕe. D’ailleurs pour toutx′ ∈ X ′, la fibreR(x′) = q2(q−1

1 (x′)) de la relation
d’équivalence ensembliste définie par la relation d’́equivalenceR est ŕeduiteà un point, carg222
étant radiciel, il en est de m̂eme dep1, p2 qui s’en d́eduisent par changement de baseS ′ → S,
donc aussi deq1, q2 qui se d́eduisent des préćedents par changement de baseX ′ → S ′′. Donc
tout ouvert deX ′ est stablepar la donńee de descente. Recouvrons alorsX ′ par des ouverts
affinesX ′i, ils sont affines surS puisqueS ′ est śepaŕe, donc la donńee de descente induite est
effective par 2.1. On conclut alors par 7.2.

On notera que 7.5 donne le seul cas connu d’un morphisme de descente effective dans la
cat́egorie des pŕesch́emas, et c’est probablement le seul cas en effet, même en se limitant aux
sch́emas noeth́eriens, ou aux schémas de type fini sur un corps.

Lorsqu’on supposeS localement noeth́erien etS ′ de type fini surS, l’ énonće 7.5 est aussi
un cas particulier du suivant (qui géńeralise la descente galoisienne de Weil et la descente
inséparable de Cartier) :

Corollaire 7.6 Soit g : S ′ → S un morphisme fini localement libre (i.e. défini par une Algèbre
sur S qui est un module localement libre de type fini) et surjectif (donc g est fidèlement plat et
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quasi-compact, donc un morphisme de descente). Soit X ′ un S ′-préschéma muni d’une donnée
de descente. Pour que cette donnée soit effective, il faut et il suffit que pour tout x′ ∈ X ′,
la fibre R(x′) = q2(q−1

1 (x′)) soit contenue dans un ouvert affine (condition automatiquement
vérifiée si X ′ est quasi-projectif sur S ′).

La remarque entre parenthèses provient du fait que sis est le point deS au-dessous dex′,
alorsR(x′) est fini et contenu dans la fibreXs, d’autre part commeX ′ est quasi-projectif surS ′

etS ′ est fini surS,X ′ est quasi-projectif surS, ce qui implique qu’une fibre deX/S est contenue
dans un ouvert affine.

Comme toute partie finie d’un schéma affine admet un système fondamental de voisinages
affines, on voit qu’on ne perd pas l’hypothèse en se restreignant au-dessus d’un ouvert affine
deS, ce qui en vertu de 7.3 nous ramène au cas òu S est affine. En vertu de 7.4, on est ramené
à montrer queX ′ est contenu dans un ouvert affinestablepar la donńee de descente. Soit en223
effetU un ouvert affine contenantR(x′), alors le satuŕe

R(X − U) = q2(q−1
1 (X − U))

ne rencontre pasR(x′), d’autre part commeq2 est fini (carg donc p2 l’est) donc ferḿe, le
deuxìeme membre est une partie fermée deX ′. SoitU ′ son compĺementaire dansX ′, c’est donc
un ouvertsatuŕeet on a

R(x′) ⊂ U ′ ⊂ U

avecU affine, maisU ′ pas affinèa priori. Comme une partie finieR(x′) dans un sch́ema affineU
a un syst̀eme fondamental de voisinages affines de la formeUf , on voit, remplaçantf par sa
restrictionàU ′, qu’il existe une sectionf deOU telle que :

R(x′) ⊂ U ′f , U ′f est affine.

Soit alors U ′′ = q−1
1 (U ′) = q−1

2 (U ′), désignons encore parq1, q2 les morphismes in-
duitsU ′′ → U ′, et consid́erons

f ′ = Nq2(q∗1(f)) ,

où Nq2 désigne lanormerelativement au morphisme fini localement libreq2 : U ′′ → U ′. La
compatibilit́e de la formation de la norme avec le chagement de base implique facilement quef ′

est une sectioninvariante:
q∗1(f ′) = q∗2(f ′)

ce qui implique queU ′f ′ est un ouvert saturé deU ′. De façon plus pŕecise d’ailleurs, d́esignant
parZ(f ′) l’ensemble des źeros d’une sectionf ′, on trouve en vertu des propriét́es des normes :

Z(f ′) = q2(Z(q∗1(f))) = q2(q∗1(Z(f))) = R(U ′ − U ′f ) ,

ce qui implique queU ′f ′ = U ′−Z(f ′) est satuŕe, contientR(x′), et est contenu dansU ′f . Comme224
ce dernier est affine, il s’ensuit queU ′f ′ l’est aussi (caŕegalà (U ′f )f ′′, avecf ′′ = f ′|U ′f ′). C’est
donc un ouvert affine saturé contenantR(x′) doncx′, ce qui ach̀eve la d́emonstration.
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On notera que ce raisonnement s’applique chaque fois qu’on a une relation d’équivalence
(ou même seulement de prééquivalence, cf. [3]) dans un présch́emaX ′, fini et localement libre
et d’ailleurs 7.6 est aussi un cas particulier du résultat analogue pour les prééquivalences finies
et localement libres, cf. loc.cit. M̂eme remarque pour 7.7 ci-dessous.

On peut aussi, une fois obtenue l’existence d’un ouvert quasi-affine saturéU ′ contenantx′,
faire appel̀a 7.9 et 7.2 ce quíevite le recours aux normes.

Notons d’ailleurs que sous les conditions de 7.6, si la donnée de descente surX ′ est effective,
X ′ provenant deX surS, alors le morphismeX ′ → X est fini, localement libre et surjectif, car
déduit deg par le changement de baseX → S. Il s’ensuit (EGA II 6.6.4) que siX ′ est quasi-
projectif surS ′ donc surS, alorsX est quasi-projectif surS, (un faisceau inversible relativement
ample surX étant obtenu en prenant lanormed’un faisceau inversible surX ′ relativement ample
surS, ou surS ′, cela revient au m̂eme). On obtient ainsi :part 45

Corollaire 7.7 Un morphisme g : S ′ → S fini localement libre et surjectif est un morphisme de
descente effective pour la catégorie fibrée des préschémas quasi-projectifs sur d’autres, i.e. pour
tout X ′ quasi-projectif sur S ′, toute donnée de descente sur X ′ relativement à g est effective, et
le S-préschéma descendu X est quasi-projectif sur S.

Proposition 7.8 Soit g : S ′ → S un morphisme fidèlement plat et quasi-compact. Alors g est un
morphisme de descente effective pour la catégorie fibrée des préschémas Z quasi-compacts sur
un préschéma T , munis d’un faisceau inversible ample relativement à T . En particulier, pour tout225
préschéma X ′ sur S ′, muni d’une donnée de descente relativement à g : S ′ → S, et tout faisceau
inversible L ′ sur X ′ ample relativement à S ′, muni également d’une donnée de descente relati-
vement à celle donnée sur X ′, (i.e. muni d’un isomorphisme de q∗1(L ′) avec q∗2(L ′), satisfaisant
la condition de transitivité habituelle), la donnée de descente sur X ′ est effective, et le faisceau
inversible L sur le préschéma descendu X , déduit de L ′ par descente, est ample relativement
à S.

La démonstration est toute analogueà celle de 5.8, en notant que sur l’Algèbre gradúee quasi-
coh́erenteS ′ sur S ′ définie parL ′, il y a une donńee de descente, permettant de construire
une Alg̀ebre gradúee quasi-coh́erenteS sur S grâceà 1.1 d’òu un P = Proj(S ) sur S tel
queP ′ = Proj(S ′) s’identifie avec sa donnée de descentèaP ×S S ′. Comme par hypoth̀eseX ′

s’identifieà un ouvert deP ′, nécessairement stable par la donnée de descente surP ′, la donńee de
descente surX ′ estégalement effective, et on obtient le présch́ema descendu comme un ouvert
dansP . Le d́etail est laisśe au lecteur. - En particulier, faisantL ′ = OX′, on trouve :

Corollaire 7.9 Soit g : S ′ → S un morphisme fidèlement plat et quasi-compact, et soit X ′ un
préschéma quasi-affineau-dessus de S ′, alors toute donnée de descente sur X ′ relativement à g
est effective, et le préschéma descendu X est quasi-affine sur S.

En vertu de 6.2, ce résultat s’applique en particulier siS ′ est localement noethérien etX ′ est
quasi-fini et śepaŕe surS ′, plus ǵeńeralement siS ′ est quelconque etX ′ est de pŕesentation finie,
quasi-fini et śepaŕe surS ′ (cf. 6.6).
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Remarques 7.10Les ŕesultats donńes dans ce nuḿeroépuisent les crit̀eres actuellement connus
d’effectivité, et probablement m̂eme les crit̀eres utiles existants5. On notera les contre-exemples
suivants̀a l’appui de cette assertion :226

(i) Si S est le spectre d’un corps, etS ′ est le spectre d’une extension quadratique galoisienne,
on peut trouver unX ′ surS ′ propre et lisse surS ′, de dimension 3, muni d’une donnée de
descente qui n’est pas effective (Serre).

(ii) On peut trouver unS spectre d’un anneau local régulier de dimension 3 (si on veut,
l’anneau local d’un sch́ema alǵebrique sur un corps de caractéristique donńee), unT
revêtement principal deS de groupeZ/2Z, tel que, sit désigne l’un des points deT
au-dessus du point ferḿe s deS, etS ′ = T − s, on puisse trouver unX ′ projectif surS ′,
régulier, muni d’une donńee de descente relativementà g : S ′ → S, cette donńee de des-
cente n’́etant pas effective.

On utilise pour ces constructions l’exemple de Hironaka de variét́es non projectives. Pour (i),
il suffit d’utiliser le fait qu’on peut trouver au-dessus dek un sch́ema propre et lisseX0 de di-
mension 3, sur lequelG = Z/2Z opère sans inertie, et dans lequel il existe deux pointsa, b
rationnels surP , congrus sousG, qui ne sont pas contenus dans un ouvert affine. On pose
alorsX ′ = X0 ×k k′, on fait oṕererG surX ′ grâce aux oṕerations deG sur les deux facteurs,
ce qui donne une donnée de descente surX ′ relativement̀a g : Spec(k′)→ Spec(k). Au-dessus
dea resp.b, il y a exactement un pointa′ resp.b′, (à extension ŕesiduelle quadratique), eta′ et b′

sont congrus sousG, puisqueX ′ → X0 est compatible avec les opérations deG. Alors a′ et b′

ne peuvent̂etre contenus dans un ouvert affine, soitU ′, car alorsU = X0 − Im(X ′ − U ′) serait
un ouvert deX0 contenant(a, b) et dont l’image inverse dansX ′ serait contenue dansU ′, donc
quasi-affine, doncU serait quasi-affine, et par suite(a, b) aurait un voisinage affine dansU .

Pour (ii), on utilise le fait que dans l’exemple de Hironaka,X0 est obtenu comme présch́ema
propre au-dessus d’unk-sch́ema projectifY , lisse surk (le morphismef : X0 → Y étant
d’ailleurs birationnel, mais peu importe), le groupeG opérantégalement surY de façon com-
patible avec ses opérations surX0, enfin posantS ′ = Y − f(b), X ′ = X0|S ′, X ′ est pro-
jectif sur S ′. Alors X0 est muni d’une donńee de descente naturelle relative au morphisme
canoniqueY → S = Y/G, grâce aux oṕerations deG surX0 compatibles avec ses opérations227
sur Y . Cette donńee de descente n’est pas effective, puisque(a, b) n’est pas contenu dans un
ouvert affine. La donńe de descente induite surX ′ relativementà g : S ′ → S n’est alors pas
effective, comme on v́erifie facilement.
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Expośe IX

Descente des morphismeśetales.
Application au groupe fondamental

228

1 Rappels sur les morphismeśetales

Nous allons ici passer en revue les propriét́es des morphismesétales (d́evelopṕes dans SGA I)
qui vont nous servir, en profitant de cette occasion pouréliminer de la th́eorie les hypoth̀eses
noeth́eriennes superflues. Le lecteur notera que même si on ne s’interesse qu’aux schémas
noeth́eriens, la technique de descente conduità introduire des sch́emas non noeth́eriens (tels
que Spec(Â ⊗A Â), où A est un anneau local noethérien), et pour pouvoir appliquer le lan-
gage des catégories fibŕees, il importe de d́efinir les notions de morphisméetale etc..., sans y
introduire de restriction noethérienne. Le lecteur qui répugnerait̀a vérifier ouà admettre que les
énonćes ci-dessous sont vrais sans hypothèses noeth́eriennes, pourra se contenter de les admettre
sous les hypoth̀eses noeth́eriennes de SGA I,̀a condition d’introduire ces m̂emes hypoth̀eses
noeth́eriennes dans leśenonćes des nuḿeros suivants, et d’utiliser la définition 1.1 ci-dessous
pour les sch́emas non noeth́eriens qui s’introduisent dans les raisonnements.

Définition 1.1 Soient f : X → S un morphisme de préschémas, et x un point deX . On dit que f
est étale enx, ou que X est étale sur S en x, s’il existe un voisinage ouvert affine U de s = f(x),
un voisinage ouvert affine V de x au-dessus de U , un schéma noeth́erienaffine U0, un U0-schéma
étale(SGA I) et affine V0, un morphisme U → U0, et un U -isomorphisme

V
∼→ V0 ×U0 U .

On notera que lorsqueS est localement noethérien, cette terminologie coı̈ncide avec celle229
de loc.cit. On dira de m̂eme quef est étale, ou queX est étale surS, si f est étale en tout
pointx deX. Avec ces d́efinitions, les propositions ci-dessous se ramènent sans difficulté au cas
noeth́erien, òu elles sont d́emontŕees dans SGA I No 4, 5, 7. Pour des d́etails, le lecteur pourra
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consulter EGA IV1.part 46

Remarques 1.2Si f estétale enx, alorsf est “de pŕesentation finie enx” (VIII 3.5), l’anneau
local dex dans la fibref−1(s) est uneextension finie śeparabledek(s), enfinf estplat enx.
On peut montrer que la réciproque est vraie, donc que la définition 1.1 est la m̂eme que dans le
cas òu S est localement noethérien, sauf qu’il faut remplacer la condition “de type fini enx” par
“de pŕesentation finie enx”. Comme ce ŕesultat est de d́emonstration d́elicate, nous n’avons pas
voulu ici donner cette d́efinition de la notion de morphismeétale, qui ne se prête pas directement
à la d́emonstration des propriét́es qui vont suivre.

Notons d’abord qu’on a trivialement :

Proposition 1.3 Si f : X → S est étale, alors tout morphisme f ′ : X ′ → S ′ qui s’en déduit par
changement de base S ′ → S est également étale.

On peut donc dire que les morphismesétales forment unesous-cat́egorie fibŕeede la cat́egorie
des fl̀eches dansSch (cf. VI 11 a). L’objet du pŕesent expośe est l’́etude des propriét́es d’exacti-
tude de cette catégorie fibŕee surSch.

Proposition 1.4 Soit f : X → S un morphisme de préschémas. Pour que ce soit une immersion
ouverte, il faut et il suffit qu’il soit étale et radiciel.

Cf. (SGA I 5.1). On en conclut que siX est étale surS, toute section deX sur S est une
immersion ouverte, donc, utilisant encore 1.4, on trouve :

Corollaire 1.5 Soit X un S-préschéma étale. Alors il y a une correspondance biunivoque entre
l’ensemble des sections de X sur S, et l’ensemble des parties ouvertes Γ de X telles que le230
morphisme Γ→ S induit par le morphisme structural soit radicielet surjectif.

Si d’ailleursX est śepaŕe surS, Γ sera une partie deX à la fois ouverte et ferḿee, mais peu
importe. - Faisant un changement de baseévident, on peut mettre 1.5 sous la forme en apparence
plus ǵeńerale :

Corollaire 1.6 Soient X et Y deux S-préschémas, Y étant étale sur S. Alors l’application
f 7→ Γf qui associe à tout S-morphisme f de X dans Y la partie de X ×S Y sous-jacente
au graphe de f , est une bijection de HomS(X, Y ) sur l’ensemble des parties ouvertes de Γ de
X ×S Y telles que le morphisme Γ→ X induit par pr1 soit radicielet surjectif.

Proposition 1.7 Soit S0 le sous-préschéma de S défini par un Nil-idéal quasi-cohérent, i.e. tel
que S0 ait même ensemble sous-jacent que S. Alors le foncteur X 7→ X ×S S0 de la catégorie
des préschémas étales sur S dans la catégorie des préschémas étales sur S0, est une équivalence
de catégories.

1De façon pŕecise, EGA IV 17, 18.

171



IX

Le fait que ce foncteur soit pleinement fidèle est une conséquence imḿediate de 1.6. Le fait
qu’il soit essentiellement surjectif est contenu dans SGA I 8.3. On notera que dans l’équivalence
préćedente,X est de type fini i.e. quasi-fini surS, (resp. fini i.e. un rev̂etement́etale deS), si et
seulement siX0 satisfaità la condition analogue surS0 ; même remarque pour la condition de
séparation. Ces faits sont immédiats, et aussi contenus dans 2.4 plus bas.

Corollaire 1.8 Soit A un anneau local noethérien complet de corps résiduel k. Alors le foncteur
B 7→ B ⊗A k est une équivalence de la catégorie des algèbres finies et étales sur A, avec la
catégorie des algèbres finies et étales sur k, (i.e. composées d’un nombre fini d’extensions finies
séparables de k).

Proposition 1.9 Pour queX soit un revêtement́etalede S i.e. fini et étale sur S, il faut et il suffit
que X soit S-isomorphe au spectre d’une Algèbre A sur S, qui soit un Module localement libre
de type fini, et telle que pour tout s ∈ S, As ⊗Os k(s) soit une algèbre séparable sur k(s), donc231
en l’occurrence composée directe d’extensions finies séparables de k(s).

Enfin le ŕesultat suivant est de nature moinsélémentaire,́etant la conjonction de SGA I 8.4 et du
théor̀eme d’existence de faisceaux en géoḿetrie alg̀ebrique, (EGA III 5 ; cf aussi [1] th.3).

Théorème 1.10Soient S le spectre d’un anneau local noethérien complet, X un S-schéma
propre, X0 la fibre de X au point fermé de S, (de sorte que X0 est un sous-schéma fermé de X).
Alors le foncteur restrictionX ′ 7→ X ′×XX0 est une équivalence de la catégorie des revêtements
étales de X avec la catégorie des revêtements étales de X0.

2 Morphismes submersifs et universellement submersifs

Définition 2.1 Un morphisme g : S ′ → S de préschémas est dit submersifs’il est surjectif,
et fait de S un espace topologique quotient de S ′ (i.e. une partie U de S telle que f−1(U) soit
ouverte, est ouverte). On dit que f est universellement submersifsi pour tout morphisme T → S,
le morphisme f ′ : T ′ = S ′ ×S T → T déduit de f par changement de base est submersif.

Il est immédiat que le composé de deux morphismes submersifs (resp. universellement submer-
sifs) est submersif (resp. universellement submersif), et qu’un changement de base dans un mor-
phisme universellement submersif donne un morphisme universellement submersif (vu qu’on
fait ce qu’il faut pour cela). Sifg est submersif (resp. universellement submersif),f l’est.

Exemples 2.2a) Un morphisme surjectif qui est ouvert, ou fermé, est submersif, donc un mor-
phisme surjectif universellement fermé ou universellement ouvert est universellement submersif.
Par exempleun morphisme propre surjectif est universellement submersif. D’autre partun mor-
phisme fid̀element plat et quasi-compact est universellement submersif(VIII 4.3). Ce seront les
deux cas les plus importants pour nous.
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On peut appliquer̀a un morphisme submersif ou universellement submersifg : S ′ → S les rai-232
sonnements de VIII 4.3, on trouve en particulier :

Proposition 2.3 Supposons g : S ′ → S submersif. Alors le diagramme suivant d’applications
est exact :

Ouv(S)→ Ouv(S ′)⇒ Ouv(S ′′),

où S ′′ = S ′ ×S S ′, et où Ouv(X) désigne l’ensemble des parties ouvertes du préschéma X .

Proposition 2.4 Soient g : S ′ → S un morphisme universellement submersif, f : X → Y un
S-morphisme, et f ′ : X ′ → Y ′ le S ′-morphisme qui s’en déduit par changement de base. Pour
que f soit ouverte (resp. fermée), il suffit que f ′ le soit. Pour que f soit universellement ouverte,
resp. universellement fermée, resp. séparée, il faut et il suffit que f ′ le soit. Si de plus g est
quasi-compact, et f localement de type fini, pour que f soit propre, il faut et il suffit que f ′ le
soit.

Pour ce dernier point, on note que sif ′ est propre donc quasi-compact alorsf est quasi-compact
(VIII 3.3) donc de type fini puisqu’il est localement de type fini. D’autre part il est sépaŕe et
universellement ferḿe d’apr̀es ce qui pŕec̀ede, donc il est propre.

Proposition 2.5 Soit S ′ un préschéma de type fini sur le spectre S d’un anneau local noethérien
complet, supposons que la fibre du point fermé s de S soit finie, donc les anneaux locaux dans
S ′ des points s′ de cette fibre sont finis sur A = Os. Soit S ′′ le schéma somme des spectres des
OS′,s′ en question, considéré comme S-schéma fini. Pour que g : S ′ → S soit universellement
submersif, il faut et il suffit que le morphisme structural S ′′ → S soit surjectif.

Comme il y a unS-morphisme naturelS ′′ → S ′, et qu’un morphisme fini surjectif est universel-
lement submersif d’après 2.2, la conditiońenonćee est suffisante. Montrons donc que siS ′′ → S ′

n’est pas surjectif, alorsg n’est pas universellement submersif. En effet, soitt un point deS qui
n’est pas dans l’image deS ′′ ; il existe alors unS-sch́emaT , spectre d’un anneau de valuation233
discr̀ete, dont l’image dansS est{s, t}. Notons que l’image deS ′′ dansS ′ est ouverte, car le
morphismeS ′′ → S ′ est un isomorphisme local, et d’autre part cette image contientS ′s, et ne
rencontre pasS ′t. Il s’ensuit que l’image inverse de cette dernière dansT ′ = S ′×S T estouverte,
et identiquèa l’image inverse du point ferḿe deT . Cela montre queT ′ → T n’est pas submersif,
doncS ′ → S n’est pas universellement submersif.

Remarque 2.6 Utilisant le crit̀ere IV 6.3 pour qu’une partie constructible d’un espace noethérien
soit ouverte, on trouve facilement le critère valuatif suivant pour qu’un morphismeg : S ′ → S
de type fini, avecS localement noeth́erien, soit universellement submersif : il faut et il suffit que
pour toutS-sch́emaT , spectre d’un anneau de valuation discrète, posantT ′ = S ′ ×S T , l’image
inverse dansT ′ du point ferḿe deT soit non ouverte.
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3 Descente de morphismes de présch́emasétales

Proposition 3.1 Soient g : S ′ → S un morphisme surjectif de préschémas, X et Y deux
préschémas sur S, X ′, Y ′ leurs images inverses sur S ′. Si Y est non ramifié sur S, alors l’appli-
cation canonique

HomS(X, Y )→ HomS′(X
′, Y ′)

est injective.

En effet, en vertu de 1.6, unS-morphismef : X → Y est connu quand on connaı̂t l’ensemble
sous-jacent̀a son grapheΓ, qui est une partie deZ = X ×S Y . Comme

Z ′ = Z ×S S ′ = X ′ ×S′ Y ′ → Z

est surjectif, (puisqueS ′ → S l’est), cette partieΓ est connue quand on connaı̂t son image inverse
dansX ′ ×S′ Y ′, qui n’est autre que l’ensemble sous-jacent au graphe def ′. D’où la conclusion.part 47

Une partieΓ deZ est le graphe d’unS-morphismef : X → Y si et seulement si elle est
ouverte, et si le morphisme induit parpr1 de Γ dansY est radiciel et surjectif cf. 1. Lorsque234
la premìere propríet́e est v́erifiée, la deuxìeme l’est si et seulement si l’image inverseΓ′ de Γ
dansZ ′ satisfait la m̂eme condition (SGA VIII 3.1). Si on sait enfin queZ ′ → Z est submersif,
ce qui sera le cas en particulier siS ′ → S est universellement submersif, alorsΓ est ouvert si
et seulement siΓ′ l’est. Ainsi, l’ensembleHomS(X,Y ) est alors en correspondence biunivoque
avec l’ensemble des parties ouvertesΓ′ deZ ′ telles que le morphisme projectionpr1 : Z ′ → X ′

soit radiciel et surjectif, (i.e. correspondantà unS ′-morphismef ′ : X ′ → Y ′), et qui sont saturées
pour la relation d’́equivalence d́efinie parZ ′ → Z, i.e. dont les deux images inverses dans
Z ′′ = Z ′ ×Z Z ′ = Z ×S S ′′ (où S ′′ = S ′ ×S S ′), par l’une et l’autre projection, sontégales. Or
ces dernìeres sont les graphes des deuxS ′′-morphismesX ′′ → Y ′′ déduits def ′ par changement
de base, par l’une et l’autre projectionS ′′ → S ′. On a ainsi obtenu :

Proposition 3.2 Soient g : S ′ → S un morphisme universellement submersifde préschémas,
S ′′ = S ′ ×S S ′, X et Y deux S-préschémas, X ′ et Y ′ leurs images inverses sur S ′, et X ′′, Y ′′

leurs images inverses sur S ′′. Si Y est étale sur S le diagramme canonique suivant d’applications
est exact :

HomS(X,Y ) // HomS′(X
′, Y ′) //// HomS′′(X

′′, Y ′′).

PrenantX et Y étales surS, on trouve l’́enonće suivant, qui d’ailleurs redonne 3.2 (même
en se restreignant̀a X = S, auquel cas on peut en effet toujours se ramener dans 3.2, par le
changement de baseX → S) ;

Corollaire 3.3 Un morphisme universellement submersif de préschémas est un morphisme de
descente pour la catégorie fibrée des préschémas étales sur d’autres.

J’ignore d’ailleurs si c’est ńecessairement un morphisme de descenteeffectivepour la
cat́egorie fibŕee en question, m̂eme en faisant de plus l’hypothèse queS est noeth́erien etg de
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type fini, et en se bornant aux revêtementśetales. Nous donnerons néanmoins au nuḿero suivant
des crit̀eres utiles d’effectivit́e.235

Corollaire 3.4 Soit g : S ′ → S un morphisme universellement submersif, dont les fibres g−1(s)
sont “géométriquement connexes”, i.e. pour toute extensionK/k(s), g−1(s)⊗k(s)K est connexe.
Alors S ′ est connexe si S l’est. Le foncteur de la catégorie des préschémas étales sur S dans la
catégorie des préschémas étales sur S ′ défini par g est pleinement fidèle.

Une partie deS ′ qui està la fois ouverte et ferḿee est saturée pour la relation d’équivalence
ensembliste d́efinie parg, puisque les fibres sont connexes, donc est l’image inverse d’une partie
deS, qui est ńecessairement ouverte et fermée puisqueg est submersif. Si doncS est connexe,
S ′ l’est. Cela implique le ŕesultat suivant : le composéfg de deux morphismes̀a fibres universel-
lement connexes,f étant universellement submersif, està fibres universellement connexes ; siS ′1
etS ′2 surS ont des fibres universellement connexes, il en est de même deS ′1 ×S S ′2. En particu-
lier, sous les conditions de 3.4,S ′′ a des fibres universellement connexes surS. Soient alorsX
etY étales surS, et soitu′ unS ′′-morphisme deX ′ dansY ′, prouvons qu’il est compatible avec
les donńees de descente (ce qui entraı̂ne la conclusion voulue grâceà 3.3). Or soientu′′1 et u′′2
les deuxS ′′-morphismesX ′′ → Y ′′ déduits deu′. Le sous-pŕesch́ema deS ′′ des cöıncidences
deu′′1 etu′′2 est un sous-présch́ema ouvert induit, ferḿe fibre par fibre, comme image inverse du
présch́ema diagonal deY ′′ surS ′′2. C’est donc l’image inverse d’une partie deS. Comme elle
contient la diagonale dansS ′′, elle est identiquèaS ′′, d’où u′′1 = u′′2 cqfd.

4 Descente de pŕesch́emasétales : critères d’effectivité

Proposition 4.1 Soit g : S ′ → S un morphisme fidèlement plat et quasi-compact. Alors g est
un morphisme de descente effective pour la catégorie fibrée des préschémas étales, séparés et de
type fini sur d’autres.

C’est en effet un morphisme de descente pour la catégorie fibŕee en question, en vertu de 3.3
ou de (SGA VIII 5.2) au choix. Restèa montrer que siX ′ estétale, śepaŕe et de type fini surS ′,
et muni d’une donńee de descente relativementà g : S ′ → S, cette dernìere est effective dans
la cat́egorie fibŕee en question. Or on voit facilement que siX est un pŕesch́ema surS, alors
il est étale surS si et seulement si il est́etale surS ′ (en vertu de la d́efinition 1.1 et de loc.236
cit. 3.6). Donc il est́etale, śepaŕe et de type fini surS si et seulement siX ′ l’est surS ′, cf. par
exemple 2.4. Donc il suffit de s’assurer de l’effectivité de la donńee de descente surX pour la
cat́egorie fibŕee des fl̀eches deSch. Or X ′ est quasi-affine surS ′ en vertu de (SGA VIII 6.2
et 6.6). On peut alors conclure en utilisant (SGA VIII 7.9). Le lecteur notera d’ailleurs que la
démonstration demande moins si on se borne aux présch́emasétales et finis sur d’autres, car on
peut alors invoquer directement (SGA VIII 2.1).

2noter que les fibres deS′ surS sont śepaŕees !
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Corollaire 4.2 Soient g : S ′ → S un morphisme universellement submersif, X ′ un S ′-
préschéma étale séparé et de type fini, muni d’une donnée de descente relativement à g, S1 → S
un morphisme fidèlement plat et quasi-compact, S ′1 et X ′1 déduits de S ′ et X ′ par le changement
de base, de sorte que S ′1 → S1 est universellement submersif, X ′1 est étale séparé et de type fini
sur S ′1, et muni d’une donnée de descente relativement à g1 : S ′1 → S1. Pour que la donnée de
descente sur X ′ soit effective, il faut et il suffit que la donnée de descente sur X ′1 le soit.

Cela ŕesulte de la th́eorie de la descente dans les catégories [D], compte tenu de 4.1 et 3.3.

On prouve de façon analogue :

Corollaire 4.3 Soient g : S ′ → S un morphisme universellement submersif, X ′ un S ′-
préschéma étale muni d’une donnée de descente relativement à g, (Si) un recouvrement de S
par des ouverts. Pour que la donnée de descente soit effective, il faut et il suffit que pour
tout i, la donnée de descente correspondante sur X ′i = X ×S Si, relativement au morphisme
gi : S

′
i = S ′ ×S Si → Si, le soit.

Ce dernier ŕesultat conduit̀a d́egager un crit̀ere d’effectivit́e local :

Proposition 4.4 Soit g : S ′ → S un morphisme de présentation finie (SGA VIII 3.6) et uni-237
versellement submersif, X ′ un préschéma étale et de présentation finie sur S ′, muni d’une
donnée de descente relativement à g, enfin a un point de S. Pour qu’il existe un voisinage
ouvert U de a, tel que la donnée de descente correspondante sur X ′U = X ′ ×S U relative-
ment au morphisme gU : S ′U = S ′ ×S U → SU = U soit effective, il faut et il suffit que la
donnée de descente correspondante sur X ′a = X ′ ×S Spec(Oa), relativement au morphisme
ga : S ′a = S ′ ×S Spec(Oa)→ Sa = Spec(Oa), soit effective.

La nécessit́e étant triviale, montrons la suffisance. On dispose donc d’un présch́emaétale de
type finiXa surSa, et d’un isomorphisme

(∗) X ′a
∼→ Xa ×Sa S ′a

compatible avec les données de descente. Conformément à un sorite ǵeńeral facile sur les
présch́emas d́efinis sur une limite inductive d’anneaux (ici les anneauxAf , où A est l’anneau
d’un voisinage ouvert affine dea, et òu f parcourt leśeléments deA qui ne sont pas dans l’idéal
premier correspondantà a), on peut trouver un voisinage ouvertU dea, un pŕesch́emaétale de
type finiXU surU = SU , et unSa-isomorphismeXa

∼→ XU ×SU Sa. De plus, prenantU assez
petit, on peut alors supposer que l’isomorphisme (∗) provient d’un isomorphisme :

X ′U
∼→ XU ×SU S ′U ;

ce dernier pourrait ne pasêtre compatible avec les données de descente, cependantà condition
de ŕetŕecirU , il sera compatible avec les données de descente. Cela achève la d́emonstration.
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Corollaire 4.5 Sous les conditions de 4.4, pour que la donnée de descente sur X ′ soit effective,
il faut et il suffit que pour tout a ∈ S, la donnée de descente corrspondante sur X ′a, relativement
au morphisme S ′a = S ′×S Spec(Oa)→ Spec(Oa), le soit. Lorsque S est localement noethérien,
et X ′ séparé sur S ′, on peut dans le critère précédent remplacer aussi Oa par son complété.

La premìere assertion résulte de 4.4 et 4.3, la deuxième est alors conséquence de 4.2. Utilisant238
encore 4.2 et le fait que pour tout anneau local noethérienA, on peut trouver un anneau local
noeth́erien completB, et un homomorphisme localA → B, tel queB soit plat surA et que
B/mB soit une extension donnée du corps ŕesiduelk = A/m deA, on trouve :

Corollaire 4.6 Sous les conditions de 4.4, supposons de plus X ′ séparé sur S ′ et S localement
noethérien. Pour que la donnée de descente sur X ′ soit effective, il faut et il suffit que pour tout
préschéma S1 sur S, spectre d’un anneau local complet à corps résiduel algébriquement clos, la
donnée de descente correspondante surX ′1 = X ′×SS1, relativement au morphisme g1 : S ′1 → S1,
soit effective.

part 48

Théorème 4.7Soit g : S ′ → S un morphisme fini et surjectif, et de présentation finie (cette
dernière hypothèse étant conséquence des autres si S est localement noethérien)3. Alors g est un
morphisme de descente effective pour la catégorie fibrée des préschémas étales, séparés, de type
fini sur d’autres.

Il faut montrer que siX ′ est étale, śepaŕe, de type fini surS ′, et muni d’une donńee de
descente relativementàg, alors cette donńee est effective. Utilisant 4.3, on se ramène facilement
au cas òu S est noeth́erien. Gr̂aceà 4.5, on peut donc supposer queS est le spectre d’un anneau
local noeth́erien, a fortiori que

dimS = n < +∞.

On raisonne alors par récurrence surdimS = n, l’assertionétant triviale pourn < 0. Supposons
doncn ≥ 0 et le th́eor̀eme d́emontŕe pour les dimensionsn′ < n. En vertu de 4.6 on est ramené
au cas òu S est le spectre d’un anneau local complet, doncS ′ est une ŕeunion finie de spectres
d’anneaux locaux complets. On a donc

X ′ = X ′1 tX ′2

où X ′1 est fini sur S ′, et òu X ′2 n’a aucun point au-dessus d’un des points fermés deS ′.239
Consid́erons les morphismes

q1, q2 : X ′′ // // X ′

correspondants̀a la donńee de descente, compatibles avecp1, p2 : S ′′ //// S ′ . On voit aussit̂ot
que

X ′′ = q−1
i (X ′1) t q−1

i (X ′2) i = 1, 2

3On peut montrer qu’il suffit en fait queg soit un morphismeentier, en se ramenant au cas du texte par un
proćed́e de passagèa la limite dans le style EGA IV 8.

177



IX

est la d́ecomposition canonique analogue deX ′′ surS ′′, ce qui impliqueq−1
1 (X ′1) = q−1

2 (X ′1)
et par suiteX ′1 et X ′2 sont munis de donńees de descente induites. Or soitT l’ouvert deS
compĺementaire de son point fermé, doncT ′ = S ′ ×S T est la partie deS ′ compĺementaire
de l’ensemble des points fermés, etX ′2, qui se trouve tout entier au-dessus deT ′, est muni d’une
donńee de descente relativement au morphismeT ′ → T induit parg. Comme ce dernier est fini
surjectif, et quedimT < dimS = n, cette donńee de descente est effective par l’hypothèse de
récurrence. On voit donc qu’il suffit de prouver que la donnée de descente surX ′1 est effective,
donc on peut maintenant supposerX ′ étale etfini surS ′. (N.B. le raisonnement par récurrence
est inutile si on se borne aux revêtementśetales dans l’́enonće 4.7). Soit alorsS0 le spectre du
corps ŕesiduel deA, soit S ′0 = S ′ ×S S0 et d́efinissons de m̂emeS ′′0 , S ′′′0 à partir des carrés et
cubes fibŕesS ′′ et S ′′′ de S ′ sur S. En vertu de 1.8, les morphismesS0 → S, S ′0 → S ′, etc.
induisent deśequivalences pour les catégories des rev̂etementśetales deS et S0 d’une part,S ′

et S ′0 d’autre part, etc... D’après les sorites de la théorie de la descente dans les catégories [D],
il s’ensuit que pour queg : S ′ → S soit un morphisme de descente effective pour la catégorie
fibrée des rev̂etementśetales, il faut et il suffit qu’il en soit ainsi deg0 : S ′0 → S0. Mais c’est bien
le cas, comme cas particulier de 4.1, par exemple. Cela achève la d́emonstration.

Corollaire 4.8 La conclusion de 4.7 subsiste si on suppose seulement que S ′ → S est universel-
lement submersif, de type fini et quasi-fini, pourvu qu’on suppose S localement noethérien.

En vertu de 4.6, on peut en effet supposer queS est le spectre d’un anneau local noethérien240
complet. Alors en vertu de 2.5, il existe un morphisme fini et surjectifS1 → S, et unS-
morphismeS1 → S ′. CommeS1 → S est un morphisme de descente strict universel pour la
cat́egorie fibŕee envisaǵee, en vertu de 4.7, et queS ′ → S est un morphisme de descente univer-
sel pour ladite, 4.8 résulte des sorites géńeraux [D].

Corollaire 4.9 Soit g : S ′ → S un morphisme de type fini, surjectif et universellement ouvert,
avec S localement noethérien. Alors g est un morphisme de descente effective pour la catégorie
fibrée des préschémas étales, séparés et de type fini sur d’autres.

Proćedant comme dans 4.7, on est ramené au cas òu S est le spectre d’un anneau local
noeth́erien et completA. Soit A1 une alg̀ebre finie surA, de spectreS1, telle queS1 → S
soit fini etsurjectif, donc un morphisme de descente effective universel pour la catégorie fibŕee
envisaǵee, gr̂aceà 4.7. Il ŕesulte alors des théor̀emes ǵeńeraux [D] queg est un morphisme de
descente effective pour la catégorie fibŕee envisaǵee, si et seulement si le morphisme correspon-
dantg1 : S ′1 = S ′ ×S S1 → S1 l’est. Comme ce dernier satisfait aux mêmes hypoth̀eses queg,
on est rameńe à prouver 4.9 pourS1 au lieu deS. Prenant d’abord pourA1 le compośe direct
desA/pi, pour les id́eaux premiers minimauxpi deA, on est rameńe au cas òu A est intègre.
On montre alors4 qu’il existe un sous-sch́ema int̀egreS1 deS ′, quasi-fini surS et dominantS,
passant par un point de la fibre deS ′ en le point ferḿey deS (grâce au fait queS ′ est universel-
lement ouvert de type fini surS local noeth́erien int̀egre, etS ′y 6= ∅). CommeA est complet,S1

4Cf. EGA IV 14.3.13 et 14.5.4.
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est fini surS, et comme il domineS, le morphismeS1 → S est surjectif. Remplaçant encore une
fois S parS1, on est rameńe au cas òu S ′ a une section surS, où l’ énonće est trivial.

Théorème 4.10Soit g : S ′ → S un morphisme fini radiciel surjectif, de présentation finie (cette
dernière condition étant superflue si S est localement noethérien5). Alors le foncteur image in-241
verse induit une équivalence de la catégorie des préschémas étales sur S avec la catégorie des
préschémas étales sur S ′.

Comme les morphismes diagonaux deS ′ dansS ′×SS ′ etS ′×SS ′×SS ′ sont des immersions
surjectives, donc induisent en vertu de 1.9 deséquivalences des catégories des présch́emaśetales
sur S ′ ×S S ′ resp.S ′ ×S S ′ ×S S ′ avec la cat́egorie des pŕesch́emasétales surS ′, il résulte
des sorites de la descente [D] que toutX ′ étale surS ′ est muni d’une donńee de descente et
d’une seule relativementà g : S ′ → S. Donc 3.3 implique que le foncteur image inverse parg,
de la cat́egorie des pŕesch́emasétales surS dans la cat́egorie des pŕesch́emasétales surS ′, est
pleinement fid̀ele. Restèa montrer qu’il est essentiellement surjectif, i.e. que toutX ′ étale surS ′

est isomorphèa l’image inverse d’unX étale surS. La questiońetantévidemment locale surS
et surX ′, on peut supposerS, S ′, X ′ affines. Mais alorsX ′ est śepaŕe de type fini surS ′, et on
peut appliquer le crit̀ere d’effectivit́e 4.7.

Corollaire 4.11 La conclusion 4.9 subsiste en remplaçant l’hypothèse sur g par : g est fidèlement
plat, quasi-compact et radiciel.

Même d́emonstration, en invoquant 4.1 au lieu de 4.7.

On notera que la d́emonstration de 4.7 est “élémentaire” en ce qu’elle n’utilise pas les
théor̀emes de finitude et de comparaison pour les morphismes propres (EGA III 3, 4, 5). Il n’en
est plus de m̂eme du ŕesultat suivant :

Théorème 4.12Soit g : S ′ → S un morphisme propre, surjectif, de présentation finie (cette
dernière hypothèse étant conséquence de la première si S est localement noethérien). Alors g
est un morphisme de descente effective pour la catégorie fibrée des revêtements étales de
préschémas.

En vertu de 3.3 et de 2.2, on est ramené à prouver que pour tout revêtement́etaleX ′ surS ′,
muni d’une donńee de descente relativementà g : S ′ → S, cette donńee de descente est effec-
tive. Utilisant 4.3, on est ramené facilement au cas où S est noeth́erien, et utilisant 4.6, on peut242
donc supposer queS est le spectre d’un anneau local noethériencompletA. IntroduisonsS ′′

etS ′′′ comme d’habitude, soitS0 le spectre du corps résiduel deA, et soientS ′0, S
′′
0 , S ′′′0 déduits

deS ′, S ′′, S ′′′ par le changement de baseS0 → S, i.e. les fibres deS ′, S ′′, S ′′′ au point ferḿe
deS. D’après 1.10, les morphismesS0 → S, S ′0 → S ′, etc. induisent deśequivalences de la
cat́egorie des rev̂etementśetales sur le sch́ema-but avec la catégorie des rev̂etementśetales sur le

5Il suffit même queg soit entier, radiciel surjectif, comme on voit par une réduction facile au cas du texte, style
EGA IV 8, cf. SGA 4 VIII 1.1.
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sch́ema-source. Par suite,g : S ′ → S est un morphisme de descente strict pour la catégorie fibŕee
des rev̂etementśetales de pŕesch́emas, si et seulement sig0 : S ′0 → S0 l’est, ce qui est bien le cas
en vertu de 4.1. Cela achève la d́emonstration de 4.12. (Dans ce raisonnement, on n’avait besoin
de 1.10 que le fait que le foncteur envisagé dans 1.10 estpleinement fid̀ele, ce qui n’utilisepasle
théor̀eme d’existence de faisceaux cohérents en ǵeoḿetrie alǵebrique.)part 49

5 Traduction en termes du groupe fondamental

Soit
g : S ′ → S

un morphisme de descente effectivepour la cat́egorie fibŕee desrevêtementśetalesde pŕe-
sch́emas, par exemple un morphisme propre, surjectif, de présentation finie (4.12), ou un mor-
phisme fid̀element plat et quasi-compact. Introduisant comme d’habitudeS ′′, S ′′′, et d́esignant
par C , C ′, C ′′, C ′′′ la cat́egorie des rev̂etementśetales deS, S ′, S ′′, S ′′′ respectivement, on a
donc un diagramme2-exact de cat́egories

(∗) C
p∗ // C ′

p∗1,p
∗
2 //// C ′′

p∗21,p
∗
32,p
∗
31////// C ′′′

correspondant au diagramme

S S ′
poo S ′′oo

p1,p2oo
S ′′′.oooo

p21,p32,p31oo

Supposons les présch́emasS, S ′, S ′′, S ′′′ sommes disjointes de présch́emas connexes, ce qui243
sera le cas en particulier si ce sont des présch́emas localement connexes, a fortiori s’ils sont
localement noeth́eriens (par exemple siS ′ est de type fini surS localement noeth́erien). Alors les
cat́egoriesC , C ′ ... dans (∗) sont des catégories multigaloisiennes (SGA V 9), décrites chacune
par une collection de groupes topologiques compacts totalement disconnexes, savoir les groupes
fondamentaux des composantes connexes des présch́emasS, S ′, S ′′, S ′′′. Nous supposons pour
simplifierS connexe, et allons donner alors un procéd́e de calcul pour son groupe fondamental,
en termes de la catégorie fibŕee forḿee avecC ′, C ′′, C ′′′, convenablement explicitéeà l’aide des
groupes fondamentaux exprimant ces catégories. Le lecteur notera que le procéd́e esquisśe est
valable en fait dans le cadre géńeral des cat́egories multigaloisiennes (qui n’ont pasà provenir
de pŕesch́emas donńesS, S ′, S ′′, S ′′′). C’est d’ailleurs l’analogue du procéd́e bien connu pour
calculer le groupe fondamental d’un espace topologiqueS, réunion localement finie de sous-
espaces ferḿesSi (ou ŕeunion quelconque de sous-espaces ouvertsSi), à l’aide des groupes
fondamentaux des composantes desXi et des composantes desSi∩Sj. Bien entendu, la situation
analogue dans le cadre des présch́emas tombe bien dans le cadre géńeral de la descente, en
introduisant le pŕesch́emaS ′ somme desSi et le morphisme canoniqueg : S ′ → S.

Posons
E ′ = π0(S ′), E ′′ = π0(S ′′), E ′′′ = π0(S ′′′),
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où π0 désigne le foncteur “ensemble des composantes connexes”. Comme les produits fibrés
deS ′ surS forment un objet simplicial deSch, il est transforḿe par le foncteurπ0 en un ensemble
simplicial dontE ′,E ′′,E ′′′ sont les composantes de dimension0, 1, 2. Nous aurons̀a utiliser les
applications simpliciales

qi = π0(pi), (i = 1, 2)etqij = π0(pij), (i, j) = (2, 1), (3, 2), (3, 1),

mises eńevidence dans le diagramme

(1) E ′ E ′′oo
q1,q2oo

E ′′′.oooo
q21,q32,q31oo

Les objets deE ′ seront not́es avec un accent, commes′, ceux deE ′′ resp.E ′′′ seront not́es244
avec un′′ resp. un′′′. Le fait queS soit connexe se traduit parπ0(K) = 0, oùK est l’ensemble
simplicial d́efini par g : S ′ → S, ou encore par le fait que la relation d’équivalence dansE ′

engendŕee par le couple d’applications(q1, q2) est transitive.

Nous choisirons une fois pour toutes unéléments′0 dansE ′, et pour touts′ dansE ′, un
éléments′ ∈ E ′′ tel que6

q1(s′) = s′0, q2(s′) = s′,

mettant ainsi enévidence la connexité de S. Pour tout s′ ∈ E ′, choisissons un point
géoḿetriques′ dans la composante connexes′ deS ′ ; ce point interviendra en fait par le foncteur-
fibre F ′s′ correspondant sur la catégorie multigaloisienneC ′. Le group des automorphismes de
ce foncteur, i.e. le groupe fondamental deS ′ ens′, sera not́e πs′. On choisit de m̂eme dess′′ et
dess′′′, donc des foncteursF ′′s′′ etF ′′′s′′′, d’où des groupes fondamentauxπs′′ etπs′′′. Ainsi

πs′ = π1(S ′, s′), πs′′ = π1(S ′′, s′′), πs′′′ = π1(S ′′′, s′′′).

Pour touts′′ ∈ E ′′, p1(s′′) se trouve dans la m̂eme composante connexe queq1(s′′), donc il existe
un isomorphisme de foncteursF ′′s′′ ◦p∗1F ′s′ (i.e. une “classe de chemins” dep1(s′′) àq1(s′′)). Cette
remarque se rép̀ete pourq2, et lesqij. Choisissons toutes ces classes de chemins :

F ′′s′′ ◦ p∗i
∼→ F ′qi(s′′), F ′′′ ◦ p∗ij

∼→ F ′′′qij(s′′′),

(pour i = 1, 2 et (i, j) = (2, 1), (3, 2), (3, 1)). Il en résulte en particulier des homomorphismes245
de groupes :

(2) qs
′′

i : πs′′ → πqi(s′′), qs
′′′

ij : πs′′′ → πqij(s′′′),

(mêmes valeurs dei et (i, j)). Enfin, rappelons-nous que dans la structure de catégorie cliv́ee de
fibresC ′, C ′′, C ′′′ figurent aussi des isomorphismes de foncteurs :

p∗21p
∗
1
∼→ p∗31p1∗, p∗21p

∗
2
∼→ p∗32p

∗
1, p∗31p

∗
2
∼→ p∗32p

∗
2,

6On fera attention que l’éléments′ dont l’existence est admise implicitement, n’existe pas dans tous les cas. Par
suite, le th́eor̀eme 5.1 tel qu’il est́enonće ne s’applique pas dans tous les cas. Il n’est pas difficile cependant, en
s’inspirant du textéecrit, de modifier l’́enonće de ce th́eor̀eme de telle façon qu’il donne une méthode de calcul qui
s’applique dans tous les cas. En particulier, les corollaires dudit théor̀eme sont valables tels quels.
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déduits d’isomorphismes des deux membres respectivement avec lesu∗i (i = 1, 2, 3), où lesui
sont les trois projections deS ′′′ dansS ′. Quand on explicite ces données, on trouve pour touts′′′

un élément bien d́etermińe

(3) as
′′′

i ∈ πvi(s′′′),

(où lesvi, i = 1, 2, 3 sont les trois applicationsE ′′′ → E ′ définies parvi = π0(ui)), d’ailleurs
soumis aux conditions :

q
s′′1
1 q

s′′′

21 = int(as
′′′

1 )q
s′′2
1 q

s′′′

31 (s′′1 = q21(s′′′), s′′2 = q31(s′′′)),

et les deux conditions analogues, faisant intervenir lesa2 et a3. Le lecteur notera d’ailleurs que
les donńees (1), (2), (3) permettent de reconstituer,à uneéquivalence de catégories fibŕees pr̀es,
la cat́egorie fibŕee envisaǵee de fibresC ′, C ′′, C ′′′. Elles doivent donc permettre en principe
de reconstituerC à équivalence pr̀es, donc son groupe fondamentalà isomorphisme près. Nous
déterminerons en fait le groupe fondamental en le point géoḿetriquep(s′0) deS, i.e. le groupe
des automorphismes deF ′s′0 ◦ p

∗.

On note que la donńee d’un objetX ′ deC ′ estéquivalente essentiellementà la donńee d’en-
sembles finisX ′s′ (s

′ ∈ E ′) où lesπs′ opèrent contin̂ument. Une donńee de recollement sur un tel246
objet revient alors̀a la donńee, pour touts′′ ∈ E ′′, d’une bijection :

ϕs′′ : X
′
qi(s′′)

∼→ X ′q2(s′′)

compatible avec les opérations deπs′′, oṕerant sur l’un et l’autre membre grâce aux homomor-
phismesqs

′′
i : πs′′ → πqi(s′′). Prenant d’abord less′′ de la formes′, on voit qu’une telle donńee

définit des bijections
ψs′ : X

′
s′0

= F ′0(X ′)→ X ′s′

ce qui permet d’identifier lesX ′s′ au m̂eme ensembleF ′0(X ′) = X ′s′0
, sur lesquels tous les

groupesπs′ vont d̀es lors oṕerer. Cela pośe, les bijectionsϕs′′ vont correspondrèa des bijec-
tions

gs′′ : F
′
0(X ′)

∼→ F ′0(X ′),

soumis d’une part aux relations de commutation avecπs′′ :

a) gs′′q
s′′

1 (g′′) = qs
′′

2 (g′′)gs′′ (s′′ ∈ E ′′, g′′ ∈ πs′′),

d’autre part aux relations

b) gs′ = gs′0
(s′ ∈ E ′),

exprimant la façon dont nous avions identifié entre eux lesXs′. Quand on explicite la condi-
tion pour qu’une telle donńee de recollement soit en fait une donnée de descente, on trouve les
relations :

c) as
′′′

3 gq31(s′′′)a
s′′′

1 = gq32(s′′′)a
s′′′

2 gq21(s′′′) (s′′′ ∈ E ′′′).
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Cela nous donne unéequivalence entre la catégorie des objets deC ′ munis d’une donńee de247
descente, et la catégorie des ensembles finis où les groupesπs′ opèrent contin̂ument, munis de
plus de bijectionsgs′′, satisfaisant les relations a), b), c). Soit alorsG le groupe engendré par les
groupesπs′ et les nouveaux ǵeńerateursgs′′, soumis aux relations a), b), c), et soitπ le groupe
limite projective des quotients deG par les sous-groupes d’indice fini dont les images inverses
dans les groupesπs′ soient des sous-groupes ouverts. On dit aussi queπ est legroupe de type
galoisien engendré par lesπs′ et lesgs′′, soumis aux relations a), b), c). On constate aussitôt
que la cat́egorie envisaǵee est aussíequivalentèa la cat́egorie des ensembles finis où le groupe
topologiqueπ opère contin̂ument. Celáetablit l’énonće suivant :

Théorème 5.1Soit g : S ′ → S un morphisme de préschémas qui soit un morphisme de descente
effective pour la catégorie fibrée de revêtements étales de préschémas (cf. 4.9 et 4.12). Suppo-
sons S connexe, et S ′, son carré fibré S ′′ et son cube fibré S ′′′, sommes de préschémas connexes
(ce qui est le cas par exemple si S ′ est de type fini sur S localement noethérien et connexe). Choi-
sissons comme dessus : un point géométrique dans toute composante connexe de S ′, S ′′, S ′′′,
certaines classes de chemins, un s′0 ∈ E ′, et pour tout s′ ∈ E ′ un s′′ ∈ E ′′ dont les deux
images dans E ′ soient s′0 et s′. (E ′, E ′′, E ′′′ désignent respectivement l’ensemble des compo-
santes connexes de S ′, S ′′, S ′′′). Alors le groupe fondamental de S en le point géométrique image
de s′0 est canoniquement isomorphe au groupe de type galoisien engendré par les πs′ = π1(S ′, s′)
(s′ ∈ E ′) et des générateurs gs′′ (s′′ ∈ E ′′), soumis aux relations a), b), c) ci-dessus faisant in-
tervenir les éléments des groupes πs′′ = π1(S ′′, s′′), et les éléments as′′′i (i = 1, 2, 3, s′′′ ∈ E ′′′)
introduits plus haut.

Corollaire 5.2 Supposons que S ′ et S ′′ n’aient qu’un nombre fini de composantes connexes,
et que les groupes fondamentaux des composantes connexes de S ′ soient topologiquement de
génération finie. Alors le groupe fondamental de S est topologiquement de génération finie.

Ainsi, nous prouverons plus tard que le groupe fondamental d’un schéma projectif normal248
sur un corps alǵebriquement clos est topologiquement de géńeration finie. Utilisant le lemme de
Chow et la normalisation des schémas alǵebriques, il s’ensuivra que le m̂eme ŕesultat est vrai
pour tout sch́ema propre sur un corps algébriquement clos.

Corollaire 5.3 Supposons que S ′, S ′′, S ′′′ n’aient qu’un nombre fini de composantes connexes,
que les groupes fondamentaux des composantes connexes de S ′ soient topologiquement de
présentation finie, et les groupes fondamentaux des composantes connexes de S ′′ topologique-
ment de géńeration finie. Alors le groupe fondamental de S est topologiquement de présentation
finie.

On notera qu’on peut exprimer 4.9 (restreint auxrevêtementśetales) en disant qu’un mor-
phisme fini radiciel surjectif de présch́emas noeth́eriens induit un isomorphisme des groupes
fondamentaux; de façon imaǵee, on peut donc dire que le groupe fondamental est uninvariant
topologiquepour les pŕesch́emas. On peut expliciter plus géńeralement,̀a l’aide de 5.1, l’effet sur
le groupe fondamental d’opérations sur les présch́emas, telles que le “pincement” du présch́ema
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suivant un ensemble fini de points, ayant une signification topologique simple. On trouve par
exemple :part 50

On notera qu’on peut exprimer 4.9 (restreint auxrevêtementśetales) en disant qu’un mor-
phisme fini radiciel surjectif de présch́emas noeth́eriens induit un isomorphisme des groupes
fondamentaux; de façon imaǵee, on peut donc dire que le groupe fondamental est uninvariant
topologiquepour les pŕesch́emas. On peut expliciter plus géńeralement,̀a l’aide de 5.1, l’effet sur
le groupe fondamental d’opérations sur les présch́emas, telles que le “pincement” du présch́ema
suivant un ensemble fini de points, ayant une signification topologique simple. On trouve par
exemple :

Corollaire 5.4 Soient g : S ′ → S un morphisme fini de présentation finie, T une partie discrète
de S. Pour tout s ∈ S, soit n(s) le “nombre géométrique de points” dans la fibre g−1(s) (qui
s’explicite aussi comme le degré séparable de g−1(s) sur k(s), somme des degrés séparables de
ses extensions résiduelles). On suppose que pour s ∈ S − T , on a n(s) = 1. Pour tout s ∈ T ,
soitKs une extension algébriquement close de k(s), Is l’ensemble des points géométriques de S ′

à valeurs dans Ks (c’est un ensemble à n(s) éléments), I ′s le complémentaire d’un point choisi
de Is, et enfin I ′ l’ensemble réunion des I ′s. On suppose S ′ connexe. Alors le groupe fondamental
de S est isomorphe au groupe de type galoisien engendré par le groupe fondamental de S ′, et des
générateurs gi (i ∈ I ′), soumis à aucune condition supplémentaire.

Le détail de la d́emonstration est laissé au lecteur ; l’́enonće obtenu n’est que la traduction,249
en langage de la théorie des groupes, du fait qu’on a uneéquivalence de la catégorieC des
revêtementśetales deS, et de la cat́egorie des rev̂etementśetalesX ′ de S ′, munispour tout
s ∈ T d’un syst̀eme transitif de bijections entre lesn(s) fibres deX ′ aux points deg−1(s) à
valeurs dansKs. (Sous cette forme intrinsèque bien entendu, il n’est plus nécessaire de supposer
S ′ connexe).

Exemple 5.5 On prouve facilement que la courbe rationnelleP1
k sur un corps alǵebriquement

closk est simplement connexe7. Donc le groupe fondamental d’une courbe rationnelle complète
ayant exactement un point double,à n branches analytiques, est le groupe de type galoisien
libre engendŕe parn − 1 géńerateurs. Par exemple, dans le cas d’un point double ordinaire, on
trouve le groupe fondamental̂Z, comme annonće dans (I.11 a)). Par contre, l’existence d’un
point de rebroussement (qui est un point “géoḿetriquement unibranche”) n’a pas d’influence sur
le groupe fondamental.

Corollaire 5.6 Soit g : S ′ → S un morphisme de préschémas universellement submersif, à
fibres géométriquement connexes, S étant connexe. Alors S ′ est connexe, et choisissant un point
géométrique s′ dans S ′ et désignant par s son image dans S, l’homomorphisme

π1(S ′, s′)→ π1(S, s)

7Cf. Exp. XI.1.1.
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est surjectif. Si g est un morphisme de descente effective pour la catégorie fibrée des revêtements
étales de préschémas (cf. 4.12), introduisant le point géométrique s′′ = diag(s′) de S ′′ = S ′×SS ′,
et les deux homomorphismes

p1∗, p2∗ : π1(S ′′, s′′)→ π1(S ′, s′)

induits par les deux projections, π1(S, s) est isomorphe au conoyau de ce couple de morphismes
dans la catégorie des groupes de type galoisien, i.e. au quotient de π1(S ′, s′) par le sous-groupe
invariant fermé engendré par les éléments de la forme p1∗(g

′′)p2∗(g
′′)−1, avec g′′ ∈ π1(S ′′, s′′).250

On sait en effet par 3.4 que le foncteurX 7→ X ×S S ′ des rev̂etementśetales surS dans
les rev̂etementśetales surS ′ est pleinement fid̀ele, ce quiéquivaut au fait que l’homomor-
phisme sur les groupes fondamentaux est unépimorphisme (V.6.9). La dernière assertion est
une conśequence imḿediate de la description 5.1.

Remarque 5.7 Il n’est pas connùa l’heure actuelle si le groupe fondamental d’un schéma propre
sur un corps alǵebriquement closk est topologiquement de présentation finie8. Utilisant 5.3, une
technique bien connue de sections hyperplanes, et la désingularisation des surfaces normales, on
est rameńe au cas d’unesurface lisse surk. Cela permet du moins de montrer, par voie trans-
cendante, que la réponse est affirmative en caractéristique0 (et ceci sanŝetre obliǵe d’admettre
la triangulabilit́e de varíet́es alǵebriques singulìeres). En caractéristiquep > 0, la difficulté prin-
cipale semble dans le cas des courbes, dont on sait seulement que le groupe fondamental est un
quotient de celui qui se présente dans le cas classique (cf. exposé suivant), le noyau par lequel on
diviseétant cependant fort mal connu.

Remarque 5.8 On pourrait expliciter d’autres cas particuliers que 5.4 et 5.6 où 5.1 prend une
forme particulìerement simple. Un cas intéressant est celui où S est le quotient deS ′ par un
groupe fini d’automorphismesΓ. Alors la cat́egorie des rev̂etementśetalesS ′ estéquivalentèa
la cat́egorie des rev̂etementśetalesX ′ deS ′, où le groupeΓ opère de façon compatible avec ses
opérations surS ′, de telle façon que pour touts′ ∈ S ′ et toutg ∈ Γs′ (où Γs′ désignele groupe
d’inertie de s′ dansΓ), g opère trivialement dans la fibreX ′s′. Si S ′ est connexe cet́enonće
s’interpr̀ete de la façon suivante. SoitC ′o la cat́egorie des rev̂etementśetales deS ′ où Γ opère
de façon compatible avec ses opérations surS ′ (mais sans satisfaire nécessairement la condition
ci-dessus sur les groupes d’inertie des points deS ′). On voit facilement que c’est une catégorie
galoisienne (V.5), et que pour tout point géoḿetriquea′ deS ′, le foncteur fibreX ′ 7→ X ′a′ surC ′o251
est un foncteur fondamental. Soitπ1(S ′,Γ; a′) = G le groupe des automorphismes de ce foncteur,
muni de sa topologie habituelle. On a alors une suite exacte canonique

e→ π1(S ′, a′)→ G→ Γ→ e

8Cela semble tr̀es improbable dans le cas des courbes lisses de genreg ≥ 2, en caract́eristiquep > 0. Quand
on remplaceπ1 par son plus grand quotient premierà p, par contre, il semble que les techniques bien connues
permettent de donner une réponse affirmative, m̂eme sans hypothèse de propreté. Cf. un travail en pŕeparation de
J.P Murre.
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(cas particulier de (V.6.13), où on prend pourS le rev̂etement trivialS ′ × Γ deS ′ défini parΓ,
où on fait oṕererΓ de façonévidente). D’ailleurs pour tout point géoḿetriqueb′ deS ′, on a un
isomorphismeπ1(S ′,Γ; b′)→ G = π1(S ′,Γ; a′) défini à automorphisme intérieur pr̀es provenant
deπ1(S ′, a′), et commeΓb′ s’applique de façońevidente dans le premier membre, on obtient un
homomorphisme

ub′ : Γb′ → G ,

défini à automorphisme intérieur pr̀es (provenant deπ1(S ′, a′), dont le compośe avec l’homomor-
phisme canoniqueG → Γ est d’ailleurs l’immersion canoniqueΓb′ → Γ. Ceci pośe, le groupe
fondamentalπ1(S, a) est canoniquement isomorphe au groupe quotient deG = π1(S ′,Γ; a′)
par le sous-groupe invariant ferḿe engendŕe par les images des homomorphismesΓb′ → G. En
particulier, l’image deπ1(S ′, a′) dansπ1(S, a) est un sous-groupe invariant, et le quotient corres-
pondant est isomorphèa un quotient deΓ. On peut d’ailleurs ŕeduire le nombre des “relations”
introduites en introduisant, pour toutg ∈ Γ, g 6= e, le sous-pŕesch́emaS ′g des cöıncidences des
automorphismesidS et g de S, en choisissant un point géoḿetriqueb′g,i dans chaque compo-
sante connexe deS ′g, puis un des homomorphismes correspondantsπ1(S ′,Γ; b′g,i)→ G, d’où des
relèvements̄gi deg dansG. Il suffit alors de prendre le quotient deG par le sous-groupe invariant
fermé deG engendŕe par les̄gi.

Lorsquea′ est invariant parΓ, on voit aiśement queΓ opère de façon naturelle surπ1(S ′, a′),
et G s’identifie au produit semi-direct correspondant. Identifiant alorsΓ a un sous-groupe deG,
on voit que dans les relations introduites plus haut, faisantb′ = a′, on trouve “g = e” pour g ∈ I.252
Doncsi S ′ a un point ǵeoḿetriquea′ fixe parI (i.e. un points′ dont le groupe d’inertie estΓ),
alors π1(S, a) est un groupe quotient du groupe quotient de type galoisien deπ1(S ′, a′) obtenu
en “rendant triviales”les oṕerations deΓ sur π1(S ′, a′) ; et il est m̂eme isomorphèa ce dernier
groupe si on suppose que pour toutg ∈ G, l’ensemble d’inertieS ′g est connexe, donc passe par la
localité dea′. Cette dernìere assertion est en effet contenue dans la deuxième description donnée
plus haut pour les relations̀a introduire dansG.

Ce dernier ŕesultat s’applique en particulier si l’on prend pourS ′ la puissance cartésienneXn

d’un pŕesch́ema connexe sur un corps algébriquement clos, pourΓ le groupe syḿetriqueΓ = Sn,
opérant de la façon habituelle, d’où pourS la puissance syḿetrique n.̀eme deS. Prenant alors
poura′ un point ǵeoḿetrique localiśe en la diagonale, on est sous les conditions préćedentes, les
ensembles d’inertieS ′g contenant en effet tous la diagonale. Utilisant le fait, prouvé dans l’expośe
suivant, que siX est propre connexe surk, le groupe fondamental deXn s’identifieàπ1(X)n, on
trouve le ŕesultat amusant suivant :SiX est propre connexe surk algébriquement clos, le groupe
fondamental de sa puissance symétriquen.ème, n ≥ 2, est isomorphe au groupe fondamental
deX rendu ab́elien. (J’ignore si le fait analogue en Topologie algébrique est connu ; il devrait
pouvoir s’́etablir par la m̂eme ḿethode de descente). Prenons par exemple pourX une courbe
rationnelleX = P1

k, on trouve une N.̀eme d́emonstration du fait quePrk est simplement connexe,
utilisant le fait queP1

k l’est. Prenons maintenant pourX une courbe simple surk, etn ≥ 2g−1, de
sorte queSymmn(X) est fibŕe sur la jacobienneJ , de fibres des espaces projectifs, donc (comme
on verraà l’aide des ŕesultats des deux exposés suivants) a m̂eme groupe fondamental queJ . On
retrouve alors sans dévissage le fait bien connu quele groupe fondamental de la jacobienne de
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X est isomorphe au groupe fondamental deX rendu ab́elien.
part 51

6 Une suite exacte fondamentale. Descente par morphismesà
fibres relativement connexes

253

Théorème 6.1Soient S le spectre d’un anneau artinien A de corps résiduel k, k une clôture
algébrique de k, X un S préschéma, X0 = X ⊗A k, X0 = X ⊗A k, a un point géométrique
de X , a son image dans X , b son image dans S. On suppose que X0 est quasi-compact et
géoḿetriquement connexesur k (N.B. si X est propre sur S, cela signifie que H0(X0,OX0)
est un anneau artinien local de corps résiduel radicielsur k). Alors la suite d’homomorphismes
canoniques

e 7→ π1(X0, a)→ π1(X, a)→ π1(S, b)→ e

est exacte, et on a

π1(S, b)
∼← π1(k, k) = groupe de Galois de k sur k.

Comme les groupes fondamentaux ne changent pas en châtrant par leśeléments nilpotents,
on peut supposerA = k, ce qui rend d́ejà évident le dernier isomorphisme. Soitk′ la clôture
séparable dek dansk, et consid́eronsX ′ = X ⊗k k′, et l’imagea′ dea dansX ′. On a une suite
d’homomorphismes canoniques

e 7→ π1(X0, a)→ π1(X ′, a′)→ π1(S ′, b′)→ e

(où S ′ = Spec(k′)). Enfin, on a un homomorphisme canonique de cette suite dans celle relative
àX/k, grâce au diagramme

S Xoo X0
oo

S ′

OO

X ′

OO

oo X0 .oo

|

OO

On voit d’autre part que cet homomorphisme de suites de groupes est un isomorphisme, comme
il r ésulte de 4.11. On est donc ramené à prouver que la deuxième suite est exacte, i.e. on peut
supposer quek estparfait. Soient alorski les sous-extensions galoisiennes finies dek dansk,
posonsXi = X ⊗k ki, et soitai l’image dea dansXi. On laisse au lecteur de vérifier que
l’homomorphisme naturel

π1(X0, a)
∼→ lim←− π1(Xi, ai)

est un isomorphisme, ce qui signifie simplement qu’un revêtementétale deX provient d’un254
revêtement́etale d’unXi, et que ce dernier est essentiellement unique, modulo passageà unXj,
j ≥ i. D’autre part, soitπi le groupe de Galois deki sur k, i.e. le groupe opposé au groupe
desS-automorphismes deSi = Spec(ki). Comme le foncteurS ′ 7→ X ×S S ′ des rev̂etements
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étales deS dans les rev̂etementśetales deX est pleinement fid̀ele (3.4), il s’ensuit queπi est
aussi isomorphe au groupe opposé aux groupes desX-automorphismes du revêtement principal
connexeXi deS. Il résulte donc de (V 6.13) que l’on a une suite exacte

e 7→ π1(Xi, ai)→ π1(X, a)→ πi → e

Passant̀a la limite projective suri dans ces suites exactes, on trouve une suite exacte (puisqu’on
est dans la catégorie des groupes de type galoisien), qui n’est autre que la suite envisagée dans
6.1. Cela ach̀eve la d́emonstration.

La traduction de l’exactitudèa droite dans 6.1 en langage géoḿetrique est la suivante :

Corollaire 6.2 Avec les notations précédentes, soit X ′ un revêtement étale de X , et soit X
′
0 le

revêtement étale correspondant de X0. Les conditions suivantes sont équivalentes :

(i) Il existe un S ′ étale sur S, et un X-isomorphisme X ′ ∼→ X ×S S ′, (S ′ est alors déterminé
à isomorphisme unique près en vertu de 3.4).

(ii) X
′
0 est complètement décomposé sur X0.

Si X ′ est connexe, ces conditions équivalent aussi à :

(iibis) X
′
0 a une section sur X0.

(N.B. Ce dernier complément est essentiel ; l’équivalence de (i) et (ii) signifie seulement
que π1(S, b) est le groupe quotient de π1(X, a) par le sous-groupe invariant fermé engendré par255
l’image de π1(X1, a), et non par cette image elle-même). Sous les conditions précédentes, nous
dirons que X ′ est un revêtement géoḿetriquement trivialde X .

Remarque 6.3 On ne peut dans l’énonće 6.1 remplacerk par une extension algébriquement
close quelconque dek, même sik est d́ejà suppośe alǵebriquement clos. En d’autres termes, il
n’est pas vrai en ǵeńeral que siX est un sch́ema alǵebrique connexe sur un corps algébriquement
closk, son groupe fondamental ne change pas en remplaçantk par une extension algébriquement
close ; c’est d́ejà faux par exemple en caractéristiquep > 0 pour la droite affine surk, à cause
des ph́enom̀enes de “ramification supérieure” au point̀a l’infini, impliquant une structure “conti-
nue” pour le groupe fondamental. Nous verrons cependant dans l’exposé suivant que de tels
phénom̀enes ne peuvent se produire siX estpropresurk. Nous montrerons aussi par voie trans-
cendante qu’il en est de m̂eme sik est de caractéristique nulle.

Corollaire 6.4 Supposons que a soit localisé en un x ∈ X qui est rationnel sur k (ou plus
généralement, ayant un corps résiduel radiciel sur k). Alors la suite exacte 6.1 est scindée.

On peut supposerS = Spec(k). Si x est rationnel surk, il correspond̀a une sectionS → X
deX surS, transformantb ena, et d́efinissant un homomorphismeπ1(S, b)→ π1(X, a) qui est le
scindage cherch́e. Sik(x) est radiciel surk, on se ram̀ene au cas préćedent en faisant l’extension
de la baseSpec(k(x))→ Spec(k).

Théorème 6.5Soient f : X → S un morphisme propre et surjectif de présentation finie, à fibres
géométriquement connexes, X ′ un préschéma de présentation finie et propre sur X , s un point
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de S, F = Xs la fibre de X en s, et F ′1 une composante connexe de la fibre F ′ = X ′s de X ′

en s. Pour qu’il existe un voisinage ouvert X ′1 de F ′1 dans X ′, un S-schéma étale S ′1 et un X-
isomorphisme X ′1

∼→ S ′1 ×S X , il faut et il suffit que X ′ soit étale sur X aux points de F ′1, et que
F ′1 soit un revêtement géométriquement trivial de F .

La nécessit́e de la conditiońetant triviale, il restèa prouver la suffisance. On se ramène256
facilement au cas òuS est noeth́erien. Consid́erons la factorisation de SteinX → T → S def , où
T est le spectre de l’Alg̀ebref∗(OX) surS. Comme les fibres deX surS sont ǵeoḿetriquement
connexes, etf est surjectif, le morphismeT → S est fini surjectif et radiciel, donc (4.10) tout
T ′ étale surT provient par image inverse d’unS ′ étale surS. Cela nous ram̀eneà prouver 6.5.
en y remplaçantS par T , i.e. dans le cas òu on supposef∗(OX) = OS. Consid́erons alors la
factorisation de SteinX ′ → S ′ → S du morphisme propreh : X ′ → S, où S ′ est le spectre de
l’Alg èbreh∗(OX′). Les morphismesX ′ → X etX ′ → S ′ définissent un morphisme canonique

X ′ → X ×S S ′,

et notre assertion est contenue dans la suivante :

Corollaire 6.6 Soit f : X → S un morphisme propre de préschémas localement noethériens, tel
que f∗(OX) = OS , et soit X ′ un préschéma propre sur X . Considérons la factorisation de Stein
X ′ → S ′ → S pour X ′ → S, et le morphisme canonique X ′ → X ×S S ′. Soient s un point
de S, s′ un point de S ′ au-dessus de s, correspondant à une composante connexe F ′1 de la fibre
X ′s de X ′ en s. Pour que le morphisme X ′ → X ×S S ′ soit un isomorphisme au-dessus d’un
voisinage ouvert U ′ de s′ étale sur S, il faut et il suffit que X ′ soit étale sur X en les points de
F ′1, et que F ′1 soit un revêtement géométriquement trivial de la fibre F = Xs.

La nécessit́e étant encore triviale, il restèa prouver la suffisance. La conclusion signifie aussi
que a) le morphisme déduit deX ′ → X ×S S ′ par le changement de baseSpec(Ôs′) → S ′

est un isomorphisme, b)S ′ estétale surS en s′, i.e. Ôs′ estétale surÔs. Sous cette forme, on
voit que la conclusion est invariante par changement de baseSpec(Ôs) → S. Les hypoth̀eses
étantégalement stables par ce changement de base, on peut donc supposer queS est le spectre
d’un anneau local noethérien complet. On peut de plusévidemment supposerX ′ connexe, ce qui
implique ici queS ′ = Spec(Os′), F ′ = F ′1.

Comme l’ensemble des points deX ′ où X ′ est étale surX est ouvert et contient la fibre257
X ′s′ = F ′,X ′ étant propre surS, il s’ensuit queX ′ estétale surX. Comme il induit surF = Xs

un rev̂etement́etale isomorphèa unF ⊗k(s) L, oùL estétale surk(s), il résulte de 1.10 qu’il est
isomorpheà un rev̂etement de la formeX ×S T , avecT étale surS. (N.B. ici encore, il suffit
d’utiliser que le foncteur de 1.10 est pleinement fidèle, qui ŕesulte du fait qu’un isomorphisme
formel de faisceaux cohérents surX provient d’un isomorphisme de ces faisceaux). Donc, siT
est d́efini par l’alg̀ebreB finie surA,X ′ s’identifie au spectre de l’Alg̀ebreOX⊗AB surX, d’où
résulte aussitôt, puisquef∗(OX) = OS, queh∗(OX′) est d́efini parB, donc l’homomorphisme
canoniqueX ′ → X ×S S ′ n’est autre que l’isomorphisme envisagéX ′

∼→ X ×S T . Cela ach̀eve
la démonstration.
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Corollaire 6.7 Sous les conditions de 6.5, pour qu’il existe un préschéma S ′ étale sur S et un
X-isomorphismeX ′ ∼→ X×S S ′, il faut et il suffit queX ′ soit étale surX et que pour tout s ∈ S,
X ′s′ soit un revêtement géométriquement trivial de Xs.

En effet, s’il en est ainsi,X ′ est ŕeunion d’ouvertsX ′i qui sont isomorphes̀a des images
inverses deS ′i étales surS. On voit alors facilement que cesS ′i se recollent en unS ′ étale surS,
et qu’on obtient un isomorphismeX ′

∼→ X×SS ′. On peut dire par exemple que lesX ′i sont munis
de donńees de descente relativementàX → S, qui se recollent ńecessairement en une donnée
de descente surX ′ tout entier relativement̀aX → S. Et comme cette dernière est effective sur
lesX ′i, il s’ensuit facilement (gr̂aceà un sorite oublíe au nuḿero 4) qu’elle est effective. On peut
aussiénoncer 6.7 sous la forme suivante :

Corollaire 6.8 Soit f : X → S un morphisme propre surjectif de présentation finie, à fibres
géométriquement connexes. Alors f est un morphisme de descente effective pour la catégorie
fibrée des préschémas étales finis sur d’autres. Le foncteur S ′ 7→ X×S S ′ induit une équivalence
de la catégorie des préschémas étales et finis sur S avec la catégorie des préschémas étales et258
finis sur X qui induisent sur chaque fibre Xs un revêtement géométriquement trivial.

Remarque 6.9 Soitf : X → S un morphisme propre et surjectif, avecY localement noeth́erien,
alorsf se factorise en un morphismeX → S ′ satisfaisant l’hypoth̀ese de 6.8, et un morphisme
fini surjectifS ′ → S justiciable de 4.7, donc en produit de deux morphismes qui sont desmor-
phismes de descente effective universelspour la cat́egorie fibŕee des pŕesch́emaśetales et finis sur
d’autres. On peut en conclure quef lui-même est un morphisme de descente effective universel
pour la cat́egorie fibŕee envisaǵee. On retrouve ainsi 4.12 par une méthode diff́erente.

part 52

Remarque 6.10La conclusion de 6.7 ne reste pas valable si on remplace l’hypothèse quef est
propre par :X est de type fini surS et admet une section surS (doncf est universellement sub-
mersif et un morphisme de descente spour la catégorie fibŕee des pŕesch́emaśetales sur d’autres),
même lorsqueS est le spectre d’un anneau de valuation discrète et lorsqueX ′ est un rev̂etement
étale deX. Pour le voir, on part d’unZ propre surS, dont la fibre ǵeńerale est une courbe ration-
nelle non singulìere, et la fibre sṕecialeZ0 consiste en deux droites concourantes. Par exemple,
si t est une uniformisante de l’anneau de valuationA, on prend le sous-schéma ferḿeZ deP2

A

défini par l’équation homog̀enex2 + y2 + tz2 = 0 (coordonńees homog̀enesx, y, z). On prend
pourX le compĺementaire du point singuliera deZ0 dans la ŕeunionZ∪P2

k. Les fibres deX sont
P

1
k et P2

k − a, donc sont ǵeoḿetriquement connexes (i.e. tout revêtement́etale d’une telle fibre
est ǵeoḿetriquement trivial). Cependant on construit facilement, en procédant comme dans le259
No 4, des rev̂etementśetales deX qui ne proviennent pas de revêtementśetales deS, par recol-
lement de rev̂etements triviaux deZ − a et deP2

k − a. Il est possible par ontre que la conclusion
de 6.7 subsiste si on y remplace l’hypothèse de propreté par celle queX soit universellement
ouvertde pŕesentation finie surS9. C’est vrai du moins si on suppose que les fibres deX sur
S sont ǵeoḿetriquement irŕeductibles, et non seulement géoḿetriquement connexes. Signalons

9C’est maintenant prouvé,g étant seulement universellement ouvert et surjectif ; cf. SGA 4 XV 1.15.
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seulement qu’on peut dans cette question se ramener au cas où S est le spectre d’un anneau de
valuation discr̀ete complet̀a corps ŕesiduel alǵebriquement clos.

L’interprétation de 6.7 en termes du groupe fondamental est la suivante :

Corollaire 6.11 Soit f : X → S un morphisme propre surjectif de présentation finie, à fibres
géométriquement connexes. On supposeX donc S connexe. Soient a un point géométrique deX ,
b son image dans S, et pour tout s ∈ S, choisissons une clôture algébrique k(s) de k(s), un point
géométrique as de Sa à valeurs dans cette extension, et une classe de chemins de as dans a, d’où
un homomorphisme π1(Xs, as) → π1(X, a), où Xs = Xs ⊗k(s) k(s). Alors l’homomorphisme
pi1(X, a) → π1(S, b) est surjectif, et son noyau est le sous-groupe invariant fermé de π1(X, a)
engendré par les images des π1(Xs, as).

Remarque 6.12Sous les conditions de 6.7, supposantS noeth́erien, on voit facilement que
l’ensemble des pointss ∈ S tels queS ′s′ soit ǵeoḿetriquement trivial surXs est un ensemble
constructible ; siX ′ est propre surX, il est m̂eme ouvert, comme on le voit sur 6.6. Cela permet
donc, siS et un pŕesch́ema de Jacobson (par exemple de type fini sur un corps), ouX ′ est propre260
surX, de se borner pour vérifier les conditions de 6.7 aux pointss deS qui sontfermés. De
même, dans 6.11 il suffit alors de prendre lesπ1(Xs, as) pour les points deS qui sont ferḿes.
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Expośe X

Théorie de la sṕecialisation du groupe
fondamental

261

Dans le pŕesent expośe, nous nous bornons̀a l’étude du groupe fondamental des fibres
géoḿetriques dans un morphismepropre, i.e. du groupe fondamental d’un schéma alǵebrique
propre variable. Dans un exposé ult́erieur, nous ǵeńeraliserons la technique employée aux
revêtementśetalesmod́erément ramifíes “ à l’infini”. Cela nous donnera par exemple une so-
lution du “Probl̀eme des trois points” dans le cas des revêtements galoisiens d’ordre premierà
la caract́eristique (i.e. une d́etermination des revêtemenrs galoisiens de la droiteP1

k, ramifiés au
plus en trois points données et mod́eŕement ramifíes en ces points), et de ses variantesévidentes.

1 La suite exacte d’homotopie pour un morphisme propre et
séparable

Définition 1.1 Un préschéma X sur un corps k est dit séparable, ou séparable surk, si pour
toute extension K de k, X ⊗k K est réduit. Si f : X → Y est un morphisme de préschémas, on
dit que f est séparable, ou que X est śeparable surY , si X est plat sur Y et si pour tout y ∈ Y ,
la fibre X ⊗Y k(y) est séparable sur k(y).

SiX est un pŕesch́ema sur un corpsk, dire qu’il est śeparable signifie aussi qu’il estréduit,
et que les corpsk(x) pour x point ǵeńerique d’une composante irréductible deX, sont des
extensions śeparables dek. Si k est parfait, il revient donc au m̂eme de dire queX est ŕeduit.
Notons que siX est śeparable surY , alors pour tout changement de baseY ′ → Y ,X ′ = X×Y Y ′
est śeparable surY ′. On peut prouver aussi, moyennant des hypothèses de finitude convenables,
que le compośe de deux morphismes séparables est un morphisme séparable. Nous en aurons262
besoin seulement sous la forme suivante :si X est śeparable surY , etX ′ étale surX, X ′ est
séparable surY . C’est en effet une conséquence imḿediate des d́efinitions et (SGA 1 9.2). Par
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ailleurs, l’hypoth̀ese “morphisme śeparable” nous servira par l’intermédiaire de la proposition
suivante :

Proposition 1.2 Soit f : X → Y un morphisme propre et séparable, avec Y localement
noethérien, et considérons sa factorisation de Stein X

f→ Y ′ → Y (où f ′∗(OX) = OY ′ , Y ′

étant fini sur Y et isomorphe au spectre de l’algèbre f∗(OX)). Alors Y ′ est un revêtement́etale
de Y .

Cette proposition figurera dans (EGA III 7)1. Indiquons le principe de la démonstration. On se
ramène facilement au cas où Y est le spectre d’un anneau local completA, et faisant encore une
extension finie plate convenable de ce dernier (correspondantà une extension résiduelle conve-
nable), on peut supposer que les composantes connexes de la fibre du point ferméy sont univer-
sellement connexes, ce qui signifie aussi queH0(Xy,OXy) se d́ecompose en un produit de corps
identiques̀ak = k(y). Supposant alorsX connexe, ce qui est loisible, on auraH0(Xy,OXy) = k,
donc l’homomorphismeA → H0(Xy,OXy) est surjectif. On en conclut par une proposition
géńerale (du type K̈unneth) quef∗(OX) est d́efini par un moduleB surA qui est libre surA,
et queB/mB → H0(Xy,OXy) = k est bijectif. Donc en l’occurrenceB est une alg̀ebreétale
surA, ce qui ach̀eve la d́emonstration.

Théorème 1.3Soit f : X → Y un morphisme propre et séparable, avec Y localement
noethérien et connexe, et supposons f∗(OX) = OY (ce qui implique que les fibres de X sur
Y sont universellement connexes, et réciproquement grâce à 1.2). Soient y un point de Y , k(y)
une clôture algébrique de k(y), Xy = Xy ⊗k(y) k(y). Soient enfin X ′ un revêtement étale
connexede X , et X

′
y = X ′y ⊗k(y) k(y). Pour qu’il existe un revêtement étale Y ′ de Y et un

X-isomorphisme X ′ ∼→ X ×Y Y ′, il faut et il suffit que X
′
y admette une section sur Xy.263

PosantY ′ = Spec(h∗(OX′) (où h : X ′ → Y est le morphisme composéX ′ → X → Y ), il
suffit de prouver que leY -morphisme canonique

X ′ → X ×Y Y ′

est unisomorphisme, et queY ′ estétale surY . Or nous savons déjà par 1.2 queY ′ estétale surY ,
doncX ×Y Y ′ estétale surX, donc le morphismeX ′ → X ×Y Y ′ estégalement́etale (SGA I
4.8). D’ailleurs,Y ′ est connexe comme image deX ′ qui l’est, doncX×Y Y ′ est connexe puisque
X està fibres connexes surY (SGA IX 3.4 et V 6.9(iii)). Donc pour prouver queX ′ → X×Y Y ′
est un isomorphisme, il suffit de voir que son degré de projection enun point deX ×Y Y ′ est
égalà 1. Or ceci ŕesulte facilement de l’hypothèse queX

′
y admet une section surXy′, soit par

utilisation de (SGA IX 6.6), soit plus simplement en notant qu’il suffit de prouver l’existence
d’un tel point dansX ×Y Y ′ apr̀es changement de baseSpec(k)→ Y , où cela est́evident. Cela
ach̀eve la d́emonstration de 1.3.

Tenant compte de (SGA IX 3.4) et du dictionnaire (SGA V 6.9 et 6.11), on peut mettre 1.3
sous la forme

1Cf. EGA III 7.8.10 (i)
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Corollaire 1.4 Avec les notations précédentes pour f : X → Y et Xy, soit ā un point
géométrique de Xy , a son image dans X et b son image dans Y . Alors la suite suivante d’homo-
morphismes est exacte :

π1(Xy, ā)→ π1(X, a)→ π1(Y, b)→ 0 .
part 53

Remarques 1.5On notera que la d́emonstration de 1.3 fait intervenir de façon essentielle 1.2
et par l̀a le “premier th́eor̀eme de comparaison” en géoḿetrie alǵebrico-formelle. Par contre, la
théorie de la descente de l’exposé IX n’est intervenue que par l’interḿediaire de IX.3.4, dont une264
démonstration directe dans le cas d’un morphismepropref : X → Y tel quef∗(OX) = OY est
facile. Soit en effetY ′ étale surY et supposons queX ′ = X ×Y Y ′ soit somme disjointe de
deux ouverts non vides, prouvons qu’il en est de même deY ′. En effet, on auraY ′ = Spec(A ),
doncX ′ = Spec(B) avecB = A ⊗OY OX , et la d́ecomposition deX ′ en somme directe
correspond̀a une d́ecomposition deB en produit de deux alg̀ebres non nullesB1 etB2. Comme
f∗(OX) = OY on conclut facilementf∗(B) = A , doncA sera somme de deux algèbres (non
nulleségalement, car leurs sections unité sont non nulles)f∗(B1) etf∗(B2), cqfd.

1.6 Supposons encore quef soit propre et śeparable, mais ne faisons plus d’hypothèse sur
f∗(OX), qui correspondràa un rev̂etementétaleY ′ bien d́etermińe deY , d’ailleurs ponctúe
au-dessus deb par l’imageb′ dea. Appliquant alors 1.4 au morphisme canoniqueX → Y ′, et
supposantf surjectif, la suite exacte 1.4 est remplacée par la suivante, analogue de la suite exacte
d’homotopie des espaces fibrés en topologies algébriques :

π1(Xy, a)→ π1(X, a)→ π1(Y, b)→ π0(Xy, a)→ π0(X, a)→ π0(Y, b)→ e

Bien entendu, dans 1.4 on ne peut pas en géńeral affirmer que l’homomorphisme

π1(Xy, a)→ π1(X, a)

soit injectif ; en topologie alǵebrique, son noyau est l’image deπ2(Y, b), et il y aurait lieu en
géoḿetrie alǵebriqueégalement d’introduire des groupes d’homotopie en toutes dimensions, et
la suite exacte d’homotopie complète pour un morphisme propre satisfaisant des hypothèses
convenables (par exemple d’être un morphisme lisse). On ne disposeà l’heure actuelle d’aucun
résultat dans ce sens,à l’exception d’une d́efinition raisonnable (sinon définitive) des groupes
d’homotopie suṕerieure.

Corollaire 1.7 Soient k un corps algébriquement clos, X et Y deux préschémas connexes
sur k ; on suppose X propre sur k et Y localement noethérien. Soient a un point géométrique265
de X , b un point géométrique de Y à valeurs dans la même extension algébriquement close
K de k. Considérons le point géométrique c = (a, b) de X ×k Y , et l’homomorphisme
π1(X×kY, c)→ π1(X, a)×π1(Y, b) déduit des homomorphismes sur les groupes fondamentaux
associés aux deux projections X ×k Y → X et X ×k Y → Y . L’homomorphisme précédent est
un isomorphisme.
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Supposons d’abordK = k. PosonsZ = X ×k Y , consid́erons la projectionf : Z → Y et la
localité y du point ǵeoḿetriqueb deY , appliquons̀a la situation le ŕesultat 1.4. On notera pour
ceci que, quittèa passer̀aXréd , (ce qui ne change pas les groupes fondamentaux envisagés), on
peut supposer d́ejàX réduit donc śeparable surk, doncZ est śeparable surk, et évidemment
à fibres universellement connexes (puisqueX est connexe). La fibre géoḿetrique deZ enb est
canoniquement isomorpheàX ⊗k K = X. D’autre part, comme le composé des morphismes
X → Z → X est l’identit́e, on trouve queπ1(X, a) → π1(Z, c) est injectif et 1.4 nous donne
une suite exacte :

e→ π1(X, a)→ π1(Z, c)→ π1(Y, b)→ e.

D’autre part, on a la suite exacte canonique :

e→ π1(X, a)→ π1(X, a)× π1(Y, b)→ π1(Y, b)→ e ,

où les deux homomorphismesécrits sont l’injection canonique et la projection canonique. On a
enfin un homomorphisme de la première suite exacte dans la deuxième,à l’aide des morphismes
identiques sur les termes extrêmes, et l’homomorphisme canonique

π1(Z, c)→ π1(X, a)× π1(Y, b)

pour les termes ḿedians. La commutativité du diagramme ainsi obtenu se vérifie trivialement.
Comme les homomorphismes sur les termes extrêmes sont des isomorphismes, il en est de même
pour les termes ḿedians, ce qui prouve 1.7 dans ce cas.

Lorsqu’on ne suppose plusK = k, on trouve seulement un isomorphisme

π1(Z, c)→ π1(X ⊗k K, a)× π1(Y, b),

et 1.7équivaut alors au cas particulier suivant :266

Corollaire 1.8 Soient X un schéma propre et connexe sur un corps algébriquement clos k, k′

une extension algébriquement close de k, a′ un point géométrique de X ⊗k k′ et a son image
dans X . Alors l’homomorphisme canonique π1(X ⊗k k′, a′)→ π1(X, a) est un isomorphisme.

Le fait que cet homomorphisme soit surjectiféquivautà dire que siX ′ est un rev̂etement
étale connexe deX, alorsX ′ ⊗k k′ estégalement connexe, et résulte aussitôt du fait quek est
algébriquement clos ; c’est aussi un cas particulier de (SGA IX.3.4). L’hypothèse de propreté sur
X n’a pas encore servi. Ceci dit, dire que l’homomorphisme envisagé est injectif signifie aussi
ceci : tout rev̂etement́etale deX ⊗k k′ est isomorphèa l’image inverse d’un rev̂etement́etale
deX. Il est essentiellement sorital qu’on peut trouver une sous-k-algèbreA deK, de type fini
sur k, et un rev̂etementétale deX ⊗k A dont l’image inverse surX ⊗k k′ est isomorphe au
revêtement donńe. Soit doncY = Spec(A), qui est unk-sch́ema int̀egre de type fini, donc a
des points rationnels surk. Appliquons alors 1.7 au groupe fondamental deX × Y en un point
(a, b) rationnel surk : on trouve que tout rev̂etement́etale connexe deX ×Y est isomorphèa un
quotient d’un rev̂etementX ′ × Y ′, oùX ′ etY ′ sont des rev̂etements galoisienśetales deX etY
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de groupesG etG′ par un sous-groupeH deG × G′. Cela implique que l’image inverse de ce
revêtement deX × Y surX × Y ′ est isomorphèa un rev̂etement de la formeX ′1× Y ′, oùX ′1 est
un rev̂etement́etale deX. Si doncL est le corps des fonctions deY , égal au corps des fractions
deA dansk′, le rev̂etementétale deX ⊗k L induit par le rev̂etement donńe deX ×k Y est
tel qu’il existe une extension finie séparableL′ deL, telle que l’image inverse dudit revêtement
surX ⊗k L′ est isomorphèaX ′1 ⊗k L′. Or k′ étant alǵebriquement clos, on peut supposer que
l’extensionL′ deL est contenue dansk′. Cela prouve que le revêtement́etale donńe deX ⊗k k′
est isomorphèaX ′1 ⊗k k′, cqfd.

La forme explicite signalée en passant pour les revêtementśetales d’un produitX ×k Y267
implique aussit̂ot le ŕesultat suivant :

Corollaire 1.9 Soient k un corps algébriquement clos, X et Y deux préschémas localement
noethériens sur k, Z = X ×k Y leur produit, Z ′ un revêtement étale de Z. Pour tout point y ∈ Y
rationnel sur k, soit iy : Spec(k) → Y le morphisme canoniquement associé, jy = idX ×k iy le
morphisme X → Z correspondant. Soit enfin X ′y le revêtement étale de X image inverse de Z ′

par jy . On suppose Y connexe, et X ou Y propre sur k. Alors les revêtements X ′y de X sont tous
isomorphes.

De façon imaǵee, on peut dire qu’une famille de rev̂etementśetales deX, paraḿetrée par un
présch́ema connexeY , est constante siX ou le pŕesch́ema de param̀etresY est propre surk.

Remarques 1.10Les corollaires 1.7̀a 1.9 sont d̂us à Lang-Serre [2] dans le cas des schémas
algébriques normaux (leur travail aét́e la motivation initiale pour la th́eorie du groupe fondamen-
tal dévelopṕee dans ce Śeminaire). Comme l’ont remarqué ces auteurs, ces résultats deviennent
inexacts lorsqu’on y abandonne l’hypothèse de propreté, du moins en caractéristiquep > 0. Pre-
nant par exemple pourX la droite affineX = Spec(k[t]), il n’est pas difficile de voir que les
revêtements deX paraḿetŕes par la droite affineY = Spec(k[s]), définis par leśequations

xp − x = st ,

sontétales et deux̀a deux non isomorphes. Cela met en défaut 1.9 et a fortiori 1.7, et on voit m̂eme
que sis est consid́eŕe comme uńelément transcendant surk dans une extension algébriquement
closeK dek, on trouve un rev̂etement́etaleX ′ deX qui ne provient pas d’un revêtement́etale
deX.

2 Application du théorème d’existence de faisceaux : th́eo-
r ème de semi-continuit́e pour les groupes fondamentaux des
fibres d’un morphisme propre et śeparable

268

Théorème 2.1Soient Y le spectre d’un anneau local noethérien complet, de corps résiduel k,
X un Y -schéma propre, X0 = X ⊗A k, a0 un point géométrique de X0 et a le point géométrique
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correspondant de X . Alors l’homomorphisme canonique π1(X0, a0)→ π1(X, a) est un isomor-
phisme.

Ce n’est qu’une traduction, dans le langage du groupe fondamental, du résultat rappelé dans
(SGA IX.1.10). C’est ici que le th́eor̀eme d’existence des faisceaux en géoḿetrie alǵebrico-
formelle s’introduit de façon essentielle dans la théorie du groupe fondamental.part 54

Introduisons maintenant une clôture alǵebriquek̄ du corps ŕesiduelk, et la fibre ǵeoḿetrique
X0 = X0 ⊗k k̄. On a donc la suite exacte (SGA IX.6.1)

e→ π1(X0, a0)→ π1(X0, a0)→ π1(k, k̄)→ e.

D’autre part on a l’isomorphisme 2.1 et l’isomorphisme analogue, plusélémentaire,

π1(k, k̄)→ π1(Y, b),

où b est l’image dea dansY . On trouve ainsi :

Corollaire 2.2 Avec les notations précédentes, supposons X0 connexe, et soient a0 un point
géométrique de X0 = X0 ⊗k k̄, a0 son image dans X , b0 son image dans Y . Alors la suite
d’homomorphismes canoniques suivante

e→ π1(X0, a0)→ π1(X, a0)→ π1(Y, b0)→ e

est exacte.

On comparera cette suitèa la suite exacte 1.4, mais on notera que a) on n’a pas euà faire
d’hypoth̀ese de platitude, ou de séparabilit́e sur les fibres, pourX → Y ; b) on a le compĺement
important quele morphismeπ1(X0, a)→ π1(X, a0) est injectif.

Ce dernier fait nous permettra de comparer le groupe fondamental des autres fibres269
géoḿetriques deX surY à celui deX0. Soit en effety1 un point quelconque deY , X1 sa fibre
etX1 sa fibre ǵeoḿetrique, relativement̀a une extension algébriquement close dek(y1), a1 un
point ǵeoḿetrique deX1 , a1 son image dansX etb1 son image dansY . Choisissons une “classe
de chemins” dea1 à a0, d’où une classe de chemins deb1 à b0, d’où un diagramme commutatif
d’homomorphismes :

π1(X1, a1) → π1(X, a1) → π1(Y, b1) → e
↓ ↓

e → π1(X0, a0) → π1(X, a0) → π1(Y, b0) → e,

où les deux fl̀eches verticaleśecrites sont des isomorphismes. Comme la deuxième ligne est
exacte, on trouve donc un homomorphisme canonique, que nous appelleronsl’homomorphisme
de sṕecialisation pour le groupe fondamental(ne d́ependant que de la classe de chemins choisis
dea1 àa0, doncdéfini modulo automorphisme intérieur deπ1(X, a0)) :

π1(X1, a1)→ π1(X0, a0) .

Lorsque la premìere ligne ci-dessus estégalement exacte, il s’ensuit aussitôt que l’homomor-
phisme de sṕecialisation est surjectif. On trouve donc, compte tenu de 1.4 :
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Corollaire 2.3 Sous les conditions de 2.1, supposons de plus que le morphisme f : X → Y
soit séparable (1.1)) et X0 connexe (donc en vertu de 1.2 on a f∗(OX) = OY ). Alors pour toute
fibre géométrique X1 de X sur Y , munie d’un point géométrique a1 , l’homomorphisme de
spécialisation défini ci-dessus est un homomorphisme surjectif.

C’est l̀a un ŕesultat de semi-continuité pour le groupe fondamental, qui ne semble pas encore
avoir d’analogue en topologie algébrique. On peut d’ailleurs l’énoncer sous des conditions plus
géńerales :270

Corollaire 2.4 Soient f : X → Y un morphisme propre à fibres universellement connexes, avec
Y localement noethérien, y0 et y1 deux points de Y tels que y0 ∈ {y1} , X0 et X1 les fibres
géométrique de X correspondant à des extensions algébriquement closes données de k(y0) et
k(y1) , a0 resp. a1 un point géométrique de X0 resp. X1 . Alors on peut définir de façon naturelle
un homomorphisme de spécialisation :

π1(X1, a1)→ π1(X0, a0)

défini à automorphisme intérieur près, et c’est là un homomorphisme surjectif si f est un mor-
phisme séparable.

En effet, il ŕesulte d’abord de 1.8 que 2.4 est essentiellement indépendant de extensions
algébriquement closes choisies pour les corps résiduelsk(y0) et k(y1). Cela nous permet de
remplacerY par un sch́emaY ′ surY ayant un pointy′0 (resp.y′1) au-dessus dey0 (resp.y1). On
prendra alors pourY ′ le spectre du complét́e de l’anneau local dey0 dansY , et on applique 2.3.

Remarques 2.5La conclusion finale de 2.4 sur la surjectivité de l’homomorphisme de spéciali-
sation, et a fortiori les ŕesultats 1.3 et 1.4 dont elle est une conséquence, devient inexacte si on ne
suppose plus quef : X → Y est un morphisme séparable, m̂eme pour des schémas projectifs sur
un corps alǵebriquement clos de caractéristique0. Nous en verrons plus loin des exemples, tant
dans le cas òu f est plat mais òu f admet une fibre non séparable (X etY étant cependant lisss
surk), que dans le cas où les fibres def sont bien śeparables mais oùf n’est pas plat (par exemple
f : X → Y étant un morphisme birationnel de schémas int̀egres normaux), cf. XI 3. Dans ces
exemples, il peut arriver que le groupe fondamental de la fibre géoḿetrique ǵeńerique soit nul,
mais non celui d’une fibre ǵeoḿetrique sṕeciale convenable. D’autre part, même sif : X → Y
est un morphisme propre séparable comme dans 2.4, il arrive couramment que le morphisme
de sṕecialisation ne soit pas un isomorphisme. Ainsi, il est facile de donner des exemples où271
X1 est une courbe elliptique non singulière (donc son groupe fondamental est commutatif, et sa
composantè-primaire pour un nombre premier` premierà la caract́eristique est isomorphèa
Z

2
` , cf. XI), tandis queX0 est forḿe, soit de deux courbes rationnelles non singulières se coupant

en deux points, soit de deux courbes rationnelles tangentes en un point, soit enfin d’une courbe
rationnelle ayant un point singulier qui est un point de rebroussement (pour la classification
compl̀ete des courbes elliptiques déǵeńeŕees, voir les travaux récents de Kodaira [1] et Ńeron).
On voit alors que dans ces cas, le groupe fondamental deX0 est respectivement̂Z, e, e, donc
“strictement plus petit” que celui deX1. Nous verrons cependant plus loin, lorsquef est un
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morphisme lisse, une majoration du noyau de l’homomorphisme de spécialisation, qui implique
en particulier que sik(y0) est decaract́eristique0, l’homomorphisme de spécialisation est un
isomorphisme. Mais m̂eme pour un morphisme lisse, si la caractéristique dek(y0) est ¿0, il peut
arriver que l’homomorphisme de spécialisation ne soit pas un isomorphisme, comme on voit par
exemple dans le cas où X est un sch́ema ab́elien surY (de dimension relative 1, si on veut),
cf. XI 2. Une th́eorie satisfaisante de la spécialisation du groupe fondamental doit tenir compte
de la “composante continue” du “vrai” groupe fondamental, correspondantà la classification
des rev̂etements principaux de groupe structural des groupes infinitésimaux ; moyennant quoi on
serait en droit̀a s’attendre que les “vrais” groupes fondamentaux des fibres géoḿetriques d’un
morphisme lisse et propref : X → Y forment un joli syst̀eme local surX, limite projective
de sch́emas en groupes finis et plats surX2. Nous reviendrons ultérieurement sur ce point de
vue, notre objet pŕesentétant au contraire de pousser aussi loin que possible les phénom̀enes
communs̀a la th́eorie topologique et la th́eorie sch́ematique du groupe fondamental.

Soit maintenantX0 une courbe propre, lisse et connexe de genreg sur un corps alǵebri-
quement closk. Si k est de caractéristique źero, son groupe fondamental peut se déterminer par
voie transcendante de la façon suivante. On sait queX0 provient par extension de la base d’une
courbe d́efinie sur une extension algébriquement close de degré de transcendance fini du corps272
premierQ, et compte tenu de 1.8, on peut supposer quek est lui-m̂eme de degré de transcendance
fini surQ. On peut donc supposer quek est un sous-corps du corpsC des nombres complexes, et
une nouvelle application de 1.8 nous permet de supposer quek = C. Il n’est pas difficile alors de
vérifier que le groupe fondamental deX est isomorphe au compactifié du groupe fondamental
de l’espace topologique associé X̃ (surface compacte orientée de genreg), pour la topologie
définie par les sous-groupes d’indice fini3. Il est d’autre part classique que le groupe fondamental
topologique est engendré par2g géńerateurssi, ti (1 ≤ i ≤ g), soumisà une seule relation :

(s1t1s
−1
1 t−1

1 ) . . . (sgtgs
−1
g t−1

g ) = 1.

Donc le groupe fondamental deX admet2g géńerateurstopologiquessi, ti (1 ≤ i ≤ g), li és
par la seule relation préćedente. Si maintenant la caractéristique dek estp > 0, désignons par
A l’anneau des vecteurs de Witt construit aveck, parK une extension alǵebriquement close de
son corps des fractions. On a vu dans (SGA III.7.4) qu’il existe un schémaX surY = Spec(A),
propre et lisse surY , se ŕeduisant suivantX0 . Appliquons-lui 2.3, on trouve un morphisme
surjectif

π1(X1)→ π1(X0),

où X1 = X ⊗k K. Il est imḿediat4 queX1 est lisse surK, connexe (1.2), de dimension 1, et
son genre est́egalàg (d’apr̀es l’invariance de la caractéristique d’Euler-Poincaré, cf. EGA III 7).
CommeK est de caractéristique0, on peut lui appliquer le résultat pŕećedent. On a ainsi prouvé
parvoie transcendante:

2Cette conjecture extrêmement śeduisante est malheureusement mise en défaut par un exemple inédit de M. Artin
déjà lorsque les fibres def sont des courbes algébriques de genre donnég ≥ 2.

3Cette d́eductionétait explicit́ee dans un des exposés oraux qui n’ont paśet́e ŕediǵes
4cf. EGA IV 12.2
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Théorème 2.6Soit X0 une courbe algébrique lisse, propre et connexe sur un corps algébri-273
quement clos k, et soit g son genre. Alors π1(X0) admet un système de 2g générateurs topolo-
giques liés par la relation écrite plus haut. Lorsque la caractéristique de k est 0, π1(X0) est même
le groupe de type galoisien libre pour les générateurs et la relation qui précèdent.

Remarques 2.7Il n’existe pas̀a l’heure actuelle,̀a la connaissance du rédacteur, de d́emonstra-
tion par voie purement algébrique du ŕesultat pŕećedent (sauf pour les genres0, 1). Pour com-
mencer, on ne voit gùere comment distinguer dansπ1(X0) 2g éléments, dont on pourrait attendre
ensuite qu’ils forment un système de ǵeńerateurs topologiques.̀A cet égard, la situation de la
droite rationnelle priv́ee den points, et l’́etude des rev̂etements d’icelle mod́eŕement ramifíes
en ces points, est plus sympathique, puisque la considération des groupes de ramification en
cesn points fournitn éléments du groupe fondamental, comme nous verrons ultérieurement5.
Mais même dans ce cas particulièrement concret, il ne semble pas exister de démonstration
purement alǵebrique. Une telle d́emonstration serait́evidemment extr̂emement int́eressante. Le
seul fait concernant le groupe fondamental d’une courbe qu’on sache démontrer par voie pure-
ment alǵebrique (exception faite du théor̀eme de finitude faible 2.12 ci-dessous, prouvé par voie
algébrique par Lang-Serre [2]), semble la détermination du groupe fondamental rendu abélien
via la jacobienne (signalée dans SGA IX.5.8 dernière ligne).

2.8 La dernìere assertion 2.6 n’est plus valable en caractéristiquep > 0, comme on voit d́ejà
dans le cas des courbes elliptiques. Comme nous l’avons déjà signaĺe, nous ne savons pas si le
groupe fondamental deX0 est topologiquement de présentation finie.part 55

Théorème 2.9Soient k un corps algébriquement clos, et X un schéma propre et connexe sur k.
Alors le groupe fondamental de X est topologiquement de génération finie.

Nous proćederons par récurrence surn = dimX, l’assertionétant triviale pourn ≤ 0. Sup-274
posons doncn > 0, et le th́eor̀eme d́emontŕe pour les dimensionsn′ < n. D’après le lemme de
Chow (EGA II 5.6.2) il existe un sch́ema projectifX ′ surk et un morphisme surjectifX ′ → X.
On peutévidemment supposerX ′ réduit, et en passant au normalisé, normal. Gr̂aceà la th́eorie
de la descente, il suffit de prouver que les groupes fondamentaux des composantes connexes de
X ′ sont topologiquement de géńeration finie (SGA IX.5.2). Cela nous ramène donc au cas oùX ′

estprojectif et normal. Si alorsn = 1, il suffit d’appliquer 2.6. Sin ≥ 2, on consid̀ere une im-
mersion projectiveX → P

r
k , et une section hyperplaneY = X ·H (muni de la structure réduite

induite), telle queY 6= X i.e.H 6⊃ X. On aura alorsdimY < n, et tenant compte de l’hypothèse
de ŕecurrence, il suffit de prouver queπ1(Y )→ π1(X) estsurjectif.Or plus ǵeńeralement :

Lemme 2.10 SoientX un préschéma propre sur un corps algébriquement clos k, g : X → P
r
k un

morphisme. On suppose X irréductible et normal et dim g(X) ≥ 2. Soient H un hyperplan de
P
r
k et Y = X ×Prk H . Alors Y est connexe, et l’homomorphisme π1(Y )→ π1(X) est surjectif.

5Cf. Exp. XII. Encore ceśeléments ne sont-ils détermińes vraiment que modulo conjugaison, et il convient de
faire un choixsimultańe judicieux de ceśeléments dans leurs classes
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Ces assertions résultent en effet de la suivante :

Corollaire 2.11 Sous les conditions précédentes, soient X ′ un revêtement étale connexe de X ,
et Y ′ = X ′ ×X Y = X ′ ×Prk H le revêtement induit sur Y . Alors Y ′ est connexe.

CommeX est normal,X ′ est normal, donćetant connexe,X ′ est irŕeductible ; de plus son
image dansPrk est de dimension≥ 2. Un lemme bien connu d̂u à Zariski (et appelé “théor̀eme de
Bertini”) implique donc que siH ′1 est l’hyperplan ǵeńerique dansPrk , défini sur une extension
K dek, alorsX ′ ×Pr H1 est universellement irréductible donc universellement connexe surK.
Le théor̀eme de connexion de Zariski (EGA III 4) implique alors que pourtout hyperplanH
(défini sur une extension quelconque dek) X ′ ×Pr H est universellement connexe. Cela achève
la démonstration de 2.11, donc de 2.9.275

Corollaire 2.12 (Lang-Serre).Sous les conditions de 2.9, pour tout groupe fini G, l’ensemble
des classes, à isomorphisme près, de revêtements principaux de X de groupe G, est fini.

Remarque 2.13Sous les conditions de 2.10 nous prouverons lorsquedim g(X) ≥ 3 (du moins
lorsqueg est une immersion deX régulier), un ŕesultat plus pŕecis, connu en ǵeoṕetrie alǵebrique
sous le nom de “théor̀eme de Lefschetz” : π1(Y )→ π1(X) est un isomorphisme.6 Il y a dans les
cas classiques desénonćes analogues pour les groupes d’homologie et les groupes d’homotopie
suṕerieure, qui t̂ot ou tard devront̂etre englob́es dans la ǵeoḿetrie alǵebrique abstraite. M̂eme
pour la cohomologie de HodgeHp(X,Ωq), il ne semble pas que la question ait encoreét́eétudíee ;
il n’est d’ailleurs gùere probable que pour cette dernière, les th́eor̀emes de Lefschetz subsistent
tels quels en caractéristiquep > 0.

3 Application du théorème de puret́e : théorème de continuit́e
pour les groupes fondamentaux des fibres d’un morphisme
propre et lisse

Rappelons sans démonstration le

Théorème 3.1 (de puret́e) (Zariski-Nagata)7 Soit f : X → Y un morphisme quasi-fini et do-
minant de préschémas intègres, avec X normal, Y régulier localement noethérien, et soit Z
l’ensemble des points de X où f n’est pas étale, i.e. où f est ramifié (cela revient au même,
SGA I.9.5 (ii )). Si Z 6= X , Z est de codimension 1 dans X en tous ses points, i.e. pour toute
composante irréductible Z ′ de Z de point générique z, la dimension de Krull de OX,z est égale
à 1.

6Cf. le śeminaire SGA 2 (1962) faisant suiteà celui-ci.
7Pour une d́emonstration, cf. SGA 2 X 3.4.
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Rappelons qu’un présch́ema est ditnormalresp.réguliersi ses anneaux locaux sont normaux
resp. ŕeguliers, et que la relationZ 6= X signifie aussi que l’extension finieR(Z)/R(X) (oùR
désigne le corps des fonctions rationnelles) estséparable. Se plaçant en le point géńeriquez
d’une composanteZ ′ deZ, et localisant en le pointy deY en-dessous dez, on trouve l’́enonće276
équivalent :

Corollaire 3.2 Soient A un anneau local noethérien régulier, A→ B un homomorphisme local
injectif tel que B soit normal, localisé d’une algèbre de type fini sur A, et quasi-finisur A ; on
suppose de plus que dimA(= dimB) ≥ 2, et que pour tout idéal premier p de B distinct de
l’idéal maximal, B est étale sur A en p, i.e. Bp est étale sur Aq (où q = A ∩ p). Alors B est étale
sur A.

D’ailleurs, il n’est pas difficile de ŕeduire ce dernieŕenonće au cas òuA est un anneau local
complet, donc òu B estfini surA. Zariski [5] donne une d́emonstration simple de ce résultat,
valable dans le cas d’égales caractéristiques ; le cas ǵeńeral est d̂u à Nagata [3], qui s’appuie sur
un ŕesultat d́elicat de Chow ; ce dernier n’áet́e vérifié par aucun des participants du Séminaire, et
devrait faire l’objet d’un expośe ult́erieur. Signalons seulement ici la démonstration tr̀es simple
dans le cas particulier où dimA = 2, qui est suffisant pour l’application la plus importante que
nous en ferons dans le présent nuḿero. CommeB est normal, il est unB-module de profondeur
(ancienne terminologie : codimension cohomologique)≥ 2, donc c’est unA-module de profon-
deur (ancienne terminologie : codimension cohomologique)≥ 2, et commeA est ŕegulier de
dimension2, il en résulte queB est unmodule libresurA8. Il résulte alors de (SGA I.4.10) que
l’ensemble des id́eaux premiersq deA en lesquelsB est ramifíe surA est la partie deSpec(A)
définie par un id́eal principal (engendré par le discriminant d’une base deB surA), donc est vide
si elle est contenue dans le point fermé deSpec(A), ce qui prouve 3.2 lorsquedimA = 2.

Nous utiliserons surtout 3.1 sous la formeéquivalente :

Corollaire 3.3 Soient X un préschéma localement noethérien, U une partie ouverte de X com-
plémentaire d’une partie fermée Z de X de codimension ≥ 2. Alors le foncteur X ′ 7→ X ′ ×X U
de la catégorie des revêtements étales de X dans la catégorie des revêtements étales de U est une
équivalence de catégories ; en particulier, si a est un point géométrique de U , l’homomorphisme277
canonique π1(U, a)→ π1(X, a) est un isomorphisme.

La dernìere assertion estévidemment conśequence de la première, et pour celle-ci on peut
évidemment supposer queX est connexe donc irréductible. De la normalité deX résulte d́ejà que
le foncteurX ′ 7→ X ′×XU de la cat́egorie des rev̂etements localement libres (pas nécessairement
étales) deX ′ dans la cat́egorie des rev̂etements deU est pleinement fid̀ele, car le foncteur
E 7→ E |U de la cat́egorie des Modules localement libres surX dans la cat́egorie des Modules
localement libres surU l’est. Il reste donc̀a prouver que pour tout revêtement́etaleU ′ deU , il
existe un rev̂etement́etaleX ′ deX (nécessairement unique d’après ce qui pŕec̀ede), tel queU ′

soit isomorphèaX ′×X U . On peut́evidemment supposerU ′ connexe, donc irŕeductible puisque
8Cf. EGA 0IV 17.3.4
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(U étant normal)U ′ est normal. SoitK le corps des fonctions rationnelles surX, ou surU (c’est
pareil),K ′ celui deU ′ ; alorsU ′ s’identifie au normaliśe deU dansK ′ (SGA I.10.3). SoitX ′ le
normaliśe deX dansK ′ (EGA II 6.3), alorsX ′ = X ×X U ∼= U ′, d’autre partX ′ est normal,
intègre, le morphisme structuralf : X ′ → X estfini et dominant (carX est normal etK ′/K est
une extension finie séparable). Il est́etale dansU ′ = f−1(U) = X ′ = f−1(Z), et commeZ est
de codimension≥ 2 dansX, f−1(Z) est de codimension≥ 2 dansX ′. On conclut alors de 3.1
queX ′ estétale surX, ce qui ach̀eve la d́emonstration.

Soit maintenantf : X → Y une application rationnelle d’un présch́ema localement
noeth́erien et ŕegulierX dans un pŕesch́emaY , et supposons quef soit d́efini dans un ouvert
U compĺementaire d’une partie ferḿee de codimension≥ 2. Alors on d́eduit de 3.3 un fonc-
teur, d́efini à isomorphisme près, de la catégorie des rev̂etementśetales deY dans la cat́egorie
des rev̂etementśetales deX, d’où pour tout point ǵeoḿetriquea deU , d’imageb dansY , un
homomorphisme canonique

π1(X, a)→ π1(Y, b)

(déduit de l’homomorphisme canoniqueπ1(U, a)→ π1(Y, b) grâceà l’isomorphisme278

π1(U, a)
∼→ π1(X, a).

Lorsquef est un morphisme dominant,X et Y étant int̀egres de corpsK et L, de sorte que
K est une extension deL, et queY est normal, ces correspondances se précisent en termes
d’extensions de corps en notant que pour toute extension finieL′ de L, non ramifíee surY ,
l’algèbreK ′ = L′ ⊗L K surK est non ramifíee surX.

En particulier, ces ŕeflexions montrent que le groupe fondamental des présch́emas locale-
ment noeth́eriens connexes réguliers, ponctúes par des points géoḿetriques localiśes en codi-
mension≤ 1, est unfoncteur lorsque l’on prend comme morphismes dans cette catégorie les
applications rationnelles dominantes définies dans des complémentaires de parties fermées de
codimension≥ 2. Se rappelant par exemple qu’une application rationnelle d’un schéma normal
sur un corpsk dans un sch́ema propre surk est d́efinie dans le complémentaire d’un ensemble
de codimension≥ 2, on trouve :

Corollaire 3.4 (Invariance birationnelle du groupe fondamental) Soient k un corps,X et Y deux
schémas propres sur k et réguliers, f : X → Y une application birationnelle de X dans Y , Ω
une extension algébriquement close du corps des fonctions K de X , permettant de définir le
groupe fondamental de X et le groupe fondamental de Y . Ces derniers sont alors canoniquement
isomorphes.

Cela signifie aussi que pour une extension finieK ′ deK, si elle est non ramifíee sur un
“modèle” propre non singulierX deK, elle l’est sur tout autre modèle propre non singulier.part 56

Remarque 3.5 Pour d’autre applications du théor̀eme de pureté, voir les travaux de Abhyankar
expośes dans [4], inspiŕes par les ŕesultats de Zariski [6 chap. VIII], d́emontŕes par voie topo-
logique. Ces derniers sont loin d’avoirét́e assimiĺes par la ǵeoḿetrie alǵebrique “abstraite” et
méritent de nouveaux efforts.
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Nous aurons besoin de quelques faitsélémentaires de la théorie de la ramification. Soient279
V un anneau de valuation discrète de corps des fractionsK, corps ŕesiduelk, L une extension
galoisienne deK de groupeG, V ′ le normaliśe deV dansL, qui est un module libre de rang
n = [L : K] sur V , m′ un idéal maximal deV ′, Gd le sous-groupe deG formé deséléments
laissantm′ invariant, de sorte queGd opère dans l’extension résiduellek′ = V ′/m′ dek, etGi

le sous-groupe deśeléments deGd opérant trivialement (rappelons queGd etGi sont appeĺes
respectivement sous-groupes dedécompositionet d’inertie deG). On dit queL estmod́erément
ramifié surV si ni = [Gi : e] est d’ordrep premierà la caract́eristique dek (condition toujours
vérifiée sik est de caractéristique 0). Il est bien connu queGi se plonge alors canoniquement
dans le groupek′∗, donc est isomorphe au groupe des racinesn-ièmes de l’unit́e dansk′∗, ce qui
implique en particulier queGi est cyclique. Le cas type de cette situation est celui où on pose
L = K[t]/(tn − u), u étant une uniformisante deV etn un entier premier̀ap : siK contient les
racinesn-ièmes de l’unit́e,L est une extension galoisienne totalement ramifiée deK, de groupe
de GaloisG = Gi isomorphèaZ/nZ.

Lemme 3.6 (Lemme de Abhyankar). Soit V un anneau de valuation discrète de corps des frac-
tions K, L et K ′ deux extensions galoisiennes de K mod́eŕement ramifíeessur V , n et m les
ordres des groupes d’inertie correspondants, L′ une extension composée de L et K ′ sur K. Si
m est un multiple de n, alors L′ est non ramifiée sur les localisés de la clôture normale V ′ de V
dans K ′.

Soient en effetW ′ le normaliśe deV ′ dansL′, m′ un idéal maximal deV ′, n′ un idéal maximal
deW ′ au-dessus den′, n l’id éal maximal qu’il induit sur le normaliséW deV dansL,G, H, M
les groupes de Galois deL, K ′, L′ surK, etGi, Hi, L

′
i les groupes d’inertie correspondant

aux id́eaux maximaux choisis. AlorsM se plonge dans le produitG ×H etMi dans le produit
Gi × Hi , de sorte que les projectionsM → G et M → H, Mi → Gi et Mi → Hi soient280
surjectives (sorite du corps intermédiaire). Il en ŕesulte d́ejà, puisqueGi etHi sont par hypoth̀ese
cycliques d’ordresm etn premiers̀ap, queMi est d’ordre premier̀ap, donc cyclique, et comme
m est multiple den donc leśeléments deGi×Hi sont de puissancem-ième nulle,Mi est d’ordre
divisantm, donc d’ordreégalàm puisqueMi → Hi est surjectif. Ce dernier homomorphisme
est donćegalement injectif. Or son noyau est le groupe d’inertie den′ au-dessus dem′, ce qui
prouve queL′ est non ramifíe surK ′ enn′. D’où le lemme.

Plaçons-nous maintenant sous les conditions de 2.4, où on a un homomorphisme de
sṕecialisation

π1(X1, A1)→ π1(X0, a0)

qui estsurjectif, relativement̀a un morphisme propre et séparablef : X → Y . Nous voulons
préciser le noyau de cet homomorphisme. Procédant comme dans la démonstration de 2.4, on
voit que dans cette question, on peut toujours supposer queY est le spectre d’unanneau de
valuation discr̀eteV , complet età corps ŕesiduel alǵebriquement clos(car on peut toujours
trouver un tel anneau et un morphisme de son spectreY ′ dansY dont l’image soit{y0, y1}).
Alors on aX0 = X0 , k(y0) = k = corps ŕesiduel deV , k(y1) = K = corps des fractions deV .
SoitKs la clôture śeparable deK, K sa cl̂oture alǵebrique, et pour tout sous-anneauW deK
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contenantV , posonsXW = X ⊗V W . En particulier on a

XV = V, XK = X1, XK = X1.

D’ailleurs le morphisme canoniqueX1 = XK → XKs induit un isomorphisme sur les
groupes fondamentaux (SGA IX 4.11) de sorte que, compte tenu de l’isomorphisme 2.1
π1(X0)→ π1(X), on est rameńe à étudier l’homomorphisme surjectif

π1(XKs)→ π1(X)

assocíe au morphisme canoniqueXKs → X. La d́etermination du noyau de ce dernier revientà281
la solution du probl̀eme suivant :on a un rev̂etement principal connexeZKs deXKs , de groupeG
(donc associé à un homomorphisme deπ1(XKs) dansG), déterminer sous quelles conditions il
est isomorphèa l’image ŕeciproque d’un rev̂etement principalZ deX de groupeG.

Notons d’abord queKs est ŕeunion filtrante croissante de ses sous-extensions de type fini
K ′ surK, et que par suite,ZKs est isomorphèa l’image inverse d’un rev̂etement principalZK′
deXK′ pour unK ′ convenable (on fera attention cependant que pourK ′ fixé, ZK′ n’est pas
détermińe de façon unique). Dire queZKs est isomorphèa l’image inverse d’un rev̂etement
principal Z de X signifie qu’il existe une sous-extension finieK ′′ ⊇ K ′ de Ks telle que
ZK′′ = ZK′ ⊗K′ K ′′ est isomorphèaZ ⊗V K ′′. Désignons maintenant pour une sous-extension
finieK ′ deKs , parV ′ le normaliśe deV dansK ′, qui est un anneau de valuation discrète, com-
plet, de corps ŕesidueLk. Donc le morphisme canoniqueXV ′ → XV induit un isomorphisme
pour les fibres au-dessus des points fermés deY = Spec(V ) et Y ′ = Spec(V ′) et il résulte
alors de 2.1 appliqúe àXV etXV ′ que l’homomorphisme induit pour les groupes fondamentaux
π1(XV ′) → π1(XV ) est un isomorphisme, ou encore que tout revêtement principal deXV ′ est
l’image inverse d’un rev̂etement principal deXV détermińe à isomorphisme près. Cela implique
donc le

Lemme 3.7 Soit ZK′ un revêtement principal connexe de XK′ de groupe G, ZK son image
inverse sur XKs . Pour que ce dernier soit isomorphe à l’image inverse d’un revêtement principal
Z de X , il faut et il suffit qu’il existe une extension finie K ′′ ⊇ K ′ de K dans Ks telle que le
revêtement principal ZK′′ de XK′′ soit induit par un revêtement principal de XV ′′ .

Supposons en particulier que lesXV ′′ soient normaux (il suffit par exemple pour cela que
X0 soit normal, et a fortiori queX0 soit simple, cf. SGA I.9.1). Comme ils sont connexes, ils282
sont irŕeductibles. SoientL le corps des fonctions rationnelles pourX et XK , L′ celui pour
XV ′ et XK′ , L′′ celui pourXV ′′ et XK′′ . Alors sous les conditions de 3.7,ZK′ définit une
extension finie śeparableR′ deL′, etZK′′ définit l’extensionR′′ = R′ ⊗L′ L′′ = R′ ⊗K′ K ′′.
La condition envisaǵee dans 3.7 signifie donc aussi qu’il existe une extension finie séparableK ′′

deK ′ telle queR′′ = R′ ⊗K′ K ′′ soit non ramif́eeau-dessus du schéma normalXV ′′ de corps
L′′ = L′ ⊗K′ K ′′, et non seulement au-dessus de la partie ouverteXK′′ deXV ′′.

Nous supposons dorénavant quef : X → Y est un morphismelisse,donc les morphismes
XV ′ → Spec(V ′) sont lisses, donc les schémasXV ′ sontréguliers.Noter que la fibre du point
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fermé deSpec(V ′) dansXV ′ est irŕeductible et de codimension1. Soit o′ son anneau local, qui
est donc un anneau de valuation discrète de corpsL′ , de corps ŕesiduel isomorphe au corps des
fonctions rationnelles deX0 , donc ayant m̂eme caract́eristique quek. Définissons de m̂emeo′′

dansL′′ , qui estévidemment le normalisé deo′ dansL′′. Il résulte alors du th́eor̀eme de pureté
3.1 ou 3.3 que pour queR′′ soit non ramifíe surXV ′′ , il faut et il suffit queR′′ soit non ramifíe
suro′′, normaliśe deo′ dansL′′.

Notons maintenant que siu′ est une uniformisante deV ′, c’est aussi une uniformisante deo′.
Si alorsn est un entier premier̀a la caract́eristiquep dek, et si on prendK ′′ = K ′[t]/(tn − u),
alorsK ′′ est une extension galoisienne finie deK ′ etL′′ est isomorphèaL′[t]/(tn−u′), donc est
mod́eŕement ramifíe suro′ et de groupe d’inertie d’ordren. Supposons alorsG d’ordre premier
à p, ce qui implique queR′ est mod́eŕement ramifíe suro′, et prenons pourn un multiple premier
à p de l’ordre du groupe d’inertie deR′ suro′ (par exemplen = [G : e]). Appliquant le lemme
de Abhyankar 3.6, on voit que la condition envisagée dans 3.7 est vérifiée.

Cela prouve le th́eor̀eme suivant :

Théorème 3.8Soient f : X → Y un morphisme propre et lisse, à fibres géométriquement283
connexes, avec Y localement noethérien, y0 et y1 deux points de Y tels que y0 ∈ y1, X0 et
X1 les fibres géométriques correspondantes ; considérons l’homomorphisme de spécialisation
2.4 π1(X1) → π1(X0). Cet homomorphisme est surjectif, et tout homomorphisme continu de
π1(X1) dans un groupe fini G d’ordre premier à la caractéristique p de k(y0) provient d’un ho-
momorphisme de π1(X0) dans G.

En d’autres termes :

Corollaire 3.9 Si k(y0) est de caractéristique nulle, alors l’homomorphisme de spécialisation est
un isomorphisme. Si p > 0, alors le noyau de l’homomorphisme de spécialisation est contenu
dans l’intersection des noyaux des homomorphismes continus de π1(X1) dans des groupes finis
d’ordre premier à p (ou encore, le sous-groupe invariant fermé engendré par un p-sous-groupe
de Sylow du groupe de type galoisien π1(X1)) ; si donc π1(X1)(p) désigne le groupe quotient de
π1(X1) par le sous-groupe fermé précédent, et si on définit de même π1(X0)(p), alors l’homo-
morphisme de spécialisation induit un isomorphisme

π1(X1)(p) → π1(X0)(p)

On notera que la d́emonstration de 3.8 est purement algébrique. Proćedant comme dans 2.6,
on en conclutpar voie transcendante :

Corollaire 3.10 Soit X0 une courbe propre, lisse et connexe de genre g sur un corps algébri-
quement clos de caractéristique p. Avec la notation introduite dans 3.9, le groupe π1(X0)(p)

est isomorphe à Γ(p), où Γ est le groupe de type galoisien engendré par des générateurs si, ti
(1 ≤ i ≤ g) liés par la relation

(s1t1s
−1
1 t−1

1 ) . . . (sgtgs
−1
g t−1

g ) = 1
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284 Remarques 3.11Dans le cas òu k(y0) est de caractéristique nulle, le ŕesultat 3.9 est bien connu
par voie transcendante. On notera que la démonstration de 3.10 fait appel au théor̀eme de pureté
dans le cas d’ińegales caractéristiques, mais dans le cas d’anneaux de dimension 2 seulement, où
la démonstration dudit th́eor̀eme est facile et áet́e rappeĺee dans le texte.
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Expośe XI

Exemples et compĺements

285

1 Espaces projectifs, varíetés unirationnelles

Proposition 1.1 Soient k un corps algébriquement clos, X = P
r
k l’espace prectif de dimension

r sur k. Alors X est simplement connexe,i.e. π1(X) = 0.

Pourr = 0, c’est trivial. Sir = 1, il faut montrer que siX ′ est un rev̂etement́etale connexe
non vide deX = P1

k, alorsX ′
∼→ X. La formule du genre nos donne ici, sig etg′ sont les genres

deX etX ′ :
1− g′ = d(1− g) ,

où d est le degŕe deX ′ surX. Commeg = 0, on aura donc1−g′ = d, ce qui exiged = 1 puisque
g′ = 0, ce qui prouveX ′

∼→ X. Lorsquef ≥ 2, on proc̀ede par ŕecurrence surr, en supposant
quePr

′
est simplement connexe pourr′ < r. Appliquant cecìa un hyperplan dePr et utilisant

(SGA X.2.10), il en ŕesulte bien quePr est simplement connexe. Autre démonstration : on aura
π1(P1 × · · · × P1 = π1(P1)× · · · × π1(P1) en vertu de (SGA X.1.7), donc(P1)r est simplement
connexe puisqueP1 l’est, doncPr est simplement connexe en vertu de l’invariance birationnelle
du groupe fondamental (SGA X.3.4). Cette démonstration montre plus géńeralement :

Corollaire 1.2 Soit X un schéma propre et normal sur un corps algébriquement clos k ; si X
est une variété rationnelle, i.e. intègre et son corps des fonctions est une extension transcendante
pure de k, alors X est simplement connexe.

Ce ŕesultat s’applique en particuler aux variét́es grassmanniennes et plus géńeralement aux286
variét́esG/H, oùG est un groupe lińeaire connexe surk etH un sous-groupe algébrique conte-
nant un sous-groupe de Borel deG.

Rappelons qu’on appelle variét́e unirationnelle surk un sch́ema propre et intègre surk dont
le corps des fonctionsK est contenu dans une extension transcendante pureK ′ dek, finie surK
(i.e. ayant m̂eme degŕe de transcendance surk queK), i.e. s’il existe une application rationnelle
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dominantef : Prk → X, avecr = dimX. Si X est normale, on voit donc par les réflexions
préćedant (SGA X.3.4) que pour tout revêtement́etale connexeX ′ deX, de corpsL/K, l’algèbre
L⊗K K ′ surK ′ est non ramifíee sur le mod̀elePr, donc compl̀etement d́ecompośee en vertu de
1.1 ce qui montre queL estK-isomorpheà une sous-extension deK ′/K. Cela prouve donc,
compte tenu de (SGA V.8.2) :

Corollaire 1.3 Le group fondamental d’une variété unirationnelle normale sur un corps algébri-
quement clos, est fini.

(N.B. On notera que dans la définition de “unirationnelle”, on n’avait pas besoin queK ′/K
soit finie).

Remarques 1.4Bien entendu, les résultats de ce nuḿero sont bien connus. D’autre part,
J.P. Serre a montré [10] que lorsqueX est une varíet́e projective unirationnelle lisse sur un corps
algébriquement clos decaract́eristique nulle,X est simplement connexe. Sa démonstration est
transcendante en ce qu’elle utilise le théor̀eme de syḿetrie de Hodge, et qu’on ignore si ce
résultat s’́etendà la caract́eristiquep > 0. Il semble d’ailleurs qu’on ne connaisse pas d’exemple
de varíet́e unirationnelle lisse surk qui ne soit d́ejà rationnelle.

2 Vari étés ab́eliennes

Soientk un corps alǵebriquement clos,A une varíet́e ab́elienne surk, i.e. un sch́ema en
groupes surk, propre surk, lisse surk, et connexe, enfinG un sch́ema en groupes commutatifs
de type fini surk. Désignons parExt(A,G) le groupe des classes d’extensions commutatives de
A parG, parH1(A,G) le groupe des classes de fibrés principaux surA de groupeG (comparer
No 4 plus bas), et considérons l’homomorphisme canonique

Ext(A,G)→ H1(A,G) .

Un raisonnement de Serre [5, chap. VII, th. 5] montre que c’est un homomorphisme injectif, qui287
a pour image l’ensemble des “éléments primitifs” deH1(A,G), i.e. deśelémentsξ pour lesquels
on a :

π∗(ξ) = pr∗1(ξ) + pr∗2(ξ) ,

où pri sont les deux projections deA × A surA, et π : A × A → A la loi de composition
deA (N.B. Serre n’́enonce son th́eor̀eme que pourG linéaire et connexe, et bien entendu lisse
sur k, mais en simplifiant la première partie de son raisonnement, on voit que ces restrictions
sont inutiles : il suffit de noter que tout morphisme deA dans un sch́ema en groupesE de type
fini surk, qui transforme unit́e en unit́e, est un homomorphisme de groupes, et d’apopliquer ceci
aux section au-dessus deA d’une extensionE deA parG).

Nous allons appliquer ce résultat au cas òuG est un groupe fini śeparable surk, i.e. un groupe
fini ordinaire, suppośe commutatif. Utilisant alorsπ1(A × A)

∼→ π1(A) × π1(A) (SGA X.1.7)
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et interpŕetantH1(X,G) commeHom(π1(X), G) pour tout sch́ema alǵebriqueX, en particulier
pourX = A ouX = A × A, on voit que toute classe deH1(A,G) est primitive, donc on a un
isomorphisme

Ext(A,G)
∼→ H1(A,G) ,

en d’autres termestout rev̂etement principal deA de groupe structural commutatifG, ponctúe
au-dessus de l’origine deA, est muni de façon unique d’une structure de groupe algébrique
admettant le point marqúe comme origine, et tel queA′ → A soit un homomorphisme de groupes
algébriques.En particulier, siA′ est connexe, c’estégalement une variét́e ab́elienne, isog̀eneàA.

D’autre part, comme le foncteurX 7→ π1(X) des sch́emas alǵebriques ponctúesX dans les
groupes commute au produit (SGA IX.1.7), il transforme un groupe dans la première cat́egorie en
un groupe dans la catégorie des groupes, i.e. en un groupecommutatif. DoncsiA est une varíet́e
abélienne,π1(A) est un groupe commutatif.Donc pour connâıtreπ1(A), il suffit de connâıtre le288
foncteurG 7→ H1(A,G) = Hom(π1(A), G) pourG variant dans les groupes finiscommutatifs.
Enfin, rappelons que pour tout entiern > 0, l’homomorph !isme de multiplication parn dansA :

A
n→ A

est surjectif, donc̀a noyau fini, i.e. c’est une isogénie, et qu’il en ŕesulte que toute isogénie
A′ → A est quotient d’une isoǵenie du type pŕećedent. De ceci, et de raisonnements standards
(cf. par exemple [6]) on tire :part 58

Théorème 2.1 (Serre-Lang). Soit A une variété abélienne sur un corps algébriquement clos k,
et pour tout entier n > 0 considérons le groupe fini ordinaire Kn sous-jacent au noyau nA de la
multiplication par n dans A, enfins posons pour tout nombre premier ` :

T`(A) = lim←−
r

K`r

et
T.(A) =

∏
`

T`(A) = lim←−
n

Kn

(où pour m multiple de n, m = ns, on envoie Km dans Kn par la multiplication par s). Alors
le groupe π1(A) est canoniquement isomorphe à T.(A), donc pour tout nombre premier `, la
composante `-primaire de π1(A) est canoniquement isomorphe à T`(A).

On notera que ces isomorphismes sont fonctoriels pourA variable. Le moduleT`(A) est
appeĺe le module`-adique de Tatede la varíet́e ab́elienneA. C’est un foncteur additif enA,
en particuier il donne lieùa une repŕesentation de l’anneauHom(A,A) des endormorphismes
deA dansT`(A), appeĺee représentatioǹ -adique de Weil, et qui joue un r̂ole important dans
la théorie des varíet́es ab́eliennes (cf par exemple [4, chap VII]). Le théor̀eme 2.1 en donne une
interpŕetation en termes de la représentation naturelle dans legroupe d’homologiè-adiquedeA,
H1(A,Z`) = π1(A)`, ce qui est́evidemment plus satisfaisant a priori, du point de vue notamment289
de la formule de Lefschetz, [4, Chap V]. Rappelons ici les résultats de Weil sur la structure de
T`(A) :
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a) Sin est premier̀a car(k), alorsKn est un module libre de ranǵegalà 2 dimA surZ/nZ,
donc si` est un nombre premier6= car(k), T`(A) est un module libre de ranǵegal à
2 dimA sur l’anneauZ` des entiers̀-adiques ;

b) Si n est une puissance decar(k) = p, alorsKn est un module libre de rangν ≤ dimA
surZ/nZ, ν indépendant den, doncTp(A) est un module libre de rangν ≤ dimA sur
l’anneauZp des entiersp-adiques.

Cela montre que dans la théorie du groupe fondamental dévelopṕee ici, le groupe fondamen-
tal d’une varíet́e ab́elienne variable ne varie pas de façon régulìere avec le param̀etre, sa compo-
santep-primaire pouvant diminuer brusquement pour des valeurs du paramètret correspondant
à une caractéristique ŕesiduellep ; le cas le mieux connu de ce phénom̀ene est celui des courbes
elliptiques. On notera cependant que, quel que soitn (premier ou noǹa la caract́eristique) le vrai
noyaunA dansA pour la multiplication parn est un sch́ema en groupe fini surk de degŕen2g, où
g = dimA, qui sera non śeparable surk sin est un multiple dep = car(k). D’ailleurs, lorsqueA
varie dans une famille de variét́es ab́eliennes, i.e. si on a un schéma ab́elienA sur un sch́ema de
baseS, on montre plus ǵeńeralement quenA est un sch́ema en groupes fini et plat surS, de degŕe
n2g surS, c’est-̀a-direà condition de tenir compte des parties infinitésimales des noyauxnA, ils
se comportent de façon régulìere quel que soitn. Cela sugg̀ere que le “vrai” groupe fondamental
d’une varíet́e ab́elienneA est le pro-groupe alǵebrique (limite projective formelle de groupes finis
surk) lim←−

n

nA, où par “vrai groupe fondamental” d’un schéma alǵebriqueX, il faut entendre : le

pro-groupe qui classifie les revêtements principaux deX de groupe structural un groupe fini quel-
conqueG surk (pas ńecessairement séparable surk). De cette façon par exemple, on récup̀ere
par les repŕesentations deHom(A,A) dans la composantep-primaire du vrai groupe fondamen-
tal deA, le polyn̂ome caract́eristique de Weil d́efini par ce dernier̀a l’aide des̀ 6= p, de façon
plus naturelle que la construction de Serre [8].

3 Cônes projetants, exemple de Zariski
290

Soit toujoursk un corps alǵebriquement clos pour simplifier, et soitV unk-sch́ema projectif
connexe, sous-schéma ferḿe dePrk, qu’on pourra si on veut supposer non singulier. SoientY = Ĉ
le cône projetant projectif deV , y0 son sommet,X = ĈV la fermeture projective habituelle du
fibré vectorielCV = V(OV (1)) assocíe àOV (1), enfin

f : X → Y

le morphisme canonique, contractant la section nulleX0 deCV surX en un point (EGA II 8.6.4).
CommeX est un fibŕe localement trivial surV , de fibresP1 donc de fibres simplement connexes,
le morphismep : X → V induit en vertu de (XI 4.) un isomorphisme :

π1(X)
∼→ π1(V ) .

Commep induit un isomorphismeX0 → V , on en conclut qu’un rev̂etement́etale deX est
compl̀etement d́ecompośe si et seulement si sa restrictionà X0 l’est. Or pour tout rev̂etement
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étaleY ′ de Y , l’image inverseX ′ = X ×Y Y ′ est un rev̂etementétale deX compl̀etement
décompośe sur la fibreX0, donc trivial. Comme l’homomorphismeπ1(X)→ π1(Y ) est surjectif
(SGA 1, IX 3.4), on en conclut que

π1(Y ) = (e)

en d’autres termestout ĉone projetant projectif est simplement connexe.(N.B. en caract́eris-
tique0, le même ŕesultat sera valable en prenant pourY le cône projetant affine).

Supposons maintenantV régulìere i.e. lisse surk ; alorsX est ŕegulìere, et pour une im-
mersion projective convenable deV , on trouve alors un ĉone projetantY normal. Si V n’est
pas simplement connexe, doncX non simplement connexe, soitX ′ un rev̂etement́etale connexe
non trivial deX. Comme les fibres deX en les pointsy ∈ Y distincts dey0 sont ŕeduitesà
un point, on voit que la restriction deX ′ à ses fibres (en particulierà la fibre ǵeńerique) est291
triviale ; cependantX ne provient pas par image inverse d’un revêtement́etale deY , puisque
Y est simplement connexe et queX ′ serait compl̀etement d́ecompośe. Cela montre que (X 1.3
et 1.4) deviennent faux si on remplace l’hypothèse quef est śeparable par celle plus faible que
ses fibres sont des schémas alǵebriques śeparables (ou m̂eme lisses) sur lesk(s). On notera de
même que les groupes fondamentaux des fibres géoḿetriquesXy desy 6= y0 sontévidemment
réduitsà (e) puisque ces fibres sont réduites̀a un point, alors queπ1(X0) 6= e, donc le th́eor̀eme
de semi-continuit́e (X 2.4) est́egalement en d́efaut pourf .

Indiquons enfin l’exemple, signalé par Zariski, mettant en défaut ces m̂emes th́eor̀emes, lors-
qu’on y remplace l’hypoth̀ese quef est śeparable par celle quef est plate. Soitf : X → Y
un morphisme d’une surface non singulière projective dans la droite rationnelleY = P

1, tel que
K = k(x) soit une entension “régulìere” i.e. primaire et śeparable dek(f), (i.e. la fibre ǵeńerique
géoḿetrique est connexe et séparable), et telle que le diviseur(f) = X0 −X∞ soit un multiple
n.ème d’un diviseur (òu n est un entier premier̀a la caract́eristique). Il est possible de construire
de tels exemples en toute caractéristique. SoitX ′ le normaliśe deX dansK(f 1/n), oùK = k(X)
est le corps des fonctions deX. Il résulte de l’hypoth̀ese sur(f) queX ′ estétale surX. SoitY ′

le normaliśe deY dansk(t)(t1/n), il est ramifíe surY en les pointst = 0 et t = ∞ exactement,
et la restrictionX ′|f−1(U) est isomorphèa l’image inverse deY ′|U . En particulier, la restriction
deX ′ à la fibre ǵeńeriquegéoḿetriquedeX surY se d́ecompose comp̀etement. Cependant,X ′

n’est pas isomorphèa l’image inverse d’un rev̂etement́etale deY , car on voit tout de suite que
ce dernier serait ńecessairementY ′, ce qui est absurde puisqueY ′ est ramifíe surY 1.

Voici (d’après Serre) une façon simple de réaliser les conditions de cet exemple, en s’inspirant
de [5, No 20] : on prend pourn un nombre premier≥ 5, distinct de la caractéristique, et on fait
opérerG = Z/nZ dansk4 en multipliant les coordonńees par quatre caractères distincts deG (ce
qui est possible puisquen ≥ 5). AlorsG opère sur l’espace projectifP3

k, et les seuls points fixes
sousG sont les quatre points correspondants aux axes de coordonnées. La surfaceX ′ d’équation
x4 + y4 + z4 + t4 = 0 est lisse surk (critère jacobien), et ne contient aucun des points fixes,292
doncG étant d’ordre premier, opère surX “sans points fixes” i.e.X est un rev̂etement principal

1On peut remarquer, du point de vue de la “topologieétale” (SGA 4 VII), que dans cet exempleR1(fét)∗(Z/nZ)
est “non śepaŕe” surS.
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deX = X ′/G de groupeG. Soit g = x/y dansk(X ′) = K ′, c’est un ǵeńerateur kumḿerien
deK ′ surK = k(X) si les caract̀eres choisiśetaientχi, i = 0, 1, 2, 3, avecχ un caract̀ere
primitif, soit f sa puissancen.ème, qui est uńelément deK. On voit tout de suite queK ′ est une
extension ŕegulìere dek(g), ce qui ŕesulte du fait que la courbe plane d’équation homog̀ene en
U, T, Z : T n + Zn + (1 + gn)Un = 0 est lisse surk(g) (critère jacobien), et qu’on sait que toute
courbe plane est connexe. D’autre part on ak(f) = K ∩ k(g), puisque le deuxième membre
est une extension dek(f) contenue dans l’extensionk(g) de degŕe premier, et distincts dek(g)
(puisqueg 6∈ K). Cela implique queK est une extension régulìere dek(f). Enfin le diviseur
de f surX est un multiplen.ème d’un diviseur, car son image inverse surX ′ est le diviseur
degn, donc un multiplen.ème, et on peut redescendre parce queX ′ estétale surX. On aurait
fini si l’application rationnellef : X → P

1 était un morphisme, c’est-à-dire si les diviseurs des
zéros et des p̂oles def ne se rencontraient point. En fait, on vérifie aiśement (en regardant encore
surX ′) que les deux diviseurs en question sont les produits parn de deux courbes lisses surk,
se coupant transversalement en un pointa. Remplaçant maintenantX par le sch́ema obtenu en
faisantéclatera, les conditions pŕećedentes (div(f) divisible parn, etk(X1) = k(X) extension
régulìere dek(X)) restent v́erifiées, mais de plusf est unmorphismeX1 → P

1, donc on est sous
les conditions voulues.part 59

4 La suite exacte de cohomologie

SoitS un pŕesch́ema, de sorte que la catégorieSch/S des pŕesch́emas surX est d́etermińee,
donc aussi la notion de groupe dans icelle, qu’on appellera aussiprésch́ema en groupes surS,
ou simplementS-groupe. Pour simplifier l’exposition et fixer les idées, nous nous bornerons le
plus souvent par la suitèa des groupes qui sontaffineset plats surS2, ce qui suffira pour les
applications que nous avons en vue. (Bien entendu, on rencontre de nombreux cas où ni l’une ni
l’autre hypoth̀ese n’est v́erifiée). SoitG un telS-groupe, et soitP un pŕesch́ema surS sur lequel293
G opèreà droite, ce qui implique en particulier un morphisme

π : P ×S G→ P

dans la cat́egorieSch/S, satisfaisant les axiomes bien connus. On dit queP est formellement
principal homog̀ene sousG si le morphisme

P ×S G→ P ×S P

de composantespr1 et π est un isomorphisme ; il revient au même de dire que pour tout ob-
jet S ′ de Sch/S′, P (S ′) = HomS(S ′, P ) consid́eŕe comme ensemblèa groupes d’oṕerateurs
G(S ′) = HomS(S ′, G), est vide ou principal homogène (i.e. vide ou isomorphèaG(S ′) sur le-
quel le groupeG(S ′) opère par translations̀a droite). On dit queP esttrivial si P est isomorphe
àG, sur lequelG opère par translations̀a droite, ou ce qui revient au m̂eme, si chacun des en-
sembles̀a oṕerateursP (S ′) sousG(S ′) est trivial. On v́erifie, par exemple par le procéd́e brevet́e

2En fait, pour ce qui va suivre, l’hypothèse quasi-affine au lieu d’affine suffirait, cf. note de bas de page 5.
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de passage au cas ensembliste, queP est trivial si et seulement si il est formellement principal
homog̀eme, et admet une section surS (ce dernier fait s’́enonçant en termes catégoriques en
disant queP a une section sur l’objet finale = S deSch/S, i.e. qu’il existe un morphisme de
e dansP ). Pour d́efinir la notion de fibŕe principal homog̀eneP sousG, plus forte que celle
de fibŕe formellement principal homogène, il faut pŕeciser d’abord dansSch/S un ensemble de
morphismes qui seront utilisés pour la “descente”, et joueront le rôle de “morphismes de locali-
sation” pour “trivialiser” des fibŕes. Le choix le plus ad́equat varie suivant le contexte, aucun ne
contenant tous les autres3. Ici, il sera commode d’adopter la définition suivante :

Définition 4.1 Soit G un S-groupe. On appelle fibré principal homog̀ene(à droite) sous G, un
S-préschéma P à S-groupe à droite G, tel qu’il existe un recouvrement de S par des ouverts Ui,
et pour tout i un morphisme de changement de base S ′i → Ui fidèlement plat et quasi-compact,
tel que P ′i = P ×S S ′i soit un préschéma à opérateurs trivial sous G′ = G×S S ′.

(On notera que le foncteur changement de baseX 7→ X ′ = X ×S S ′ étant exact̀a gauche,294
transforme groupes en groupes, objetsà groupe d’oṕerateurs en objets̀a groupes d’oṕerateurs).
Notons que 4.1 eststable par changement de base. Notons aussi :

Proposition 4.2 Soient G un S-groupe, plat et quasi-compact sur S, P un S-préschéma où G
opère à droite. Conditions équivalentes :

(i) P est un fibré principal homogène sous G.

(ii) P est formellement principal homogène sous G, et le morphisme structural P → S est
fidèlement plat et quasi-compact.

Si P est principal homog̀ene sousG, alors avec les notations de 4.1P ′ est fid̀element plat
et quasi-compact surS ′ (puisqueG′ l’est, et P ′ lui est S ′-isomorphe), doncP a les m̂emes
propríet́es au-dessus deS, (pour “surjectif” et “quasi-compact”, cf. VIII 3.1, pour “plat” c’est un
oubli dans les sorites de l’exposé VIII). Inversement, si (ii) est v́erifié, prenons le changement de
baseS ′ = P , qui est bien fid̀element plat et quasi-compact surS ; alorsP ′ sera formellement
principal homog̀ene surS ′ puisqueP l’est surS et que le foncteur changement de base est exact
à gauche, d’autre partP ′ a une section surS ′, savoir la section diagonale, donc c’est un fibré
principal trivial, ce qui ach̀eve la d́emonstration.

Corollaire 4.3 Si G est affine et plat sur S, tout fibré principal homogène P sous G est affine et
plat sur S.

En effet, il le devient par extension fidèlement plate et quasi-compacte de la base, et on
applique (VIII 5.6).

L’utilit é de la d́efinition 4.1 pour desS-groupesplatsetaffinessurS tient à (VIII 2.1), i.e. au
fait que les morphismesS ′ → S envisaǵes dans 4.1 sont des morphismes de descente effective
pour la cat́egorie des pŕesch́emas affines sur d’autres. Grâceà ce fait, la v́erification des faits

3Voir à ce sujet SGA 3 IV, notamment§ 4.
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esquisśes ci-dessous se fait de façon essentiellement “catégorique”4. SoitE unS-présch́ema sur
lequel leS-groupeG opèreà gauche, et soitP un fibŕe principal homog̀ene (̀a droite) sousG,
nous voulons d́efinir un fibŕe assocíeE(P ), “localement” isomorphèaE. Pour ceci, faisons opérer
à droiteG dansP ×S E suivant la loi(x, y) 7→ (xg, g−1y), qui d́ecrit de telles oṕerations dans le295
contexte ensembliste, et s’étend aux catégories par le proćed́e brevet́e. On posera, sous-réserve
d’existence :

E(P ) = (P ×S E)/G

moyennant quoi on constate queP ×S E sera un pŕesch́ema au-dessus deT = E(P ), à groupes
d’opérateurs̀a droiteGT = G×S T ; pourêtreà l’aise, on aimerait que de plusP ×S E soit un
fibré principal homog̀ene surT de groupeGT . Pour v́erifier l’existence deE(P ) et la propríet́e
préćedente, reprenons leS ′ de la d́efinition 4.1 et regardons la situation image inverse surS ′

de la situation initiale. Du fait queP ′ est trivial i.e. isomorphèaG′d, on voit tout de suite que
E ′(P

′) existe, et a la propriét́e voulue d’exactitude. En fait,E ′×S′ P ′ estG′-isomorphe au produit
E ′ ×S′ G′, doncE ′(P

′) est isomorphèaE ′. De plus, la formation du “fibŕe assocíe” dans le cas
d’un espacèa oṕerateurs trivial commutèa toute extension de la base, et prenant en occurrence
les diverses extensions de la baseS ′′ //// S ′ S ′′′

// //// S ′ , où S ′′ etS ′′′ sont les produits fibŕes

double et triple deS ′ surS, on constate queE ′(P
′) est muni d’une donńee de descente relative-

ment au morphismeS ′ → S, et queE(P ) existe avec les propriét́es requises si et seulement si
cette donńee de descente est effective; bien entenduE(P ) n’est autre alors que l’objet descendu.
(Utiliser le fait queS ′ → S est un morphisme de descente dans la catégorie desS-présch́emas,
cf. VIII 5.2). Il s’ensuit quele fibré assocíe existe siE est affine surS. Nous appliquerons cette
construction au cas où on a un homomorphisme deS-groupesG → H, et qu’on prend pourE
le S-présch́emaH muni des oṕerations deG surH à gauche ŕesultant du morphisme donné ;
commeH opèreà droite sur lui-m̂eme de façoǹa commuter aux oṕerations deG surH, et que
(sous ŕeserve d’existence au-dessus deS) la formation du fibŕe assocíe commutèa l’extension de
la base, on constate aisément queH va oṕererà droite surP (H), qui est d̀es lors un fibŕe princi-
pal homog̀ene sousH au sens de 4.1, et de façon précise est trivialiśee par le m̂eme morphisme296
S ′ → S queP . En particulier,à tout fibŕe principal homog̀eneP sousG et tout homomor-
phisme deS-groupesG → H, avecH affine surS, est associé un fibŕe principal homog̀ene
de groupeH, de façon fonctorielle en(G → H), et compatible avec les changements de base
quelconquesT → S.

Définition 4.4 Soit G un S-préschéma. On note H0(S,G) l’ensemble des sections de G sur S,
qu’on considèrera comme un groupe lorsque G est un S-groupe. Dans ce cas, on note H1(S,G)
l’ensemble des classes, à isomorphisme près, de fibrés principaux homogènes sur S de groupe S,
en considérant H1(S,G) comme muni du “point marqué” qui correspondant aux fibrés triviaux5.

4Cf. loc. cit. dans note de bas de page 3
5Cette notation n’est cohérente visà vis des notations cohomologiques géńerales (SGA 4 V) que lorsqu’on

dispose de crit̀eres d’effectivit́e de descente, qui ne sont guère assuŕes que siG est affine (ou seulement quasi-affine,
cf. (VIII 7.9).
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Ainsi, H0(S,G) est un foncteur en leS-présch́emaG, à valeurs dans la catégorie des en-
sembles. Ce foncteur est exactà gauche, a fortiori commute aux produits finis, ce qui implique
en effet qu’il transforme groupes en groupes, groupes commutatifs en groupes commutatifs. De
façon analogue,H1(S,G) est un foncteur en leS-groupeaffineG, à valeurs dans la catégorie des
ensembles grâceà la formation des fibrés associés ; on constate facilement que ce foncteur com-
mute aux produits finis. En particulier il transforme les groupes dans la catégorie desS-groupes
affines, i.e. lesS-groupesaffines commutatifs, en des groupes de la seconde, et même en des
groupes commutatifs (puisque les groupes de la première cat́egorie sont commutatifs). Ainsi,si
G est unS-groupe affine commutatif,H1(S,G) est un groupe commutatif, et un homomorphisme
G → H deS-groupes affines commutatifs donne naissanceà un homomorphisme de groupes
H1(S,G)→ H1(S,H).

Pour simplifier, nous nous bornons pour la suiteà la consid́eration deS-groupesaffines et
commutatifs. Soit

0 // G′
u // G

v // G′′ // 0

une suite de morphismes de tels groupes,nous dirons que cette suite est exacte sivu = 0, (ce
qui permet de consid́ererG comme un pŕesch́ema surG′′, à groupes d’oṕerateurs̀a droiteG′G′′),
et siG est un fibŕe principal homog̀ene surG′′ de groupeG′G′′ = G′ ×S G′′. Cela implique en297
particulier queu : G′ → G est un noyau dev, et a fortiori cela implique l’exactitude de la suite
0 → H0(X,G′) → H0(X,G) → H0(X,G′′). Cela implique de plus la possibilité de d́efinir une
application

∂ : H0(X,G′′)→ H1(X,G′) ,

en associant̀a toute section deG′′ surS, i.e. à toutS-morphismef : S → G′′, le fibré principal
homog̀enePf de groupeG′ ' f ∗(G′G′′) surS, image inverse du fibré principal homog̀eneG
surG′′. Du point de vueS-présch́emas, ce n’est donc autre que l’image inverse parv : G → G′′

du sous-pŕesch́ema image deS par l’immersionf , et les oṕerations deG′ surPf sont induites
par les oṕerationsà droite deG′ surG). Nous laissonśegalement au lecteur la vérification de la
proposition suivante, qui ne présente pas de difficultés autres que de rédaction :

Proposition 4.5 L’application ∂ : H0(X,G′′)→ H1(X,G′) est un homomorphisme de groupes.
La suite d’homomorphismes suivante est exacte :

0→ H0(X,G′)
u0

→ H0(X,G)
v0

→ H0(X,G′)
∂→ H1(X,G′′)

u1

→ H1(X,G)
v1

→ H1(X,G′′)

(où les homomorphismes autres que ∂ proviennent de la loi fonctorielle de H0 resp H1).

Remarques 4.6Le point de vue exposé ici pour l’étude des fibŕes principaux homog̀enes est
visiblement inspiŕe de Serre [7], que le lecteur aura tout intér̂et à consutlter. Lorsqu’on veut un
formalisme qui s’appliquéegalement̀a desS-groupes structuraux qui sont quasi-projectifs surS
(de façoǹa englober les schémas ab́eliens projectifs en particulier), on a intér̂età modifier 4.1 en y
demandant queS ′ soit somme de présch́emasS ′i qui sont finis et localement libres sur des ouverts
Si deS recouvrantS. Les d́eveloppements préćedents sont alors valables, y inclus notamment
4.5, en remplaçant partout l’hypothèse affine par l’hypoth̀ese quasi-projective, et en interprétant
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de façon correspondante la définition donńee plus faut d’une suite exacte deS-groupes. Il suffit
en effet de remplacer la référencèa (VIII 2.1) par (VIII 7.7) : les morphisme utiliśesS ′ → S sont298
des morphismes de descente effective pour la catégorie fibŕee des pŕesch́emas quasi-projectifs
sur d’autres. On fera attention cependant que cette deuxième notion de fibŕe principal homog̀ene
est plus restrictive que la première 4.1.

part 60

4.7 On obtient une notion encore plus restrictive de fibré principal homog̀ene en demandant
queS soit recouvert par des ouvertsSi tels que pour touti, P |Si soit un fibŕe à oṕerateurs trivial
sousG|Si : on dira alors queP est un fibŕe principal homog̀emelocalement trivial. Les classes de
ces fibŕes, pourG donńe, forment une partie deH1(X,G), qui est en correspondance biunivoque
avecH1(X,OX(G)), oùOX(G) est le faisceau (au sens ordinaire) des sections deG surS, cf. [2].
Pour que cesH1 donnent encore lieùa une suite exacte de cohomologie 4.5, il fautévidemment
supposer que la suite0→ G′ → G→ G′′ → 0 soit exacte au sens raisonnable pour ce nouveau
contexte, i.e. queG soit fibŕe localement trivial surG′′, de groupeG′G′′ ; cela signifie aussi que
u : G′ → G est un noyau dev : G→ G′′, et queG admet localement une section surG′′.

4.8 Il est évidemment tr̀es d́esirable de continuer la suite exacte 4.5 en introduisant les
groupes de cohomologie supérieursHi(X,G). Cela est possible en se plaçant dans le cadre
de la “Cohomologie de Weil” : on considère la cat́egorieB des pŕesch́emas quasi-compacts
surS, muni de l’ensembleM des morphismes fid̀element plats et quasi-compacts, qu’on ap-
pellera morphismes localisants. Un “faisceau de Weil” abélien surS (ou mieux, sur(B,M ))
est alors un foncteur contravariantF deB dans la cat́egorie des groupes abéliens, transformant

sommes en produits, et une suiteT ′′ = T ′ ×T T ′
pr1,pr2 // // T ′

f // T , avecf ∈ M , en un dia-

grammeexactd’ensemblesF (T ) //F (T ′) ////F (T ′′) . Les faisceaux de Weil forment
une cat́egorie ab́elienneà limites inductives exactes admettant un géńerateur, donc admettant
suffisamment d’objets injectifs [1]. Les foncteurs dérivés droits du foncteurΓ(F ) = F (S) sont
alors not́esHi(S,F ). D’autre part, toutS-groupe commutatif d́efinit évidemment un faisceau
de Weil (VIII 5.2), dont leH0 et H1 ne sont autres queH0(S,G) et H1(S,G), ce qui permet de
définir les autresHi(S,G) de façon raisonnable. On montre d’ailleurs qu’une suite exacte deS-299
groupes d́efinit une suite exacte de faisceaux de Weil, ce qui permet de retrouver et de prolonger
la suite exacte 4.56.

4.9 Il serait indiqúe de d́evelopper les variantes non commutatives de 4.5 comme dans [2].
Pour un d́eveloppement systématique, dans le cadre qui convient, des diverses notions coho-
mologiques esquissées dans le présent nuḿero, nous renvoyons̀a un travail en pŕeparation de
J. GIRAUD7.

6Pour unéetude syst́ematique de ce point de vue, cf. SGA 4 Ià IX.
7Cf. J. GIRAUD,Algèbre homologique non abélienne, à paraitre dans Springer-Verlag 1971.
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5 Cas particuliers de fibrés principaux

Supposons maintenant queS soit connexe, et muni d’un point géoḿetrique a, d’où un
groupe fondamentalπ1(S, a) permettant de classifier les revêtementśetales deS : la cat́egorie
des rev̂etementsétales deS est équivalenteà la cat́egorie des ensembles finis où π1 opère
contin̂ument. Il s’ensuit qu’un sch́ema en groupes fini et́etaleG sur S est d́etermińe essen-
tiellement par un groupe fini ordinaireG , sur lequelπ1 opère contin̂ument par automorphismes
de groupe. Un rev̂etement́etaleP deS oùG opèreà droite est d́etermińe essentiellement par un
ensemble finiP où π1 opère contin̂ument (̀a gauche), et sur lequelG opèreà droite de façon
compatible avec les opérations deπ1 :

s(p.g) = (sp).(sg) pours ∈ π1 , p ∈P , g ∈ G .

On vérifie queP est un fibŕe principal homog̀ene au sens de 4.1 si et seulement siP est un
ensemble principal homogène sousG (utiliser par exemple le critère 4.2). En d’autres termes,
la cat́egorie des fibŕes principaux homog̀enes surS de groupeG estéquivalentèa la cat́egorie
des fibŕes principaux homog̀enes de groupeG dans la cat́egorie des ensembles finis où π1 opère
contin̂ument.On en d́eduit en particulier une bijection canonique, fonctorielle enG :

(*) H1(S,G)
∼→ H1(π1,G ) ,

où le deuxìeme membre d́esigne l’ensemble des classes,à isomorphisme près, des fibŕes prin-300
cipaux homog̀enes sousG dans la cat́egorie des ensembles finis où π1 opère (inutile d’ailleurs
de pŕeciser : contin̂ument), ensemble qui s’explicite de façon bien connue comme ensemble
quotient de l’ensembleZ1(π1, G) des 1-cocyclesϕ : π1 → G (satisfaisantϕ(1) = 1,
ϕ(st) = ϕ(s)(s.ϕ(t))) par le groupeG qui y op̀ere de façon naturelle).

Un cas important est celui où π1 opère trivialement dansG , i.e. lorsqueG est un rev̂etement
compl̀etement d́ecompośe deS, isomorphèa la somme deG exemplaires deS ; on écrit alors
aussiH1(S,G ) au lieu deH1(S,G), et cet ensemble est en correspondance biunivoque (*) avec
H1(π1,G ) = Hom(π1,G )/automorphismes intérieurs deG . On notera d’ailleurs que dans ce
cas, un fibŕe principal homog̀ene surS de groupeG n’est autre chose qu’unrevêtement principal
deS de groupeG (V 2.7), et la correspondance biunivoque préćedente est celle qui se déduit de
la correspondance entre revêtements principaux deS de groupeG , ponctúesau-dessus dea, et
les homomorphismes continus deπ1(S, a) dansG (V fin du No 5).

L’int ér̂et de relier la th́eorie des rev̂etementśetales avec celle des fibrés principaux (d́ejà im-
plicite dans A. Weil, Ǵeńeralisation des Fonctions Abéliennes, et explicitée par S. Lang dans sa
théorie ǵeoḿetrique du corps de classes, cf. Serre [5]), vient du fait que toutS-groupe qui est fini
et étale surS peut se plonger dans unS-groupeH, affine et lisse surS, à fibres connexes, com-
mutatif lorsqueG l’est de sorte que par la suite exacte 4.5 (etéventuellement ses variantes non
commutatives), la classification “discrète” des rev̂etements principaux de groupeG peut s’́etudier
à l’aide de la classification “continue” des fibrés principaux de groupeH, et ŕeciproquement
d’ailleurs. Pour l’id́ee de la construction géńerale de l’immersion deG dansH (assez peu uti-
lisée en pratique semble-t-il), se reporterà [5, VI 2.8]. Nous nous contentons de développer
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au No suivant deux cas particuliers importants, d’ailleurs classiques. Nous y aurons besoin d’un
résultat auxiliaire :301

Proposition 5.1 Soit S un préschéma, G un S-groupe isomorphe à Gl(n)S (par exemple GmS)
ou GaS , alors tout fibré principal homogène sous G est localement trivial.

Pŕecisons queGl(n)S (n entier≥ 0) désigne leS-groupe qui repŕesente le foncteur contra-
variantT 7→ Gl(n,Γ(T,OT )) en leS-présch́emaT , en particulierGmS (“groupe multiplicatif
surS”) représente le foncteur contravariantT 7→ Γ(T,O∗T ), donc comme pŕesch́ema surS est
isomorpheà Spec OS[t, t−1], où t est une ind́etermińee. De m̂emeGaS repŕesente le foncteur
contravariantT 7→ Γ(T,OT ), il est donc isomorphe commeS-présch́emaà Spec(OS[t]), où t
est une ind́etermińee. Notons que par dévissage, 5.1 redonne le résultat de locale trivialit́e de
Rosenlicht, relatif au cas où G admet une “suite de composition” dont les facteurs consécutifs
sont des groupes du type envisagé ici. (Pour unéetude plus fine des questions de locale trivialité
des fibŕes principaux homog̀enes, cf. [7] et [3]).

La premìere assertion se démontre en remarquant queG(T ) = Aut(On
T ), et que les mor-

phismesS ′ → S intervenant dans 4.1 (i.e. qui sont fidèlement plats et quasi-compacts) sont des
morphismes de descente effective pour la catégorie fibŕee des Modules localement isomorphes
à On

T , i.e. localement libres de rangn (VIII 1.12). La deuxìeme se d́emontre de façon analogue,
en notant que dans ce cas on aG(T ) = Aut(ET ), où ET est l’extensiontriviale deOT parOT

(et òu les automorphismes bien entendu doivent respecter la structure d’extension), et que les
morphismesS ′ → S intervenant dans 4.1 sont des morphismes de descente effective pour la
cat́egorie fibŕee des extensions deOT parOT (comme il ŕesulte facilement de VIII 1.1), et que
de telles extensions sont automatiquement localement triviales.

Remarque 5.2 On notera que le m̂eme type de d́emonstration s’applique au groupe symplec-
tiqueSp(2n)S, compte tenu qu’une forme alternée sur un module localement isomorpheà O2n

S ,
qui est “non d́eǵeńeŕee” i.e. d́efinit un isomorphisme de ce Module sur son dual, est localement
isomorpheà la forme standard. Le résultat pour le groupe orthogonal est par contre faux, déjà
si S est le spectre d’un corps, car il peut y avoir des formes quadratiques sur un corps qui ne302
sont pas isomorphes̀a la forme standard. D’ailleurs on montre essentiellement dans [3] que les
groupesGl, Sp, Ga et ceux qui se d́evissent en tels groupes, sontà peu de choses près les seuls
pour lesquels on ait un résultat de trivialit́e locale du type considéŕe ici.

Corollaire 5.3 On a des bijections canoniques

H1(S,Gl(n)S)
∼← H1(S,Gl(n,OS)) ,

en particulier
H1(S,GmS)

∼← H1(S,O∗S) ,

et
H1(S,GaS)

∼← H1(S,OS) ,

où les deuxièmes membres désignent des cohomologies de l’espace topologique S à coefficients
dans des faisceaux ordinaires.
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En particulier,H1(S,Gl(n)S) s’identifie à l’ensemble des classes,à isomorphisme près, de
Modules localement libres de rangn surS, et H1(S,GaS) s’identifie à l’ensemble des classes
d’extensions du ModuleOS par lui-même.part 61

6 Application aux revêtements principaux : théories de Kum-
mer et d’Artin–Schreier

Proposition 6.1 Soient S un préschéma, n un entier > 0, soit un : GmS → GmS l’homomor-
phisme de puissance n.ème, et µnS son noyau. Alors µnS est fini et localement libre de rang n
sur S, et il est étale sur S si et seulement si pour tout s ∈ S, la caractéristique de s est première
à n. La suite d’homomorphismes

0→ µnS → GmS
un−→ GmS → 0

est exacte au sens du No 4. (On l’appellera la suite exacte de Kummersur S, relativement à
l’entier n).

On a303
Gm = Spec OS[t, t−1],

etun correspond̀a l’homomorphismeun sur lesOS-algèbres affines, donné par

un(t) = tn,

d’autre part la section unité deGmS correspond̀a l’homomorphisme d’augmentation deOS-
algèbres, donńe par

ε(t) = 1,

dont le noyau est donc l’Id́eal principal(t − 1). L’image de ce dernier parun est donc l’Id́eal
principal(1− tn), et on trouve :

µnS = Spec OS[t]/(1− tn),

ce qui montre en particulier queµnS est fini surS, et d́efini par une Alg̀ebre surS qui est libre de
rangn, ayant la base forḿee desti (0 ≤ i ≤ n−1). Pour qu’il soitétale ens ∈ S, il faut et il suffit
que l’Algèbre ŕeduitek[t]/(1 − tn), où k = k(s), obtenue par adjonction formelle des racines
n.èmes de l’unit́e àk, soit śeparable surk, i.e. les racines de1−tn dans une cl̂oture alǵebrique de
k sont toutes distinctes, ce quiéquivaut au fait quen soit premier̀a la caract́eristique. Enfin, pour
montrer que la suite d’homomorphismes dans 6.1 est exacte, on est ramené en vertu du crit̀ere
4.2à prouver quev est fid̀element plat. On peutévidemment supposerS affine d’anneauA, donc
GmS affine d’anneauB = A[t, t−1], et il suffit de v́erifier queun fait deB un module libre de
rangn surB, ou ce qui revient au m̂eme, queun est injectif, et queA[t, t−1] est un module libre
de rangn surA[tn, t−n]. En effet, on v́erifie facilement que lesti (0 ≤ i ≤ n − 1) forment une
base de l’un sur l’autre, ce qui achève la d́emonstration.

220



XI

304

Définition 6.2 On appelle µnS le groupe de Kummer de rangn surS, et on appelle revêtement
principal Kumḿerien de rangnS tout fibré principal homogène sur S de groupe le groupe de
Kummer de rang n.

L’ensemble de ces revêtements est un groupe, notéH1(S, µnS) ou simplementH1(S, µn). On
notera que la formation du groupe de Kummer de rangn surS est compatible avec l’extension
de la base, donc queµnS provient par extension de la base dugroupe de Kummer absoluµn sur
Spec(Z).

Désignons par(Z/nZ)S le S-groupe d́efini par le groupe fini ordinaireZ/nZ. Si G est un
S-groupe quelconque, les homomorphismes deS-groupesu de(Z/nZ)S dansG correspondent
biunivoquement, et de façon compatible avec le changement de base, aux sections deG surS
dont la puissancen.ème est la section unité, en faisant correspondreà u l’image paru de la
section de(Z/nZ)S surS défini par le ǵeńerateur1 mod nZ deZ/nZ. Ceci pośe :

Corollaire 6.3 Si µnS est étale sur S, on obtient ainsi une correspondance biunivoque entre
les isomorphismes de S-groupes (Z/nZ)S

∼→ µnS , et les sections de OS qui sont d’ordre n
exactement sur chaque composante connexe de S (une telle section s’appellera “racine primitive
n.ème de l’unité sur S”). Donc pour que µnS soit isomorphe en tant que S-groupe à (Z/nZ)S , il
faut et il suffit qu’il soit étale sur S i.e. que les caractéristiques résiduelles de S soient premières
à n, et qu’il éxiste une racine primitive n.ème de l’unité sur S.

Cela explique le r̂ole joúe dans la th́eorie kumḿerienne classique par l’hypothèse que le
corps de base (jouant le rôle deS) soit de caract́eristique premìereà n et contienne les racines
n.èmes de l’unit́e, et par le choix d’une racine primitiven.ème de l’unit́e. Une fois qu’on dispose
du langage des schémas, il n’y a plus lieu de s’embarraser de ces hypothèses, et il convient de
raisonner directement surµn au lieu deZ/nZ. Ainsi, la conjonction de 6.1, 4.5 et 5.3 nous donne
la relation ǵeńerale suivante entre la théorie des rev̂etements principaux kumḿeriens et celle des
groupes de Picard :

305

Proposition 6.4 Soient S un préschéma, on a une suite exacte canonique

0→ H0(S, µn)→ H0(S,O∗S)→ H0(S,O∗S)→ H1(S, µn)→ H1(S,O∗S)→ H1(S,O∗S),

d’où, en posant H1(S,OS) = Pic(S), et en désignant pour tout groupe ábelien A, par nA et An
les noyau et conoyau de la multiplication par n dans A, la suite exacte :

0→ H0(S,OS)∗n → H1(S, µn)→ nPic(S)→ 0.

Nous allons expliciter deux cas importants, où l’un ou l’autre terme extr̂eme de cette suite
exacte sont nuls :
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Corollaire 6.5 Supposons nPic(S) = 0, (par example que S soit le spectre d’un anneau local,
ou d’un anneau factoriel), et soit A l’anneau H0(S,OS). Alors on a un isomorphisme canonique

H1(S, µn)
∼→ A∗/A∗n.

C’est essentiellement l’énonće classique de la théorie de Kummer, lorsqueS est le spectre
d’un corps.

Corollaire 6.6 Supposons que tout élément de H0(S,OS) soit une puissance n.ème, par exemple
que H0(S,OS) soit un composé de corps algébriquement clos ou que S soit réduit et propre sur
un corps algébriquement clos k. Alors on a un isomorphisme canonique

H1(S, µn)
∼→ nPic(S).

En particulier, lorsqueS est propre et connexe sur un corps algébriquement closk, cela met
en relation le groupe fondamental deS avec les points d’ordre fini du schéma de PicardP deS
surk ; ainsi on aura un isomorphisme

Hom(π1(S),Z/nZ) ' nP (k)

pour n premier à la caract́eristique, qui est souvent utilisé en ǵeoḿetrie alǵebrique. Comme306
application, lorsque la composante connexeP 0 deP est un sch́ema en groupes complet, de di-
mensiong, on voit en utilisant les ŕesultats rappelés dans le No 2, et la finitude du groupe de
torsion de Ńeron-Śevéri, que pour tout nombre premier` premierà la caract́eristique, la com-
posantè .primaire du groupe fondamentalπ1(S) rendu ab́elien est un module de type fini et de
rang2g sur l’anneauZ` des entiers̀-adiques (et d’ailleurs libre sauf pour un nombre fini au plus
de valeurs dè). Comme l’a remarqúe Serre, cela permet de prouver sous certaines conditions
que lorsqueX est un sch́ema plat et projectif surS connexe, alors les schémas de Picard des
fibres deX ont toutes la m̂eme dimension, en appliquant le théor̀eme de semicontinuité (SGA
X 2.3) ; l’argument de Serre s’applique dès que le sch́ema de Picard deX surS existe, et que
les Picards connexes des fibres deX surS sont des sch́emas en groupes propres, par exemple
lorsque les fibres ǵeoḿetriques deX surS sont normales (X étant toujours plat et projectif sur
S), en particulier siX est lisse et projectif surS.

Soit maintenantp un nombre premier, et supposons queS soit un pŕesch́ema de ca-
ract́eristiquep, i.e. tel quep · OS = 0. Alors l’homomorphisme de puissancep.ème dansOS

est additif, et le morphisme correspondant, obtenu en remplaçantS par unT variable surS :

F : GaS → GaS

est donc un homomorphisme deS-groupes, qu’on appelle l’homomorphisme de Frobenius(N.B.
Un tel morphisme est d́efini pour toutS-présch́emaG qui provient par extension de la base d’un
présch́emaG0 sur le corps premierZ/pZ, et ce morphisme est un homomorphisme de groupes
siG0 est un pŕesch́ema en groupes). Nous poserons :

℘ = id− F : GaS → GaS.
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Consid́erons d’autre part leS-groupe(Z/pZ)S défini par le groupe fini ordinaireZ/pZ, nous
avons dit que pour toutS-groupeG, les homomorphismes deS-groupe de(Z/pZ)S dansG
correspondent biunivoquement aux sections deG surS dont la puissancep.ème est la section
unité. LorsqueG = GaS, elles correspondent donc aux sections quelconques deG surS. Prenant307
en particulier la section deGaS surS correspondant̀a la section unit́e du faisceau d’anneauxOS,
on trouve un homomorphisme deS-groupes

i : (Z/pZ)→ GaS

Proposition 6.7 La suite d’homomorphismes de S-groupes

0→ (Z/pZ)S → GaS → GaS → 0

est exacte (au sens du No 4). (On l’appelle la suite exacte d’Artin-Schreiersur S).

Il suffit de le prouver sur le corps premierk = Z/pZ. Il suffit de remarquer que l’homomor-
phisme℘∗ : k[t] → k[t] défini par℘∗(t) = t − tp fait dek[t] un module libre de rangp surk[t],
de façon pŕecise quek[t] est un module libre surk[s], où s = t − tp, ayant la base forḿee des
ti (0 ≤ i ≤ p− 1).

On en conclut, utilisant 4.5 et 5.3 :

Proposition 6.8 On a une suite exacte canonique :

0→ H0(S,Z/pZ)→ H0(S,OS)→ H0(S,OS)→ H1(S,Z/pZ)→ H1(S,OS)→ H1(S,OS),

d’où une suite exacte :

0→ H0(S,OS)/℘H0(S,OS)→ H1(S,Z/pZ)→ H1(S,OS)F → 0,

(où l’exposant F dans le dernier terme signifie le sous-groupe des invariants par l’endomor-
phisme F , égal au noyau de ℘ = id− F ).

Explicitons encore deux cas extrêmes :

Corollaire 6.9 Supposons que H1(S,OS)F = 0, par exemple que S soit un schéma affine. Alors,
posant A = H0(S,OS), on a un isomorphisme canonique

H1(S,Z/pZ)
∼→ A/℘A.

C’est lathéorie d’Artin-Schreierdans la forme classique, du moins lorsqueA est le spectre
d’un corps.part 62

308
Corollaire 6.10 Supposons que ℘H0(S,OS) = H0(S,OS), par exemple que H0(S,OS) soit un
composé de corps algébriquement clos, ou que S soit propre sur un corps algébriquement clos.
Alors on a un isomorphisme canonique :

H1(S,Z/pZ)
∼→ H1(S,OS)F
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Remarques 6.11Le dernier énonće est d̂u à J.P. Serre [9]. Il est possibléegalement de
développer une th́eorie analogue pour le groupe structuralZ/pnZ pourn quelconque, en utilisant
au lieu deGa le sch́ema en groupes de WittWn, cf. loc cit. On notera qu’en caractéristiquep > 0,
la théorie de Kummer ne donne plus de renseignement sur les revêtements principaux d’ordrep,
puisqueµp est alors un groupe “infinitésimal” i.e. radiciel sur la base, donc sans rapport direct
avecZ/pZ ; aussiá premìere vue, la th́eorie de ces rev̂etements n’est plus justiciable (lorsque
S est un sch́ema propre sur un corps algébriquement clos pour fixer les idées), de la th́eorie du
sch́ema de Picard comme dans 6.6. Néanmoins, si on se rappelle que l’espace tangent de Zariski
à l’origine dansPicS/K

8 s’identifieà H1(S,OS), on constate quela connaisance du schéma en
groupespPicS/k, noyau de la multiplication parp dansPicS/k, implique celle deH1(S,Z/pZ)
aussi bien que celle deH1(S, µp) ; on notera qu’elle implique aussi celle deH1(S, αp), où αp
désigne le sch́ema en groupes infinitésimal sur le corps premier, noyau deF : Ga → Ga (qui
peut se d́ecrire aussi comme le spectre de l’algèbre enveloppante restreinte de lap-algèbre de Lie
triviale de dimension 1) : en effet la suite exacte 4.5 donne ici :

H1(S, αp) ' Ker(F : H1(S,OS)→ H1(S,OS)),

et plus ǵeńeralement, d́esignant parαpn le noyau dansGa dun.ème it́eŕe deF , on aura

H1(S, αpn) ' Ker(F n : H1(S,OS)→ H1(S,OS)).

En fait, la connaisance depPicS/k équivautà celle deH1(S,G) pour tout groupe alǵebrique
commutatif fini annuĺe parp, plus ǵeńeralement, la connaisance depnPicS/k équivautà celle309
deH1(S,G) pour tout groupe alǵebrique commutatif finiG annuĺe parpn, en vertu du th́eor̀eme
suivant qui englobe dans le cas envisagéà la fois la th́eorie de Kummer et celle de Artin-Schreier :

SoitG un groupe alǵebrique fini surk, D(G) = Homk−groupes(G,Gm) sondual de Cartier
(dont l’algèbre affine est portée par l’espace vectoriel dual de l’algèbre affine deG, i.e. par
l’hyparalg̀ebre deG au sens de Dieudonné-Cartier), alors on a un isomorphisme canonique :

(∗) H1(S,G) ' Homk−groupes(D(G),PicS/k).

(NB. S est un sch́ema propre surk algébriquement clos, tel queH0(S,OS) = k). Cette formule
peut encore s’exprimer en disant que le “vrai groupe fondamental” deS auquel il était fait al-
lusion au No 2, rendu ab́elien, est isomorphèa la limite projective desD(Pi), où Pi parcourt les
sous-groupes algébriquesfinis dePicS/k, qu’on noteraT •(PicX/k). LorsqueS est une varíet́e
ab́elienne, on a vu dans 2.1 que ce groupe estégalement isomorphe au “vrai” module de Tate
T•(S) = lim

← nS, et l’isomorphisme (∗) s’écrit alors de façon plus frappante

Ext1(A,G) ' Hom(D(G), B),

A étant une varíet́e ab́elienne,B sa duale,G un groupe alǵebrique fini surk. Les ŕesultats qu’on
vient d’indiquer peuvent se géńeraliser d’ailleurs au cas où k est remplaće par un pŕesch́ema de
base quelconque, età d’autres groupes de coefficientsG que des groupes finis.

8Pour la d́efinition dePicS/K , cf. A. Grothendieck, Śem. Bourbaki No 232, (F́evrier 1962).
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Expośe XII

Géométrie algébrique et ǵeométrie
analytique

311

Mme. M. RAYNAUD 1

Proćedant comme dans [10], on associeà tout sch́emaX localement de type fini sur le corps
des nombres complexesC un espace analytiqueXan dont l’ensemble sous-jacent estX(C).

Dans les No 2 et 3 de cet exposé, nous donnons un “dictionnaire” entre les propriét́es usuelles
deX et deXan et entre les propriét́es d’un morphismef : X → Y et du morphisme associé
f an : Xan → Y an.

Nous montrons ensuite que les théor̀emes de comparaison entre faisceaux cohérents surX et
Xan, établis dans [10 No 12] pour une varíet́e projective, sont encore valables lorsqueX est un
sch́ema propre.

Enfin nous prouvons au No 5 l’ équivalence de la catégorie des rev̂etementśetales finis de
X et de la cat́egorie des rev̂etementśetales finis deXan. En prime au lecteur, nous donnons
une nouvelle d́emonstration du th́eor̀eme de Grauert-Remmert [6], utilisant la résolution des
singularit́es [8].

1 Espace analytique associé à un sch́ema
312

SoitX un sch́ema localement de type fini surC. SoitΦ le foncteur de la catégorie des espaces
analytiques [4 No 9] dans la cat́egorie des ensembles, queà un espace analytiqueX associe
l’ensemble des morphismes d’espaces annelés enC-algèbresHomC(X, X). On a le th́eor̀eme
suivant :

1D’après des notes ińedites de A. Grothendieck.
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Théorème 1.1 (et d́efinition) Le foncteur Φ est représentable par un espace analytique Xan et
un morphisme ϕ : Xan → X . On dit que Xan est l’espace analytique associé à X .

Si |Xan| est l’ensemble sous-jacent à Xan, ϕ induit une bijection de |Xan| sur l’ensemble
X(C) des points de X à valeurs dans C. De plus, pour chaque point x de Xan, le morphisme

ϕx : OX,ϕ(x) → OXan,x,

qui est nécessairement local, donne par passage aux complétés un isomorphisme

ϕ̂x : ÔX,ϕ(x)
∼→ ÔXan,x,

En particulier le morphisme ϕ est plat.

Notons que le fait queϕ induise une bijection deXan surX(C) résulte de la propriét́e uni-
verselle deXan. D’autre part on a les assertions suivantes :

a) Si le th́eor̀eme est vrai pour un schémaY , il en est de m̂eme pour tout sous-schémaX
deY . Supposons d’abord queX soit un sous-sch́ema ouvert deY ; si ψ : Y an → Y est le
morphisme canonique,ψ−1(X) est un ouvert deY an que l’on muni de la structure d’espace313
analytique induite par celle deY an. Comme tout morphisme d’un espace analytiqueX dans
X se factorisèa traversY an d’apr̀es la propríet́e universelle de ce dernier, doncà travers
Xan qui est le produit fibŕe Y an ×Y X, Xan est l’espace analytique associé à X. Enfin
l’assertion concernant lesϕx estévidente.
Il suffit maintenant de considérer le cas òu X est un sous-schéma ferḿe deY . Soit I
le OY -Idéal coh́erent d́efinissantX ; alorsI · OY an est un faisceau cohérent d’id́eaux sur
OY an qui définit un sous-espace analytique ferméXan deY an ; on voit comme dans le cas
d’un sous-sch́ema ouvert queXan est l’espace analytique associé àX. Soitϕ : Xan → X
le morphisme canonique. Pour tout pointx deXan, le morphismeϕx n’est autre que le
morphisme

OY,ψ(x)/Iψ(x) → OY an,x/Iψ(x) · OY an,x

induit parψx ; son compĺet́e

ϕ̂x : ÔY,ψ(x)/Iψ(x) · ÔY,ψ(x) → ÔY an,x/Iψ(x) · ÔY an,x

est un isomorphisme puisquêψx en est un, ce qui d́emontre a).

b) Si l’on a deuxC-sch́emasX1, X2, tels queXan
1 etXan

2 existent, alors il en est de m̂eme
de (X1 × X2)an. Soient en effetϕ1 : Xan

1 → X1, ϕ2 : Xan
2 → X2 les morphismes cano-

niques,p1, p2 les deux projections deXan
1 ×Xan

2 . On d́eduit formellement de EGA I 1.8.1
queX1 × X2 est le produit deX1 et X2 dans la cat́egorie des espaces annelés en an-
neaux locaux ; il en ŕesulte que les morphismesϕ1 · p1 etϕ2 · p2 définissent un morphisme314
ϕ : Xan

1 × Xan
2 → X1 × X2 et que le couple(Xan

1 × Xan
2 , ϕ) repŕesente le foncteur

X 7→ HomC(X, X1 ×X2).
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c) Si E1 désigne l’espace affine de dimension 1, i.e. l’espace topologiqueC muni du fais-
ceau des fonctions holomorphes, le foncteurX 7→ HomC(X, E1

C
) est ŕepresentable par

E1, le morphisme canoniqueϕ : E1 → E1
C

étant le morphisméevident. En effet se don-
ner un morphisme d’un espace analytiqueX dansE1

C
équivautà se donner uńelément de

Γ(X,OX), ce qui revient aussìa se donner un morphisme deX dansE1. On aévidemment
une bijection|E1| ' E1(C), et, pour chaque pointx ∈ E1, le morphismêϕx n’est autre
que le morphisme identique d’un anneau de séries formelles̀a une variable surC.

On d́eduit de b) et c) que le théor̀eme est vrai pour l’espace affineEn
C
, n ≥ 0. Utilisant a), on

voit qu’il en est de m̂eme pour tout sch́ema affineX, localement de type fini surC. Si l’on ne
suppose plusX affine et si(Xi) est un recouvrement deX par des ouverts affines, il résulte de
la propríet́e universelle et de a) que lesXan

i se recollent et d́efinissent ainsi l’espace analytique
Xan assocíe àX.part 63

1.2 Soit f : X → Y un morphisme deC–sch́emas localement de type fini. Siϕ : Xan → X
et ψ : Y an → Y sont les morphismes canoniques, il résulte de la propriét́e universelle deY an

qu’il existe un unique morphismef an : Xan → Y an tel que le diagrame

Xan −−−→ X

fan

y f

y
Y an −−−→ Y

soit commutatif. On a donc défini un foncteurΦ de la cat́egorie desC–sch́emas localement de315
type fini dans la catégorie des espaces analytiques.

Le foncteurΦ commute aux limites projectives finies. Il suffit en effet de voir queΦ commute
aux produits fibŕes. Or, siX, Y , Z, sont des sch́emas localement de type fini surC, il résulte du
fait queX ×Z Y est le produit fibŕe deX et Y au–dessus deZ dans la cat́egorie des espaces
anneĺes en anneaux locaux queXan ×Zan Y an satisfaità la propríet́e universelle qui caractérise
(X ×Z Y )an.

1.3 Soient X un C–sch́ema localement de type fini,Xan l’espace analytique associé,
ϕ : Xan → X le morphisme canonique. SiF est unOX–Module, l’image inverseϕ∗F = F an

est un faisceau de modules surOXan. On d́efinit ainsi un foncteur de la catégorie desOX–
modules dans la catégorie des Modules surXan. Ce foncteur commute aux limites induc-
tives (EGA 0 4.3.2). Le faisceauOXan étant coh́erent [4 no 18 §2 th.2], il transforme faisceaux
coh́erents en faisceaux cohérents (EGA 0 5.3.11). On a de plus :

Proposition 1.3.1 Le foncteur qui à un OXan–Module F associe son image inverse F an sur Xan

est exact, fidèle, conservatif.

L’exactitude ŕesulte du fait que le morphismeϕ : Xan → X est plat (l.1). Prouvons que le
foncteurF 7→ F an est fid̀ele. Compte tenu de l’exactitude, il suffit de montrer que, siF an est nul,
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il en est de m̂eme deF . Or, pour tout pointx deXan, on a alorsFϕ(x) ⊗OX,ϕ(x)
OXan,x = 0. Le

morphismeOX,ϕ(x) → OXan,x étant fid̀element plat, on aFϕ(x) = 0 pour tout point ferḿeϕ(x)
deX, et, commeX est de Jacobson (EGA IV 10.4.8), ceci implique queF est nul.

Le fait que le foncteurF 7→ F an soit conservatif est formel̀a partir de l’exactitude et de la316
fidélité.

2 Comparaison des propríetés d’un sch́ema et de l’espace
analytique assocíe

Proposition 2.1 Soient X un C–schéma localement de type fini, Xan l’espace analytique as-
socié, n un entier. Considérons la propriété P d’être

(i) non vide
(i’) discret
(ii) de Cohen-Macaulay
(iii) (Sn)
(iv) régulier
(v) (Rn)
(vi) normal
(vii) réduit
(viii) de dimension n.

Alors, pour que x possède la propriété P , il faut et il suffit qu’il en soit ainsi de Xan.

Soitϕ : Xan → X le morphisme canonique. (i) résulte du fait que l’on a|Xan| = X(C) (l.1)
et du fait queX est de Jacobson (EGA IV 10.4.8). Dire queX (resp.Xan) est discret́equivaut
à dire que l’on adimX = 0 (resp.dimXan = 0 d’apr̀es [4 no 19 §4 cor.6]) ; (i’) résulte donc
de (viii).

SoitP l’une des propríet́es (ii) à (vii). Pour queX poss̀ede la propríet́eP , il faut et il suffit
queP soit vérifiée en chaque point ferḿe deX ; en effet,X étant excellent (EGA IV 7.8.6 (iii)),
l’ensemble des points où X vérifie P est un ouvert (loc.cit.) et, si cet ouvert contient tous les317
points ferḿes, il est́egalàX tout entier. Dire queX (resp.Xan) a la propríet́eP équivaut donc
à dire que, pour tout pointx deXan, l’anneau localOX,ϕ(x) (resp.OXan,x) a la propríet́e P .
Comme le fait qu’un anneau local excellent ait la propriét́eP se voit apr̀es passage au complét́e,
la proposition ŕesulte des isomorphismeŝOX,ϕ(x)

∼→ ÔXan,x dans les cas (ii)̀a (vii). Il en est de
même dans le cas (viii), compte tenu des relations

dimX = sup
x

dim OX,ϕ(x) dimXan = sup
x

dim OXan,x

où x ∈ Xan. Ceci ach̀eve la d́emonstration.
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Proposition 2.2 Soient X un C–schéma localement de type fini, ϕ : Xan → X le morphisme
canonique, T une partie localement constructible de X . Alors on a la relation

ϕ−1(T ) = ϕ−1(T ).

On peut suposser queT est un ouvert dense deX. SoitH le sous–sch́ema ferḿe ŕeduit de
X d’espace sous–jacentX − T ; l’espace associéHan est un sous–space analytique fermé de
Xan d’espace sous–jacentXan − ϕ−1(T ). On doit montrer que tout pointx deHan appartient
àϕ−1(T ). Or, en un tel pointx, le germe d’espace analytique(Xan, x) contient le sous–germe
(Han, x), et celui-ci est d́efini par un Id́eal non nilpotent deOXan,x. Il résulte alors du Null-
stellensatz [4 no 19 §4 cor.3] que tout voisinage ouvert dex contient des points deXan qui
n’appartiennent pas̀aHan, ce qui prouve bien que l’on ax ∈ ϕ−1(T ).part 64

318
Corollaire 2.3 Soient X un C-schéma localement de type fini, ϕ : Xan → X le morphisme
canonique, T une partie localement constructible de X . Pour que T soit une partie ouverte (resp.
une partie fermée, resp. une partie dense), il faut et il suffit qu’il en soit ainsi de ϕ−1(T ).

Le corollaire ŕesulte de 2.2 et du fait que,X étant un sch́ema de Jacobson (EGA IV 10.4.8),
deux parties localement constructibles deX qui ont m̂eme trace sur l’ensemble très denseX(C)
sontégales.

Proposition 2.4 Soit X un C-schéma localement de type fini. Pour que X soit connexe (resp.
irréductible), il faut et il suffit qu’il en soit ainsi de Xan.

SupposonsXan connexe (resp. irréductible). L’imageX(C) deXan dansX est alors connexe
(resp. irŕeductible). Il en ŕesulte queX est connexe (resp. irréductible) car les parties fermées de
X etX(C) se correspondent bijectivement (EGA IV 10.1.2).

Inversement supposonsX connexe (resp. irréductible), et montrons qu’il en est de même de
Xan. On peut se borner au cas oùX est irŕeductible. Supposons en effetX connexe. Etant donné
un pointx deX, l’ensemble des pointsy ∈ X tels qu’il existe une suite finie de sous-schémas
fermés irŕeductiblesX1, . . . , Xn deX, avecx ∈ X1 , y ∈ Xn ,Xi∩Xi+1 6= ∅ pour1 ≤ i ≤ n−1,
est un ensemblèa la fois ouvert et ferḿe, doncégalàX tout entier. Pour une suiteX1, . . . , Xn

telle que pŕećedemment, on a aussiXan
i ∩ Xan

i+1 6= ∅ pour 1 ≤ i ≤ n − 1 ; si l’on suppose
démontŕe que lesXan

i sont connexes, il en est alors de même deXan.

On suppose d́esormaisX irréductible. On peut supposer de plusX affine. En effet, si(Ui)i∈I319
est un recouvrement deX par des ouverts affines, deux de ces couverts ont une intersection non
vide, et la m̂eme propríet́e est donc vraie pour le recouvrement(Uan

i )i∈I deXan ; si l’on suppose
démontŕe que lesUan

i sont irŕeductibles, il en est alors de même deXan.

On peut supposer de plus queX est normal. Soit en effet̃X le normaliśe deX ; comme le
morphismeX̃ → X est surjectif, il est de m̂eme deX̃an → Xan, ce qui prouve que, sĩXan est
irréductible, il est de m̂eme deXan.
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On suppose d́esormaisX affine normal. Comme les anneaux locaux deXan sont int̀egres,
il revient au m̂eme de dire queXan est irŕeductible ou qu’il est connexe. En effet, siF est une
partie analytique ferḿee deXan, l’ensemble des pointsx deXan où l’on acodimx(F , Xan) = 0
est un sous-ensemble analytique fermé deXan [4 no 20 A Cor. 1] qui est aussi ouvert ; siXan

est connexe, ceci prouve que, si l’on aF 6= Xan, F est rare, donc queXan est irŕeductible. On
est ainsi rameńe à montrer queXan est connexe.

Soit
i : X → P

une compactification deX, où P est unC-sch́ema projectif normal eti une immersion ouverte
dominante. Il ŕesulte alors de [10 no 12 th. 1] queP an est connexe. CommeXan est obtenu en
enlevantàP an une partie analytique ferḿee rare, il resulte de 2.5 ci-dessous queXan est aussi
connexe.320

Lemme 2.5 Soient P un espace analytique normal connexe, Y une partie analytique fermée
rare, alors X = P − Y est connexe.

LorsqueY est de codimension≥ 2, la proposition ŕesulte de [11 no 3 prop. 4]. Dans le cas
géńeral on peut supposer, quitteà enlever̀aP une partie analytique ferḿee de codimension≥ 2,
queP et Y (consid́eŕe comme sous-espace analytique réduit deP) sont ŕeguliers. D’apr̀es le
théor̀eme des fonctions implicites, tout pointy deY poss̀ede un voisinageU isomorphèa une
boule d’un espace affineE n, de sorte queU ∩Y soit d́efini par l’annulation d’un certain nombre
de fonctions coordonńees. Ceci prouve queU −U ∩Y est connexe, et il en est donc de même
deX .

Corollaire 2.6 Soit X un C-schéma localement de type fini ; le morphisme

π0(Xan)→ π0(X)

induit par le morphisme canonique Xan → X est bijectif.

3 Comparaison des propríetés des morphismes

Proposition 3.1 Soient f : X → Y un morphisme de C-schémas localement de type fini,
f an : Xan → Y an le morphisme déduit de f sur les espaces analytiques associés. Soit P la
propriété d’être

(i) plat

(ii) net (i.e. non ramifié)

(iii) étale

(iv) lisse

(v) normal
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321
(vi) réduit

(vii) injectif

(viii) séparé

(ix) un isomorphisme

(x) un monomorphisme

(xi) une immersion ouverte.

Alors, pour que f possède la propriété P , il faut et il suffit qu’il en soit ainsi de f an.

Notonsϕ : Xan → X etψ : Y an → Y les morphismes canoniques. Soientx un point deXan,
y = f an(x). Les morphismesOY an,y → OXan,x etOY,ψ(y) → OX,ϕ(x) déduits def etf an donnent
le même morphisme par passage aux complét́es (1.1). D’apr̀es [2 ch. 3§ 5 prop.4] (resp. EGA IV
17.4.4) il revient donc au m̂eme de dire quef an vérifie la propríet́e (i) (resp.(ii)) ou de dire que
f verifie (i) (resp.(ii)) en chaque point ferḿe deX. Comme l’ensemble des points deX où (i)
(resp. (ii)) est v́erifié est un ouvert (EGA IV 11.1.1 et I 3.3), ceci démontre (i) et (ii), donc aussi
(iii).

SoitP la propríet́e (iv) (resp.(v), resp.(vi)). Compte tenu de 2.1 ((v), (vi),(vii)), il revient au
même de dire que les fibres géoḿetriques def an aux différents pointsy deY an sont ŕegulìeres
(resp. normales, resp. réduites) ou qu’il en est ainsi des fibres géoḿetriques def aux différents
points ferḿesψ(y) de Y . Les cas (iv) (resp.(v), resp.(vi)) résultent alors de (i) et du fait que
l’ensemble des points deY où les fibres ǵeoḿetriques def sont ŕegulìeres est un ouvert (EGA IV
12.1.7).

(vii). Si f est injectif, il en est de m̂eme def an. Inversement supposonsf an injectif et mon-
trons qu’il en est de m̂eme def . On peut supposerf de type fini. Le morphismef an étant injectif,322
les fibres def aux points ferḿes deY son radicielles ; comme l’ensemble des points deY dont
la fibre est radicielle est localement constructible (EGA IV 9.6.1) et commeY est un sch́ema de
Jacobson,f a toutes ses fibres radicielles donc est injectif.

(viii). Soient∆: X → X ×Y X et ∆an : Xan → Xan ×Y an Xan les immersions diagonales,
Θ: Xan ×Y an Xan → X ×Y X le morphisme canonique. En vertu de 2.3 il revient au même de
dire que∆(X) est ferḿe dansX ×Y X ou que∆an(Xan) est ferḿe dansXan ×Y an Xan.

Comme une immersion ouverte n’est autre qu’un morphismeétale injectif (EGA IV 17.9.1
et [4 no 13 § 1]), (xi) résulte de (iii) et de (vii). Un isomorphisméetant la m̂eme chose qu’une
immersion ouverte surjective, (ix) résulte de (xi) et de (3.2) ci-dessous. Dire quef est un mono-
morphisméequivautà dire que la morphisme diagonal∆: X → X ×Y X est un isomorphisme,
donc (x) ŕesulte de (ix).part 65

Proposition 3.2 Soient X et Y deux C-schémas localement de type fini, f : X → Y un mor-
phisme de type fini, f an : Xan → Y an le morphisme déduit de f sur les espaces analytiques
associés. Soir P la propriété d’être
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(i) surjectif
(ii) dominant

(iii) une immersion fermée
(iv) une immersion
(v) propre 2

323
(vi) fini.

Alors, pour que f possède la propriété P , il faut et il suffit qu’il en soit ainsi de f an.

Soientϕ : Xan → X etψ : Y an → Y les morphismes canoniques.

(i). Si f est surjectif, pour tout pointy de Y an, f−1(ψ(y)) est une partie ferḿee non vide
deX ; elle contient donc au moins un point fermé, ce qui prouve quef an est surjectif. Inverse-
ment, sif an est surjectif ;f(X) est une partie localement constructible deY (EGA IV 1.8.4) qui
contient tous les points ferḿes deY ; on a doncf(X) = Y .

(ii) r ésulte de 2.2.

(iii). Si f est une immersion ferḿee, il en est de m̂eme def an d’apr̀es 1.1 a). Inversement, si
f an est une immersion ferḿee, il en est de m̂eme def d’apr̀es 3.1 (x) et 3.2 (v), car cela revient
à dire quef est un monomorphisme propre (EGA IV 8.11.5).

(iv). Il est clair que, sif est une immersion, il en est de même def an. Inversement supposons
quef an soit une immersion, et soientT l’image deX dansY , T l’adhérence sch́ematique def .
On a une factorisation def ,

X
i−→ T

j−→ J ,

où j est une immersion ferḿee,i le morphisme canonique, et on en déduit la factorisation sui-
vante def an

Xan ian

−→ T
an jan

−−→ Y an .

CommeT = f(X) est une partie localement constructible deY (EGA IV 1.8.4), on a, d’apr̀es324
2.2, T

an
= f an(Xan). Il en résulte queian(Xan) est un ouvert deT

an
, donc quei(X) est un

ouvert deT . On consid̀ere la factorisation canonique dei

X
i1−→ i(X)

i2−→ T .

Le morphismeian
1 est un monomorphisme propre, donc il en est de même dei1 d’apr̀es 3.2 (v) et

3.1 (x) ; ceci prouve quei1 donc aussif est une immersion.

(v). Supposons quef soit propre et montrons qu’il en est de même def an. Le fait quef an

soit propreétant local surY an, on peut supposerY affine. D’apr̀es le lemme de Chow (EGA II
5.6.1), on peut trouver unY -sch́ema projectifX ′ et un morphisme projectif surjectif

g : X ′ → X.
2Nous dirons qu’un morphisme d’espaces analytiques est propre s’il l’est au sens de [1 ch.1§10 no 1] et s’il est

sepaŕe.
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Le morphisme(fg)an = f angan est projectif donc propre,gan est surjectif, et il ŕesulte de [1 ch.
1 §10] quef an est propre.

Inversement supposonsf an propre et montrons qu’il en est de même def . D’après 3.1 (viii)
f est śepaŕe. Il resteà prouver quef est universellement ferḿe, et il suffit m̂eme de montrer que
f est ferḿe ; en effet, pour toutY -sch́emaY ′ localement de type fini, le morphisme

f(Y ′) = h : X ×Y Y ′ → Y ′

sera aussi ferḿe puisquehan est propre. SoitT une partie ferḿee deX ; f(T ) est un ensemble
localement constructible, et l’on a

f an(ϕ−1(T )) = ψ−1(f(T )).

Commef an est propre,ψ−1(f(T )) est une partie ferḿee deY an, et il résulte donc de 2.2 que325
l’on a

ψ−1(f(T )) = ψ−1(f(T )) .

Cela entrâıne que l’on af(T ) = f(T ), i.e. quef est ferḿee donc quef est propre.

(vi). Il revient au m̂eme de dire qu’un morphisme est fini ou qu’il est propreà fibres finies
(EGA III 4.4.2 et [4 no 19 § 5]). Comme l’ensemble des points où les fibres def sont finies est
localement constructible (EGA IV 9.7.9), les fibres def sont finies si et seulement si il en est
ainsi des fibres def an ; (vi) résulte donc de (v).

Remarque 3.3

a) soitf : X → Y un morphisme deC-sch́emas localement de type fini. Le fait quef an

soit un isomorphisme local n’entraı̂ne pas qu’il en soit de m̂eme def . En effet, sif est
étale,f an est étale donc est un isomorphisme local [4 no 13 § 1], mais il n’en est pas
nécessairement ainsi def .

b) l’enonće 3.2 n’est pas vrai si l’on ne suppose pasf de type fini. Montrons par exemple que
f an peutêtre une immersion ferḿee sans qu’il en soit de m̂eme def . Il suffit en effet de
prendre pourX la somme deZ copies deSpecC, et pourY la droite affine, et pourf le
morphisme obtenu en envoyant les points deX sur des points distincts deY formant une
partie discr̀ete.

4 Théorèmes de comparaison cohomologique et théorèmes
d’existence

326

L’objet de ce nuḿero est de red́emontrer les ŕesultats de [3 no 2 th. 5 et th. 6] ; ces derniers
géńeralisent au cas d’un schéma propre les th́eor̀emeśetablis dans [10 no 12] lorsqueX est pro-
jectif, et lesétendent au cas relatif. Des résultats plus ǵeńeraux, concernant les schémas relatifs
propres sur un espace analytique, sont prouvés dans [7 ch. VIII no 3].
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Rappelons que la cohomologie deČech utiliśee dans [10 no 12] cöıncide avec la cohomologie
usuelle dans le cas algébrique comme dans le cas analytique (EGA III 1.4.1. et [5 II 5.10]).

4.1 Soientf : X → Y un morphisme deC-sch́emas localement de type fini et considérons le
diagramme commutatif

Xan
ϕ //

fan

��

X

f

��
Y an

ψ // Y .

Si F est unOX-Module, on a, pour tout entierp ≥ 0, des morphismes

Rp f∗F
i−→ Rp f∗(ϕ∗F

an)
j−→ Rp(f.ϕ)∗F

an k−→ ψ∗(R
p f an
∗ F an) ,

où i se d́eduit du morphisme canoniqueF → ϕ∗F an, etj, k sont des “edge-homomorphismes”
de suites spectrales de Leray. Au composék.j.i est associé un morphisme canonique

(4.1.1) θp : (Rp f∗F )an → Rp f an
∗ (F an)327

Théorème 4.2Soient f : X → Y un morphisme propre de C-schémas localement de type fini,
F un OX-module cohérent. Alors, pour tout entier p ≥ 0 le morphisme (4.1.1)

θp : (Rp f∗F )an → Rp f an
∗ (F an)

est un isomorphisme.

1) Cas òu f est projectif. La d́emonstration est analogueà celle de [10 no 13]. Rappelons-la
brièvement. On se ram̀ene au cas òu X est un espace projectif typePrY au dessus deY . Soit
Y = Y an, P = PrY ; on prouve d’abord que l’on a

f an
∗ OP = OY , Rp f an

∗ (OP) = 0 pourp > 0

Pour v́erifier les relations préćedentes, on peut en effet se ramener au cas où Y est une bouleB
d’un espace affineE n. On consid̀ere le “recouvrement standard”{Ui} deP parr + 1 ouverts
isomorphes aB × E r. Comme ces ouverts sont de Stein, on a, pour tout entierp ≥ 0, des
isomorphismes

Hp({Ui},OP)
∼→ Hp(P,OP)

On peut alors exprimer les sections du faisceau structuralOP sur les ouvertsUi et sur leurs
intersections en termes de séries de Laurent ; un calcul facile preuve que l’on a

H0(P,OP)
∼→ H0(Y ,OY ) , Hp(P,OP) = 0 pourp > 0

La démonstration s’ach̀eve alors en recopiant [10 no 12 lemme 5], les groupes de cohomologie
étant remplaćes par les faisceaux de cohomologie.
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2) Cas òu f est propre. On utilise EGA III 3.1.2 pour se ramener au cas projectif. SoitK la328
cat́egorie desOX-Modules coh́erents tels queθp soit un isomorphisme pour toutp ≥ 0. Il suffit
de prouver que, pour toute suite exacte0 → F ′ → F → F ′′ → 0 dont deux termes sont dans
K , il en est de m̂eme du troisìeme, qu’un facteur direct d’un objet deK est dansK , et que,
pour tout pointx deX, on peut trouver un objetF deK tel que l’on aitFx 6= 0.

Le premìere condition ŕesulte par application du lemme des cinq du diagramme commutatif
suivant dont les lignes sont exactes :

// (Rp f∗F ′)an

��

// (Rp f∗F )an

��

// (Rp f∗F ′′)an

��

// (Rp+1 f∗F ′)an //

��
// Rp f an

∗ F ′an // Rp f an
∗ F an // Rp f an

∗ F ′′an // Rp+1 f an
∗ F ′an // ,

et on v́erifie de facon analogue la deuxième condition.

Pour v́erifier la trosìeme condition, on peut se borner au cas oùX est un sch́ema irŕeductible
de point ǵeńeriquex. On pouvait supposerY noeth́erien d̀es le d́ebut. D’apr̀es le lemme de Chow
(EGA II 5.6.1), on peut trouver unY -sch́ema projectifX ′ et un morphisme projectif surjectif
g : X ′ → X. D’autre part il existe un entiern tel que l’on aitRp g∗(OX′(n)) = 0 pour toutp > 0
et que le morphisme canoniqueg∗g∗(OX′(n)) → OX′(n) soit surjectif (EGA III 2.2.1). Si l’on
poseF = g∗(OX′(n)) le faisceauF répondà la question. En effet on aFx 6= 0 ; de plus la suite
spectrale de Leray

Rp f∗(R
q g∗(OX′(n))) =⇒ Rp+q(f.g)∗(OX′(n))

étant d́eǵeńeŕee, on a un isomorphisme

Rp f∗F
∼→ Rp(f.g)∗(OX′(n))

Comme dans le cas algébrique on a un isomorphisme canonique329

Rp f an
∗ F an ∼→ Rp(f.g)an

∗ (OX′(n)an),

et le diagramme
(Rp f∗F )an

θp
��

∼ // (Rp(f.g)∗(OX′(n)))an

ψp
��

Rp f an
∗ F an ∼ // Rp(f.g)an

∗ (OX′(n)an)

est commutatif. D’apr̀es 1)ψp est un isomorphisme ; il en est donc de même deθp, ce qui ach̀eve
la démonstration.part 66

Corollaire 4.3 SoientX unC-schéma propre, F un OX-module cohérent. Alors, pour tout entier
p ≥ 0, le morphisme canonique

Hp(X,F )→ Hp(Xan, F an)

est un isomorphisme.
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Théorème 4.4Soit X un C-schéma propre. Le foncteur qui, à tout OX-module cohérent F ,
associe son image inverse F an sur Xan est une équivalence de catégories.

1) Le foncteur est pleinement fidèle. Soient en effetF etG deuxOX-Modules coh́erents. Le
morphisme canonique

HomOX (F,G)→ HomOXan (F an, Gan)

s’identifie au morphisme canonique

H0(X,HomOX (F,G))→ H0(Xan,HomOX (F,G))

(EGA 0I 6.7.6). CommeHomOX (F,G) est coh́erent, il ŕesulte de 4.3 que ce morphisme est330
bijectif.

2) Le foncteur est essentiellement surjectif. LorsqueX est projectif l’assertion résulte de
[10 no 12 th.3]. Le cas ǵeńeral se ram̀ene au pŕećedent en utilisant le lemme de Chow
(EGA II 5.6.1). Soient en effetX ′ unC-sch́ema projectif,f : X ′ → X un morphisme projectif
surjectif,U un ouvert dense deX tel quef induise un isomorphismef−1(U) ' U . On raisonne
par ŕecurrence noeth́erienne surX ; on peut donc supposer que, pour tout faisceau cohérentG
surXan tel que l’on puisse trouver une partie ferméeY deX distincte deX, satisfaisant̀a la
relationY an ⊃ Supp G , il existe un faisceau cohérentG surX tel que l’on ait un isomorphisme
Gan ' G .

Soit F un faisceau de modules cohérent surOXan, K et L les faisceaux coh́erents d́efinis
par la condition que la suite

0→ K → F → f an
∗ f

an∗F → L → 0

soit exacte. CommeX ′ est projectif, il existe unOX′-Module coh́erentF ′ tel que l’on ait
F ′an ' f an∗F ; on d́eduit alors de 4.2 que l’on a un isomorphisme(f∗F

′)an ' f an
∗ f

an∗F .
CommeK |Uan etL |Uan sont nuls, il existe desOX-Modules coh́erentsK etL tel que l’on ait
des isomorphismesKan ' K , Lan ' L . D’après 1) le morphismef an

∗ f
an∗F → L provient

d’un unique morphismef∗F ′ → L ; soitI = Ker(f∗F
′ → L). Le faisceauF est alors extension

deIan parKan, et il suffit de voir que cette extension provient par image inverse d’une extension331
deI parK. Il suffit donc de prouver que le morphisme canonique

(∗) ExtqOX (I,K)an ∼→ ExtqOXan
(Ian, Kan) q 6= 1

est bijectif. Or on a des isomorphismesExtqOX (I,K)an ∼→ ExtqOXan
(Ian, Kan) pour tout entier

q ≥ 0 (EGA 0III 12.3.5), et un morphisme de suites spectrales

Hp(X,ExtqOX (I,K)) =⇒ Extp+qOX
(I,K)

↓ ↓
Hp(Xan,ExtqOXan

(Ian, Kan)) =⇒ Extp+qOXan
(Ian, Kan).

Ce morphisme est un isomorphisme car, d’après 4.3, il en est ainsi sur les termesEpq
2 , et ceci

démontre la bijectivit́e de(∗).
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Corollaire 4.5 Le foncteur qui à tout C-schéma propre X associe Xan est pleinement fidèle.

On doit montrer que, siX etY sont deuxC-sch́emas propres, l’application canonique

HomC(X, Y )→ Hom(Xan, Y an)

est bijective. Or se donner un morphisme deX dansY (resp. deXan dansY an) équivautà se
donner son graphe, i.e. un sous-schéma ferḿe Z deX × Y (resp. un sous-espace analytique
fermé Z deXan × Y an), tel que la restriction de la première projectionX × Y → X àZ (resp.
deXan × Y an → Xan à Z) soit un isomorphisme. Comme la donnée d’un sous-sch́ema ferḿe332
deX×Y (resp. d’un sous-espace analytique fermé deXan×Y an) équivaut̀a celle d’un faisceau
coh́erent d’id́eaux surOX×Y (resp. surOXan×Y an), le corollaire ŕesulte de 4.4.

Corollaire 4.6 Soit X un C-schéma propre. Le foncteur qui, à tout schéma fini (resp. étale fini)
X ′ au-dessus de X , associe X ′an est une équivalence de la catégorie des schémas finis (resp.
étales finis) au-dessus de X dans la catégorie des espaces analytiques finis (resp. étales finis)
au-dessus de Xan.

En effet se donner un morphisme finiX ′ → X (resp.X ′an → Xan) équivautà se donner
un faisceau coh́erent d’alg̀ebres surOX (resp. surOXan) [4 no 19 § 5 th.2]. Le corollaire ŕesulte
donc de 4.4 dans le cas non respé, et le cas respé s’en d́eduit compte tenu de 3.1 (iii).

5 Théorèmes de comparaison des revêtementsétales

5.0 Pŕecisons la notion de revêtement fini d’un espace analytique. SiX est un espace analy-
tique, on dit qu’un espace analytiqueX′ fini au-dessus deX est un rev̂etement fini deX si toute
composante irŕeductible deX′ domine une composante irréductible deX.part 67

Théorème 5.1 (“Th́eorème d’existence de Riemann”.)Soient X un C-schéma localement de
type fini, Xan l’espace analytique associé à X . Le foncteur Ψ qui, à tout revêtement étale fini X ′

de X , associe X ′an est une équivalence de la catégorie des revêtements étales finis de X dans la333
catégorie des revêtements étales finis de Xan.

1) Le foncteurΨ est pleinement fid̀ele.SoientX ′ atX ′′ deux rev̂etementśetales finis deX,
et prouvons que l’application canonique

(∗) HomX(X ′, X ′′) −→ HomXan(X ′
an
, X ′′

an
)

est bijective. On peut supposerX ′ connexe. Se donner unX-morphisme deX ′ dansX ′′ équivaut
à se donner une composante connexeXi deX ′×XX ′′ telle que le morphismeXi → X ′ induit par
la premìere projection soit un isomorphisme. Comme les composantes connexes deX ′ ×X X ′′

238



XII

correspondent bijectivement aux composantes connexes deX ′an ×Xan X ′′an (2.6) et qu’un mor-
phismeXi → X ′ est un isomorphisme si et seulement si il en est ainsi deXan

i → X ′an, ceci
démontre la bijectivit́e de (∗).

2) Le foncteurΨ est essentiellement surjectif.Soit X′ un rev̂etementétale fini deXan et
prouvons qu’il existe un rev̂etement́etaleX ′ deX tel que l’on ait un isomorphismeX ′an ∼→ X′.
Compte tenu de 1) la question est locale surX, et on peut donc supposerX affine.

a) Ŕeduction au cas òu X est normal. On peut supposerX réduit. Supposons en effet le
théor̀eme d́emontŕe pourXréd. Le foncteur qui,̀a un rev̂etement́etale finiX ′ deX fait corres-
pondre le rev̂etement́etale finiX ′an

réd deXan
réd est alors unéequivalence. Comme il s’obtient en

composantΨ avec le foncteurΘ qui, à un rev̂etement́etale fini deXan associe son image inverse
surXan

réd, et queΘ est pleinement fid̀ele, ceci montre queΨ est unéequivalence de catégories.

On peut supposerX normal. Soit en effetX̃ le normaliśe deX, p : X̃ → X le mor-334
phisme canonique. Commep est fini,p est un morphisme de descente effective pour la catégorie
des rev̂etementsétales (IX.4.7). Le th́eor̀eme étant suppośe d́emontŕe pour X̃, si l’on pose
X̃′ = X′ ×Xan X̃an, il existe un rev̂etement́etaleX̃ ′ de X̃ et un isomorphismẽX ′an ' X̃′. Il
résulte alors de 1) que la donnée de descente naturelle que l’on a surX̃′ se rel̀eve en une donńee
de descente sur̃X ′ relativement̀a X̃ → X ; ceci prouve l’existence d’un revêtement́etaleX ′

deX tel que l’on ait un isomorphismei : X ′an ×Xan X̃an ' X̃′, dont les images inverses par les
deux projections dẽXan ×Xan X̃an soient les m̂emes. D’apr̀es IX.3.2, dont la d́emonstration est
valable dans le cas analytique, le morphismeX̃an → Xan est un morphisme de descente pour la
cat́egorie des rev̂etementśetales, et par suitei provient d’un isomorphismeX ′an ' X′.

b) Réduction au cas òuX est ŕegulier. SoientU l’ouvert des points ŕeguliers deX, i : U → X,
ian : Uan → Xan les morphismes canoniques ; commeX est normal, on acodim(X−U,X) ≥ 2.
Supposons qu’il existe un revêtement́etaleU ′ deU tel que l’on aitU ′an ' X′|Uan et montrons
qu’alorsU ′ se prolonge en un revêtement́etaleX ′ deX tel que l’on aitX ′an ' X′. Il suffit de
voir queU ′ se prolonge en un revêtement́etaleX ′ deX ; en effet on aura alors un isomorphisme
X ′an|Uan ' X′|Uan ; mais, siF etG sont les faisceaux cohérents d’alg̀ebres surOXan définissant
respectivementX′ etX ′an, le fait queX soit normal et que l’on aitcodim(X−U,X) ≥ 2 entrâıne
que les morphismes canoniques

F −→ ian
∗ (F |Uan) G −→ ian

∗ (G |Uan)

sont des isomorphismes [11 no 3 prop.4]. Il en ŕesulte queF et G donc aussiX ′an et X′ sont335
isomorphes.

Soit ϕ : Xan → X le morphisme canonique. Comme le problème de prolongerU ′ à X
est local surX, il suffit de prouver que, pour tout pointy deXan − Uan, le rev̂etement́etale
U ′ϕ(y) = U ′ ×X Spec OX,ϕ(y) deUϕ(y) = U ×X Spec OX,ϕ(y) se prolongèa Spec OX,ϕ(y). SoitH
la OU -Algèbre coh́erente d́efinissantU ′. Le morphisme canonique

α : (i∗H)an −→ ian
∗ (Han) = F
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définit un morphisme de faisceaux de modules surSpec OXan,y :

αy : (i∗H)an
y −→ Fy ,

dont la restrictioǹaUy = Uϕ(y) ×Spec OX,ϕ(y)
Spec OXan,y est un isomorphisme. Mais ceci prouve

queH|Uy est trivial, donc queU ′ϕ(y) se prolongèa Spec OX,ϕ(y).

c) Cas òuX est affine ŕegulier. Soit

j : X −→ P

une compactification deX, où P est unC-sch́ema projectif etj une immersion ouverte domi-
nante. Gr̂ace au th́eor̀eme de ŕesolution des singularités [8], on peut trouver un schéma ŕegulier
R, un morphisme projectifr : R → P , tel quer induise un isomorphismer−1(X) ' X et que
r−1(X) soit le compĺementaire dansR d’un diviseurà croisements normaux. Soit336

k : X −→ R

l’immersion canonique. On va montrer qu’il existe un revêtement fini normal (5.0)R′ deRan qui
prolonge le rev̂etement́etaleX ′an. D’après la proposition 5.3 ci-dessous, un tel revêtement est
unique ; le probl̀eme de prolongerX ′an est donc locale surRan au voisinage deRan − Xan. Or
chaque point deRan − Xan a un voisinage ouvertV isomorphèa une boule d’un espace affine
En, tel queV − V ∩ Xan soit d́efini par l’annulation desp premìeres fonctions coordonnées
z1, . . . , zp, avec0 ≤ p ≤ n. Le groupe fondamental deU = V ∩Xan est isomorphèaZp, et tout
revêtement́etale deU est quotient d’un rev̂etement de la forme

U′′ = U[T1, . . . , Tp]/(T
n1
1 − z1, . . . , T

np
p − zp) ,

où lesni sont des entiers> 0, par un sous-groupeH du groupe de GaloisZ/n1Z× · · · ×Z/npZ
deU′′. Or U′′ se prolonge en le revêtement ŕegulier

V′′ = V[T1, . . . , Tp]/(T
n1
1 − z1, . . . , T

np
p − zp) ,

deV sur lequelH opère, et le quotient deV′′ parH est le prolongement cherché.

La démonstration s’ach̀eve alors gr̂aceà 4.6. Le rev̂etementR′ provient d’un rev̂etement fini
R′ deR ; la restriction deR′ à X est un rev̂etementX ′ deX tel que l’on aitX ′an ' X′, et
d’apr̀es 3.1(iii)X ′ est un rev̂etement́etale deX.

337

Corollaire 5.2 Soient X un C-schéma localement de type fini connexe, ϕ : Xan → X le mor-
phisme canonique, x un point de Xan. Soit π1(Xan, x) le groupe fondamental de l’espace topo-
logique Xan au point x, π1(X,ϕ(x)) le groupe fondamental du schéma X au point ϕ(x) (V.7).
Alors π1(X,ϕ(x)) est canoniquement isomorphe au complété de π1(Xan, x), pour la topologie
des sous-groupes d’indice fini.
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Soit en effetC la cat́egorie des rev̂etementśetales finis deXan, F le foncteur deC dans
Ens qui, à tout rev̂etement́etale finiX′ deXan associe l’ensemble des points deX′ au-dessus de
x, et soitπ̂1(Xan, x) le groupe profini associé à C etF comme il est dit dans V.4. Comme tout
revêtement́etale fini deXan est quotient du rev̂etement universel par un sous-groupe d’indice
fini, π̂1(Xan, x) n’est autre que le complét́e deπ1(Xan, x) pour la topologie des sous-groupes
d’indice fini. Le corollaire ŕesulte donc de 5.1 et V.6.10.

Proposition 5.3 Soient X un espace analytique normal, Y un sous-ensemble analytique fermé
tel que U = X −Y soit dense dans X. Alors le foncteur qui, à tout revêtement normal fini (5.0)
X′ de X associe sa restriction à U est pleinement fidèle.

SoientX′ andX′′ deux rev̂etements finis normaux deX. On doit montrer que l’application
canonique

HomX(X′,X′′) −→ HomU(X′|U,X′′|U)

est bijective. Soientu, v deuxX-morphismes deX′ dansX′′ dont les restrictions̀a U sont les
mêmes et prouvons queu = v. Les morphismesu et v cöıncident sur l’ouvert denseU ×X X′,338
donc sur les espaces topologiques sous-jacents. D’après [4 no 19 §4 cor.5] ceci prouve que l’on
au = v.

Soit maintenantu unU-morphisme deX′|U dansX′′|U et montrons qu’il se prolongèaX′ tout
entier. On peut supposerX′ régulier. En effet,X′ étant normal, on peut trouver un ouvertV deX

dont le compĺementaire soit une partie analytique de codimension≥ 2, tel queX′ ×X V = V′

soit ŕegulier. SoitV′′ = X′′ ×X V et supposons la proposition démontŕee pourV. On consid̀ere
le diagramme commutatif

V′

g′

��

!!CCCCCCCC
i′ // X′

f ′

��

V′′

g′′}}{{{{{{{{

i′′ // X′′

f ′′}}||||||||

V
i // X

À u est associé un morphisme deOV-Algèbresg′′∗OV′′ → g′∗OV′, d’où l’on déduit un morphisme

i∗g
′′
∗OV′′ −→ i∗g

′
∗OV′ .

Compte tenu des isomorphismesi′∗OV′ ' OX′, i′′∗OV′′ ' OX′′ [11 no 3 prop.4] on en d́eduit un
morphisme deOX-Algèbres

f ′′∗OX′′ −→ f ′∗OX′ ,

d’où le morphismeX′ → X′′ cherch́e.

On suppose d́esormaisX′ régulier. SoientU′ = U ×X X′, Y′ = X′ − U′. On consid̀ere339
Y′ comme sous-espace analytique réduit deX′ ; si Y′1 est le ferḿe singulier deY′, on a
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dim Y′1 < dim Y′ [4 no 20 D. Th.3]. On voit donc par récurrence sur la dimension deY′

que l’on peut supposerY′ lisse. Comme il suffit de prolongeru à un voisinage ouvert de chaque
point deY′, on peut supposer par le théor̀eme des fonctions implicites queX′ est une boule d’un
espace affineEn et Y′ le fermé d́efini par l’annulation desp premìeres fonctions coordonnées
z1, . . . , zp, avec0 ≤ p ≤ n.

On associèau une sections dep : X′×XX′′ → X′ au-dessus deU′ ; quitteà restreindreX′, on
peut supposerp∗(OX′×XX′′) engendŕe par deśelémentsx1, . . . , xq de Γ(X′, p∗OX′×XX′′) ; soient
u1, . . . , uq ∈ Γ(U′,OX′) les images pars dex1|U′, . . . , xq|U′. Dire ques se prolongèaX′ revient
à dire que lesu1, . . . , uq se prolongent en des sections deΓ(X′,OX′). Mais, puisquef est fini,
chaqueui est une śerie de Laurent enz1, . . . , zp, à cóefficients des śeries entìeres enzp+1, . . . , zn,
qui satisfont̀a des relations des dépendence intégrale. Il en ŕesulte queui est borńe donc est une
série entìere enz1, . . . , zn, et par suite se prolongèaX′.

On peut se demander si le foncteur introduit dans 5.3 est uneéquivalence de catégories.
On a une ŕeponsèa cette question grâce au th́eor̀eme de GRAUERT-REMMERT [6] dont nous
donnons une d́emonstration ci-dessous utilisant la résolution des singularités. On aurait aussi
pu utiliser le th́eor̀eme de GRAUERT-REMMERT pour démontrer 5.1 ; c’est ce que l’on faisait
avant de disposer de [8].part 68

340
Théorème 5.4 (Théor̀eme de GRAUERT-REMMERT)Soient X un espace analytique normal,
Y un sous-ensemble analytique fermé tel que U = X−Y soit dense dans X. Soit U′ un revêtement
normal fini de U ; on suppose qu’il existe une partie analytique fermée rare S de X telle que la
restriction de U′ à U − U ∩ S soit étale. Alors il existe un revêtement fini normal X′ de X qui
prolonge U′, et X′ est unique à isomorphisme près.

L’unicit é ŕesulte de 5.3. Le problème de prolongerU′ est donc local surX. On peut supposer
U régulier etU′ étale surU. En effet l’ensemble des points réguliers deU est un ouvertV dense
dansX dont le compĺementaire est une partie analytique [4. no 20 D th.2] et il suffit de remplacer
U par l’ouvertV−V ∩S.

Soity un point deX−U et montrons que l’on peut prolongerU′ à un voisinage dey. Quitteà
restreindreX à un voisinage ouvert dey, il résulte du th́eor̀eme de ŕesolution des singularités [8]
que l’on peut trouver un espace analytique régulierX1, un morphisme projectiff : X1 → X in-
duisant par restrictioǹaU un isomorphismeU1 = f−1(U) ' U, tel queU1 soit le compĺementaire
dansX1 d’un diviseurà croisements normaux. Montrons queU′ se prolonge en un revêtement
fini normal deX1. Comme la question est locale surX1, on peut supposer queX1 est une boule
d’un espace affineEn et queX1 − U1 est d́efini par l’annulation desp premìeres fonctions coor-
donńeesz1, . . . , zq, avec0 ≤ p ≤ n. Le rev̂etement́etaleU′ deU1 est quotient d’un rev̂etement
de la forme

U2 = U1[T1, . . . , Tp]/
(
T n1

1 − z1, . . . , T
np
p − zp

)
par un sous-groupeH du groupe de Galois deU2. Le rev̂etementU2 se prolonge en le revêtement341

X2 = X1[T1, . . . , Tp]/
(
T n1

1 − z1, . . . , T
np
p − zp

)
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deX1 sur lequelH opère, etX2/H prolongeU′ àX1.

NotonsX′1 le rev̂etement fini normal deX1 qui prolongeU′, F1 la OX1-Algèbre coh́erente
définie parF1. D’après le th́eor̀eme de finitude de GRAUERT-REMMERT [4 no 15 th.1.1],f∗F1

est uneOX-Algèbre coh́erente. Il lui correspond donc un revêtement finiX′ deX qui est d’ailleurs
normal puisqueX′1 l’est, etX′ est le prolongement deU′ cherch́e.

Remarque 5.5 Dans l’́enonće 5.4, on ne peut supprimer l’hypothèse sur le lieu des points où le
morphismeU′ → U n’est paśetale. Soit par exempleX le disque unit́e du plan complexe,U le
compĺementaire de l’origine dansX, U′ = U[T ]/(T 2 − sin 1/z), où z est la fonction coordonńee
sur X. Alors U′ est un rev̂etement fini normal deU qui ne se prolonge pas̀a X. Supposons en
effet queU′ se prolonge en un revêtement finiX′ deX ; le lieu des points deX où le morphisme
X′ → X n’est paśetale est alors un ferḿe analytique qui contient tous les pointsz tels que l’on
ait sin 1/z = 0, ce qui est absurde.

On peut cependant supprimer l’hypothèse sur le lieu singulier du morphismeU′ → U lorsque
l’on a codim(X − U,X) ≥ 2. On peut en effet supposerU régulier. Le lieu des points deU où
U′ → U n’est pasétale est un diviseur deU, et il résulte du th́eor̀eme de REMMERT-STEIN
[9 th.3] qu’il est la trace surU d’un diviseur deX. Or, dans ce cas, siA est uneOU-Algèbre342
coh́erente telle queU′ = Spec an(A), si i : U → X est le morphisme canonique, il suffit de
prendreX′ = Spec an(i∗A) ; on sait en effet quei∗A est coh́erents [11 no 1 th.1].
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Expośe XIII

Propreté cohomologique des faisceaux
d’ensembles et des faisceaux de groupes
non commutatifs

344

par Mme. M. RAYNAUD1

Cet expośe se propose d’utiliser la cohomologieétale pour ǵeńeraliser certains résultats de
IX et X. Il montre aussi comment on peutétendre aux faisceaux en groupes non nécessairement
commutatifs les ŕesultats de SGA 5 II qui ont encore un sens pour de tels faisceaux. On suppose
connues les notions de cohomologieétale expośees dans SGA 4.

Le résultat principal (2.4) donne un exemple important de morphisme non propref : U → S,
qui soit “cohomologiquement propre en dimension≤ 1”, c’est-à-dire tel que, pour certains fais-
ceaux en groupesF surU (au sens de la topologiéetale), la formation def∗F et R1 f∗F com-
muteà tout changement de baseS ′ → S. Cette propríet́e est en effet satisfaite par l’ouvertU
d’un sch́emaX propre surS, compĺementaire d’un diviseurD à croisements normaux relative-
mentàS, du moins si l’on imposèaF d’être constant fini, d’ordre premier aux caractéristiques
résiduelles deS. Si l’on ne suppose plusF d’ordre premier aux caractéristiques ŕesiduelles deS,
on a un ŕesultat analogue en remplaçantR1 f∗F par le sous-faisceauR1

t f∗F obtenu en se bornant
à consid́erer les torseurs sousF “modéŕement ramifíes surX relativement̀a S”. En particulier
cela permet de montrer que le groupe fondamental modéŕement ramifíe d’une courbe alǵebrique
propre et lisse sur un corps séparablement clos, privée d’un nombre fini de points ferḿes, est
topologiquement de type fini (2.12).

Le no 4 est consacré à la suite exacte d’homotopie età la formule de K̈unneth.345

Enfin un appendice donne des variantes utiles du lemme d’Abhyankar démontŕe dans X.3.6.part 69
1D’après des notes ińedites de A. Grothendieck.
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0 Rappels sur la th́eorie des champs

Nous utiliserons dans ce qui suit la théorie des champs exposée dans [1] et [2]. Nous nous
bornons au cas du sitéetale d’un sch́ema. Etant donńe un sch́emaX, notonsXét le siteétale de
X. Rappelons qu’un champ surX est une cat́egorie fibŕee au-dessus deXét telle que, pour
tout sch́emaX ′ étale surX et pour tout couple d’objetx, y de la fibreFX′, le pŕefaisceau
HomX′(x, y) soit un faisceau, et telle que, pour tout morphismeétale surjectifX ′′ → X ′, tout
objet deFX′′ muni d’une donńee de descente relativementàX ′′ → X ′ soit image inverse d’un
objet deFX′.

On noteF (X ′) la cat́egorie des sections cartésiennes deF/X ′. Plus ǵeńeralement, siSchX
est la cat́egorie des sch́emas au-dessus deX munie de la topologiéetale, le champF peut
s’étendre en un champF sur SchX et, pour tout morphismef : X ′ → X, on note encore
F (X ′) la cat́egorie des sections cartésiennes de ce champF au-dessus deX ′.

Une gerbe est un champ tel que, pour tout schémaX ′ étale surX et pour tout couple d’objets
x, y deFX′, tout morphisme dex dansy soit un isomorphisme, quex ety soient localement iso-
morphes, et tel que l’ensemble des objetsX ′ deXét tels queFX′ soit non vide est un raffinement
deXét. Par exemple le champ des torseurs sous un faisceau en groupes est une gerbe qui, de plus,
a une section cartésienne. Ŕeciproquement une gerbe qui a une section, i.e. telle qu’il existe un
objetx deFX , estéquivalente au champ des torseurs sous le faisceau en groupesAutX(x).346

On a une notiońevidente de sous-gerbe et de sous-gerbe maximale d’un champF . Etant
donńe une section cartésiennex deF (X), il existe une unique sous-gerbe maximaleGx deF
telle quex se factorisèa traversGx. On appelleGx la sous-gerbe engendrée parx ; c’est par
définition une gerbe triviale. Le préfaisceauSF défini par

SF (X ′) = {sous-gerbes maximales deF |X ′}

est un faisceau appelé, faisceau des sous-gerbes maximales deF . SoitO le pŕefaisceau d́efini par

O(X ′) = {classes d’objets deFX′ mod. isomorphisme}.

En associant̀a tout objetx deFX′ la sous-gerbe maximale deF |X ′, engendŕee parx, on obtient
un morphisme

O → SF ;

d’apr̀es [2, III 2.1.4], ce morphisme fait deSF un faisceau associé àO.

Un champF est ditconstructible(resp. ind-L-fini,L étant un ensemble de nombres premiers)
si, pour tout sch́emaX ′ étale surX et pour tout objetx de FX′, il en est ainsi du faisceau
AutX′(x) [2, VII 2.2.1]. On dit qu’un champ estl-constructible s’il est constructible et si le
faisceau des sous-gerbes maximales est constructible.

1 Propreté cohomologique
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1.0 SoientS un sch́ema,f : X → Y un morphisme deS-sch́emas. SiS ′ est unS-sch́ema, on
consid̀ere le diagramme suivant, dont tous les carrés sont cart́esiens :

(1.0.1) X

f

��

X ′
hoo

f ′

��
Y

��

Y ′
goo

��
S S ′oo

.

347

Si Y1 est un sch́emaétale au-dessus deY , on poseX1 = X ×Y Y1, Y ′1 = Y ′ ×Y Y1, et on
consid̀ere le carŕe cart́esien

(1.0.2) X1

f1

��

X ′1
h1oo

f ′1
��

Y1 Y ′1
g1oo

.

Définition 1.1 Soit F un champ sur X . On dit que (F, f) est cohomologiquement propre rela-
tivementà S en dimension6 −1 (resp. en dimension 6 0, resp. en dimension 6 1) si, pour
tout S-schéma S ′, le foncteur canonique (défini de façon évidente par la propriété universelle de
l’image inverse de champs) :

g∗f∗F → f ′∗h
∗F (cf.1.0.1)

est fidèle (resp. pleinement fidèle, resp. une équivalence de catégories).

S’il n’y a pas de confusion possible surS, en particulier siS = Y , on dit cohomologiquement
propre au lieu de cohomologiquement propre relativementàS.

1.2 SoitF un faisceau d’ensembles surX ; soit Φ le champ en catégories discr̀etes associé à
F , i.e. le champ dont la fibre au-dessus de tout schémaX1 étale surX est la cat́egorie discr̀ete
ayant pour ensemble d’objetsF (X1). On dit que(F, f) est cohomologiquement propre relative-
mentàS en dimension6 −1 (resp. en dimension6 0) si (Φ, f) est cohomologiquement propre
relativement̀aS en dimension6 0 (resp. en dimension6 1).

Le morphisme canonique348

(1.2.1) g∗f∗F → f ′∗h
∗F

donne par passage aux champs en catégories discr̀etes associées le morphisme canonique

g∗f∗Φ→ f ′∗h
∗Φ.

Par suite dire que(F, f) est cohomologiquement propre relativementà S en dimension6 −1
(resp. en dimension6 0) équivautà dire que, pour toutS-sch́emaS ′, le morphisme (1.2.1) est
injectif (resp. bijectif).
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1.3 SoitF un faisceau en groupes surX et Φ le champ des torseurs surX de groupeF [1,
II 2.3.2]. On dit que(F, f) est cohomologiquement propre relativementàS en dimension6 −1
(resp.6 0, resp.6 1) si (Φ, f) est cohomologiquement propre relativementà S en dimension
6 −1 (resp.6 0, resp.6 1). La condition de propreté cohomologique peut s’expliciter comme
suit.

Proposition 1.3.1 Les notations sont celles de (1.0.1) et (1.0.2). Soit F un faisceau en groupes
sur X . On désigne par F ′ (resp. F1, resp. F ′1, etc.), l’image inverse de F sur X ′ (resp. sur X1,
resp. sur X ′1, etc.). Alors les conditions suivantes sont équivalentes :

(i) (F, f) est cohomologiquement propre relativement à S en dimension 6 −1 (resp. 6 0,
resp. 6 1).

(ii) Pour tout morphisme S ′ → S, pour tout schéma Y1 étale au-dessus de Y , et pour tout
torseur P sur X1 de groupe F1, si PF1 désigne le groupe tordu de F1 par P [1, II 4.1.2.3],
le morphisme canonique

a0 : g∗1(f1∗(
PF1))→ f ′1∗(

P ′F ′1)

est injectif (resp. a0 est bijectif et le morphisme canonique

a1 : g∗(R1 f∗F )→ R1 f ′∗F
′

est injectif, resp. a0 et a1 sont bijectifs).349

(ii bis) Pour tout morphisme S ′ → S, pour tout schéma Y1 étale au-dessus de Y , pour tout torseur
P sur X1 de groupe F1, et pour tout torseur R sous PF1, le morphisme canonique

α0 : g∗1(f1∗R)→ f ′1∗R
′

est injectif (resp. α0 est bijectif, resp. les morphismes α0 et

α1 : g∗1(R1 f1∗(
PF1))→ R1 f ′1∗(

P ′F ′1)

sont bijectifs).

Démonstration (i)⇒ (ii bis). D’après [1, II 4.2.5] tout torseurR de groupePF1 est de la forme

R = Q
F1∧ P ◦, oùQ est un torseur de groupeF1 etP ◦ l’oppośe deP . On a alorsR′ ' Q′

F ′1∧ P ′◦.
Soit Φ le champ des torseurs sousF et soientx, y (resp.x′, y′) les objets de la catégorie fibre
(g∗f∗Φ)Y ′1 (resp.(f ′∗Φ

′)Y ′1 ) assocíesàP ,Q (resp.P ′,Q′). On a la relation

Q
F1∧ P ◦ ' HomF1(P,Q),

et il en ŕesulte que l’on a des isomorphismes canoniques

HomY ′1
(x, y) ' g∗1f1∗(Q

F1∧ P ◦), HomY ′1
(x′, y′) ' f ′1∗(Q

′
F ′1∧ P ′◦).
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Par suite le morphismeα0 s’identifie au morphisme

HomY ′1
(x, y)→ HomY ′1

(x′, y′),

d’où il résulte que, si(F, f) est cohomologiquement propre relativementàS en dimension6 −1,
α0 est injectif et que, si(F, f) est cohomologiquement propre en dimension6 0, α0 est bijectif.

Supposons maintenant que(F, f) soit cohomologiquement propre relativementà S en di-
mension6 1, i.e. que le morphisme canonique

ϕ : g∗f∗Φ→ f ′∗Φ
′

soit uneéquivalence. SoitG le faisceau des sous-gerbes maximales du champf∗Φ [1, III 2.1.8] ;350
on a alors un isomorphismeG ' R1 f∗F . Commeg∗G est le faisceau des sous-gerbes maximales
deg∗f∗Φ [2, III 2.1.5.5], le morphismeα1 est obtenùa partir deϕ|Y ′1 en prenant les faisceaux
des sous-gerbes maximales, donc est un isomorphisme.

(ii bis) ⇒ (ii). Il suffit de montrer que, si les morphismesα0 sont bijectifs, alors les mor-
phismesa1 sont injectifs. SoientY ′1 un sch́emaétale au-dessus deY ′, s et t deuxéléments de
g∗(R1 f∗F )(Y ′1) ayant m̂eme image dansR1 f ′∗F

′(Y ′1) et montrons que l’on as = t. L’asser-
tion est locale pour la topologiéetale deY ′1 et, compte tenu de la définition de l’image inverse
g∗(R1 f∗F ), on peut supposer queY ′1 est l’image inverse d’un schémaY1 étale au-dessus deY et
ques et t proviennent de torseursP etQ surX1. L’hypothèse faite surs et t signifie alors que les
images inversesP ′ etQ′ deP etQ surX ′1 sont isomorphes localement pour la topologieétale
deY ′1 . Si l’on poseR = HomF1(P,Q), le fait que le morphisme

g∗1f1∗R→ f ′1∗R
′

soit bijectif prouve queP etQ sont isomorphes localement pour la topologieétale deY1, donc
que l’on as = t.

(ii) ⇒ (i). Pour prouver queϕ est fid̀ele (resp. pleinement fidèle), il suffit de montrer que, si
Y1 est un sch́emaétale surY , si P , Q sont deux torseurs surX1 de groupeF1, si x, y (resp.x′,
y′) sont les objets de(g∗f∗Φ)Y ′1 (resp.(f ′∗Φ

′)Y ′1 ) assocíesàP ,Q (resp.P ′,Q′), le morphisme

a : Hom(x, y)→ Hom(x′, y′)

est injectif (resp. bijectif). Ora s’identifie au morphisme canonique

H0(Y ′1 , g
∗
1f1∗(Q

F1∧ P ◦))→ H0(Y ′1 , f
′
1∗(Q

′
F ′1∧ P ′◦)).

Si l’on a Hom(x, y) 6= ∅, alorsQ
F1∧ P ◦ est un torseur sousPF1 localement trivial surY1 ; il en351

résulte quef1∗(Q
F1∧ P ◦) est un torseur sousf1∗(

PF1), et queg∗1f1∗(Q
F1∧ P ◦) est un torseur trivial.

Le morphismea s’identifie alors au morphisme canonique

H0(Y1, g
∗
1f1∗(

PF1))→ H0(Y ′1 , f
′
1∗(

P ′F ′1)).
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Il en est de m̂eme si l’on aHom(x′, y′) 6= ∅ et sia1 est injectif car alorsQ′
F ′1∧ P ′◦ est trivial, et il

résulte de l’injectivit́e dea1 queP etQ sont localement isomorphes surY1. On en conclut que,
si a0 est injectif (resp. sia0 est bijectif eta1 injectif), ϕ est fid̀ele (resp. pleinement fidèle).

Il resteà montrer que, sia0 et a1 sont bijectifs, le foncteurϕ est essentiellement surjectif.
SoientY ′′ un sch́emaétale au-dessus deY ′, X ′′ = X ′ ×Y ′ Y ′′ et soitP ′′ un torseur surX ′′ de
groupeF ′′ = F ′|X ′′. On va montrer qu’il existe uńelémentx de (g∗f∗Φ)Y ′′ dont l’image dans
(f ′∗Φ

′)Y ′′ est isomorphèaP ′′. Soitp′′ la classe deP ′′. Du fait quea1 est surjectif ŕesulte que l’on
peut trouver un morphisméetale surjectifY ′′1 → Y ′′, un morphisméetaleY1 → Y tel que l’on ait
un morphismeY ′′1 → Y ′1 et un torseurP1 surX1 de groupeF1 dont l’image inverseP ′′1 surX ′′1
soit isomorphèa l’image inverse deP ′′. Utilisant le fait queϕ est pleinement fid̀ele, on voit que
l’objet x1 de(g∗f∗Φ)Y ′′1 qui correspond̀aP ′′1 est muni d’une donńee de descente relativementà
Y ′′1 → Y ′′, donc provient d’uńelémentx de(g∗f∗Φ)Y ′′. Comme l’image dex dans(f ′∗Φ

′)Y ′′ est
P ′′, ceci prouve queϕ est essentiellement surjectif et achève la d́emonstration.

Exemple 1.4 Soit f : X → Y un morphisme propre. Il résulte de [2, VII 2.2.2] que, pour tout
champ ind-finiF surX, le couple(F, f) est cohomologiquement propre (relativementà Y ) en
dimension6 1. En particulier, pour tout faisceau d’ensembles (resp. tout faisceau de groupes,
resp. tout faisceau en groupes ind-fini)F surX, (F, f) est cohomologiquement propre en di-352
mension6 0 (resp. en dimension6 0, resp. en dimension6 1).

part 70

Remarques 1.5 a) SoitF un faisceau en groupes surX tel que(F, f) soit cohomologique-
ment propre relativementàS en dimension6 −1 (resp.6 0). Si l’on consid̀ereF comme
faisceau d’ensembles,(F, f) est cohomologiquement propre relativementà S en dimen-
sion6 −1 (resp.6 0), mais la ŕeciproque est fausse.
Soit par exempleY le spectre d’un anneau de valuation discrète strictement local de point
fermé t, de point ǵeńeriques, f : X → Y un sch́ema non vide surY dont la fibre ferḿee
est vide,F un faisceau en groupes constant non trivial surX etP un torseur sousF tel que
l’on ait H0(Xs,

PF |Xs) = 1. Alors (PF, f) est cohomologiquement propre relativement
àY en dimension6 −1 lorsque l’on consid̀erePF comme faisceau d’ensembles. Si l’on
considePF comme faisceau en groupes, on a un isomorphisme

P ◦
(PF ) ' F ; comme le

morphisme canonique
H0(X,F )→ H0(Xt, F |Xt) = 1

n’est pas injectif, ceci prouve que(PF, f) n’est pas cohomologiquement propre relative-
mentàY en dimension6 −1.

b) Supposonsf coh́erent (i.e. quasi-compact et quasi-sépaŕe). SoitF un champ surX. Pour
tout point ǵeoḿetriquey deY ′, on noteY (resp.Y

′
) le localiśe strict deY (resp.Y ′) eny,

et on poseX = X ×Y Y , X
′
= X ′ ×Y ′ Y

′
, etc. Pour que(F, f) soit cohomologiquement

propre relativement̀aS en dimension6 −1 (resp.6 0, resp.6 1), il faut et il suffit que,
pour toutS-sch́emaS ′ et pour tout point ǵeoḿetriquey deY ′, le foncteur canonique

F (X)→ F
′
(X
′
)
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soit fidèle (resp. pleinement fidèle, resp. unéequivalence).
En effet, siS ′ est unS-sch́ema, pour que le foncteur353

g∗f∗F → f ′∗F
′

soit fidèle (resp. pleinement fidèle, resp. unéequivalence), il faut et il suffit qu’il en soit
ainsi du foncteur induit sur les fibres aux différents points ǵeoḿetriquesy′ deY

′
[2, III

2.1.5.9]. L’assertion ŕesulte donc du calcul des fibres géoḿetriques de l’image directe d’un
champ par un morphisme cohérent [2, VII 2.1.5].

c) SoitF un champ surX. Le fait que(F, f) soit cohomologiquement propre relativementà
S en dimension6 −1 (resp.6 0, resp.6 1) est local surY pour la topologiéetale.
SoitS ′ unS-sch́ema,F ′ l’image inverse deF surX ′ (cf. (1.0.1)). Si(F, f) est cohomolo-
giquement propre relativementàS en dimension6 1, il en est de m̂eme de(F ′, f ′). Mais,
si (F, f) est cohomologiquement propre relativementàS en dimension6 −1 (resp.6 0),
il n’en est pas ńecessairement de même de(F ′, f ′).
Soit par exempleS ′ un anneau de valuation discrète,f ′ : ES′ → S ′ l’espace affine au-
dessus deS ′, x un point ferḿe deES′ au-dessus du point géńerique deS ′ etF ′ le faisceau
d’ensembles surES′ dont la restrictioǹaES′−{x} est le faisceau constantà unélément et
dont la fibre en un point ǵeoḿetrique au-dessus dex a deuxéléments. Alors(F ′, f ′) n’est
pas cohomologiquement propre relativementàS ′ en dimension6 −1. SoientS = S ′[Z],
f : ES → S l’espace affine surS et T une partie ferḿee deX = ES qui ne rencontre
par le ferḿeZ = 0 et telle quef(T ) contienne le point ǵeńerique deS. SoientG l’image
inverse deF ′ surX etF le faisceau surX obtenu en prolongeantG|X − T par le vide.
Alors (F, f) est cohomologiquement propre relativementàS en dimension6 −1, mais il
n’en est plus de m̂eme apr̀es le changement de baseS ′ → S défini parZ = 0.354

d) SoitF un champ surX tel que(F, f) soit cohomologiquement propre relativementà Y
en dimension6 −1 (resp.6 0, resp.6 1). Alors, pour tout point ǵeoḿetriquey deY , le
foncteur canonique

(f∗F )y → F (Xy)

est fid̀ele (resp. pleinement fidèle, resp. unéequivalence de catégories).

Proposition 1.6 Soient f : X → Y et g : Y → Z deux S-morphismes, Φ un champ sur X .

1) Supposons que (Φ, f) et (f∗Φ, g) soient cohomologiquement propres relativement à S en
dimension 6 −1 (resp. 6 0, resp. 6 1). Alors il en est de même de (Φ, gf).

2) Supposons que (Φ, gf) soit cohomologiquement propre relativement à S en dimension
6 −1 (resp. que (Φ, gf) soit cohomologiquement propre relativement à S en dimension
6 0 et (Φ, f) cohomologiquement propre relativement à S en dimension 6 −1, resp.
que (Φ, gf) soit cohomologiquement propre relativement à S en dimension 6 1 et (Φ, f)
cohomologiquement propre relativement à S en dimension 6 0). Alors (f∗Φ, g) est co-
homologiquement propre relativement à S en dimension 6 −1 (resp. en dimension 6 0,
resp. en dimension 6 1).
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Pour toutS-sch́ema S ′, on consid̀ere le diagramme suivant, dont tous les carrés sont
cart́esiens :

(1.6.1) X ′
f ′ //

h
��

Y ′
g′ //

k
��

Z ′ //

m

��

S ′

��
X

f // Y
g // Z // S

.

le morphisme canonique
m∗(g∗f∗Φ)→ g′∗f

′
∗(h
∗Φ)

s’identifie au compośe des morphismes canoniques355

m∗(g∗f∗Φ) i // g′∗(k
∗f∗Φ)

j // g′∗f
′
∗(h
∗Φ).

1) L’hypothèse entrâıne quei et j sont fid̀eles (resp. pleinement fidèles, resp. deśequiva-
lences) ; il en est donc de même deji.

2) L’hypothèse entrâıne queji est fid̀ele (resp. queji est pleinement fid̀ele etj fidèle, resp.
que ji est uneéquivalence etj pleinement fid̀ele) ; il en ŕesulte quei est fid̀ele (resp.
pleinement fid̀ele, resp. unéequivalence).

Corollaire 1.7 Soient f : X → Y et g : Y → Z deux S-morphismes, et soit F un faisceau
en groupes sur X . Supposons que (F, gf) soit cohomologiquement propre relativement à S en
dimension 6 −1 (resp. que (F, gf) soit cohomologiquement propre relativement à S en dimen-
sion 6 0 et que (F, f) soit cohomologiquement propre relativement à S en dimension 6 −1).
Alors (f∗F, g) est cohomologiquement propre relativement à S en dimension 6 −1 (resp. en
dimension 6 0).

Reprenons les notations de (1.6.1) et, pour tout schémaY1 étale au-dessus deY , notonsf1,
F1 les images inverses respectives def , F par le morphismeY1 → Y . SoientΦ le champ des
torseurs sousF et Ψ le champ des torseurs sousf∗F . On a un foncteur canonique

ϕ : Ψ→ f∗Φ,

obtenu en associantà tout sch́emaY1 étale surY et à tout torseurP surY1 de groupef1∗F1 le
torseurP̃ surX1 déduit def ∗1P par l’extension du groupe structuralf ∗1 f1∗F1 → F1. Le foncteur
ϕ est pleinement fid̀ele. En effet, siP etQ sont deux torseurs surY1 de groupef1∗F1, on a un
morphisme canonique

Isomf1∗F1(P,Q)→ f1∗(IsomF1(P̃ , Q̃))

qui est un isomorphisme car il en est ainsi localement. On en déduit que le morphisme canonique356

Isomf1∗F1(P,Q)→ IsomF1(P̃ , Q̃)

est un isomorphisme, donc queϕ est pleinement fid̀ele.
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On a un diagramme commutatif

g′∗k
∗Ψ i //

g′∗k
∗(ϕ)
��

m∗(g∗Ψ)

m∗g∗(ϕ)

��
g′∗k
∗(f∗Φ)

j //m∗(g∗f∗Φ)

,

où i et j sont les morphismes de changement de base. Il résulte de 1.6 2) quej est fid̀ele (resp.
pleinement fid̀ele). Commeg′∗k

∗(ϕ) etm∗g∗(ϕ) sont pleinement fid̀eles, on d́eduit du diagramme
ci-dessus quei est fid̀ele (resp. pleinement fidèle).

Corollaire 1.8 Soient f : X → Y un S-morphisme cohérent, g : Y → Z un S-morphisme
propre, Φ un champ ind-fini surX [2, VII 2.2.1]. Supposons que (Φ, f) soit cohomologiquement
propre relativement à S en dimension 6 −1 (resp. 6 0, resp. 6 1), alors il en est de même de
(Φ, gf).

Commef est coh́erent,f∗Φ est un champ ind-fini (SGA 4 IX 1.6 (ii)). Le corollaire résulte
donc de 1.6 1) et 1.4.part 71

Corollaire 1.9 Soient f : X → Y un S-morphisme entier, g : Y → Z un S-morphisme. Si F est
un faisceau d’ensembles sur X , pour que (f∗F, g) soit cohomologiquement propre relativement
à S en dimension 6 −1 (resp. 6 0), il faut et il suffit qu’il en soit ainsi de (F, gf). Si F est un
faisceau en groupes sur X , pour que (f∗F, g) soit cohomologiquement propre relativement à S
en dimension 6 −1 (resp. 6 0, resp. 6 1), il faut et il suffit qu’il en soit ainsi de (F, gf).

L’assertion relative au cas d’un faisceau d’ensembles résulte de 1.6 et du fait que(F, f) est357
cohomologiquement propre relativementàS en dimension6 0. SoientF un faisceau en groupes
surX et Φ le champ des torseurs sousF . D’après SGA 4 VIII 5.8, tout torseur sousF est
localement trivial surY . Il en résulte que le champf∗Φ est équivalent au champ des torseurs
sousf∗F , l’ équivalencéetant obtenue en associantà tout sch́emaY1 étale surY et à tout torseur
P surX1 = X ×Y Y1 de groupeF |X1 le torseurf∗P de groupef∗F |Y1. Comme(F, f) est
cohomologiquement propre relativementàS en dimension6 1, le corollaire ŕesulte donc de 1.6.

Définitions 1.10

1.10.1 SoitE une cat́egorie et consid́erons un diagramme

Φ
p // Φ1

p1 //
p2

// Φ2 ,

où Φ, Φ1, Φ2 sont des catégories fibŕees au-dessus deE et les fl̀eches des morphismes de
cat́egories fibŕees, et soit

a : p1p
∼→ p2p
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un isomorphisme de foncteurs.

On dit que le diagramme ci-dessus est exact si la condition suivante est satisfaite

a) Pour tout couple d’objetsx, y de Φ et tout morphismef : p(x) → p(y) tel que l’on ait
p1(f) = p2(f) (p1p etp2p étant identifíes gr̂aceàa), il existe un unique morphismeg : x→ y tel
que l’on aitp(g) = f .

1.10.2 Consid́erons le diagramme

Φ
p // Φ1

p1 //
p2

// Φ2

p23 //
p31 //
p12

// Φ3 ,

où Φ, Φi, 1 6 i 6 3, sont des catégories fibŕees surE et les fl̀eches des morphismes de catégories358
fibrées. Supposons donnés des isomorphismes de foncteurs

a : p1p
∼→ p2p

a1 : p31p2
∼→ p12p1, a2 : p12p2

∼→ p23p1, a3 : p23p2
∼→ p31p1

tels que le diagramme suivant soit commutatif :

p23p1p
id.a // p23p2p

a3.id // p31p1p

id.a
��

p12p2p

a2.id

OO

p12p1p
id.a
oo p31p2p

a1.id
oo

.

On identifiep1p etp2p, p31p2 etp12p1, etc.

On dit que le diagramme ci-dessus est exact si les conditions suivantes sont satisfaites :

a) Analoguèa la condition a) de 1.10.1.

b) Pour tout objetx1 deΦ1 et pour tout isomorphismeu : p1(x1)
∼→ p2(x1) tel que l’on ait

(1.10.2.1) p23(u)p31(u) = p12(u)−1,

il existe un objetx deΦ tel que l’on ait un isomorphismei : p(x)
∼→ x1 rendant commutatif

le diagramme

(1.10.2.2) p1p(x)

p1(i)

��

p2p(x)

p2(i)

��
p1(x1) ∼

u
// p2(x1)

1.10.3 On d́efinit de façonévidente la notion de morphisme de diagrammes exacts de
cat́egories fibŕees au-dessus d’une catégorieE.
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1.10.4 Nous utiliserons en particulier la notion de diagramme exact dans le cas où E est un
site etΦ, Φi, 1 6 i 6 3, des champs surE.

Soientf : E → E ′ un morphisme de sites et

(1.10.4.1) Φ
p // Φ1

p1 //
p2

// Φ2

p23 //
p31 //
p12

// Φ3

un diagramme exact de champs surE. On obtient par image directe un diagramme

f∗Φ // f∗Φ1
//
// f∗Φ2

////// f∗Φ3

qui estévidemment exact.

Si h : E ′′ → E est un morphisme de sites, on a de même un diagramme exact

h∗Φ
p′′ // h∗Φ1

p′′1 //

p′′2

// h∗Φ2

p′′23 //
p′′31 //
p′′12

// h∗Φ3

Vérifions d’abord la condition a) de 1.10.2. SoientF ′′ un objet deE ′′, x′′ et y′′ deux objets
de(h∗Φ)F ′′, x′′1 et y′′1 leurs images respectives dansh∗Φ1 etx′′2, y′′2 leurs images dansh∗Φ2. Soit
u′′1 : x′′1 → y′′1 un morphisme tel que l’on aitp′′1(u′′1) = p′′2(u′′1) et prouvons queu′′1 provient d’un
unique morphismeu′′ : x′′ → y′′. La questiońetant locale surF ′′, on peut supposer qu’on a un
objetF1 deE, un morphisme deF ′′ dans l’image inverseF ′′1 deF1 parh, des objetsx, y deΦF1

dont les images inverses surF ′′ sontx′′ ety′′. Soientx1, y1 (resp.x2, y2) les images dex, y dans
Φ1 (resp.Φ2). On peut supposer queu′′1 provient d’un morphismeu1 : x1 → y1, tel que l’on ait
p1(u1) = p2(u1). Vu l’exactitude de (1.10.4.1), on obtient un unique morphismeu : x → y dont
l’image inverse parh est le morphismeu′′ cherch́e.

La condition b) de 1.10.2 se vérifie de façon analogue. Soientx′′1 un objet de(h∗Φ1)F ′′,360
u′′ : p′′1(x′′1)→ p′′2(x′′1) un morphisme satisfaisantà la relation

p′′23(u′′)p′′31(u′′) = p′′12(u′′)−1,

et prouvons qu’il existe un objetx′′ de (h∗Φ)F ′′ et un isomorphismei′′ : p′′(x′′) ' x′′1 rendant
commutatif un diagramme analogueà (1.10.2.2). Comme la question est locale surF ′′, on peut
supposer qu’on a un objetF1, un morphismeF ′′ → F ′′1 comme ci-dessus, et un objetx1 de
(Φ1)F1 dont l’image inverse dans(h∗Φ1)F ′′ estx′′1. De m̂eme on peut supposer queu′′ provient
d’un morphismeu : p1(x1) → p2(x1) satisfaisant̀a (1.10.2.2). L’existence d’un objetx deΦF1,
dont l’image inverse parh soit unélémentx′′ répondant̀a la question, ŕesulte alors de l’exactitude
de (1.10.4.1).

Exemples 1.11 1) Soit f : X1 → X un morphisme de descentepour la cat́egorie des fais-
ceauxétales sur des schémas variables (par exemple un morphisme universellement sub-
mersif (SGA 4 VIII 9.3)). SoientX2 = X1×X X1, g : X2 → X la projection canonique et
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F un faisceau d’ensembles surX. Il résulte alors de loc. cit. que l’on a une suite exacte de
faisceaux d’ensembles

(1.11.1) F // f∗f
∗F

//
// g∗g

∗F .

Si Φ est le champ en catégories discr̀etes associé à F et Φ3 le champ final surX, i.e. le
champ dont toutes les fibres sont réduites̀a un seuĺelément ayant pour seul morphisme le
morphisme identique, dire que la suite (1.11.1) est exacte revientà dire qu’il en est ainsi
du diagramme de champs

Φ // f∗f
∗Φ

//
// g∗g

∗Φ ////// Φ3 .

361
2) Soit f : X1 → X un morphisme de descente effectivepour la cat́egorie des faisceaux

étales sur des schémas variables (par exemple un morphisme propre surjectif, ou un mor-
phisme entier surjectif, ou un morphisme fidèlement plat localement de présentation fi-
nie (SGA 4 VIII 9.4)). SoientX2 = X1 ×X X1, g : X2 → X la projection canonique,
X3 = X1 ×X X1 ×X X1, h : X3 → X le morphisme canonique. SoientΦ un champ sur
X, Φ1 = f∗f

∗Φ, Φ2 = g∗g
∗Φ, Φ3 = h∗h

∗Φ. On a alors un diagramme exact

Φ // Φ1
//
// Φ2

////// Φ3,

où les fl̀eches sont les morphismes canoniques associés aux projections.
Consid́erons en effetΦ comme un champ sur la catégorieSchX des sch́emas au-dessus
deX, munie de la topologiéetale. Alors, d’apr̀es [2, VII 2.2.8],Φ est aussi un champ
pour la topologie la plus fine surSchX pour laquelle les morphismes couvrants sont les
morphismes de descente effective pour la catégorie des faisceaux́etales. L’exactitude du
diagramme ci-dessus en résulte aussitôt.

part 72

Proposition 1.12 Soient S un schéma, f : X → Y un S-morphisme.

1) Soit
Φ // Φ1

//
// Φ2

un diagramme exact de champs sur X . Supposons que (Φ1, f) soit cohomologiquement
propre relativement à S en dimension 6 0 et que (Φ2, f) soit cohomologiquement propre
relativement à S en dimension 6 −1. Alors (Φ, f) est cohomologiquement propre relati-
vement à S en dimension 6 0.

2) Soit
Φ // Φ1

//
// Φ2

////// Φ3

un diagramme exact de champs sur X . Supposons que (Φ, f) soit cohomologiquement
propre relativement à S en dimension 6 1, que (Φ2, f) soit cohomologiquement propre362
relativement à S en dimension 6 0 et que (Φ3, f) soit cohomologiquement propre à S
en dimension 6 −1. Alors (Φ, f) est cohomologiquement propre relativement à S en
dimension 6 1.

255



XIII

Pour toutS-sch́emaS ′, on consid̀ere le diagramme commutatif suivant dont tous les carrés
sont cart́esiens :

X ′
f ′ //

h
��

Y ′ //

g

��

S ′

��
X

f // Y // S

Démontrons 2), la d́emonstration de 1)́etant analogue. Comme les foncteurs image directe
et image inverse transforment diagramme exact de champs en diagramme exact (1.10.4), on a le
morphisme de diagrammes exacts de champs suivant :

g∗f∗Φ
π //

ϕ

��

g∗f∗Φ1

π1 //
π2

//

ϕ1

��

g∗f∗Φ2

//////

ϕ2

��

g∗f∗Φ3

ϕ3

��
f ′∗h

∗Φ // f ′∗h
∗Φ1

//
// f ′∗h

∗Φ2

////// f
′
∗h
∗Φ3

.

Par hypoth̀eseϕ1 est unéequivalence de catégories,ϕ2 est pleinement fid̀ele etϕ3 fidèle. Il résulte
donc du diagramme préćedent queϕ est unéequivalence.

Proposition 1.13 Soit f : X → Y un S-morphisme.
1) Soit

F // G
//
// H

un diagramme exact de faisceaux d’ensembles sur X . Supposons que (G, f) soit cohomo-
logiquement propre relativement à S en dimension 6 0 et que (H, f) soit cohomologique-
ment propre relativement à S en dimension 6 −1. Alors (F, f) est cohomologiquement
propre relativement à S en dimension 6 0.363

2) Soit F → G un monomorphisme de faisceaux en groupes sur X . Si Y1 est un schéma
étale sur Y , on pose X1 = Y1 ×Y X , et on note f1 (resp. F1, resp. G1) l’image inverse
de f (resp. F , resp. G) sur Y1 (cf. 1.0.2). Supposons que (G, f) soit cohomologiquement
propre relativement à S en dimension 6 0 (resp. en dimension 6 1) et que, pour tout
schéma Y1 étale sur Y et pour tout torseur Q sous G1, (Q/F1, f1) soit cohomologiquement
propre relativement à S en dimension 6 −1 (resp. en dimension 6 0). Alors (F, f) est
cohomologiquement propre relativement à S en dimension 6 0 (resp. en dimension 6 1).

3) Soit F → G un monomorphisme de faisceaux en groupes sur X . Supposons que (F, f)
soit cohomologiquement propre relativement à S en dimension 6 1 et que (G, f) soit
cohomologiquement propre relativement à S en dimension6 0. Alors, pour tout torseur Q
sous G, (Q/F, f) est cohomologiquement propre relativement à S en dimension 6 0.

Démonstration.

1) SoitΦ (resp.Φ1, resp.Φ2) le champ en catégories discr̀etes associé àF (resp.G, resp.H)
et soitΦ3 le champ final surX. On a alors un diagramme exact

Φ // Φ1
//
// Φ2

////// Φ3 .
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Par hypoth̀ese(Φ1, f) est cohomologiquement propre relativementàS en dimension6 1
et(Φ2, f) est cohomologiquement propre relativementàS en dimension6 0 (1.2). Comme
(Φ3, f) estévidemment cohomologiquement propre relativementàS en dimension6 −1,
il r ésulte de 1.12 que(Φ, f) est cohomologiquement propre relativementàS en dimension
6 1, i.e. que(F, f) est cohomologiquement propre relativementàS en dimension6 0.

2) Montrons d’abord que, si(G, f) est cohomologiquement propre relativementà S en di-
mension6 0 et si les(Q/F1, f1) sont cohomologiquement propres relativementà S en364
dimension6 −1, alors(F, f) est cohomologiquement propre relativementàS en dimen-
sion6 0. D’après 1.3.1 il suffit de prouver que, pour tout schémaY1 étale au-dessus deY
et pour tout torseurP surX1 de groupeF1, (PF1, f1) est cohomologiquement propre rela-
tivementàS en dimension6 0 quand on consid̀erePF1 comme un faisceau d’ensembles,
et que le morphisme canonique

d : g∗(R1 f∗F )→ R1 f ′∗F
′

est injectif. La premìere assertion résulte aussitôt de 1) car, siQ désigne le torseur
déduit deP par l’extensionF1 → G1 du groupe structural, on a un isomorphisme
QG1/

PF1
∼→ Q/F1.

Montrons qued est injectif. Il suffit de prouver que, siY1 est un sch́emaétale au-dessus
deY , si P et P̃ sont deux torseurs sousF1 dont les images inversesP ′ et P̃ ′ surX ′1 sont
isomorphes, alors, quittèa faire une extensiońetale surjective deY1, P et P̃ deviennent
isomorphes. Choisissons un isomorphismep′ : P ′

∼→ P̃ ′. SoientQ (resp.Q̃) le torseur
déduit deP (resp.P̃ ) par l’extension du groupe structuralF1 → G1. Les images inverses
Q′ (resp.Q̃′) deQ (resp.Q̃) surX ′1 se d́eduisent deP ′ (resp.P̃ ′) par extension du groupe
structuralF ′1 → G′1 ; soit q′ : Q′

∼→ Q̃′ l’isomorphisme que l’on obtient de m̂emeà partir
dep′. Comme(G, f) est cohomologiquement propre relativementàS en dimension6 0,
on peut supposer, quitteà faire une extensiońetale surjective deY1, queq′ est l’image d’un
isomorphismeq : Q

∼→ Q̃. Au torseurP (resp.P̃ ) est associée une sectionx deQ/F1

(resp. une sectioñx deQ̃/F1), et, pour queP et P̃ soient isomorphes, il faut et il suffit que
l’on ait un isomorphismeQ

∼→ Q̃ tel que l’isomorphisme

e : H0(X1, Q/F1)→ H0(X1, Q̃/F1)

qu’on en d́eduit, transformex en x̃. On prend l’isomorphismeq. Les sectionse(x) et x̃ de
H0(X1, Q̃/F1) ont même image dansH0(X ′1, Q̃

′/F ′1). Comme(Q̃/F1, f1) est cohomolo-
giquement propre relativementàS en dimension6 −1, quitteà faire une extensiońetale365
surjective deY1, on a biene(x) = x̃, ce qui d́emontre l’injectivit́e ded.
Pour achever la d́emonstration, il restèa prouver que, si(G, f) est cohomologiquement
propre relativement̀aS en dimension6 1, et si, pour tout sch́emaY1 étale au-dessus deY
et tout torseurQ surX1 de groupeF1, (Q/F1, f1) est cohomologiquement propre relative-
mentàS en dimension6 0, alors le morphismed est surjectif. SoientP ′ un torseur surX ′1
de groupeF ′1,Q

′ le torseur sousG′1 obtenuà partir deP ′ par extension du groupe structu-
ral. La donńee deP ′ estéquivalentèa celle deQ′ et d’une sectionx′ deH0(X ′1, Q

′/F ′1). Il
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résulte alors de la surjectivité du morphisme

g∗(R1 f∗G)→ R1 f ′∗G
′

que, quittèa faire une extensiońetale surjective deY1, il existe un torseurQ sousG1, dont
l’image inverse surX ′1 est isomorphèaQ′. Utilisant le fait que(Q/F1, f1) est cohomo-
logiquement propre relativementàS en dimension6 0, on peut de m̂eme supposer qu’il
existe unélémentx deH0(X1, Q/F1) dont l’image dansH0(X ′1, Q

′/F ′1) estx′. La donńee
deQ et dex détermine un torseurP sousF1, dont l’image inverse surX1 est isomorphèa
P ′, ce qui d́emontre la surjectivit́e ded.

3) Montrons que(Q/F, f) est cohomologiquement propre relativementà S en dimension
6 −1, i.e. que, pour toutS-sch́emaS ′, pour tout sch́emaY1 étale au-dessus deY , si
x, x̃ sont deuxéléments deH0(X1, Q1/F1) dont les imagesx′, x̃′ dansH0(X ′1, Q

′
1/F

′
1)

sontégales, alors, après extension surjective deY1, on ax = x̃. A x (resp.x̃) est associé
un torseurP (resp.P̃ ) sousF1, tel queQ1 se d́eduise deP (resp.P̃ ) par l’extension
F1 → G1 du groupe structural. De la relationx′ = x̃′ résulte que l’on a un isomorphisme
u′ : P ′

∼→ P̃ ′ tel que l’isomorphisme induit surQ′1 paru′ soit l’identité. Comme(F, f) est
cohomologiquement propre relativementà S en dimension6 0, on en d́eduit que, apr̀es366
extensiońetale surjective deY1, on a un isomorphismeu : P → P̃ relevantu′ ; le fait que
(G, f) soit cohomologiquement propre relativementàS en dimension6 −1 entrâıne alors
que l’on ax = x̃.
Montrons que(Q/F, f) est cohomologiquement propre relativementà S en dimension
6 0. SoientY ′′ un sch́emaétale surY ′ etx′′ un élément deH0(X ′′, Q′′/F ′′). A x′′ est as-
socíe un torseurP ′′ surX ′′ de groupeF ′′. Comme(F, f) est cohomologiquement propre
relativementà S en dimension6 1, on peut trouver des morphismesétales surjectifs
Y ′′1 → Y ′′ et Y1 → Y , tels que l’on ait un morphismeY ′′1 → Y ′1 , et un torseurP sur
X1 de groupeF1 dont l’image inverse surX ′′1 soit isomorphèa l’image inverse deP ′′. Il
résulte alors du fait que(G, f) est cohomologiquement propre relativementàS en dimen-
sion6 0 que l’on peut m̂eme choisirY ′′1 etY1 tels que le torseur d́eduit deP par extension
du groupe structuralF1 → G1 soit isomorphèaQ1 ; il correspondà P un élémentx de
H0(X1, Q1/F1), dont l’image dansH0(X ′′1 , Q

′′
1/F

′′
1 ) est isomorphèa l’image inverse dex′′,

ce qui ach̀eve la d́emonstration.part 73

Proposition 1.14 Soient f : X → S un S-schéma, F un faisceau d’ensembles ou de groupes
sur X (resp. un faisceau de ind-L-groupes, où L est un ensemble de nombres premiers). Sup-
posons F localement constant, (F, f) cohomologiquement propre en dimension 6 0 (resp. en
dimension 6 1) et f localement 0-acyclique (resp. localement 1-asphérique pour L) (SGA 4 XV
1.11). Alors, pour toute spécialisation s1 → s2 de points géométriques de S, le morphisme de
spécialisation (SGA 4 VIII 7.1)

a0 : (f∗F )s2 → (f∗F )s1

est un isomorphisme, et, si F est un faisceau en groupes, le morphisme

a1 : (R1 f∗F )s2 → (R1 f∗F )s1
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est injectif (resp. les morphismes a0 et a1 sont des isomorphismes).

La démonstration s’obtient en recopiant motà mot celle de SGA 4 XVI 2.3, mais en y367
remplaçant l’expression “propre” par l’expression “cohomologiquement propre”.

Corollaire 1.15 Soient f : X → S un morphisme, Φ un champ sur X , L un ensemble de
nombres premiers. Supposons que, pour tout schéma X1 étale sur X et pour tout couple d’objets
x, y de ΦX1 , le faisceau HomX1(x, y) soit localement constant, que le faisceau AutX1(x) soit
un ind-L-groupe localement constant, et que le faisceau des sous-gerbes maximales SΦ de Φ
[1 III 2.1.7] soit localement constant. Supposons que (Φ, f) soit cohomologiquement propre en
dimension 6 1 et que f soit localement 1-asphérique pour L. Alors, pour toute spécialisation
s1 → s2 de points géométriques de S, le morphisme de spécialisation

a : (f∗Φ)s2 → (f∗Φ)s1

est une équivalence de catégories.

SoientS1 (resp.S2) le localiśe strict deS ens1 (resp. le localiśe strict deS ens2), X2, Φ2

(resp.X1, Φ1) les images inverses deX2, Φ2 surS2 (resp. deX1, Φ1 surS1) et consid́erons le
carŕe cart́esien

X1
h //

f1
��

X2

f2
��

S1

g // S2

.

On doit montrer que le foncteur

ϕ : Φ2(X2)→ Φ1(X1)

est unéequivalence. Le foncteurϕ est pleinement fid̀ele ; soient en en effetx, y deux objets de368
(Φ2)X2

; le morphisme canonique

HomX2
(x, y)→ HomX1

(ϕ(x), ϕ(y))

s’identifie au morphisme canonique

H0(X2,HomX2
(x, y))→ H0(X1, h

∗(HomX2
(x, y)).

Ce morphisme est un isomorphisme d’après 1.14.

Montrons queϕ est uneéquivalence. Soientx1 un objet deΦ1(X1) et G1 la sous-gerbe
maximale deΦ1 engendŕee parx1. Le morphisme

H0(X2, SΦ2)→ H0(X1, h
∗(SΦ2)) = H0(X1, SΦ1)

est bijectif, et il existe donc une sous-gerbe maximaleG2 deΦ2 telle queh∗G2 soit isomorphèa
G1. Il suffit alors de prouver que le foncteur

G2 → h∗h
∗G2
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est unéequivalence. Mais, sous cette forme, la question est locale pour la topologieétale surX2.
On peut donc supposer queG2 est une gerbe de torseurs sous le groupe des automorphismes d’un
objet deG2, cas òu l’assertion ŕesulte de 1.14.

Corollaire 1.16 Les hypothèses sont celles de 1.14. Si l’on suppose de plus que F est un faisceau
d’ensembles (resp. de ind-L-groupes) et que f∗F (resp. R1 f∗F ) est constructible, alors f∗F
(resp. R1 f∗F ) est localement constant.

Le corollaire ŕesulte de 1.14 grâceà SGA 4 IX 2.11.

Remarque 1.17Rappelons que la conditionf localement0-acyclique est satisfaite sif est plat
à fibres śeparables,X etY localement noeth́eriens (SGA 4 XV 4.1), et que la conditionf loca-
lement1-asph́erique pourL est satisfaite sif est lisse,L étant l’ensemble des nombres premiers369
distincts des caractéristiques ŕesiduelles deS (SGA 4 XV 2.1).

2 Un cas particulier de propreté cohomologique : diviseurs̀a
croisements normaux relatifs

2.0 SoientR un anneau de valuation discrète de corps des fractionsK et L uneK-algèbre
étale ;L est alors produit direct d’un nombre fini de corpsLi, oùLi est une extensiońetale deK.
SiL′i désigne l’extension galoisienne engendrée parLi dans une cl̂oture alǵebrique deLi, on dit
queL estmod́erément ramifíeesurR si lesL′i sont des extensions modéŕement ramifíees au sens
de X 3, i.e. si un groupe d’inertieIi deL′i|K est d’ordre premier̀a la caract́eristique ŕesiduellep
deR.

On sait queIi est en tous cas extension d’un groupe cyclique d’ordre premierà p par unp-
groupe. (Cela ŕesulte de [5 ch.IV prop.7 cor.4] lorsque l’extension résiduelle deR est śeparable.
La démonstration donńee dans loc. cit. s’étend au cas ǵeńeral de la façon suivante. Reprenons
les hypoth̀eses et les notations de loc. cit. mais sans supposer l’extension résiduelle śeparable.
SoitHi le sous-groupe du groupe d’inertieG0, ensemble deśelémentss deG0 tels que l’on ait
sπ/π ∈ U i pour toute uniformisanteπ deAL. On v́erifie alors queG0/H1 est un groupe d’ordre
premierà p et que, pouri > 1, lesH i/H i+1 sont desp-groupes, d’òu l’on déduit le ŕesultat
annonće.)

2.0.1 Dans le cas òu R est strictement local, on a la caractérisation simple suivante : laK-
algèbreL est mod́eŕement ramifíee surR si et seulement si les[Li : K] sont premiers̀a p. De
plus, siL est mod́eŕement ramifíee surR, lesLi sont des extensions cycliques deK. En effet,
lorsqueR est strictement local,Ii estégal au groupe de Galois deL′i surK. Comme on vient370
de le rappelerIi est extension d’un groupe cyclique d’ordre premieràp par unp-groupe. Si l’on
supposeL′i mod́eŕement ramifíee surR, Ii est alors un groupe cyclique d’ordre premieràp. Il en
résulte que[Li : K] est premier̀a p et que l’on aLi = L′i. Inversement, si[Li : K] est premier

260



XIII

à p, Ii ne peut contenir dep-sous-groupe distingué non trivial ;Ii est donc un groupe cyclique
d’ordre premier̀ap, ce qui prouve queLi est mod́eŕement ramifíee surR.

2.0.2 SoientR un anneau de valuation discrète de corps des fractionsK, L uneK-algèbre
étale, et soientR un localiśe strict deR, K son corps de fractions,L = L ⊗K K. Alors, pour
queL soit mod́eŕement ramifíee surR, il faut et il suffit queL soit mod́eŕement ramifíee surR.
On se ram̀ene en effet au cas oùL est un corps. Soient alorsL =

∏
i Li, où lesLi sont des corps

extensions deK ; siL′ est l’extension galoisienne engendrée parL, et, siL′ = L′⊗K K, on a de
même une d́ecomposition deL

′
en produit de corps,L′ =

∏
j L
′
j et chaqueLi est sous-extension

d’au moins l’un desL
′
j. CommeL′ est une extension galoisienne deK, lesL

′
j sont des extensions

galoisiennes deK. SupposonsL mod́eŕement ramifíee surR ; comme le groupe de Galois de
L
′
j|K est isomorphe au groupe d’inertie deL′|K, lesL′j sont aussi mod́eŕement ramifíees surR,

et il en est donc de m̂eme desLi. Inversement, supposonsL mod́eŕement ramifíee surR. Pour
chaquej, soit vj la valuation discr̀ete deL

′
j qui prolonge la valuation deK et notons encore

vj la valuation induite surL′. Quandj varie, vj parcourt l’ensemble des valuations deL qui
prolongent la valuation deK. SoientG = Gal(L′|K),H = Gal(L′|L), Ij le groupe d’inertie de
L′|K envj, Jj le groupe d’inertie deL′|L envj. Le groupeIi est extension d’un groupe cyclique
d’ordre premier̀a p par unp-groupePj. Comme lesLi sont mod́eŕement ramifíees surR, Ij/Jj
est d’ordre premier̀a p, donc on aPj ⊂ Jj. Par suite le groupeH contient tous lesPj donc
aussi le groupeP engendŕe par lesPj pour j variable. Mais le groupeP est invariant dansG371
car un automorphisme intérieur deG transforme lesIj entre eux donc aussi lesPj entre eux.
Il en résulte queP est un sous-groupe deH distingúe dansG, donc, puisqueL′ est l’extension
galoisienne engendrée parL, que l’on aP = 1, ce qui prouve queL est mod́eŕement ramifíee
surR.

Soient plus ǵeńeralementR → R′ un morphisme d’anneaux de valuation discrète tel que
l’image d’une uniformisanteπ deR soit une uniformisanteπ′ deR′ et que l’extension ŕesiduelle
k(R′) soit une extension séparable dek(R). SoientK le corps des fractions deR, K ′ le corps
des fractions deR′, L uneK-algèbreétale,L′ = L ⊗K K ′. Alors, pour queL soit mod́eŕement
ramifiée surR, il faut et il suffit queL′ soit mod́eŕement ramifíee surR′. On peut en effet supposer
R etR′ strictement locaux. D’après 2.0.1 il suffit de prouver que, lorsqueL est un corps, il en est
de m̂eme deL′. SoientR̃ le normaliśe deR dansL, π̃ une uniformisante dẽR, R̃′ = R̃ ⊗R R′.
L’extensionk(R̃)|k(R) étant radicielle et l’extensionk(R′)|k(R) étale,k(R̃)⊗k(R) k(R′) est un
corps [EGA IV 4.3.2 et 4.3.5]. Ceci prouve queR′ est un anneau local, et, commeπ a pour image
π′ dansR′, on ak(R̃′) = R′/(π̃) ; par suiteR′ est un anneau de valuation discrète [5, ch.I§2
prop. 2] doncL′ est un corps.

2.0.3 Par ŕeduction au cas strictement local, on voit qu’une sous-algèbre d’une alg̀ebre
mod́eŕement ramifíee est mod́eŕement ramifíee, que le produit tensoriel de deux algèbres
mod́eŕement ramifíees est mod́eŕement ramifíe, qu’une alg̀ebre mod́eŕement ramifíee le reste
apr̀es extension de l’anneau de valuation discrète, qu’une alg̀ebre qui devient mod́eŕement ra-
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mifiée apr̀es une extension modéŕement ramifíee est mod́eŕement ramifíee.part 74

372

2.1 SoientX un S-sch́ema,D un diviseur≥ 0 surX. Rappelons (SGA 5 II 4.2) qu’on dit
queD est strictement̀acroisements normaux relativementàS s’il existe une famille finie(fi)i∈I
d’éléments deΓ(X,OX), telle que l’on aitD =

∑
i∈I div(fi) et que la condition suivante soit

réaliśee :

2.1.0 Pour tout pointx deSuppD,X est lisse surS enx, et, si l’on noteI(x) l’ensemble des
i ∈ I tels quefi(x) = 0, le sous-sch́emaV ((fi)i∈I(x)) est lisse surS de codimensioncard.I(x)
dansX.

Le diviseurD est dità croisements normaux relativementà S si, localement surX pour la
topologieétale, il est strictement̀a croisements normaux.

Soit D un diviseur à croisements normaux relativementà S. On poseY = SuppD,
U = X − Y , et on notei : U → X l’immersion canonique. Pour tout point géoḿetriques
deS et pour tout point maximaly de la fibre ǵeoḿetriqueYs, l’anneauR = OXs,y est un anneau
de valuation discr̀ete.

Dans la suite de ce nuḿero, nous utiliserons la définition technique suivante :

Définition 2.1.1 Soit F un faisceau d’ensembles surU . On dit que F est mod́eŕement ramifíe sur
X ( le long deD) relativement̀aS si, pour tout point géométrique s de S, la condition suivante
est satisfaite :

Pour tout point maximal y de Ys, la restriction de F au corps des fractions K de OXs est
représentable par le spectre d’une K-algèbre étale L, modérément ramifiée sur OXs,y .

Le plus souvent, quand il ne pourra en résulter de confusion, nous omettrons la mention de
D dans la terminologie.

373

Définition 2.1.2 Si F est un faisceau en groupes sur U , modérément ramifié sur X relativement
à S, on désigne par

H1
t (U,F )

le sous-ensemble de H1(U,F ) formé des classes de torseurs sour F qui sont modérément ramifiés
sur X relativement à S.

Soit U
i //

g

��

X

f~~~~~~~~~~

T

un diagramme commutatif de S-schémas, avec i comme dans 2.1 ; on désigne par

R1
t g∗F
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le faisceau sur T associé au préfaisceau T ′ 7→ H1
t (U

′, F ), où T ′ parcourt les schémas étales
au-dessus de T et où U ′ = U ×T T ′ ; R1

t g∗F est un sous-faisceau de R1 g∗F .

Notons que, si g est cohérent, si t est un point géométrique de T , T le localisé strict de T en
t, U = U ×T T , on a un isomorphisme

(2.1.2.1) (R1
t g∗F )t ' H1

t (U, F )

2.1.3 Soit Ct((U,X)/S) ou simplementCt la cat́egorie des rev̂etementśetales deU qui
sont mod́eŕement ramifíes surX relativementà S. SupposonsU connexe et soita un point
géoḿetrique deU . Soit Γt le foncteur qui,̀a un rev̂etement́etaleU ′ deU mod́eŕement ramifíe
surX relativement̀a S fait correspondre l’ensemble des points géoḿetriques deU ′ au-dessus
dea. De 2.0 ŕesulte que le couple(Ct,Γt) satisfait aux axiomes (G1) à (G6) de V.4. Par suiteΓt
est repŕesentable par un pro-objet qu’on appele lerevêtement universel modérément ramifíe de374
(U,X) relativement̀a S ponctúe ena. Le groupe oppośe au groupe desU -automorphismes du
revêtement universel modéŕement ramifíe est appelé legroupe fondamental modérément ramifíe
et not́e

Πt
1((U,X)/S, a) ou simplementΠt

1(U, a) ou mêmeΠt
1(U).

C’estévidemment un quotient du groupe fondamentalΠ1(U, a) (V.6.9).

2.1.4 SoientF un faisceau en groupes surU , P un torseur̀a droite de groupeF ,Q un torseur
à gauche de groupeF , et supposonsP etQmod́eŕement ramifíes surX relativement̀aS. Alors il

en est de m̂eme deP
F
∧ Q. On se ram̀ene en effet̀a montrer que, siR est un anneau de valuation

discr̀ete de corps des fractionsK et siF est un sch́ema en groupeśetale fini surK, et, siP et

Q sont deux torseurs sousF mod́eŕement ramifíes surR, alors il en est de m̂eme deP
F
∧ Q.

Or T = P
F
∧ Q est un quotient deP ×K Q. SiL, M , N désignent lesK-algèbres repŕesentant

respectivementT , P ,Q, alorsL est une sous-algèbre deM ⊗K N , et il résulte de 2.0.3 queL est
mod́eŕement ramifíee surR.

On d́eduit de ce qui pŕec̀ede que, siF est un faisceau en groupes surU et s’il existe un torseur
de groupeF , mod́eŕement ramifíe surX relativement̀aS, alorsF est mod́eŕement ramifíe surX
relativement̀aS. En effet le torseurP ◦ oppośe deP est mod́eŕement ramifíe surX relativement
àS, puisqu’il est isomorphèaP en tant que faisceau d’ensembles. SiPF est le groupe tordu de
F parP , on a un isomorphisme

F ' P ◦
PF
∧ P

et par suiteF est mod́eŕement ramifíe surX relativement̀aS.

On voit comme pŕećedemment que, siF → F ′ est un morphisme de faisceaux en groupes sur
U , mod́eŕement ramifíes surX relativement̀aS, et siP est un torseur sousF mod́eŕement ramifíe
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surX relativementà S, alors le torseurP ′ déduit deP par l’extension du groupe structural375
F → F ′ est mod́eŕement ramifíe surX relativement̀aS.

En particulier le morphisme canonique

H1(U,F )→ H1(U,F ′)

donne par restrictioǹa H1
t (U,F ) un morphisme canonique

H1
t (U,F )→ H1

t (U,F
′)

2.1.5 SoientS ′ → S un morphisme et notonsU ′ (resp.X ′, etc.) l’image inverse deU (resp.
X, etc.) surS ′. SiF est un faisceau d’ensembles surU mod́eŕement ramifíe surX relativement̀a
S, il résulte de la d́efinition 2.1.1 et de 2.0.3 queF ′ est mod́eŕement ramifíe surX ′ relativement
àS ′.

Si maintenantF est un faisceau en groupes surU , l’image inverse surS ′ d’un torseur sous
F mod́eŕement ramifíe surX relativement̀aS est un torseur sousF ′ mod́eŕement ramifíe surX ′

relativement̀aS ′. En particulier on a un foncteur canonique

(2.1.5.1) Ct((U,X)/S)→ Ct((U
′, X ′)/S ′).

SupposonsU etU ′ connexes et soienta un point ǵeoḿetrique deU , a′ un point ǵeoḿetrique de
U ′ au-dessus dea ; on d́eduit de ce qui pŕec̀ede un morphisme canonique

(2.1.5.2) Πt
1(U ′, a′)→ Πt

1(U, a).

Si S ′ → S est un morphisme eth : T ′ → T la projection canonique, le morphisme

h∗(R1 g∗F )→ R1 g′∗F
′

donne par restriction un morphisme canonique

(2.1.5.3) h∗(R1
t g∗F )→ R1

t g
′
∗F
′

376

2.1.6 SoitF un faisceau en groupes surU , mod́eŕement ramifíe surX relativement̀aS. Les
notationśetant celles de 2.1.2, on a des suites exactes canoniques :

(2.1.6.1)
1 −→ H1(X, i∗F ) −→ H1

t (U,F ) −→ H0(X,R1
t i∗F )

1 −→ R1 f∗(i∗F ) −→ R1
t g∗F −→ f∗(R

1
t i∗F ).

La premìere s’obtient̀a partir de la suite exacte (SGA 4 III 3.2) :

1 −→ H1(X, i∗F ) −→ H1(U,F ) −→ H0(X,R1 i∗F ).
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Il suffit en effet de montrer que l’image deH1(X, i∗F ) dansH1(U,F ) est en fait contenue
dans H1

t (U,F ) et que l’image deH1
t (U,F ) dans H0(X,R1 i∗F ) est en fait contenue dans

H0(X,R1
t i∗F ). Or l’image inverse surU d’un torseur sousi∗F est un torseur sousi∗i∗F

qui est évidemment mod́eŕement ramifíe surX relativementà S, donc il en est de m̂eme
apr̀es l’extension du groupe structurali∗i∗F → F , ce qui prouve l’existence de la flèche
H1(X, i∗F ) → H1

t (U,F ). Le fait que l’image deH1
t (U,F ) dansH0(X,R1 i∗F ) soit contenue

dansH0(X,R1
t i∗F ) résulte aussitôt de la d́efinition deR1

t i∗F . Ceci prouve l’existence de la
premìere suite exacte, et la deuxième s’en d́eduit par localisation.part 75

2.2 On conserve les notations de 2.1. Nous allons définir une notion d’objet mod́eŕement ra-
mifié d’un champΦ surU lorsque celui-ci est donné, localementsurX et surS pour la topologie
étale, commeimage inverse d’un champΨ surS.

Soit d’abordG une gerbe surU et supposons donné un morphisméetale surjectifS1 → S,
un morphisméetale surjectifX2 → X ×S S1, une gerbe trivialeH surS1 et un isomorphisme

G|U2 → H|U2,

oùU1 = U×XX1,U2 = U×XX2. Quand on choisit une trivialisation deH|X2, l’isomorphisme377
ci-dessus identifieG|U2 au champ des torseurs sous un faisceau en groupesF . On dit qu’un
élémentx deGU est mod́eŕement ramifíe surX relativement̀aS, si la restriction dex àU2 est
un torseur mod́eŕement ramifíe surX relativement̀aS. D’après 2.1.4 cette notion ne dépend pas
de la façon dont on a trivialiséH|X2.

Soit maintenantΦ un champ surU et supposons donnés un morphisméetale surjectif
S1 → S, un morphisméetale surjectifX2 → X ×S S1, un champΨ surS1 et un isomorphisme

i : Φ|U2 → Ψ|U2.

Soit x un élément deΦU , Gx la sous-gerbe maximale deΦ engendŕee parx [III 2.1.7], SΦ le
faisceau des sous-gerbes maximales deΦ. L’isomorphismei induit un isomorphisme

Sφ|U2 → Sψ|U2.

Il r ésulte de 5.7 que, quittèa remplacerS1 par une extensiońetale surjective, on a une unique
sous-gerbe maximaleH de Ψ, que l’on peut supposer triviale, telle quei définisse un isomor-
phisme

Gx|U2 → H|U2.

On dit que l’́elémentx est mod́eŕement ramifíe surX relativement̀aS s’il l’est en tant qu’́elément
deGx munie de l’isomorphisme ci-dessus.

2.2.1 SoitΦ un champ surU donńe, localement surX etS, comme image inverse d’un champ
surS, et soit U

i //

g

��

X

f~~~~~~~~~~

T

265



XIII

un diagramme comme dans 2.1.2. Pour tout schémaT ′ étale surT , si U ′ = U ×T T ′, on
consid̀ere le sous-ensemble(gt∗Φ)T ′ de (g∗Φ)T ′ = ΦU ′ formé deséléments deΦU ′ qui sont378
mod́eŕement ramifíes surX relativement̀aS. On appelle image directe modéŕement ramifíee de
Φ parg, et on note

gt∗Φ

la sous-cat́egorie pleine deg∗Φ dont les objets au-dessus d’un schémaT ′ étale surT sont les
éléments de(gt∗Φ)T ′. Il est clair quegt∗Φ est un sous-champ deg∗Φ.

2.2.2 Par ŕeduction au cas d’un champ de torseurs, on voit que, siΦ est un champ surU qui
est localement pour la topologieétale deS etX image inverse d’un champ surS, le morphisme
canonique

h∗(g∗Φ)→ g′∗Φ
′

donne par restriction un morphisme canonique

h∗(gt∗Φ)→ g′∗
t
Φ′

Remarques 2.3a) SiF est un faisceau d’ensembles localement constant constructible surU ,
pour queF soit mod́eŕement ramifíe surX relativement̀aS, il suffit que la condition de 2.1.1 soit
satisfaite pour les points géoḿetriques deS au-dessus des points maximaux deS. Pour le voir on
peut supposer le diviseurD strictement̀a croisements normaux. Le faisceauF est repŕesentable
par un rev̂etement́etaleV deU . Sis est un point ǵeoḿetrique deS, y un point maximal deYs, on
noteS le localiśe strict deS ens,X le localiśe strict deX eny, U = U ×X X, V = V ×X X. Si
la condition de 2.1.1 est satisfaite aux points géoḿetriques au-dessus des points maximaux deS,
il r ésulte de 5.5 plus bas queV est un rev̂etement deU mod́eŕement ramifíe surX relativement
àS ; par suiteV est un rev̂etement́etale deU mod́eŕement ramifíe surX relativement̀aS.

b) SoitF un faisceau en groupes surU mod́eŕement ramifíe surX relativement̀a S. Si s379
est un point ǵeoḿetrique deS, y un point maximal deYs, on noteK le corps des fractions de
OXs,y. Supposons que, pour tout points et pour tout pointy, la K-algèbreL dont le spectre
repŕesenteF |K soit de rang premier̀a la caract́eristique ŕesiduellep deOXs . On dira parfois, par
abus de langage, queF est premier aux caractéristiques ŕesiduelles deS. Lorsqu’il en est ainsi,
tout torseurP sousF est mod́eŕement ramifíe surX relativement̀aS.

Soient en effetR le localiśe strict deOXs,y eny,K son corps des fractions,F l’image inverse
deF surK. Montrons que l’on peut supposerF constant. CommeF est mod́eŕement ramifíe
surX relativement̀aS, F est repŕesentable par le spectre d’uneK-algèbreL =

∏
Li, où lesLi

sont des extensions deK de degŕe premier̀a p. On peut donc trouver une extensionK ′ deK de
degŕe premier̀ap telle queF |K ′ soit un faisceau constant. D’après 2.0.3, pour prouver queP |K
est mod́eŕement ramifíe surR, il suffit de voir queP |K ′ est mod́eŕement ramifíe sur la cl̂oture
intégrale deR dansK ′, d’où la ŕeduction au cas òu F est constant. Supposons désormaisF
constant. LaK-algèbreH qui repŕesenteP |K est alors produit d’extensionsHi deK isomorphes
entre elles. Comme le rang deH est premier̀a p, il en est de m̂eme de[H1 : K], ce qui prouve
queH est mod́eŕement ramifíe surX relativement̀aS.
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c) SoientX un sch́ema ŕegulier,D un diviseurà croisements normaux deX (SGA 5 I 3.1.5),
U = X − SuppD, F un faisceau d’ensembles surU . Si y est un point maximal deSuppD,
on d́esigne parK le corps des fractions deOX,y. On dit queF estmod́erément ramifíe relative-
mentà D, si, pour tout point maximaly deSuppD, F |K est repŕesentable par uneK-algèbre
mod́eŕement ramifíee surOX,y.380

Théorème 2.4Soient f : X → S un S-schéma, D un diviseur sur X à croisements normaux
relativement à S (2.1), Y = SuppD, U = X − Y , i : U → X l’immersion canonique. Soit F un
faisceau d’ensembles (resp. de groupes) sur U , satisfaisant à l’une des conditions suivantes :

a) F est localement pour la topologie étale surX et sur S l’image inverse d’un faisceau
d’ensembles (resp. d’un faisceau en groupes constructible) sur S.

b) F est localement constant constructible sur U et modérément ramifié sur X relativement
à S.

Alors on a les conclusions suivantes :

1) (F, i) est cohomologiquement propre relativement à S en dimension ≤ 0 (resp. pour tout
morphisme h : S ′ → S, si i′ : U ′ → X ′ est l’image inverse de i sur S ′, si F ′ = F |U ′ et si
k = h(X), le morphisme canonique

Ψ: k∗(R1
t i∗F )→ R1

t i
′
∗F
′

est un isomorphisme).
Si F est un faisceau en groupes premier aux caractéristiques résiduelles de S (2.3.b))
(modérément ramifié sur X relativement à S), alors (F, i) est cohomologiquement propre
relativement à S en dimension ≤ 1.

2) Si F est un faisceau d’ensembles (resp. de groupes) constructible, i∗F (resp. R1
t i∗F ) est

constructible.

Démonstration. Pour toutS-sch́emaS ′, on consid̀ere le diagramme suivant dont tous les carrés
sont cart́esiens :

U

g

��

i

��@@@@@@@@ U ′oo

g′

��

i′

  BBBBBBBB

X
f

��~~~~~~~~
X ′

koo

f ′

~~||||||||

S S ′
hoo S ′

Comme la question est locale surX pour la topologieétale, on peut supposer queD est un381
diviseur strictement̀a croisements normaux relativementàS (2.1) ; de plus, quittèa restreindre
X à un voisinage deY , on peut supposerX lisse surS.

Démonstration de 2.4 1).
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2.4.1 Cas d’un faisceau d’ensembles satisfaisantà a). On peut supposer que l’on aF = g∗G,
oùG est un faisceau surS. Il résulte alors de (SGA 4 XVI 3.2) que le morphisme canonique

(2.4.1.1) f ∗G→ i∗F

est un isomorphisme. Pour toutS-sch́ema h : S ′ → S, on a de m̂eme un isomorphisme
f ′∗G′ → i′∗F

′ ; par suite le morphisme canonique

ϕ : k∗(i∗F )→ i′∗F
′

s’identifieà l’isomorphisme naturel

k∗f ∗G ' f ′∗G′

2.4.2 Cas d’un faisceau d’ensembles satisfaisantà b). On doit montrer queϕ est un isomor-
phisme et il suffit pour cela de voir qu’il en est ainsi en chaque point géoḿetriquex′ deX ′. Soit
S (resp.X, resp.S

′
, resp.X

′
) le localiśe strict deS (resp.X, respS ′, resp.X ′) enx′ et posons

U = U(X), U
′
= U(X

′
), etc. Le morphismeϕx s’identifie au morphisme canonique

ϕ : H0(U, F )→ H0(U
′
, F
′
)

On peut trouver un rev̂etement principalV deU , du type figurant dans 5.4, tel que l’image inverse
deF surV soit un faisceau constant de valeurC. Si Π est le groupe de Galois deV surU , Π
opère surF |V , et l’on a

(2.4.2.1) H0(U,F )) ' H0(V,CV )Π

où le deuxìeme membre d́esigne l’ensemble deśeléments deH0(V,CV ) invariants sousΠ.382
CommeV ′ = V ×U U

′
est une rev̂etement principal deU

′
de groupe de GaloisΠ′ ' Π, on

voit que le morphismeϕ s’obtient, en prenant les invariants sousΠ, à partir du morphisme cano-
nique

H0(V,CV )→ H0(V ′, CV ′).

CommeV etV ′ sont connexes (5.4), ce morphisme, donc aussiϕ, est un isomorphisme.

Notons que si de plusF est un faisceau en groupes et siP est un torseur surU de groupe
F , mod́eŕement ramifíe relativement̀aD, il résulte de la d́emonstration pŕećedente et de 2.2 que
(
P
F , i) est cohomologiquement propre relativementàS en dimension≤ 0.part 76

2.4.3 Cas d’un faisceau en groupes.Pour montrer queΨ est un isomorphisme, il suffit de
prouver que, pour tout point géoḿetriquey′ deY ′, le morphisme

Ψy′ : (k∗(R1
t i∗F ))y′ → (R1

t i
′
∗F
′)y′
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est un isomorphisme. Or, d’après 2.1.2,Ψy′ s’identifie au morphisme canonique

Ψ: H1
t (U, F )→ H1

t (U
′
, F
′
).

SoientŨ le rev̂etement universel modéŕement ramifíe deU (2.1.3) etF̃ l’image inverse deF
sur Ũ . Il résulte de 5.7 dans le cas a) et de 5.5 dans le cas b), queH1

t (U, F ) s’identifie au
sous-ensembleH1(U, F ) formé des classes deF -torseurs dont l’image inverse surŨ est triviale.
D’autre part un raisonnement classique montre que l’ensemble deséléments deH1(U, F ) dont
l’image inverse sur̃U est triviale s’identifièaH1(πt

1(U),H0(Ũ , F̃ )). On obtient ainsi un isomor-
phisme canonique

(2.4.3.1) H1
t (U, F )

∼→ H1(πt
1(U),H0(Ũ , F̃ )).

Par suite le morphismeΨ s’identifie au morphisme canonique

H1(πt
1(U),H0(Ũ , F̃ ))→ H1(πt

1(U
′
),H0(Ũ ′, F̃ ′)).

Montrons que ce morphisme est un isomorphisme. Le morphismeπt
1(U

′
) → πt

1(U) est un iso-383
morphisme d’apr̀es 5.6, et il en est de m̂eme du morphismeH0(Ũ , F̃ ) → H0(Ũ ′, F̃ ′). En effet,
cela est́evident dans le cas b) car̃F est constant et̃U et Ũ ′ sont connexes. Dans le cas a), soit
G un faisceau en groupes constructible surS tel que l’on aitF = g∗G; comme les morphismes
Ũ → S et Ũ ′ → S

′
sont0-acycliques (5.7), on a

H0(Ũ , F̃ ) ' H0(S,G) ' H0(S
′
, G
′
) ' H0(Ũ ′, F̃ ′),

ce qui entrâıne queΨ est un isomorphisme. La dernière assertion de 2.4 1) résulte de ce qui
préc̀ede, compte tenu de 2.3 b).

Démonstration de 2.4 2).

Le cas d’un faisceau d’ensembles constructible satisfaisantà a) ŕesulte aussitôt de (2.4.1.1).
Soit F = g∗G un faisceau en groupes satisfaisantà a), òu G est un faisceau constructible ; on
peut supposerS affine ; soient(Sj)j∈J une famille finie de sous-schémas ferḿes ŕeduits deS
dont la ŕeunion recouvreS, tels que l’image inverse deG sur Sj soit un faisceau localement
constant. Compte tenu de 2.4 1), il suffit, pourétablir queR1

t i∗F est constructible, de voir qu’il
en est ainsi après le changement de baseSj → S, pour chaquej ∈ J . On est donc ramené au cas
b) où F est localement constant.

On suppose d́esormais queF est un faisceau d’ensembles ou de groupes satisfaisantà b).
Comme la question est locale pour la topologieétale surX, on peut supposerX de pŕesentation
finie surS, et, par passagèa la limite, on peut supposerX etS noeth́eriens.

SoitD =
∑

1≤i≤r divfi, où, pour chaque pointx deSupp D, si I(x) est l’ensemble desi tels
quefi(x) = 0, le sous-sch́emaV ((fi)i∈I(x)) est lisse surS de codimensioncard I(x) dansX.
SoitP l’ensemble des parties de[1, r] et, pour chaqueI ∈P, posons

XI = (∩i∈IV (fi)) ∩ (∩i6∈IXfi).
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Soit z un point deXI . Quitteà se restreindre d’abord̀a un voisinagéetale dez, on peut trouver384
un ouvertW deX contenantz et un rev̂etement principalV deU ∩W , mod́eŕement ramifíe sur
W relativement̀a S, du type consid́eŕe dans 5.6.1, tel que l’image réciproque deF surV soit
un faisceau constant de valeurC. Soit π le groupe de Galois du revtementV . Pour tout point
géoḿetriquex deXI , on a alors d’apr̀es (2.4.2.1)

H0(U, F ) ' H0(V,CV )π.

Il en résulte quei∗F |XI ∩ W est localement constant (SGA 4 IX 2.13) et par suitei∗F est
constructible.

Montrons enfin que siF est un faisceau en groupes localement constant,R1
t i∗F |XI est

constructible. Six est un point ǵeoḿetrique deX, on a obtenu dans (2.4.3.1) l’expression

H1
t (U, F )

∼→ H1(πt
1(U),H0(Ũ , F̃ )).

Sip est la caract́eristique ŕesiduelle deX, on a, d’apr̀es 5.6,πt
1(U) =

∏
l 6=p Zl(1)card I . Désignons

par L l’ensemble des nombres premiers qui divisent l’ordre du groupe finiH0(Ũ , F̃ ) et soit
K =

∏
l∈L−{p}∩L Zl(1)card I . Il résulte de [4, I§5 ex.2] que l’on a

H1
t (U, F ) ' H1(K,H0(Ũ , F̃ )).

CommeK est topologiquement de type fini etH0(Ũ , F̃ ) fini, on en d́eduit tout d’abord que les
fibres du faisceauR1

t i∗F |XI sont finies. D’autre part, l’ensembleL ne d́epend pas du pointx. Pour
tout q ∈ L, soitXI,q le fermé deXI d’équationq = 0 et soitXI′ l’ouvert deXI compĺementaire
de la ŕeunion desXI,q. Alors R1

t i∗F |XI,q etR1
t i∗F |X′I sont localement constants ; en effet une

flèche de sṕecialisation de points ǵeoḿetriques deXI,q (resp. deXI′) induit un isomorphisme
sur les groupesK (5.6.1) donc aussi sur les ensemblesH1

t (U, F ), et l’on peut appliquer SGA 4
IX 2.13.385

Corollaire 2.5 Soient f : X → S un morphisme, D un diviseur sur X à croisements normaux
relativement à S (2.1), Y = Supp D, U = X −Y , i : U → X l’immersion canonique. Soit Φ un
champ sur U et supposons donnés des morphismes étales surjectifs S1 → S et X2 → X ×S S1,
un champ Ψ sur S1 et un isomorphisme Φ|U2 ' Ψ|U2 (cf.2.2).

Alors, pour tout morphisme h : S ′ → S, si k = h(X), le foncteur canonique

ϕ : k∗i∗Φ→ i′∗Φ
′

est pleinement fidèle. Si Ψ est constructible, le foncteur canonique

ψ : k∗it∗Φ→ i′
t
∗Φ
′

est une équivalence de catégories.

De plus, si le champ Ψ est construible (resp. si Ψ est 1-constructible (0) et S localement
noethérien), i∗Φ est constructible (resp. it∗Φ est 1-constructible).
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Montrons queϕ est pleinement fid̀ele. Il suffit de voir que, pour tout point géoḿetriquex′ de
X ′, il en est ainsi du foncteur

ϕ : Φ(U)→ Φ′(U
′
)

(on a repris les notations de 2.4.2). Soienta, b deuxéléments deΦ(U), a′, b′ leurs images par
ϕ. Comme le morphismeU → S est localement0-acyclique (5.7), on a un isomorphisme

H0(U, SΦ)
∼→ H0(S, SΨ).

Par suitea et b proviennent par image inverse d’éléments deΨ, et il en est donc de m̂eme de
F = HomU(a, b). Comme le faisceauF ′ = HomU

′(a′, b′) est l’image inverse surU
′
deF , il

résulte de 2.4.1 que le morphisme canonique

H0(U, F )→ H0(U
′
, F ′)

est un isomorphisme, ce qui prouve queϕ est pleinement fid̀ele.

Montrons que, pour tout point géoḿetriquex′ deX ′, le foncteur386

ψ : it∗Φ(X
′
) −→ i′

t
∗Φ
′(X

′
)

est unéequivalence. D’apr̀es ce qui pŕec̀ede,ψ est pleinement fid̀ele. Montrons queψ est essen-
tiellement surjectif. Soita′ un élément deΦ′(U

′
) mod́eŕement ramifíe surX ′ relativement̀a S ′

(2.2) et montrons qu’il est l’image d’uńelément mod́eŕement ramifíe deΦ(U). Il résulte de 2.4
1) que le morphisme canonique

H0(U, SΦ)→ H0(U
′
, SΦ

′
)

est un isomorphisme. SoitG′ la sous-gerbe maximale deΦ′ engendŕee para′ ; il existe alors une
sous-gerbe maximaleG deΦ, image inverse d’une gerbe surS, telle que l’on ait

m∗G ' G′,

oùm est le morphismeU
′ → U . Le foncteur canonique

(∗) k
∗
i
t

∗G→ i
′t
∗G
′

est uneéquivalence, carG s’identifie à une gerbe de torseurs sous un faisceau en groupes
constructible provenant deS, et l’on peut appliquer 2.4 1). Il résulte alors de (∗) qu’il existe
un élémenta deG(U), mod́eŕement ramifíe surX relativement̀aS, dont l’image inverse surU

′

esta′, ce qui prouve queψ est unéequivalence.

Si Ψ est constructible, il en est de même dei∗Φ ; en effet un objetx de i∗Φ est, localement
pour la topologiéetale deS, image inverse d’un objety de Ψ ; il r ésulte donc de 2.4.1.1 que
Aut(x) est l’image inverse deAut(y), donc est constructible. Enfin, siΨ est 1-constructible, il
en est de m̂eme deit∗Φ d’apr̀es 6.3 ci-dessous.part 77
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387
Corollaire 2.6 Les notations son celles de 2.4. Supposons que S soit de caractèristique nulle en
tout point s tel que l’on ait Ys 6= ∅. Alors, si F est un faisceau en groupes localement constant
construible sur U (resp. un champ constructible sur U qui est localement sur X et S image
inverse d’un champ constructible sur S), (F , i) est cohomologiquement propre relativement à S
en dimension ≤ 1.

Comme tout faisceau d’ensembles constructible surU est mod́eŕement ramifíe surX relati-
vementàS, le corollaire ŕesulte de 2.4 (resp. 2.5).

Corollaire 2.7 Les notations sont celles de 2.4, mais on se donne de plus un S-schéma T , un
morphisme propre p : X → T, et on suppose X et T de présentation finie sur S ; soit q = pi. Soit
F un faisceau d’ensembles constructible sur U satisfaisant à l’une des conditions a) ou b) de 2.4
(resp. un faisceau en groupes satisfaisant à l’une des condition a), b) de 2.4, resp. un champ sur
U qui est localment sur X et S image inverse d’un champ constructible G sur S). Alors on a les
conclusions suivantes :

1. (F , q) est cohomologiquement propre relativement à S en dimension ≤ 0 (resp. pour tout
morphisme h : S

′ → S, si m = h(T ), le morphisme canonique :

Θ: m∗(R1
t q∗F )→ R1

t q
′

∗F
′

est un isomorphisme, resp. pour tout morphisme S ′ → S, le morphisme canonique

S : m∗(qt
∗F )→ q′

t
∗F

′

est une equivalence).

2. le faiseau q∗F (resp. le faisceau R1
t q∗F , resp. le champ qt

∗F ) est constructible. Dans le
dernier cas, si l’on suppose S localement noethérien etG 1-constructible, il en est de même
de qt

∗F .

La premìere partie ŕesulte aussitôt de 2.4, 2.5 et de la démonstration de 1.8. D́emostrons 2).388
Si F est un faisceau d’ensembles constructible surU satisfaisant̀a 2.4 a) ou 2.4 b), il ŕesulte de
2.4 2) quei∗F est constructible ; il en est donc de même deq∗F = p∗(i∗F ) (SGA 4 XIV 1.1).

SoitF un faisceau en groupes constructible surU satisfaisant̀a 2.4 a) ou 2.4 b) et prouvons
queR1

t q∗F est constructible. Par passageà la limite (EGA IV 8.10.5 et 17.7.8) et en utilisant 1),
on peut supposerS noeth́erien. Soit alorsΦ le champ surX dont la fibre en tout sch́emaX

′
étale

surX est forḿee des torseurs surU
′
= U ×X X

′
, de groupeF |U , qui son mod́eŕement ramifíes

surX relativement̀aS ; on a donc

S(it∗Φ) ' R1
t i∗F

et ce faisceau est constructible d’après 2.4 2). Il ŕesulte donc de 6.3 ci-dessous queS(p∗φ) est
constructible, i.e. queR1

t q∗F est constructible.
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Enfin, si F est un champ surU qui es localement surX et S image inverse d’un champ
constructible surS, it∗F est constructible, et il en est donc de même deqt

∗F = p∗(i
t
∗F ). Si de

plusS est localement noethérian etSG constructible,S(it∗F ) est constructible d’après 6.3 ; il en
est donc de m̂eme deS(q∗i

t
∗F ), i.e. deS(qt

∗F ) 6.2.

Corollaire 2.8 Soit
U

i //

g

��

X

f~~~~~~~~~~

S

un diagramme commutatif de schémas, dans lequel U est l’ouvert complémentaire dans X d’un389
diviseur à croisements normaux relativement à S, f un morphisme proprede présentation finie.
Soit L un ensemble de nombres premiers. On suppose g localement O-acyclique (resp. locale-
ment 1-asphérique pour L). Alors, si F est un faiseau d’ensembles sur U (resp. un faisceau de
L-groupes) sur U, localement constant constructible, modérément ramifié sur X relativement à
S, f∗F (resp. R1

t f∗F ) est localement constant constructible et (F , f) est cohomologiquement
propre relativement à S en dimension ≤ 0 (resp. la formation de R1

t f∗F commute à tout chan-
gement de base S ′ → S). Dans le cas non respé, si F est un faisceau en groupes, pour toute
spécialisation s1 → s2 de points géométriques de S, le morphisme de spécialisation

(R1
t f∗F )s2 → (R1

t f∗F )s1

est injectif.

Le corollaire ŕesulte aussitôt de 2.6 et de 1.14 (resp. de l’analogue de 1.14 pour leR1
t f∗F , lequel

se d́emontre comme loc.cit.).

Corollaire 2.9 Soit
U

i //

g

��

X

f~~~~~~~~~~

S

un diagramme commutatif de schémas, dans lequel U es l’ouvert complémentaire dans X d’un
diviseur à croisements normaux relativement à S, f un morphisme propre lisse de présentation
finie. Soit L l’ensemble des nombres premiers distincts des caractéristique résiduelles de S.
Soit F un faisceau de L-groupes localement constant constructible sur U , modérément ramifié
sur X relativement à S. Alors R1 f∗F es localement constant constructible et (F , f) est coho-
mologiquement propre relativement à S en dimension ≤ 1.390

Le corollaire ŕesulte de 2.8 et du fait que l’on aR1
t f∗F = R1 f∗F (2.3 b)).
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2.10 Si U est un sch́ema connexe, a un point géoḿetrique deU , L un ensemble de nombre
premiers, on note

(2.10.0) πL1 (U, a)

la limite projective des quotients finis deπ1(U, a) dont les ordres ont touts leurs facteurs premiers
dansL.

Nous allons d́efinir des morphismes de spécialisation pour le groupe fondamental, géńerali-
sant X.2.

Soit g : U → S un morphisme coh́erentà fibres ǵeoḿetriquement connexes (resp. un mor-
phisme de la formeg = fi, où f : X → S est un morphisme propre de présentation finie et òu
i : U → X est une immerision ouverte telle queU soit le compĺementaire dansX d’un diviseur
à croisements normaux relativementàS (cf. 2.8)). SoitL un ensemble de nombres premiers et
supposons, dans le cas non respé, que, pour toutL-groupe constant finiC, (CU , g) soit coho-
mologiquement propre relativementà S en dimension≤ 1. Soients1 → s2 un morphisme de
sṕecialisation de points ǵeoḿetriques deS, S le localiśe strict deS ens2, U = U ×S S. On a un
diagramme commutatif

Us̄1
h1 //

��

Ū

ḡ

��

Us̄1
h2oo

��
s̄1

// S̄ s̄2
oo

.

Si a1 est un point ǵeoḿetrique deUs̄1 , a2 un point ǵeoḿetrique deUs̄2 les morphismesh1 eth2

définissent des morphismes canoniques

π1 : πL1 (Us̄1 , a1)→ πL1 (Ū , a1) π2 : πL1 (Us̄2 , a2)→ πL1 (Ū , a2)

391
(resp.π1 : πt

1(Us̄1 , a1)→ πt
1(Ū , a1) π2 : πt

1(Us̄2 , a2)→ πt
1(Ū , a2))

(V.7 et 2.1.5.2). Les hypothèses de propreté cohomologique (resp. 2.8) prouvent queπ2 est un
isomorphisme. Si l’on choisit une classe de chemins dea1 àa2, on obtient un isomorphisme

π12 : πL1 (Ū , a1)
∼→ πL1 (Ū , a2) (resp.π12 : πt

1(Ū , a1)
∼→ πt

1(Ū , a2))

d’où un morphismeπ = π−1
2 π12π1

π : πL1 (Us̄1 , a1)→ πL1 (Us̄2 , a2) (resp.π : πt
1(Us̄1 , a1)→ πt

1(Us̄2 , a2)).

Changer la classe de chemins dea1 à a2 revient à modifierπ par un automorphisme intérieur
deπL1 (Xs̄2 , a2) (resp. deπt

1(Xs̄2 , a2)). On appellemorphisme de sṕecialisation pour le groupe
fondamentalassocíe au morphismēs1 → s̄2 et on note simplement

π : πL1 (Xs̄1)→ πL1 (Xs̄2) (resp.π : πt
1(Xs̄1)→ πt

1(Xs̄2))

l’un des morphismes d́efini ci-dessus.
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Lemme 2.11 Soient f : X → S un morphisme propre de présentation finie,D un diviseur surX
à croisements normaux relativement à S, Y = SuppD, U = X − Y, i : U → X le morphisme
canonique, s̄1 → s̄2 un morphisme de spécialisation de points géométriques de S, y1 un point
géometrique de Ys̄1 , y2 un point géométrique de Ys̄2 , tel que la projection z1 de y1 sur X soit une
générisation de la projection z2 de y2. Soit Iy1 un sous-groupe d’inertie de πt

1(Ūs̄1) en y1. Alors
l’image de IY1 par le morphisme de spécialisation

π : πt
1(Us̄1)→ πt

1(Us̄2)

est un sous-groupe d’inertie de πt
1(Us2) en y2.392

Soient en effetX (resp.X̃) le localiśe strict deX eny2 (resp. eny1), U = U ×X X (resp.
Ũ = U ×X X̃). On a un morphisme canoniquẽU −→ U , et il résulte de 1.10 que l’on a un
diagramme commutatif

πt
1

(
Ũs1

)
π′ //

��

πt
1

(
U s2

)
��

πt
1 (Us1)

π // πt
1 (Us2)

où π′ est compośe du morphisme canoniqueπt
1(Ũs1) → πt

1(Us1) est du morphisme de
sṕecialisation. Commeπt

1(Ũs1) (resp.πt
1(Us1)) est un groupe d’inertie deπt

1(Us1) eny1 et (resp.
πt

1(U s2) eny2), il suffit de prouver queπ′ est surjectif. Mais cela résulte de l’expression obtenue
dans 5.6.part 78

Corollaire 2.12 Soit X une courbe propre et lisse connexe de genre g sur un corps sépara-
blement clos k de caractéristique p ≥ 0. Soit U l’ouvert obtenu en enlevant à X n points fermés
distincts a1, . . . , an. Alors le groupe fondamental modérément ramifié πt

1(U) (2.1.3) peut être
engendré par 2g+n éléments xi, yi, σj , avec 1 ≤ i ≤ g, 1 ≤ j ≤ n, tel que σj soit un générateur
d’un groupe d’inertie correspondant à aj , et que l’on ait la relation

(∗)
∏

1≤i≤g

(xiyix
−1
i y−1

i ) ·
∏

1≤j≤n

σj = 1.

Pour tout groupe fini G d’ordre premier̀ap, engendré par des éléments xi, yi, σj satisfaisant à la
relation (∗), il existe un revêtement étale de U , de groupeG, correspondant à un homomorphisme
πt

1(U) → G qui envoie xi, yi, σj sur xi, yi, σj respectivement. En d’autres termes, si p′ désigne393
l’ensemble des nombres premiers distincts de p, πp

′

1 (U) est le pro-p′-groupe engendré par les
générateurs xi, yi, σj liés par la seule relation (∗).

Démonstration. On peut supposerk algébriquement clos. Supposons d’abordk de carac-
téristique źero. Il existe alors une sous-extension algébriquement closek′ de k, de degŕe de
transcendance fini surQ, telle queX provienne par extension des scalaires d’une courbe propre
et lisseX ′ définie surk′, et l’on peut supposer que les pointsa1, ..., an proviennent de points
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rationnelsa′1, ..., a
′
n deX ′. Commek′ est de degŕe de transcendance fini surQ, on peut trouver

un plongement dek′ dans le corps des nombres complexesC ; soit Ũ = U ′ ×k′ C. Soit k′′ une
extension alǵebriquement close dek′ telle que l’on ait desk′-morphismes dek et deC dansk′′.
Si g′ : U ′ → k′ est le morphisme structural, et siF est un faisceau en groupes constant fini sur
U ′′, il résulte de 2.9 que les morphismes de spécialisation

(R1 g′∗F
′)C → (R1 g′∗F

′)k′′ ← (R1 g′∗F
′)k

sont des isomorphismes. En termes de groupes fondamentaux, cela montre que l’on a un isomor-
phisme, d́efini à automorphisme intérieur pr̀es

π1(U) −→ π1(Ũ),

et il est clair que cet isomorphisme transforme un groupe d’inertie relatifà un point deX ′ − U ′
en un groupe d’inertie relatif au m̂eme point. On peut donc supposer que l’on ak = C. Dans ce
dernier cas il ŕesulte du th́eor̀eme d’existence de Riemann (XII.5.2) que le groupe fondamental
π1(U) n’est autre que le complét́e pour la topologie des sous-groupes d’indice fini du groupe fon-
damental de l’espace analytique associéàU . Or ce dernier peut se calculer par voie transcendante
[3, ch.7§47] ; il peut être engendré par2g + n élémentsxi, yi, σj tels queσj soit l’image d’un394
géńerateur du groupe fondamental localπ1(Dj) d’un petit disque centré enaj, i.e. un ǵeńerateur
d’un groupe d’inertie correspondant au pointaj, ceséléments satisfaisantà la seule relation (∗).
Si maintenantk est de caractéristiquep > 0, on peut trouver un anneau de valuation discrète
completA, de corps r̀esiduelk, de corps des fractionsK de caract́eristique źero, et un sch́ema
connexeX1, prope et lisse surS = SpecA, tel que l’on aitX1 ×S Spec k ' X (III.7.4). Les
pointsaj se rel̀event alors en des sectionssj deX1 au-dessus deS ; soit Y1j le sous-sch́ema
fermé ŕeduit d’espace sous-jacentsj(S), Y1 la réunion desY1j, U1 = X1 − Y1, g1 : U1 → S le
morphisme structural. SoientK une extension alǵebriquement close deK, U = U1 ×S K. SiC
est un groupe constant fini, il résulte de 2.8 que le morphisme de spécialisation

(R1 g1∗CU1)k −→ (R1 g1∗CU1)K

est injectif et m̂eme bijectif siC est d’ordre premier̀a p. Or cela signifie, en termes de groupes
fondamentaux, que le morphisme de spécialisation (1.10)

π : π1(U) −→ πt
1(U)

est sujectif, et que le morphisme de spécialisation

πp
′

1 (U) −→ πp
′

1 (U)

est bijectif. Enfin, sixi, yi, σj son des ǵeńerateurs deπ1(U) tels queσj soit un ǵeńerateur d’un
groupe d’inertie correspondant au pointbj = Y1j(K) deX, alors, d’apr̀es 1.11,π(σj) est un
géńerateur d’un groupe d’inertie correspondantàaj, ce qui ach̀eve la d́emonstration.
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3 Propreté cohomologique et locale acyclicité ǵenérique
395
part 79 Théorème 3.1Soient S un schéma irréductible de point générique s, X et Y deux S-schémas

de présentation finie, f : X → Y un S-morphisme. Pour tout S-schéma S ′, on note Y ′, X ′, etc.
l’image inverse de Y , X , etc. par le morphisme S ′ → S. On a les propiétés suivantes :

1 a On peut trouver un ouvert non vide S ′ de S tel que, pour tout faisceau d’ensembles
constant fini F ′ sur X ′, f ′∗F

′ soit constructible, et que (F ′, f ′) soit cohomologique-
ment propre relativement à S ′ en dimension ≤ 0.

b Soit F un faisceau d’ensembles constructible sur X . Alors on peut trouver un ouvert
non vide S ′ de S (dépendant de F ) tel que f ′∗F

′ soit constructible et que (F ′, f ′) soit
cohomologiquement propre relativement à S ′ en dimension ≤ 0.

2 Supposons que les schémas de type fini de dimension≤ dimXs sur une clôture algébrique
k de k(s) soient fortement désingularizables (SGA 5 I 3.1.5). Alors on a de plus les
propiétés suivantes :

a On peut trouver un ouvert non vide S ′ de S tel que, pour tout faisceau en groupes
constant fini F ′ sur X ′, d’ordre premier aux caractéristiques résiduelles de S, si Φ′

est le champ des torseurs sous F ′, f ′∗Φ
′ soit 1-constructible, et que (F ′, f ′) soit coho-

mologiquement propre relativement à S ′ en dimension ≤ 1.

b Soient L l’ensemble des nombres premiers distincts des caractéristiques résiduelles
de S et Φ un ind-L-champ 1-constructible sur X (0) , tel que, pour tout schéma X1

étale sur X et pour tout couple d’objets x, x1 de ΦX1 , le faisceau HomX1(x, x1) soit
constructible. On suppose de plus S localement noethérien. Alors on peut trouver
un ouvert non vide S ′ de S tel que f ′∗Φ

′ soit 1-constructible, que, pour tout couple
d’objets y, y1 d’une fibre (f ′∗Φ

′)Y1 , HomY1(y, y1) soit constructible, et que (Φ′, f ′)396
soit cohomologiquement propre relativement à S ′ en dimension ≤ 1.

Démonstration. On peut supposeS affine ; d’apr̀es SGA 4 VIII 1.1, on peut supposerS intègre ;
enfin, par passagèa la limite, on peut supposer queS est le spectre d’une algèbre de type fini sur
Z ; en particulierS est alors noeth́erien. Comme la question est locale surY , on peut supposer
Y affine. De plus il suffit, pour d́emontrer le th́eor̀eme, de le faire après extension finieS ′ → S,
où S ′ est un sch́ema int̀egre et òu S ′ → S est compośe de morphismeśetales et de morphismes
finis radiciels surjectifs.

1) Cas des faisceaux d’ensembles constants

1) 1. Ŕeduction au cas òu X est normal surS. SoitX1s le normailiśe de(Xs)réd ; quitte à
restreindreS à un ouvert non vide et̀a faire une extension radicielle deS, on peut supposer
queX1s provient d’un sch́emaX1 normal surS, et que le morphismeX1s → Xs provient d’un
morphisme fini surjectifp : X1 → X (EGA IV 8.8.2 et 9.6.1). Supposons le théor̀eme d́emontŕe
pourfp. Quitteà restreindreS à un ouvert, on peut supposer que, pour tout faisceau d’ensembles
constantF surX, (p∗F, fp) est cohomologiquement propre relativementàS en dimension≤ 0
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et quef∗p∗(p∗F ) est constructible. D’après 1.9,(p∗p∗F, f) est alors cohomologiquement propre
relativement̀aS en dimension≤ 0. Le morphisme

F −→ p∗p
∗F = G

est un monomorphisme. Il en résulte d́ejà, f∗F étant un sous-faisceau def∗G, que f∗F est
constructible (SGA 4 IX 2.9 (ii)) et que(F, f) est cohomologiquement propre relativementà
S en dimension≤ −1.

SoientX2 = X1 ×X X1, q : X2 → X le morphisme canonique. D’après 1.11 1), on a une397
suite exacte

F // G
//// q∗q

∗F .

D’après ce que l’on vient de démontrer, appliqúe a fq au lieu def , on peut supposer,
quitte à restreindreS à un ouvert non vide, que, pour tout faisceau d’ensembles constantF
surX, (q∗F, fq) est cohomologiquement propre relativementàS en dimension≤ −1, donc que
(q∗q

∗F, f) est cohomologiquement propre relativementàS en dimension≤ −1. Il résulte alors
de 1.13 1) que(F, f) est cohomologiquement propre relativementàS en dimension≤ 0.

1) 2. Ŕeduction au cas òuX est normal affine surS.

SoitUs un ouvert affine deXs dense dansXs. Quitteà restreindreS à un ouvert non vide, on
peut supposer queUs → Xs se rel̀eve en une immersion ouvertei : U → X, sch́ematiquement
dominante relativement̀a S (EGA IV 8.9.1). Comme le morphismeX → S est normal, on a
d’apr̀es SGA 2 XIV 1.18 :

prof étS−U(X) ≥ 2 ;

par suite, pour tout faisceau constantF surX, le morphisme canonique

F −→ i∗i
∗F

est un isomorphisme. Il en résulte que, si l’on suppose le théor̀eme d́emontŕe porfi et i, alors,
apr̀es restriction deS à un ouvert non vide,(i∗F, i) et(i∗F, fi) sont cohomologiquement propres
relativement̀aS en dimension≤ 0. Il en est donc de m̂eme de(F, f) (1.6 2)). Comme de plus
f∗F = (fi)∗(i

∗F ) est constructible, ceci achève la ŕeduction.

1) 3. Fin de la d́emonstration.

On peut supposerS normal (EGA IV 7.8.3). On peut trouver une compactification deXs :

Xs
js //

fs
��

Ps

gs~~}}}}}}}}

Ys

où js est une immersion ouverte dominante etgs un morphisme propre ; quittèa faire une ex-398
tension radicielle dek(s) et à remplacerPs par son normaliśe, ce qui ne change pasXs, on
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peut supposerPs géoḿetriquement normal. Quittèa restreindreS à un ouvert non vide et̀a faire
une extension radicielle surjective, on peut supposer que le diagramme ci-dessus provient d’un
diagramme

X
j //

f

��

P

g
~~~~~~~~~

Y

où P est un sch́ema normal surS, j une immersion ouverte schématiquement dominante re-
lativementà S et g un morphisme propre (EGA IV 6.9.1, 9.9.4 et 9.6.1). Pour tout faisceau
d’ensembles constant finiF surX de valeurC, j∗F est le faisceau constant de valeurC (SGA
4 2.14.1), et il en est de m̂eme apr̀es tout changement de baseS ′ → S ; il en résulte que(F, j)
est cohomologiquement propre relativementà S en dimension≤ 0. Il en est donc de m̂eme de
(F, f), puisqueg est propre (1.8). Commeg est propref∗F = g∗CP est constructible, ce qui
ach̀eve la d́emonstration de 1) a).

2) Cas d’un faisceau d’ensembles constructible

Soit F un faisceau d’ensembles constructible surX. D’après SGA 4 IX 2.14 (ii), on peut
trouver une famille finie de morphismespi : Zi → X, et, sur chaqueZi, un faisceau d’ensembles
constant finiCi, de sorte que l’on ait un monomorphisme

j : F −→
∏
i

pi∗Ci = G .

D’après 1) a), on peut supposer, quitteà restreindreS à un ouvert non vide, que les(Ci, fpi)399
sont cohomologiquement propres relativementà S en dimension≤ 0, et que lesf∗pi∗Ci sont
constructibles. On en conclut déjà que(G, f) est cohomologiquement propre relativementà S
en dimension≤ 0 (1.9), donc que(F, f) est cohomologiquement propre relativementà S en
dimension≤ −1, et quef∗F est constructible. SoitK la somme amalgaḿeeK = G

∐
F G ;

commeF etG sont constructibles, il en est de même deK. On conclut donc de ce qui préc̀ede
que, quitteà restreindreS à un ouvert non vide, on peut supposer que(K, f) est cohomologi-
quement propre relativementà S en dimension≤ −1. Il résulte alors de 1.13 1) que(F, f) est
cohomologiquement propre relativementàS en dimension≤ 0.

3) Cas des faisceaux en groupes constants

Si F est un faisceau en groupes constant surX, on noteΦ le champ des torseurs sousF .

3) 1. Montrons d’abord que, quittèa restreindreS à un ouvert non vide, pour tout faisceau
en groupes constantF surX, d’ordre premier aux caractéristiques ŕesiduelles deS, (F, f) est
cohomologiquement propre relativementàS en dimension≤ 0, et quef∗Φ est constructible.

On se ram̀ene pour cela au cas oùX est lisse surS. Quitteà faire une extension finie dek(s),
ce qui est loisible car on peut la considérer comme composée d’une extensiońetale et d’une
extension radicielle, on peut trouver un morphisme propre surjectifps : X1s → Xs, oùX1s est un
sch́ema lisse surS de m̂eme dimension queXs, et, quitteà restreindreS à un ouvert non vide,
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on peut supposer queps provient d’un morphisme propre surjectifp : X1 → X, où X1 est un
sch́ema lisse surS (EGA IV 9.6.1 et 12.1.6). SoientX2 = X1×XX1, q : X2 → X le morphisme400
canonique. On a un diagramme exact de champs surX

Φ // p∗p
∗Φ //// q∗q

∗Φ

(1.11 2)). Le th́eor̀emeétant suppośe d́emontŕe dans le cas lisse, on voit tout d’abord que l’on
peut supposerf∗p∗p∗Φ constructible ; il en est donc de même def∗Φ (3.1.1 ci-dessous). De
plus, d’apr̀es 1.6 2), on peut supposer(p∗p

∗Φ, f) cohomologiquement propre relativementà S
en dimension≤ 0 ; il en résulte que(Φ, f) est cohomologiquement propre relativementà S en
dimension≤ −1. On peut donc supposer que(q∗q

∗Φ, f) est cohomologiquement propre rela-
tivementà S en dimension≤ −1, et cela entrâıne que(Φ, f) est cohomologiquement propre
relativement̀aS en dimension≤ 0 (1.12 1)).

On se ram̀ene ensuite comme dans 1) 2 au cas oùX est lisse et affine surS. Soit alors

X
i //

f

��

P

q
~~~~~~~~~

Y

une compactification deX, où i est une immersion ouverte dominante etq un morphisme propre.
Comme on adimPs = dimXs, on peut appliquer l’hypoth̀ese de ŕesolution des singularitésàPs.
Quitteà faire une extensiońetale et une extension radicielle deS, on peut trouver un morphisme
proprer : Z → P , oùZ est lisse surS, r−1(X) ' X, et òu r−1(X) est le compĺementaire dansZ
d’un diviseurà croisements normaux relativementàS. Tout torseur sousF est alors mod́eŕement
ramifié surZ relativement̀aS (2.3 b)). Il ŕesulte donc de 2.7 que(F, f) est cohomologiquement
propre relativement̀aS en dimension≤ 0, ce qui d́emontre notre assertion.

3) 2. Réduction au cas òu X est lisse surS401

Quitte à faire une extension finie dek(s), on peut trouver un morphisme propre surjectif
ps : X1s → X, où X1s est un sch́ema lisse surs, et on peut supposer queps provient d’un
morphisme propre surjectifp : X1 → X, oùX1 est lisse surS. Supposons le th́eor̀eme d́emontŕe
pourfp et montrons-le pourf . SoitF un faisceau en groupes constant fini surX, d’ordre premier
aux caract́eristiques ŕesiduelles deS etΦ le champ des torseurs sousF . SoientX2 = X1×X X1,
X3 = X1 ×X X1 ×X X1, q : X2 → X, r : X3 → X les morphismes canoniques. D’après 1.11
2), on a un diagramme exact de champs

Φ // p∗p
∗Φ //// q∗q

∗Φ
////// r∗r

∗Φ .

Pour prouver que(Φ, f) est cohomologiquement propre relativementà S en dimension≤ 1, il
suffit de montrer qu’il en est de m̂eme de(p∗p

∗Φ, f), que(q∗q
∗Φ, f) est cohomologiquement

propre relativement̀aS en dimension≤ 0 et que(r∗r
∗Φ, f) est cohomologiquement propre re-

lativementàS en dimension≤ −1 (1.12 2)). D’apr̀es 3) 1 ci-dessus on peut supposer que, pour
tout faisceau en groupes constant finiF , (q∗Φ, fq), (q∗Φ, q), (r∗Φ, fr), (r∗Φ, r) sont cohomolo-
giquement propres relativementàS en dimension≤ 0. Il résulte alors de 1.6 2) que(q∗q∗Φ, f)
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et (r∗r∗Φ, f) sont cohomologiquement propres relativementàS en dimension≤ 0. Le th́eor̀eme
étant suppośe d́emontŕe dans le cas lisse,(p∗Φ, fp) et(p∗Φ, p) donc aussi(p∗p∗Φ, f) (1.6 2)) sont
cohomologiquement propres relativementà S en dimension≤ 1. Ceci montre bien que(Φ, f)
est cohomologiquement propre relativementàS en dimension≤ 1.

De plusf∗p∗p∗Φ est 1-constructible par hypothèse ; d’apr̀es 3.1 on peut supposer quef∗q∗q∗Φ
est constructible ; il ŕesulte donc de 3.1.1 ci-dessous quef∗Φ est 1-constructible.

3) 3. Ŕeduction au cas òuX est lisse affine surS.402

D’après 3)2, on peut supposerX lisse surS. Soit (Ui)i∈I un recouvrement fini deX par
des ouverts affines, et soitX1 la somme directe desUi, p : X1 → X le morphisme canonique.
Commep est un morphisme de descente effective pour la catégorie des faisceaux́etales de type
fini sur des sch́emas variables, on voit comme dans 3)2 que, si l’on suppose le théor̀eme d́emontŕe
pour lesUi, i.e. pourX1, il est aussi vrai pourX.

3) 4. Cas òuX est lisse affine surS.

On voit comme dans 3)1 que, quitteà restreindreS à un ouvert non vide et̀a faire une exten-
sionétale et une extension radicielle surjectives deS, on peut trouver un diagramme commutatif

X
i //

f

��

P

q
~~~~~~~~~

Y

où P est un sch́ema lisse surS, X le compĺementaire dansP d’un diviseurà croisements nor-
maux relativement̀aS et g un morphisme propre. SiF est un faisceau constant d’ordre premier
aux caract́eristiques ŕesiduelles deS, tout torseur sousF est mod́eŕement ramifíe surP rela-
tivementà S (2.3 b)). Le fait que(F, f) soit cohomologiquement propre relativementà S en
dimension≤ 1 et quef∗Φ soit constructible ŕesulte alors de 2.7.

4) Démonstration de 2) b)

4) 1. Cas òu Φ est une gerbe.

On peut trouver un morphisméetale surjectif de type finip : X1 → X, tel quep∗Φ soit un
gerbe triviale. Par descente, comme dans 3)2, on voit qu’il suffit de prouver le théor̀eme pourX1,
X1 ×X X1 etX1 ×X X1 ×X X1. On est donc ramené au cas òu Φ est le gerbe des torseurs sous403
un faisceau en groupes constructibleF , dont les fibres sont d’ordre premier aux caractéristiques
résiduelles deS.

D’après SGA 4 IX 2.14, on peut trouver une famille finie de morphismes finispi : Zi → X,
et, pour chaquei, un faisceau en groupes constant finiCi, d’ordre premier aux caractéristiques
résiduelles deS, de sorte que l’on ait un morphisme

j : F →
∏
i

pi∗Ci = G .
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Soit Φi le champ de torseurs sousCi et Ψ le champ des torseurs sousG. Il résulte de 2)a)
que, quitteà restreindreS à un ouvert non vide, on peut supposer que les(Ci, fpi) sont co-
homologiquement propres relativementà S en dimension≤ 1, et que les champsf∗pi∗Φi sont
1-constructibles. Il ŕesulte alors de 1.9 que les(pi∗Ci, f) sont cohomologiquement propres rela-
tivementà S en dimension≤ 1 ; il en est donc de m̂eme de(G, f). De plus, commepi∗Φi est
équivalent au champ des torseurs sous le groupepi∗Ci (SGA 4 VIII 5.8), on voit quef∗Ψ est
1-constructible.

CommeR1 f∗G est constructible, on peut trouver un faisceau représentable par unY -sch́ema
étale de type finiT et unépimorphisme

a : T → R1 f∗G

(SGA 4 IX 2.7) ; de plus on peut supposer que l’image de la section identique deT (T ) est
définie par un torseurQ surX×Y T = XT , de groupeG|XT . SoientfT : XT → T le morphisme
canonique,FT = F |XT , etc. D’apr̀es 1) b) on peut supposer, quitteà restreindreS à un ouvert
non vide, que(Q/FT , fT ) est cohomologiquement propre relativementàS en dimension≤ 0 et
quefT∗(Q/FT ) est constructible. Il ŕesulte alors de 3.1.2 quef∗Ψ est constructible.

Montrons que(F, f) est cohomologiquement propre relativementà S en dimension≤ 1.404
D’après 1.13 2) il suffit de prouver que, pour tout schémaY1 étale surY et pour tout torseurQ1

surX1 = X ×Y Y1, si f1 : X1 → Y1 est le morphisme canonique, alors(Q1/F1, f1) cohomologi-
quement propre relativementàS en dimension≤ 0. Or, par d́efinition deT , Q1 est, localement
pour la topologiéetale deY1, image inverse deQ, ce qui d́emontre notre ŕeduction.

4) 2. Cas ǵeńeral.

On voit en utilisant le lemme 6.1.1, 4) 1 et 1) a) que, quitteà restreindreS à un ouvert non
vide, on peut supposerS(f∗Φ) constructible et(SΦ, f) cohomologiquement propre relativement
àS en dimension≤ 0. On peut alors trouver un faisceau représentable par unY -sch́emaétale de
type finiT et unépimorphisme

a : T −→ S(f∗Φ) .

On reprend les notations de 4) 1, et on pose de plusZ = T ×Y T , XZ = X ×Y Z et on note
fZ : XZ → Z le morphisme canonique. On peut supposerT choisi de sorte que l’imageq de la
section identique deT (T ) para soit d́efinie par un objetp de(f∗Φ)T = ΦXT . Soientp1 etp2 (resp.
q1 et q2) les images inverses dep (resp.q) par les deux projections deZ dansT . On peut sup-
poser, quittèa restreindreS à un ouvert non vide, que(AutXT (p), fT ) est cohomologiquement
propre relativement̀a S en dimension≤ 1, que(HomXZ (p1, p2), fZ) est cohomologiquement
propre relativement̀a S en dimension≤ 0, et quefT∗(AutXT (p)), fZ∗(HomXZ (p1, p2)) sont
constructibles ( a) 1) et 4) 1)).

On en d́eduit d’abord que, pour tout schémaY1 étale surY et pour tout couple d’objets
y, y1 de (f∗Φ)Y1, le faisceauAutY1(y) (resp.HomY1(y, y1)) est constructible, un tel faisceau
étant, localement pour la topologiéetale deY1, image inverse defT∗(AutXT (p)) (resp. de
fZ∗(HomXZ (p1, p2))).
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Il resteà prouver que(Φ, f) est cohomologiquement propre relativementà S en dimension405
≤ 1. Il suffit pour cela de montrer que, pour toutS ′-sch́emaS et pour tout point ǵeoḿetriquey′

deY , si l’on noteY le localiśe strict deY eny′,X = X ×Y Y , etc. , alors le foncteur canonique

ϕ : Φ(X) −→ Φ′(X
′
)

est unéequivalence de catégories.

Montrons queϕ est pleinement fid̀ele. Soientx, y ∈ Φ(X), x′, y′ leurs images dansΦ′(X
′
)

et montrons que le morphisme canonique

(∗) HomX(x, y) −→ HomX
′(x′, y′)

est bijectif. Par d́efinition deT il existe deux morphismes deY dansT tels quex et y soient
les images inverses dep par ces deux morphismes. Cela revientà dire qu’il y a un morphisme
Y → Z, d’où un morphismeh : X → XZ tel que l’on ait

h∗(p1) = x h∗(p2) = y.

Par suite on a un isomorphisme canonique

HomX(x, y) = h∗(HomXZ (p1, p2)) .

mais, compte tenu du fait que(HomXZ (p1, p2), fZ) est cohomologiquement propre relativement
àS en dimension≤ 0, on voit qu’il en est de m̂eme de(HomX(x, y), f), ce qui prouve que le
morphisme (∗) est bijectif.

Montrons queϕ est essentiellement surjectif. Soitx′ ∈ Φ′(X
′
). Comme(SΦ, f) est cohomo-

logiquement propre relativementàS en dimension≤ 0, le morphisme canonique

H0(X,SΦ) −→ H0(X
′
, SΦ

′
)

est bijectif. SoitG′ la sous-gerbe maximale deΦ′ engendŕee parx′ ; il existe alors une sous-gerbe
maximaleG deΦ dont l’image inverse surX

′
estG′. D’après 4) 1(G, f) est cohomologiquement

propre relativement̀aS en dimension≤ 1 ; par suite le foncteur canonique

G(X)→ G′(X
′
)

est uneéquivalence de catégories, ce qui prouve l’existence d’unélémentx de Φ(X) dont406
l’image dansΦ′(X ′) soit isomorphèax′ et ach̀eve la d́emonstration du th́eor̀eme.part 80

Lemme 3.1.1 Soient S un schéma localement noethérien et

Φ
p // Φ1

p1 //
p2

// Φ2

un diagramme exact de champs sur S (1.10.1). Si Φ1 est constructible, il en est de même de
Φ. Si, pour tout schéma S ′ étale sur S et pour tout couple d’objet x1, y1 de (Φ1)S′ le faisceau
HomS′(x1, y1) est constructible, alors, pour tout couple d’objets x, y de ΦS′ , il en est de même
de HomS′(x, y). Supposons que Φ1 soit l–constructible (0) et que Φ2 soit constructible, alors Φ
est l–constructible.
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Pour tout sch́emaS ′ étale surS et pour tout objetx deΦS′, on a un monomorphisme

AutS′(x)→ AutS′(p(x)).

Il r ésulte donc de SGA 4 IX 2.9 que, siΦ1 est constructible, il en est de même deΦ, et la
deuxìeme assertion du lemme se démontre de la m̂eme façon.

Supposons maintenantΦ1 l–constructible etΦ2 constructible. Le morphismep induit sur les
faisceaux de sous-gerbes maximales un morphisme

ϕ : SΦ→ SΦ1.

SoitG l’mage deSΦ parϕ ; d’apr̀es SGA 4 IX 2.9,G est un faisceau constructible. On peut donc
trouver un faisceau représentable par unS–sch́emaétale de type finiT et unépimorphisme

a : T → G

(SGA 4 IX 2.7). De plus on peut choisirT de sorte que l’imagey de section identique deT (T )407
para soit d́efinie par un objetx1 de(Φ1) de la formex1 = p(x), où x ∈ ΦT .

Il suffit de montrer que, pour tout points deS, il exist un ouvert non videU de{s} tel que
SΦ|U soit localement constant constructible. Soients ∈ S, s un point ǵeoḿetrique au–dessus de
s et y1, . . . , yn les éléments deGs. Par d́efinition deT il existe des morphismeshi : s → T tels
que l’on aith∗i (y) = yi. SoitS ′ le produit fibŕe surS den sch́emas isomorphes̀aT , h : s → S ′

le produit fibŕe deshi, yi (resp.xi) l’image inverse dey (resp.x) par lai–ème projection deS ′

sur T . Soit Fi le sous–faisceau deSΦ|S ′ image ŕeciproque deyi et montrons que lesFi sont
constructibles. Le faisceauFi est un quotient de faisceauF ′i tel que, pour tout sch́emaS ′′ étale
au–dessus deS ′, on ait

F ′i (S
′′) = {classes mod. isomorphisme d’objetz deΦS′′ muni

d’un isomorphismei : p(z) ' p(xi|S ′′).

Il suffit de montrer que lesF ′i sont constructibles. Or, si l’on posezi = p1p(xi), z
′
i = p2p(xi), on

a un monomorphisme
Ψi : F

′
i → IsomS′(zi, z

′
i),

obtenu en associant,à tout sch́emaS ′′ étale surS ′ et à tout objetz de ΦS′′ tel que l’on ait un
isomorphismei : p(z) ' p(xi|S ′′), l’isomorphisme dezi dansz′i défini par la condition que le
diagramme

p1p(z)
p1(i)−−−→ zi

j

y y
p2p(z)

p2(i)−−−→ z′i

soit commutatif (j est le morphisme canonique associé au diagramme exact).408
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Le morphismeΨi est injectif car dire que deux objetsz, z′, tels que l’on ait des ismorphismes
i : p(z)

∼→ p(xi|S ′′), i′ : p(z′)
∼→ p(xi|S ′′), définissent le m̂emeélément deIsomS′′(zi, z

′
i) re-

vient à dire que l’on ap1(i′−1i) = p2(i′−1i), i.e. quei′−1i provient d’un isomorphismez → z′.
Le faisceauF ′i étant un sous–faisceau deIsomS′(zi, z

′
i) est constructible.

Comme on peut trouver un ouvert non videU de{s} tel quey1|U, . . . , yn|U engendrentG,
il r ésulte du lemme 6.1.2 ci–dessous queSΦ|U est constructible, donc, quittèa restreindreU ,
SΦ|U est localement constant constructible.

Lemme 3.1.2 Soient S un schéma localement noethérien, f : X → S un morphisme, F → G
un monomorphisme de faisceaux en groupes sur X , Ψ (resp. Ψ1) le champ des torseurs sous F
(resp. sous G), Φ = f∗Ψ, Φ1 = f∗Ψ1. On suppose donné un faisceau sur S représentable par un
S–schéma étale de type fini T et un morphisme surjectif

a : T → SΦ1 ' R1 f∗G,

de sorte qu’il existe un torseur Q sur XT = X ×S T de groupe G|XT qui définisse dans
R1 f∗G(T ) l’image par a de la section identique de T (T ). Soit fT : XT → T le morphisme
canonique et posons FT = F |XT . On suppose que Φ1 est l–constructible et que fT∗(Q/FT ) est
constructible. Alors Φ est l–constructible.

Il suffit en effet de recopier la d́emonstration de 3.1.1, le fait que l’on ait des morphismesΨi

étant remplaće par le fait que l’on a des isomorphismes

F ′i
∼→ f∗(Q/FT )|S ′.409

Remarque 3.1.3Supposons que k = k(s) soit de caractéristique nulle ; alors les schémas de
type fini sur k de dimension ≤ dimX sont fortement désingularisables et la démonstration de
3.1 permet de prouver les résultats suivants :

a) Il existe un ouvert non vide S1 de S tel que, pour tout schéma S ′ au–dessus de S1 dont
les points maximaux sont de caractéristique nulle et pour tout faisceau d’ensembles localement
constant constructible F surX ′ = X×S S ′, (F, f ′) soit cohomologiquement propre relativement
à S ′ en dimension ≤ 0.

b) Si toutes les caractéristiques résiduelles de S sont nulles, il existe un ouvert non vide S1

de S tel que, pour tout schéma S ′ au–dessus de S1 et pour tout faisceau en groupes localement
constant constructible F sur X ′, (F, f ′) soit cohomologiquement propre relativement à S ′ en
dimension ≤ 1.

Il suffit en effet de recopier la démonstration de 3.1.2)a). La proposition 2.7 utilisée dans 3) 4
s’applique au cas d’un faisceau localement constant F , car, reprenant les notations de 3) 4, tout
torseur sous F est modérément ramifié sur P relativament à S puisque toutes les caractéristiques
résiduelles de S sont nulles.

Corollaire 3.2 Soient k un corps de caractéristique p ≥ 0, p′ l’ensemble des nombres premiers
distincts de p, f : X → k un morphisme cohérent.
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1) Pour tout faisceau d’ensembles F , (F, f) est cohomologiquement propre en dimension
≤ 0.

2) Supposons satisfaite l’une des deux conditions suivantes :

a) f est de type fini et les schémas de type fini de dimension ≤ dimX sur une clôture
algébrique de k sont fortement désingularisables.

b) Les schémas de type fini sur une clôture algébrique de k sont fortement410
désingularisables.

Alors, pour tout faisceau de ind–p′–groupe F , (F, f) est cohomologiquement propre en
dimension ≤ 1.

SoitF un faisceau d’ensembles (resp. de ind–p′–groupes). D’appr̀es SGA 4 IX 2.7.2 on peut
écrireF comme limite inductive filtrante

F = lim
→
Fi ,

où lesFi sont des faisceaux d’ensembles (resp. de ind–p′–groupes) constructibles. Commef es
coh́erent,f∗ (resp.R1 f∗) commute aux limites inductives (SGA 4 VII 3.3). Si l’on sait que les
(Fi, f) sont cohomologiquement propres en dimension≤ 0 (resp. que tout faisceau d’ensemble
est cohomologiquement propre en dimension≤ 0 et que les(Fi, f) sont cohomologiquement
propres en dimension≤ 1), il en sera de m̂eme de(F, f). On peut donc supposerF constructible.

Si l’on supposef de type fini (resp. satisfaisantà a)), la proposition ŕesulte de 3.1 1) b) (resp.
de 3.1 2) b)). Prouvons maintenant 3.2 quand on ne suppose plusf de type fini. Pour tout schéma
S ′ au–dessus dek et pour tout point ǵeoḿetriques deS ′, on notek (resp.S

′
) le localiśe strict de

k ens (resp. deS ′ ens),X l’image inverse deX surk, et on consid̀ere le carŕe cart́esien

X
g←−−− X

′

f

y f
′
y

k ←−−− S
′

Il suffit de prouver que, pour toutS ′, pour touts, le morphisme canonique

H0(X,F )→ H0(X
′
, F
′
) (resp.H1(X,F )→ H1(X

′
, F
′
))

est un isomorphisme. Il suffit de montrer que l’on a les relations

(∗) F ' g∗g
∗F (resp.R1 g∗(g

∗F )) = 0).

Or, sous cette forme, la question est locale surX pour la topologiéetale. On peut donc supposer411
X affine ; par passagèa la limite on peut supposerX de type fini surk. On sait alors que(F, f)
est cohomologiquement propre en dimension≤ 0 (resp.≤ 1) et qu’il en est de m̂eme quand on
remplaceX par un sch́emaétale de type fini surX, ce qui prouve (∗).part 81
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Théorème 3.3Soient S un schéma irréductible de point générique s, f : X → S un morphisme
de présentation finie. Supposons que les schémas de type fini de dimension 6 dimXs sur une
clôture algébrique k̄ de k soient désingularisables (EGA IV 7.9.1). Alors, si L désigne l’ensemble
des nombres premiers distincts des caractéristiques résiduelles de S, on peut trouver un ouvert
non vide S1 de S tel que le morphisme f |S1 soit universellement localement 1-asphérique pourL.

On peut supposerS intègre etX réduit (SGA 4 VIII 1.1). Par passagèa la limite on peut
supposerS noeth́erien. De plus, pour d́emontrer le th́eor̀eme, il suffit de le faire après extension
finie S1 → S, où S1 est un sch́ema int̀egre et òu S1 → S est compośe d’extensionśetales et
d’extensions radicielles surjectives.

Montrons d’abord que, quittèa restreindreS à un ouvert non vide,f est universellement
localement0-acyclique. Quittèa faire une extension radicielle dek(s), on peut supposer que le
morphisme(Xs)réd → s est śeparable ; on peut donc supposer, quitteà restreindreS à un ouvert
non vide et̀a faire une extension radicielle surjective deS, que le morphismef est plat,̀a fibres
géoḿetriques śeparables (EGA IV 12.1.1), ce qui entraı̂ne quef est universellement0-acyclique
(SGA 4 XV 4.1).

Montrons que, quittèa restreindreS à un ouvert non vide,f est universellement localement
1-asph́erique pourL. Quitteà faire une extension finie dek(s), ce qui est loisible car on peut la412
consid́erer comme composée d’une extensiońetale et d’une extension radicielle, on peut trouver
un morphisme propre surjectifps : Ys → Xs, oùYs est un sch́ema lisse surS, de m̂eme dimension
queXs, et on peut supposer queps provient d’un morphisme propre surjectifp : Y → X, où Y
est un sch́ema lisse surS (EGA IV 9.6.1 et 12.1.6). Il suffit de montrer que, quitteà restreindre
S à un ouvert non vide, pour tout diagrammeà carŕes cart́esiens

S ′′

i
��

X ′′

j

��

f ′′oo

S ′

��

X ′

��

f ′oo

S X,
foo

où i estétale de pŕesentation finie, et pour tout faisceau de ind-L-groupesF surS ′′, si Φ est le
champ des torseurs sousF , alors le morphisme canonique

f ′
∗
i∗Φ −→ j∗f

′′∗Φ

est uneéquivalence. SoientZ = Y ×X Y, T = Y ×X Y ×X Y . On a de façon naturelle un
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diagramme commutatif

S ′′

i
��

X ′′
f ′′oo

j

��

Y ′′
p′′oo

��

Z ′′

��

oooo T ′′

��

oooooo

S ′

��

X ′
f ′oo

��

Y ′

��

p′oo Z ′

��

oooo T ′

��

oooooo

S X
foo Y

poo Z ′
oooo T ′oooooo

Soientq : Z → X et r : T → X les morphismes canoniques, les notationsq′, r′, q′′, r′′ ayant un413
sensévident. D’apr̀es 1.11 2), on a le diagramme essentiellement commutatif suivant, dont les
lignes sont exactes :

f ′∗i∗Φ //

a

��

p′∗p
′∗(f ′∗ixΦ)

b
��

//// q′∗q
′∗(f ′∗i∗Φ)

c

��

////
//
r′∗r
′∗(f ′∗i∗Φ)

d
��

j∗f
′′∗Φ // j∗p

′′
∗p
′′∗(f ′′∗Φ) //// j∗q

′′
∗q
′′∗(f ′′∗Φ) ////

//
j∗r
′′
∗r
′′∗(f ′′∗Φ)

CommeY est lisse surS, le morphismefp est universellement localement 1-asphérique pour
L (SGA XV 2.1), et il ŕesulte de [2, VII 2.1.7] queb est unéequivalence de catégories. D’autre
part, quitteà restreindreS à un ouvert non vide, on peut supposer que les morphismesZ → S
et T → S sont universellement localement0-acycliques. Il en ŕesulte que les foncteursc et d
sont pleinement fid̀eles, et le diagramme ci-dessus montre alors quea est unéequivalence, ce qui
ach̀eve la d́emonstration.

Corollaire 3.4 Soient k un corps de caractéristique p > 0, p′ l’ensemble des nombres premiers
distincts de p, f : X → k un morphisme cohérent. Supposons satisfaite l’une des deux conditions
suivantes :

a) f est de type fini et les schémas de type fini de dimension 6 dimX sur une clôture
algébrique de k sont désingularisables.

b) Les schémas de type fini sur une clôture algébrique de k sont désingularisables.
Alors f est universellement localement 1-asphérique pour p′.

Le cas a) ŕesulte de 3.3. Dans le cas b), la questionétant locale surX, on peut supposerX
affine ; par passagèa la limite (SGA 4 XV 1.3), on se ram̀ene au cas òuX est de type fini surk.414

Corollaire 3.5 Soient S un schéma irréductible de point générique s, f : X → S un morphisme
de présentation finie. Supposons que les schémas de type fini de dimension 6 dimXs sur une
clôture algébrique k de k(s) soient fortement désingularisables (SGA 5 I 3.1.5). Si L désigne
l’ensemble des nombres premiers distincts des caractéristiques résiduelles de S, on peut trouver
un ouvert non vide S1 de S tel que, pour toute spécialisation s̄1 → s̄2 de points géométriques de
S1, le morphisme de spécialisation (2.10)

πL1 (Xs̄1) −→ πL1 (Xs̄2)
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soit bijectif.

D’après 3.1 et 3.3, on peut, quitteà restreindreS à un ouvert non vide, supposer quef est
localement1-asph́erique pourL, et que, pour tout faisceau deL-groupes constant finiF surX,
(F, f) est cohomologiquement propre en dimension6 1. Il résulte alors de 1.14 que, pour toute
sṕecialisation̄s1 → s̄2 de points ǵeoḿetriques deS1, le morphisme de spécialisation(

R1 f∗F
)
s̄2
−→

(
R1 f∗F

)
s̄1

est bijectif. Le corollaire n’est autre que la traduction de ce qui préc̀ede en termes de groupes
fondamentaux.

4 Suites exactes d’homotopie

4.0 SoientX etS deux sch́emas connexes,f : X → S un morphisme,a un point ǵeoḿetrique
deX, L un ensemble de nombres premiers. SoitK le noyau de l’homomorphisme canonique
π1(X, a) → π1(S, a) et N le plus petit pro-sous-groupe distingué deK tel queK/N soit un
pro-L-groupeKL. AlorsN est distingúe dansπ1(X, a) et on note

π′1(X, a)

le quotient deπ1(X, a) parN . Si a est un point ǵeoḿetrique d’une fibre ǵeoḿetriqueXs̄, les415
morphismes canoniques

π1(Xs̄, a) −→ π1(X, a) −→ π1(S, a)

permettent de d́efinir des morphismes canoniques

πL1 (Xs̄, a)
u //π′1(X, a) v //π1(S, a)

On avu = 0.

Proposition 4.1 Soient S un schéma connexe, f : X → S un morphisme localement 0-acyclique
(SGA 4 XV 1.11) ; supposons de plus f 0-acyclique (ce qui, lorsque f est cohérent, revient à
dire que les fibres géométriques de f sont connexes (SGA 4 XV 1.16)). Soit L un ensemble de
nombres premiers. Si S ′ est un schéma étale sur S, on noteX ′, f ′ les images inverses deX , f sur
S ′. Supposons que, pour tout revêtement étale S ′ de S et pour tout revêtement étaleE deX ′, quo-
tient d’un revêtement galoisien de groupe un L-groupe, (E, f ′) soit cohomologiquement propre
relativement à S ′ en dimension 6 0 et f ′∗E constructible. Alors, si s̄ est un point géométrique de
S et a un point géométrique de la fibre Xs̄, la suite d’homomorphismes de groupes

(4.1.1) πL1 (Xs̄, a)
u //π′1(X, a) v //π1(S, a) //1

est exacte
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Ceténonće ǵeńeralise X.1.4, dont on va copier la démonstration.

Montrons d’abord quev est surjectif. Il suffit de montrer que, pour tout revêtementétale
connexeS ′ deS,X ′ est aussi connexe (V.6.9). SoitC un ensemble ayant au moins deuxéléments.
Il r ésulte du fait quef est0-acyclique que le morphisme canonique

H0(S ′, CS′) −→ H0(X ′, CX′)

est bijectif, donc queX ′ est connexe, d’òu la surjectivit́e dev.

Par d́efinition deKL (4.0), on a la suite exacte416

1 //KL //π′1(X, a) //π1(S, a) //1

SoientS̃ le rev̂etement universel deS et X̃ = S̃ ×S X ; le groupeKL classe les rev̂etements
galoisiensP de groupe unL-groupe, tels qu’il existe un revêtement́etaleS ′ deS et un rev̂etement
galoisienQ deX ′ = X×S S ′ tels que l’on ait un isomorphismeP ' Q×X′ X̃. Pour que la suite
(4.1.1) soit exacte, il faut et il suffit que le morphisme canonique

πL1 (Xs̄, a) −→ KL

soit surjectif. D’apr̀es l’interpŕetation deKL cela revient̀a dire que, pour tout revêtement́etale
S ′ deS et pour tout rev̂etement galoisienQ deX ′ de groupe unL-groupe, tel queP = Q×X′ X̃
soit connexe, alorsQ|Xs̄ est connexe. Montrons que cette dernière condition est satisfaite. Soient
en effetS ′ un rev̂etement́etale deS, Q un rev̂etement galoisien deX ′ de groupe unL-groupe
F , tel queQ|Xs̄ soit disconnexe et montrons que, quitteà remplacerS ′ par un rev̂etement́etale,
Q devient disconnexe. Il existe un sous-groupeG deF distinct deF et un torseurR sousG|Xs̄

tel queQ|Xs̄ s’obtienne par extension du groupe structuralG→ F à partir deR. Le rev̂etement
étaleE = Q/G deX ′ est tel queE|Xs̄ ait une section. D’après 1.16f∗E est localement constant
constructible et, quittèa remplacerS ′ par un rev̂etement́etale, on peut m̂eme supposer quef∗E
est constant. Comme(E, f ′) est cohomologiquement propre relativementàS ′ en dimension6 0
et commeH0(Xs̄, E|Xs̄) est non vide, on voit queE a une section. Mais ceci prouve queQ est
disconnexe, ce qui achève la d́emonstration.part 82

On d́eduit de 4.1 le lemme suivant, qui sera utilisé dans 4.6.

Lemme 4.2 Soient S un schéma connexe, f : X → S un morphisme localement 0-acyclique
et 0-acyclique, L un ensemble de nombres premiers. Supposons que, pour tout faisceau de L-417
groupes constant fini F sur X , (F, f) soit cohomologiquement propre relativement à S en di-
mension 6 1, et que, pour tout revêtement étale S ′ de S et pour tout revêtement étale E de X ′,
quotient d’un revêtement galoisien de groupe un L-groupe, f ′∗E soit constructible. Alors, si s̄ est
un point géométrique de S et a un point géométrique de la fibre Xs̄, la suite d’homomorphismes
de groupes

πL1 (Xs̄, a) //π′1(X, a) //π1(S, a) //1

est exacte.
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les hypoth̀eses de 4.1 sont satisfaites. Il résulte en effet de 1.13 3) que, pour tout schémaS ′

étale surS et pour tout rev̂etement́etaleE deX ′, quotient d’un rev̂etement galoisien de groupe
unL-groupe,(E, f ′) est cohomologiquement propre relativementàS ′ en dimension6 0.

Proposition 4.3 Soient S un schéma connexe, L un ensemble de nombres premiers, f : X → S
un morphisme 0-acyclique, localement 1-asphérique pour L (SGA 4 XV 1.11), g : S → X une
section de f . Soient s̄ un point géométrique de S, a un point géométrique de la fibre Xs̄. On
suppose que, pour tout faisceau de L-groupe constant F , (F, f) est cohomologiquement propre
en dimension 6 1, que l’image directe par f du champ des torseurs sous F est un champ 1-
constructible (0) et que, pour tout revêtement étale E de X ′, quotient d’un revêtement galoisien
de groupe un L-groupe, f ′∗E est constructible. Alors la suite d’homomorphismes de groupes

(4.3.1) 1 //πL1 (Xs̄, a)
u //π′1(X, a) v //π1(S, a) //1

est exacte.

Compte-tenu de 4.2, il suffit de montrer l’injectivité du morphismeu, i.e. de prouver que,
pour tout rev̂etement principalZ deXs̄ de groupe unL-groupeC, il existe un rev̂etement́etale418
Z deX et un morphisme d’une composante connexe deZ|Xs̄ dansZ (V.6.8). Soient doncZ un
revêtement principal deXs̄ de groupe unL-groupeC et z̄ sa classe dansH1(Xs̄, CXs̄). D’après
1.5 d), on a un isomorphisme canonique(

R1 f∗CX
)
s̄

∼→ H1(Xs̄, CXs̄),

et d’apr̀es 1.16,R1 f∗CX est un faisceau localement constant constructible. On peut donc trouver
un rev̂etement́etaleS ′ deS tel queR1 f∗CX |S ′ soit constant. Sīs→ S ′ est un point ǵeoḿetrique
au-dessus du point géoḿetriques̄→ S, il existe unélémentz deH0(S ′,R1 f∗CX) dont l’image
dansH1(Xs̄, CXs̄) estz̄. D’après le lemme 4.3.1 ci-dessous, on peut trouver un revêtement́etale
S ′1 deS ′ et un torseurP surX ′1 de groupeC dont l’image dansH0(S ′1,R

1 f∗C) soit égaleà la
restriction dez. Le torseurP est repŕesentable par un revêtement́etaleZ deX ′1 = X ×S S ′1 tel
queZ ×X′1 Xs̄ soit isomorphèaZ. Si l’on consid̀ereZ comme un rev̂etement́etale deX, on a
alors un morphisme deZ ×X Xs̄ dansZ, ce qui ach̀eve la d́emonstration.

Lemme 4.3.1 Soient f : X → S un morphisme 0-acyclique et localement 0-acyclique, g une
section de f . Soit C un groupe constant fini tel que (CX , f) soit cohomologiquement propre en
dimension 6 0 et que l’image directe par f du champ des torseurs sous CX soit constructible.
Alors, pour toute section z de H0(S,R1 f∗CX), on peut trouver un revêtement étale S1 de S et,
si X1 = X ×S S1, un élément de H1(X1, CX1), dont l’image par le morphisme canonique

H1(X1, CX1) −→ H0(S1,R
1 f∗CX1)

soit égale à la restriction de z à H0(S1,R
1 f∗CX1).

Pour tout sch́emaS ′ étale surS, on poseX ′ = X ×S S ′, et on noteg′ (resp.F ′, etc.) l’image
inverse deG (resp.F , etc.) par le morphismeS ′ → S. Le pŕefaisceauG surS défini par419
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G(S ′) =

{
classes mod. isomorphisme de torseursP surX ′ de groupeCX′, munis d’un
isomorphismeg′∗P

∼→ CS′

}
est alors un faisceau. Cela résulte en effet par descente du fait qu’un isomorphisme d’un torseur
P surX ′ est bien d́etermińe par sa restrictioǹag′(S ′). De plus, on a un morphisme surjectif

G −→ R1f∗F.

Soientz un élément deH0(S,R1 f∗CX) etH le sous-faisceau deG image ŕeciproque dez. Il
suffit de montrer queH est un faisceau localement constant constructible. Or, cette propriét́e
étant locale surS, on peut supposer quez provient d’unélément deH1(X,CX) repŕesent́e par
un torseurP tel queg∗P soit isomorphèaCS. Se donner un isomorphismei : g∗P

∼→ CS revient
à se donner une section globale deAutCS(g∗P ) et deux isomorphismesi et i′ définissent le
mêmeélément deG(X) si et seulement siii′−1 est l’image d’unélément deAutCX (P ). Si l’on
consid̀ere l’injection canonique

f∗AutCX (P ) −→ AutCS(g∗P ) ' C,

H s’identifie donc au quotient deAutCS(g∗P ) parf∗AutCX (P ). D’après 1.16f∗AutCX (P )
est localement constant ; il en est donc de même deH, ce qui ach̀eve la d́emonstration.

Exemples 4.4Notons que, siS est un sch́ema connexe, les hypothèses de 4.1 sont satisfaites
lorsque le morphismef est propre plat de présentation finie,̀a fibres ǵeoḿetriques śeparables
connexes,L étant quelconque (cf. X.1.3). Les hypothèses de 4.3 sont satisfaites si de plusf
est lisse et a une section, si l’on désigne parL l’ensemble des nombres premiers distincts des
caract́eristiques ŕesiduelles deS (SGA 4 XV.2.1 et XVI 5.2).

Les hypoth̀eses de 4.1 sont aussi satisfaites siS est connexe, si l’on a un schémaZ propre
de pŕesentation finie, plat surS, à fibres ǵeoḿetriques śeparables connexes, tel queX soit le420
compĺementaire dansZ d’un diviseurà croisements normaux relativementà S, L étant l’en-
semble des nombres premiers distincts des caractéristiques ŕesiduelles deS (2.9). Les hypoth̀eses
de 4.3 sont satisfaites si de plusf est lisse et a une section.

4.5 Reprenons les notations et les hypothèses de 4.3. Sīs est un point ǵeoḿetrique deS et
a = g(s̄), la sectiong permet de d́efinir un morphisme

w : π1(S, a) −→ π′1(X, a),

de sorte queπ′1(X, a) s’identifie au produit semi-direct deπ1(S, a) parπ1(Xs̄, a). Le groupe pro-
fini π1(S, a) opère donc surπ1(Xs̄, a). CommeπL1 (Xs̄, a) est limite projective stricte de groupes
invariants par l’action deπ1(S, a), la donńee deπL1 (Xs̄, a) muni de cette action estéquivalentèa
la donńee d’un syst̀eme projectif strict de schémas en groupeśetales finis surS que l’on note

πL1 (X/S, g, s̄) ou simplement πL1 (X/S, g).

On a alors les propriét́es suivantes :
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4.5.1 Pour tout sch́ema en groupeśetale finiG sur S, dont les fibres sont desL-groupes,
l’ensembleE des classes de torseursP sous l’image inverseGX deG surX, munis d’un iso-
morphismeg∗P

∼→ G, est canoniquement isomorpheà l’ensemble

HomS(πL1 (X/S, g, s̄), G) mod. automorphismes intérieurs deG.

4.5.2 Pour tout sch́ema en groupeśetale finiG surS dont les fibres sont desL-groupes, le
faisceauR1 f∗GX est canoniquement isomorphe au faisceau associé au pŕefaisceau

S ′ 7→ HomS′(π
L

1 (X/S, g, s̄), G) mod. automorphismes intérieurs deG.

(S ′ désigne un sch́emaétale surS).

421

4.5.3 SoientS ′ un S-sch́ema connexe,̄s un point ǵeoḿetrique deS ′, X ′, g′ les images in-
verses respectives deX, g surS ′. AlorsπL1 (X ′/S ′, g′, s̄) est canoniquement isomorpheà l’image
inverse deπL1 (X/S, g, s̄) surS ′. Pour tout point ǵeoḿetriqueξ deS, la fibreπL1 (X/S, g, s̄)ξ est
isomorphèaπL1 (Xξ).

La donńee deG est en effet́equivalentèa la donńee d’unL-groupe abstraitG sur lequel
opèreπ1(S, a), d’où une action deπ′1(X, a) surG. L’isomorphisme d́efini dans 4.5.1 s’obtient
alors par restriction au sous-ensembleE à partir du morphisme canonique

H1(π′1(X, a),G) −→ H1(πL1 (Xs̄, a),G)

= Hom(πL1 (Xs̄, a),G)/aut. int.G,

l’ensembleE s’envoyant bijectivement sur le sous-ensemble des morphismes deπL1 (Xs̄, a) dans
G qui sont compatibles avec l’action deπ1(S, a). L’assertion 4.5.3 ŕesulte alors de la d́efinition
deπL1 (X/S, g, s̄) compte-tenu de la suite exacte d’homotopie (4.3.1) et 4.5.2 se déduit de 4.5.1
et 4.5.3.part 83

Proposition 4.6 (Formule de Künneth). Soient k un corps séparablement clos de caractéristique
p ≥ 0, X et Y deux k-schémas connexes, a un point géométrique de X , b un point géométrique
de Y , c un point géométrique de X ×k Y au-dessus de a et b. On suppose satisfaite l’une des
deux conditions suivantes :

a) X est de type fini sur k et les schémas de type fini sur une clôture algébrique k̄ de k, de
dimension ≤ dimX , sont fortement désingularisables. (SGA 5 I 3.1.5).

b) X est quasi-compact et quasi-séparé et tout schéma de type fini sur k̄ est fortement
désingularisable.

Alors, si p′ est l’ensemble des nombres premiers distincts de p, le morphisme

(4.6.0) πp
′

1 (X ×k Y, c)→ πp
′

1 (X, a)× πp
′

1 (Y, b),

déduit des homomorphismes sur les groupes fondamentaux associés aux projections422
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X ×k Y → X et X ×k Y → Y,

est un isomorphisme.

On peut supposerk algébriquement clos etX réduit (SGA 4 VIII 1.1). SoientZ = X ×k Y ,
g : X → k etf : Z → Y les morphismes canoniques. Le morphismeg, donc aussif , est univer-
sellement localement 1-asphérique pourp′ d’apr̀es 5.3. CommeX est connexe,f est 0-acyclique
(SGA 4 XV 1.16). D’autre part il ŕesulte de 3.2 que, pour toutp′-groupe finiC, (CX , g) est
cohomologiquement propre relativementà k en dimension≤ 1. Il en résulte que(CZ , f) est
cohomologiquement propre relativementàY en dimension≤ 1 (1.5 c)) et quef∗CZ et R1 f∗CZ
sont des faisceaux constants. Par suiteg satisfaità toutes les hypoth̀eses de 4.2. On a donc la
suite exacte

πp
′

1 (Xb, c)→ πp
′

1 (Z, c)→ πp
′

1 (Y, b)→ 1.

De plus le morphisme composé

πp
′

1 (Xb, c)→ πp
′

1 (Z, c)→ πp
′

1 (Y, b)

est un isomorphisme et l’on a donc la suite exacte

1→ πp
′

1 (X, a)→ πp
′

1 (Z, c)→ πp
′

1 (Y, b)→ 1.

D’autre part le morphisme (4.6.0) permet de définir un morphisme de cette suite exacte dans la
suite exacte

1→ πp
′

1 (X, a)→ πp
′

1 (X, a)× πp
′

1 (Y, b)× πp
′

1 (Y, b)→ 1,

et il en ŕesulte que le morphisme (4.6.0) est un isomorphisme.

4.7 Soit
X ←−−− XU ←−−− Xs̄

f

y fU

y y
S ←−−− U ←−−− s̄

un diagramme dont les carrés sont cart́esiens, òu S est un sch́ema connexe par arcs (SGA 4423
IX 2.12),U un ouvert connexe deS, s̄ un point ǵeoḿetrique deU . Soienta un point ǵeoḿetrique
deXs̄, L un ensemble de nombres premiers. Soitg une section def et supposons que les condi-
tions suivantes soient satisfaites :

a) Le morphismef est 0-acyclique, localement 0-acyclique, et, pour tout revêtement́etaleS ′

deS et tout rev̂etement́etaleE deX×SS ′ quotient d’un rev̂etement galoisien de groupe un
L-groupe,(E, f(S′)) est cohomologiquement propre relativementàS ′ en dimension≤ 0.

b) Le morphismefU est localement 1-asphérique pourL, et, pour tout faisceau deL-groupe
constant finiF surXU , (F, fU) est cohomologiquement propre en dimension≤ 1 et les
fibres deR1 fU∗F sont finies.
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On d́eduit alors de 4.1 et 4.3 le diagramme commutatif suivant dont les lignes sont exactes :

(4.7.0)

1 −−−→ πL1 (Xs̄, a) −−−→ π′1(XU , a) −−−→ π1(U, a) −−−→ 1∥∥∥ y y
πL1 (Xs̄, a) −−−→ π′1(X, a) −−−→ π1(S, a) −−−→ 1

Grâceà la sectiong, on a des morphismesπ1(U, a) → π′1(XU , a) π1(S, a) → π′1(X, a) ; on
en d́eduit un morphisme de la somme amalgamée deπ1(S, a) etπ′1(XU , a) au dessus deπ1(U, a)
dansπ′1(X, a) :

(4.7.1) ϕ : π = π1(S, a)
∐

π1(U,a)

π′1(XU , a)→ π′1(X, a).

Supposons satisfaite la conditon suivante :

c) SiT = S − U , on aprof étT (S) ≥ 2 (SGA 2 XIV 1.1).

Alors le foncteur qui,à un rev̂etementétale deS, fait correspondre sa restrictioǹa U est
pleinement fid̀ele (SGA 2 XVI 1.4). Il en ŕesulte que le morphismeπ1(U, a) → π1(S, a)
est surjectif (6.9) et l’on d́eduit du diagramme (4.7.0) qu’il en est de même du morphisme424
π′1(XU , a)→ π′1(X, a) ; a fortiori ϕ est unépimorphisme. Soit

(4.7.2) K = Ker(π1(U, a)→ π1(S, a)).

Le groupeπ de (4.7.1) s’identifie au quotient deπ′1(XU , a) par le sous-groupe invariant
fermé engendŕe par l’imageL de K dansπ′1(XU , a). Consid́eronsπ′1(XU , a) comme pro-
duit semi-direct deπ1(U, a) par πL1 (Xs̄, a). Le groupeK opère alors par automorphismes
intérieurs surπL1 (XS̄, a), et le quotientπ = π′1(XU , a)/L s’identifie au produit semi-direct de
π1(U, a)/K = π1(S, a) par le groupeπL1 (Xs̄, a)K des coinvariants deπL1 (Xs̄, a) sousK. On a
finalement uńepimorphisme

(4.7.3) ϕ : π = πL1 (Xs̄, a)K · π1(S, a)→ π′1(X, a).

La proposition qui suit donne des conditions sous-lesquelles le morphismeϕ est un isomor-
phisme.

Proposition 4.7.4 Les notations sont celles de 4.7. On suppose que, en plus des conditions a),
b), c) les conditions suivantes soient satisfaites :

d) Pour tout point t de T = S − U , le morphisme f est localement 1-asphérique pour L en
g(t).

e) Pour tout point t ∈ T , toute composante irréductible de la fibre Xt contient g(t) et, pour
tout point x de Xt − {g(t)} qui n’est pas maximal, on a

prof hopx(X) ≥ 3 (SGA 2 XIV 1.2)

et l’anneau OX,x est noethérien.
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Alors le morphisme (4.7.3)est un isomorphisme.

Comme on l’a dit pŕećedemment, le groupeπ s’identifie au quotient deπ′1(XU , a) par le
sous-groupe invariant ferḿeL engendŕe par l’image deK (4.7.2) dansπ′1(XU , a). Cela revient
à dire queπ classe les rev̂etements principauxZ deXU tels queg−1

U (Z) se prolonge en un425
revêtementétale deS, et qui induisent surXs̄ un rev̂etement qui s’obtient par extension du
groupe structural̀a partir d’un rev̂etement principal de groupe unL-groupe. Pour prouver queϕ
est un isomorphisme, il suffit de montrer qu’un tel revêtementZ se prolongèaX tout entier.

Montrons d’abord queZ se prolongue en un revêtement́etale d’un ouvert contenantXU et
g(S). SoitW un sch́emaétale surX dont l’image contientXU etg(S), et posonsWU = W×SU .
Du fait que le morphismeW → S est 0-acyclique et de la rélationprof .étTS ≥ 2, résulte que
l’on a

prof .ét(W−WU )W ≥ 2

(SGA 2 XIV 1.13) ; par suite, siZ|WU se prolonge en un revêtement́etale deW , ce prolonge-
ment est uniquèa isomorphisme unique près. Il en ŕesulte que le problème de prolongerZ à un
voisinage deg(S)∪XU est local pour la topologiéetale au voisinage des points deg(T ). Si t est
un point deT , on posex = g(t), et on noteX̄ (resp.S̄) le localiśe strict deX en x̄ (resp. deS
en t̄), Ū = U ×S S̄, X̄U = X̄ ×X XU , ḡ : S̄ → X̄ le morphisme d́eduit deg. Il suffit de montrer
que, pour tout pointt deT , l’image inverseZ̄ deZ sur X̄U se prolongèa X̄ ou, ce qui revient
au m̂eme, est triviale. Or, par définition deZ, l’image inverse de dēZ sur Ū est triviale. Pour
prouver queZ̄ est trivial, il suffit de montrer qu’il est de la formēf ∗UE, où E est un rev̂etement
principal deŪ ; on aura en effetE ' ḡ∗U f̄

∗
UE ' ḡ∗U Z̄, d’où le ŕesultat puisquēg∗U Z̄ est trivial.

Or le morphismef̄U étant 0-acyclique et localement 0-acyclique, il suffit, pour prouver queZ̄
provient deŪ , de montrer que, pour tout point géoḿetrique alǵebrique sur un point dēU , que
l’on peut supposer̂etre le point̄s, Z̄|Xs̄ est trivial (SGA 4 XV 1.15). Mais̄Z|Xs̄ étant obtenu par
extension du groupe structuralà partir d’un rev̂etement principal de groupe unL-groupe, cela
résulte du fait que le morphismēf est 1-asph́erique pourL.

On a donc d́emontŕe qu’il existe un voisinage ouvertV deg(S) ∪XU tel queZ se prolonge426
en un rev̂etement́etaleZV deV . Montrons queZV se prolongèaX tout entier. Il suffit de voir
que, pour tout pointx deX − V , on a

prof hopxX ≥ 3.

Or cela ŕesulte de l’hypoth̀ese e) et du fait qu’un pointx deX − V ne peut̂etre maximal dans
sa fibreXt car, toute composante irréductible deXt contanantg(t), tout point maximal deXt

appartient̀aV .

Corollaire 4.8 Les hypothèses sont celles de 4.7.4 mais on suppose de plus que l’on a
π1(S, a) = 1. Alors on a un isomorphisme

(∗) πL1 (X, a)
∼→ πL1 (Xs̄, a)K .

296



XIII

En particulier, si πL1 (Xs̄, a) est topologiquement de présentation finie et si K opère sur πL1 (Xs̄, a)
par l’intermédiaire d’un groupe de type fini, alors πL1 (X, a) est topologiquement de présentation
finie.

L’isomorphisme (∗) a ét́e d́emontŕe dans 4.7.4. SupposonsπL1 (Xs̄, a) quotient du pro-L-
groupe libreà n géńerateursL(x1, . . . , xn) par le sous-groupe invariant fermé engendŕe par les
élémentsy1, . . . , yp deL(x1, . . . , xn), et supposons queK agisse par l’interḿediaire d’un groupe
engendŕe par deśelémentsk1, . . . , kq. Si pour touti ∈ [1, n], j ∈ [1, q], on notezij un élément
deL(x1, . . . , xn) relevant l’́elément(kj · xi)x−1

i , alorsπL1 (Xs̄, a)K est quotient deL(x1, . . . , xn)
par le sous-groupe invariant fermé engendŕe par leśeléments(yi)i∈[1,p], (zij)i∈[1,n],j∈[1,q].part 84

Remarques 4.6 a) Les conditions a)̀a e) de 4.7 sont satisfaites lorsqueS est un sch́ema
normal connexe,U on ouvert dense rétrocompact deS, f un morphisme propre de
présentation finie,̀a fibres ǵeoḿetriquement connexes et irréductibles en tout pointt deT ,
f étant de plus śeparable, lisse aux points deXU ∪ g(T ), L étant l’ensemble des nombres427
premiers distincts des caractéristiques ŕesiduelles deS, etX étant ŕegulier en tout point
deXt. La condition a) ŕesulte en effet de SGA 4 XV 4.1 et 1.4 ; les conditions b) et d)
résultent de 1.4 et SGA 4 XV 2.1 et XVI 5.2. Enfin e) résulte de SGA XIV 1.11.

b) Le corollaire 4.5 s’applique pour calculer le groupe fondamentalπp
′

1 (X) d’une surface
X propre et lisse sur un corps séparablement closk de capact́eristiquep (p′ désignant
l’ensemble des nombres premiers distincts dep). La méthode nous áet́e communiqúee
par J.-P. MURRE ; elle consistèa se ramener, en faisantéclaterX, au cas òu l’on a une
fibrationX → P

1
k et un ouvertU deP1

k satisfaisant aux hypothèses de 4.7 (voir SGA 7
pour plus de d́etails). La m̂eme ḿethode peut̂etre utiliśee plus ǵeńeralement (loc.cit.) pour
prouver que, siX est unk-sch́ema connexe de type fini, et, si les schémas de type fini
de dimension≤ dimX sur une cl̂oture alǵebrique dek sont fortement d́esingularisables
(SGA 5 I 3.1.5), alorsπp

′

1 (X) est topologiquement de présentation finie.

5 Appendice I : Variations sur le lemme d’Abhyankar

Cet appendice contient différentes variantes du lemme d’Abhyankar.

Proposition 5.1 Soient X = SpecA un schéma local régulier, D =
∑

1≤i≤r div fi un diviseur
à croisements normaux, où les fi sont des éléments de l’idéal maximal de A faisant partie d’un
système régulier de paramètres. Soient ni, 1 ≤ i ≤ r, des entiers ≥ 0 et posons

X ′ = X[T1, . . . , Tr]/(T
n1
1 − f1, . . . , T

nr
r − fr),

U ′ = U ×X X ′. Alors X ′ est régulier et U ′ est le complémentaire dans X ′ du diviseur à croise-
ments normaux

∑
1≤i≤r div Ti. Si les entiers ni sont premiers à la caractéristique résiduelle p de428

X , U ′ est un revêtement étale connexe de U , modérément ramifié relativement à D (2.3 c)).
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En effet X ′ est le spectre d’un anneau localA′ dont l’idéal maximal est engendré
par T1, . . . , Tr. CommeA′ est fini et plat surA, donc de dimensionr, A′ est ŕegulier
(EGA 0IV 17.1.1) et lesTi forment un syst̀eme ŕegulier de param̀etres deA′. Supposons les
ni premiersà p. Comme tous lesfi sont inversibles surU , le fait queU ′ soit étale surU résulte
de 7.4. De plusU ′ est mod́eŕement ramifíe relativement̀aD ; soit en effetxi le point ǵeńerique
deV (fi), R̄ le localiśe strict deR = OX,xi, K̄ le corps des fractions dēR. Alors la K̄-algèbre
qui repŕesenteU ′|K̄ s’obtientà partir du corpsK̄[Ti]/(T

ni
i − fi) en faisant une extension non

ramifiée ; elle est donc modéŕement ramifíee surR̄.

Proposition 5.2 (Lemme d’Abhyankar absolu.) Soit X un schéma local régulier,

D =
∑

1≤i≤r

div fi

un diviseur à croisements normaux comme dans 5.1, Y = SuppD, U = X − Y . Soit V
un revêtement étale de U modérément ramifié relativement à D. Si xi est le point générique
du fermé V (fi), OX,xi est un anneau de valuation discrète de corps des fractions Ki, et on a
V |Ki = Spec(

∏
j∈Ji Lj), où les Lj sont des extensions finies séparables deKi ; notons nj l’ordre

du groupe d’inertie d’une extension galoisienne engendrée par Lj et ni le p.p.c.m. des nj quand
j parcourt Ji. Si l’on pose

X ′ = X[T1, . . . , Tr]/(T
n1
1 − f1, . . . , T

nr
r − fr),

U ′ = U(X′), V ′ = V(X′), etc., le revêtement étale V ′ de U ′ se prolonge de manière unique à iso-
morphisme unique près en un revêtement étale de X ′, et les ni sont premiers à la caractéristique
résiduelle p de X .

L’unicit é ŕesulte du fait queX ′ est normal (5.1) ; en effet un revêtementétale deX ′ qui429
prolongeV ′ est isomorphe au normalisé deX ′ dans la fibre deV ′ au point ǵeńerique deX ′

(10.2). Six̄′ est un point ǵeoḿetrique deY ′, on noteX̄ ′ le localiśe strict deX ′ enx̄′, V̄ ′ = V ′
(X̄′)

,
etc. Par descente, compte tenu de l’unicité, il suffit de montrer que, pour tout point géoḿetrique
x̄′ deY ′, le rev̂etement́etaleV̄ ′ deŪ ′ se prolongèaX̄ ′. Etant donńe qu’un rev̂etement́etale d’un
ouvert du sch́ema ŕegulierX ′ qui contient tous les pointsx′ tels que l’on aitdim OX′,x′ ≤ 1
se prolongèa X tout entier (SGA 2 XIV 1.11), on peut m̂eme se borner aux points̄x′ qui se
projettent sur un point maximal deY ′. Or, en un tel point̄x′, le fait queV̄ ′ se prolonge en un
revêtement́etale deX̄ ′ résulte de 3.6.

Montrons que lesni sont premiers̀ap. En effet, s’il n’enétait pas ainsi, on aurait par exemple
p|n1. Quitteà remplacerX parX[T1, . . . , Tr]/T

n1/p
1 − f1, T

n2
2 − f2, . . . , T

nr
r − fr), on se ram̀ene

au cas òu l’on aX ′ = X[T1]/T p1 − f1. Il suffit de montrer queV se prolonge en un revêtement
étale deX, car on aura alorsn1 = 1 contrairement̀a l’hypoth̀ese. On peut supposer pour cela que
X est strictement local. SoitZ le sous-sch́ema ferḿe deX d’équationp = 0 etZ1 = Z∩Xf1 ; Z1

est un ouvert non vide deZ. D’après ce qui pŕec̀ede le rev̂etement́etaleV ′ deU ′ se prolonge en un
revêtement́etaleW ′ deX ′. SoientW ′′

1 etW ′′
2 les images inverses deW ′ par les deux projections
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X ′′ = X ′ ×X X ′ ⇒ X ′, et montrons que l’isomorphisme de descenteu : W ′′
1 |U ′′ → W ′′

2 |U ′′
se prolonge en unX ′′-morphismeW ′′

1 → W ′′
2 qui sera ńecessairement une donnée de descente

surW ′ relativement̀aX ′ → X. SoitZ ′′ (resp.Z ′′1 ) l’image inverse deZ (resp.Z1) dansX ′′.
Comme le morphismeZ ′′ → Z est radiciel, il existe un isomorphismev : W ′′

1 |Z ′′ → W ′′
2 |Z ′′ qui

prolonge l’isomorphismeu|Z ′′1 . Mais, commeX est henśelien, on a une bijection

HomX′′(W
′′
1 ,W

′′
2 ) ' HomZ′′(W

′′
1 |Z ′′,W ′′

2 |Z ′′),

d’où un morphismew : W ′′
1 → W ′′

2 relevantv. Le sous-sch́emaà la fois ouvert et ferḿe deX ′′430
au-dessus duquelu etw cöıncident contientZ ′′1 , doncégalàX ′′, d’où le fait queV se prolonge
àX.

5.3.0 Reprenons les hypothèses et les notations de 5.2 en supposant de plusS strictement
local. Alors il résulte de loc.cit. que tout revêtementétale connexe deU mod́eŕement ramifíe
relativement̀aD est quotient d’un rev̂etement mod́eŕement ramifíe de la forme

U ′ = U [T1, . . . , Tr]/(T
n1
1 − f1, . . . , T

nr
r − fr),

où lesni sont des entiers premiersà p. Soitµn le groupe des racinesn-ièmes de l’unit́e deU .
Le groupe desU -automorphismes deU ′ n’est autre que le groupeµn1 × · · · × µnr , une racine
ni-ième de l’unit́e ξi opérant surU ′ en transformantTi enξiTi. On a donc l’́enonće suivant :

Corollaire 5.3 Soit X un schéma strictement local régulier de caractéristique résiduelle p ≥ 0,
D =

∑
1≤i≤n div fi un diviseur à croisements normaux sur X , U = X − SuppD. Posons

Ũ = lim←−
(ni)

U [T1, . . . , Tr]/(T
n1
1 − f1, . . . , T

nr
r − fr),

la limite projective étant prise suivant l’ensemble ordonné filtrant (pour la relation de divisibilité)
des familles d’entiers ni > 0, premiers à p. Alors Ũ est un revêtement universel modérément
ramifié de U . Par suite le groupe fondamental modérément ramifié de U est

πt1(U) '
∏
` 6=p

Z`[1]r (isomorphisme canonique)

où l’on a posé Z`[1] = lim←−
n>0

µ`n . Le groupe πt1(U) est non canoniquement isomorphe à
∏

` 6=p Z
r
` .

Proposition 5.4 Soient f : X → S un morphisme de schémas, D =
∑

1≤i≤r div fi un diviseur
à croisements normaux relativement à S (2.1), où, pour chaque point x de Y = SuppD, si431
I(x) ⊂ [1, r] est l’ensemble des i tels que l’on ait fi(x) = 0, le sous-schéma V ((fi)i∈I(x))
est lisse sur S de codimension card.I(x) dans X . Soit U = X − Y . Soient x un point de Y ,
X1 = Spec OX,x, U1 = U ×X X1, ni, i ∈ I(x) des entiers et

X ′ = X[Ti]i∈I(x)/(T
ni
i − fi).

Alors, si x′ est le point de X ′ au-dessus de x, X ′ est lisse sur S en x′. Si les entiers ni sont
premiers à la caractéristique p de k(x), U ′1 = U1 ×X X ′ est un revêtement étale connexe de U1

modérément ramifié sur X1 relativement à S1 (2.1.1).
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Si s = f(x), la fibre ǵeoḿetriqueX ′s̄ est ŕegulìere au pointx′ (5.1) ; commeX ′ est plat sur
S au voisinage deY , cela prouve queX ′ est lisse surS enx′ (EGA IV 12.1.6). Si les entiers
ni sont premiers̀a p, U ′1 est un rev̂etement́etale deU1 (7.4) ; il est mod́eŕement ramifíe surX1

relativement̀aS car il en est ainsi sur les fibres géometriques en chaque point deS (5.1). Enfin
le fait queU ′1 soit connexe ŕesulte de SGA 4 XVI 3.2.part 85

Proposition 5.5 (Lemme d’Abhyankar relatif). Soient X un S-schéma, D un diviseur à croise-
ments normaux relativement à S, comme dans (5.4). Soient Y = X−SuppD, U = X−Y , x un
point de Y ,X1 le localisé strict deX en un point géométrique au-dessus de x, U1 = U×XX1, V1

un revêtement étale de U1. On suppose que, pour tout point maximal s de S, V1s est modérément
ramifié surX1s relativement à s. Alors on peut trouver des entiers ni premiers à la caractéristique
p de k(x), avec i ∈ I(x), tels que, si l’on pose

X ′1 = X1[Ti]i∈I(x)

/
(T nii − fi) ,

U ′1 = U1 ×X1 X
′
1, etc., le revêtement étale V ′1 de U ′1 se prolonge de manière unique à isomor-

phisme unique près en un revêtement étale de X ′1. En particulier V1 est modérément ramifié sur432
X1 relativement à S.

On peut supposerS localement noeth́erien de point ferḿe f(x). Pour chaque point maximal
s de S et pour chaquei ∈ I(x), soit xi le point ǵeńerique du ferḿe V (fi) de la fibreX1s.
L’anneau local(OX1,xi)réd est un anneau de valuation discrète de corps de fractionsKi et l’on a
V1|Ki = Spec(

∏
j∈J(xi)

Lj), oùLj est une extension finie séparable deK ; on notenj l’ordre du
groupe d’inertie d’une extension galoisienne engendrée parLj et ni le p.p.c.m. desnj quands
parcourt les points maximaux deS et j ∈ J(xi).

Les ni étant ainsi choisis, nous allons montrer queV ′1 se prolonge de façon unique en un
revêtement́etale deX ′1. L’unicité ŕesulte du fait que,X ′ étant lisse surS aux points deY , on a
prof étY ′1 (X ′1) > 2 (SGA 4 XVI 3.2 ou SGA 2 XIV 1.19). Soientx′1 un point deY ′1 , x′1 un point

géoḿetrique au-dessus dex′1, et notonsX
′
1 le localiśe strict deX ′1 enx′1, U

′
1 = U ′

1(X
′
1)

, etc. Par

descente, compte tenu de l’unicité, il suffit de montrer queV
′
1 se prolongèaX

′
1. De plus on peut

se borner̀a prendre pourx′1 les point maximaux deY ′1 ; en effet on aura alors un prolongement
deV ′1 sur un ouvertW ′

1 deX ′1 contenant les points maximaux deY ′1 ; or, siZ ′1 = X ′1 −W ′
1, on a

codim(Z ′1s, X
′
1s) > 2 si s est un point maximal deS et codim(Z ′1s, X

′
1s) > 1, prof éts(S) > 1

si s est un point deS qui n’est pas maximal ; le fait queV ′1 se prolongèaX ′1 tout entier ŕesulte
alors de SGA 2 XIV 1.20. Mais, en un point géoḿetriquex′1 au-dessus d’un point maximal de
Y ′1 , X ′1réd est le spectre d’un anneau de valuation discrète, et le fait queV

′
1 se prolongèaX

′
1

résulte alors de X.3.6.

Montrons que lesni sont premiers̀a p. En effet, s’il n’enétait pas ainsi, on aurait un indice

i0 ∈ I(x) tel quep diviseni0. Quitteà remplacerX parX1[Ti0 , Ti]i∈I(x)

/
(T

ni0/p

i −fi0 , T
ni
i −fi),

on se ram̀ene au cas òu X ′1 = X1[T ]/T p − fi0 . D’après ce qui pŕec̀ede le rev̂etement́etaleV ′1433
deU ′1 se prolonge en un revêtementétaleE ′1 deX ′1. Soit η le point ferḿee deS ; comme le
morphismeX ′1η → X1η est radiciel,V1η se prolonge en un revêtementétaleE1η deX1η. On
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en d́eduit alors, comme dans 5.2, queE ′1 est muni d’une donńee de descente relativement au
morphismeX ′1 → X1, qui prolonge la donńee de descente naturelle que l’on a surE ′1|U ′1. Il
en ŕesulte queV1 se prolongèa X1 ; mais ceci entrâıne que l’on ani0 = 1 contrairement̀a
l’hypothèseni0 = p.

Corollaire 5.6 Soient X un S-schéma, D =
∑

16i6r
div fi un diviseur à croisements normaux

relativement à S, comme dans 5.4. Soient x un point géométrique de X , X le localisé strict de
X en x, Y = Y(X), U = X − Y et

Ũ = lim←−
(ni)

U [Ti]i∈I(x)

/
(T nii − fi) ,

la limite projective étant prise suivant l’ensemble filtrant des familles d’entiers ni > 0, premiers
à la caractéristique p de k(x). Alors Ũ est un revêtement universel modérément ramifié de U
relativement à S. Par suite le groupe fondamentale modérément ramifié de U est

Πt
1(U) '

∏
` 6=p

Z`[1]I(x) (isomorphisme canonique) .

Le groupe Πt
1(U) est isomorphe non canoniquement à

∏
`6=p Z

I(x)
` .

Remarque 5.6.1Soient X un S-schéma, D =
∑

16i6r
div fi un diviseur à croisements normaux

relativement à S, comme dans 5.4, U = X − SuppD. Pour toute partie I ⊂ [1, r] soit

XI = (
⋂
i∈I

V (fi)) ∩ (
⋂
i∈{I

Xfi) .

Soit p un entier premier ou nul et soit Z un sous-ensemble de XI dont tous les points sont de
caractéristique p. Soit

ŨI = lim←−
(ni)

U [Ti]
/

(T nii − fi) ,

où la limite projective est prise suivant l’ensemble filtrant des familles d’entiers ni > 0, pre-434
miers à p. Alors, pour tout point géométrique x de Z, l’image inverse de ŨI sur U s’identifie au
revêtement universel modérément ramifié de U .

Corollaire 5.7 Les notations sont celles de 5.6. Soient S le localisé strict de S en x,

g : U → S et g̃ : Ũ → S̃

les morphismes canoniques. Alors les morphismes g et g̃ sont 0-acycliques (SGA 4 XV 1.3).
Soient G un faisceau en groupes constructible sur S, F = g∗G, P un torseur sous F . Alors, pour
que P soit modérément ramifié sur X relativement à S, il faut et il suffit que son image inverse
P̃ sur Ũ soit triviale.
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En effet, pour tout sch́emaX
′

= X[Ti]i∈I(x)

/
(T nii − fi), où lesni sont des entiers> 0

premiersà p, le morphismef
′
: X

′ → S est 0-acyclique. Les fibres ǵeoḿetriques def
′

aux
diff érents points deS sont donc connexes et même irŕeductibles. Il en est donc de même des
fibres ǵeoḿetriques des morphismesg′ : U

′ → S, ce qui prouve que lesg′, donc aussĩg, sont
0-acycliques (SGA 4 XV 1.16).

Il est clair qu’un torseurP surU de groupeF , dont l’image inverse sur̃U est triviale, est
mod́eŕement ramifíe surX relativement̀aS. Montrons que ŕeciproquement, siP est mod́eŕement
ramifié surX relativement̀aS, son image inverse sur̃U est triviale.

Il r ésulte de SGA 4 IX 2.14 (ii) que l’on peut trouver un morphisme finin : S1 → S, un fais-
ceau en groupes constantC surS1, un monomorphismeG → n∗C. Consid́erons le diagramme
commutatif suivant forḿe de carŕes cart́esiens :

Ũ1
//

r

��

U1
g1 //

q

��

S1

n

��

Ũ // U
g // S .

SoientC1 (resp.C̃1) l’image inverse deC surU1 (resp. sur̃U1). On a un diagramme commutatif,435
dans lequeli et j sont des isomorphismes (SGA 4 VIII 5.8) :

(∗) H1(U, q∗C1)
i //

��

H1(U1, C1)

��

H1(Ũ , r∗C̃1)
j // H1(Ũ1, C̃1) .

Soit Q le torseur sousq∗C1 déduit deP par l’extension du groupe structuralF → q∗C1.
D’après 2.1.4,Q est mod́eŕement ramifíe surX relativementà S. Au torseurQ correspond,
grâceà i, un torseurQ1 sousC1, et il est clair queQ1 est mod́eŕement ramifíe surX1 = X×S S1

relativement̀a S1. Il résulte donc de 5.6 que l’image inverseQ̃1 deQ1 sur Ũ1 est triviale, et le
diagramme (∗) montre alors que l’image inversẽQ deQ surŨ est triviale.

Consid́erons le diagramme commutatif suivant, dont la deuxième ligne est exacte (SGA 4
XII 3.1) :

(∗∗) H0(S, n∗C/G) //

k
��

H1(S,G) = 1

��

H0(Ũ , r∗C̃1/F̃ ) // H1(Ũ , F̃ ) // H1(Ũ , r∗C̃1) .

Comme le morphismẽU → S est0-acyclique,k est un isomoprhisme. Le fait quẽP soit trivial
résulte alors de (∗∗).
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6 Appendice II : th éorème de finitude pour les images directes
des champs

Proposition 6.1 Soient S un schéma localement noethérien, f : X → S un morphisme. Si S ′

est un S-schéma, on note X ′ (resp. f ′, etc.) l’image inverse de X (resp. f , etc.) par le mor-
phisme S ′ → S. Supposons que, pour tout schéma S ′ étale sur S, pour tout faisceau d’ensembles436
constructible F surX ′, f ′∗F soit constructible, et que, pour tout faisceau en groupes constructible
F sur X ′, R1 f ′∗F soit constructible. Soit Φ un champ 1-constructible sur X (0). Alors f∗Φ est
1-constructible.

Pour tout sch́emaS ′ étale surS et pour tout objetx de(f∗Φ)S′, on a un isomorphisme

AutS′(x) ' f ′∗AutX′(x) ,

où, dans le deuxième membre de l’égalit́e,x est consid́eŕe comme objet deΦX′. Les hypoth̀eses
faites entrâınent donc quef∗Φ est constructible. SoitSΦ le faisceau des sous-gerbes maximales
deΦ [1, III, 2.1.7]. Commef∗(SΦ) est constructible, on peut lui appliquer SGA 4 IX 2.7, et le
fait quef∗Φ soit 1-constructible ŕesulte alors du lemme qui suit.part 86

Lemme 6.1.1 Soient S un schéma localement noethérien, f : X → S un morphisme, Φ un
champ sur X . On suppse donné un faisceau sur S, représentable par un S–schéma étale de type
fini T , un morphisme surjectif

a : T → f∗(SΦ)

et un objet p de la fibre ΦXT (où XT = X ×S T ), définissant dans f∗(SΦ)(T ) = SΦ(XT ) un
élément égal à l’image q par a de la section identique de T (T ). Soit fT : XT → T le morphisme
canonique et supposons que le faisceau R1 fT∗(AutXT (p)) soit constructible ; alors il en est de
même de S(f∗Φ).

Le morphisme canoniquef ∗f∗Φ→ Φ donne un morphisme

S(f ∗f∗Φ) ' f ∗(S(f∗Φ))→ SΦ,

d’où un morphisme canonique
ϕ : S(f∗Φ)→ f∗(SΦ).

SoientF = S(f∗Φ) etG l’image deF parϕ ; d’apr̀es SGA 4 IX, 2.9G est un faisceau construc-437
tible.

Il suffit de montrer que, pour tout points deS, il existe un ouvert non videU de s tel que
F |U soit localement constant constructible. Soients ∈ S, s un point ǵeoḿetrique au–dessus de
s, q1, . . . , qn leséléments deGs. Par d́efinition deT , il existe desS–morphismeshi : s→ S ′ tels
que l’on aitqi = h∗i (q). SoientS ′ le produit fibŕe surS den sch́emas isomorphes̀a T , s → S ′

le produit fibŕe deshi, X ′ = X ×S S ′, qi (resp.pi) l’image inverse deq (resp.p) par lai–ème
projection deS ′ surT . Si Ψi est la sous–gerbe maximale deΦ|X ′ engendŕee parpi, le faisceau
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Fi = R1 f ′∗(AutX′(pi)) n’est autre que le faisceauS(f ′∗Ψi) des sous–gerbes maximales def ′∗Ψi.
En particulier l’injection canoniqueΨi → Φ|X ′ donne un morphisme

αi : Fi → F |S ′.

Nous allons montrer queαi est une bijection deFi sur l’mage inverse deqi dansF |S ′. Pour
tout sch́emaS ′′ étale surS ′ toute sectiony de Fi(S ′′) a pour imageqi|S ′′ dansF (S ′′), car,
localement pour la topologiéetale surS ′′, y est d́efini par un objetx deΦX′′ qui est isomorphe
à pi|X ′′. Réciproquement, siy ∈ F (S ′′) a pour imageqi|S ′′ dansF (S ′′), localement pour la
topologieétale surS ′′, y est d́efini par un objetx deΦX′′ qui est isomorphèa pi ; par suitex est
un objet deΨiX′′ et par suitey ∈ Fi(S ′′).

La démonstration s’ach̀eve en utilisant 6.1.2 ci–dessous. On peut en effet trouver un voi-
sinage ouvertU ′ de s tel queq1|U ′, . . . , qn|U ′ soient des sections deG(U ′) et engendrent ce
faisceau. Comme lesFi|U ′ etG|U ′ sont constructibles, il en est de même deF |U ′ d’apr̀es 6.1.2 ;
quitte à remplacer U par un ouvert plus petit,F |U est localement constant, ce qui achève la
demonstration.438

Lemme 6.1.2 Soient S un schéma localement noethérien, F → G un morphsime surjectif de
faisceaux en groupes sur S. Soient qi une famille finie de sections de G sur X qui engendrent
G, et, pour chaque i, soit Fi le sous-faisceau de F image inverse de qi. Alors, si G et les Fi sont
constructibles, il en est de même de F .

Pour prouver queF est constructible, il suffit de montrer que, pour tout points deS, il existe
un voisinage ouvertU de s tel queF |U soit localement constant constructible. Soit doncs un
point deS. Comme les faisceauxFi etG sont constructibles, on peut trouver un voisinage ouvert
U des tel queFi|U etG|U soient localement constants. Montrons alors queF |U est localement
constant. D’apr̀es SGA 4 IX 2.13 (i), il sufiit de voir que, sis est un point ǵeoḿetrique au–dessus
de s, s̃ un point ǵeoḿetrique deU et s → s̃ un morphisme de spécialisation, le morphisme
canonique

Fs̃ → Fs

est bijectif.

On consid̀ere les diagrammes commutatifs

(Fi)s̃
ãi //

o
��

Fs̃
ã //

b

��

Gs̃

o
��

(Fi)s
ai // Fs

a // Gs

Soit qi (resp.q̃i) l’image inverse deqi dansGs (resp.Gs̃) ; les morphismesa et ã sont surjectifs,
et le morphismeai (resp.ãi) induit une bijection de(Fi)s (resp.(Fi)s̃) sur a−1(qi) (resp. sur
ã−1(qi)). Il resulte donc du diagramme ci–dessus queb est un isomorphisme.
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439

Corollaire 6.2 Soient S un schéma localement noethérien, f : X → S un morphisme propre.
Soit Φ un champ l–constructible sur X , alors f∗Φ est un champ l–constructible.

La démonstration de 6.1 prouve aussi le résultat suivant, compte tenu de 2.4 2).

Corollaire 6.3 Soient S un schéma localement noetherien, f : X → S un morphisme, D un
diviseur sur X à croisements normaux relativament à S (2.1), Y = SuppD, U = X − Y ,
i : U → X l’immersion canonique. Soit Φ un champ sur U donné, localement pour la topologie
étale sur X et S, comme image inverse d’un champ Ψ l–constructible sur S. Alors le champ it∗Φ
est l–constructible.
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