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Introduction

Dans la prengre partie de cette introduction, nous donnons desigions sur le contenu du
présent volume ; dans la deexne, sur I'ensemble dusminaire de @onetrie Algebrique du
Bois-Mari€’, dont le piesent volume constitue le tome premier.

1. Le pésent volume gsente les fondements d’'uneetitie du groupe fondamental en
Géonetrie Algébrique, dans le point de vue “kroneckerien” permettant de traiter sueheem
pied le cas d’'une vagté algebrique au sens habituel, et celui d’'un anneau des entiers d’'un
corps de nombres, par exemple. Ce point de vue ne s’exprime d’'une facon satisfaisante que
dans le langage des dhas, et nous utiliserons librement ce langage, ainsi que$estats
principaux exposs dans les trois premiers chapitres Bésments de €onétrie Alggbriquede
J. DIEUDONNE et A. GROTHENDIECK, (c& EGA dans la suite). Etude du pesent vo-
lume du ‘Seminaire de @onetrie Alggbrique du Bois-Mariene demande pas d’autres connais-
sances de la &netrie Algébrique, et peut donc servir d’'introduction aux techniques actuelles
de Geonttrie Algébriguea un lecteur dsireux de se familiariser avec ces techniques.

Les expoés la Xl de ce livre sont une reproduction textuelle, pratiguement indsndes
notes mingéographees du $minaire oral, quiétaient distribées par les soins der'stitut des
Hautes Etudes Scientifiguieslous nous sommes bd@sa rajouter quelques notes de bas de page
au texte primitif, de corriger quelques erreurs de frappe, et de faire un ajustage terminologique,
le mot “morphisme simple” ayant notammexi remplaé entretemps par celui de “morphisme
lisse”, qui ne péte pas aux #mes confusions.

Les expoés la IV présentent les notions locales de morphigtaeet de morphismésse;
ils n'utilisent glere le langage des seimas, expasdans le Chapitre | d&&dément$. Lexpo V
présente la description axiomatique du groupe fondamental d’uensghutile néme dans le
cas classiquetoce sclema se &duit au spectre d’'un corpsy@n trouve une reformulation fort
commode de la #orie de Galois habituelle. Les exjgasVI et VIII présentent lahéorie de
la descentequi a pris une importance croissance eeo@etrie Algebrique dans ces deames
anrees, et qui pourrait rendre des services analoguesenirie Analytique et en Topologie.

LAinsi que les notes degminaires faisant suité celui-ci. Ce mode de distributionéant aeré impraticable
et insuffisant la longue, tous lesseminaire de @onetrie Algebrique du Bois-Mariepardatront desormais sous
forme de livre comme le @sent volume.

2Uneétude plus comptite est maintenant disponible dansBdismentsChap 1V,5§ 17 et 18.



Il convient de signaler que I'expésVIl n'avait paséte redige, et sa substance se trouve incor-
pore dans un travail de J. Giraud @thode de la Descente, Bull. Soc. Math. Francenidire 2,
1964, viii + 150 p.). Dans I'expdaslX, onétudie plus spcifiqguement la descente des morphismes
étales, obtenant une approche éysatique pour des goemes du type de VAN KAMPEN
pour le groupe fondamental, qui apparaissent ici comme de simples traductioeséenths de
descente. Il s’agit essentiellement d’'un pgrde de calcul du groupe fondamental d’'un sota
connexeX, muni d'un morphisme surjectif et propre, disai§ — X, en termes des groupes
fondamentaux des composantes connexes’ad des produits fils X’ x y X', X' x x X' x x X',

et des homomorphismes induits entre ces groupes par les morphismes simpliciaux canoniques
entre les schmas pecedents. L'expos X donne la thorie de laspécialisation du groupe fon-
damental pour un morphisme propre et lisse, dont ésultat le plus frappant consiste en la
détermination & peu de chose es) du groupe fondamental d’'une courbeéaigque lisse en
caracéristiqguep > 0, grace au ésultat connu par voie transcendante en caratique nulle.
L'expos Xl donne quelques exemples et coampents, en explicitant notamment sous forme
cohomologique la tkorie des restements dKUMMER, et celle JARTIN-SCHREIERPour
d’autres commentaires sur le texte, voiertissemera la version multigraple, qui fait suite

a la pésente Introduction.

Depuis la édaction en 1961 du psent &minaire aéte developg, en collaboration par
M. ARTIN et moi-méme, le langage de l@pologieétale et une tleorie cohomologique cor-
respondante, expés dans la partie SGA 4 “Cohomoloditale des s@mas” duSeminaire de
Geéonttrie Algebrique a pardtre dans la rame €rie que le pesent volume. Ce langage, et les
résultats dont il disposeeda present, fournissent un outil particeiement souple pourétude
du groupe fondamental, permettant de mieux comprendre egpigsder certains dessultats
expo®s ici. Il y aurait donc lieu de reprendre eémtment la tBorie du groupe fondamental
de ce point de vue (tous legsultats-clefs figurant en faitda pesent dans loc. cit.). C'est
ce quiétait projeé pour le chapitre deBlementsconsace au groupe fondamental, qui devait
contenirégalement plusieurs autregw&loppements qui n’ont pu trouver leur place ici (s'ap-
puyant sur la technique désolution des singulaés) : calcul du “groupe fondamental local”
d’'un anneau local complet en termes d’uésalution des singulaés convenable de cet anneau,
formules de Kinneth locales et globales pour le groupe fondamental sans legeadle proprét
(cf. Exp. XIII), les résultats de M. ARTIN sur la comparaison des groupes fondamentaux locaux
d’'un anneau local hebfien excellent et de son cong@ti® (SGA 4 XIX). Signalonggalement la
necessit de @velopper une #orie du groupe fondamental d’'un topos, qui engloldeafois la
théorie topologique ordinaire, sa version semi-simpliciale, la variante “profiei@ldpg@ dans
'expose V du pésent volume, et la variante pro-diste un peu plusé@rérale de SGA 3 X 7
(adapée au cas de sémas non normaux et non unibranches). En attendant une refonte d’en-
semble de la thorie dans cette optique, I'exgXIll de Mme RAYNAUD, utilisant le langage
et les esultats de SGA 4, est destia montrer le parti qu’on peut tirer dans quelques ques-
tions typiques, en@réralisant notamment certairessultats de I'expdsX a des scemas relatifs
non propres. On y donne en particulier la structure du groupe fondamental “pepiidiune
courbe al@brique non complte en car. quelconque (que j'avais anr®an 1959, mais dont une
déemonstration n'avait paste publéea ce jour).



Malgré ces nombreuses lacunes et imperfections (d’autres ditooause de ces lacunes et
imperfections), je pense que leggent volume pourratre utile au lecteur quiasire se familia-
riser avec la thorie du groupe fondamental, ainsi que comme ouvragéefdeence, en attendant
la rédaction et la parution d’un texézhappant aux critiques que je viengminerer.

2. Le pésent volume constitue le tome 1 de€minaire de @onétrie Alggebrique du Bois-
Marie”, dont les volumes suivants sontgwus pour paiidre dans la rame €rie que celui-ci. Le
but que se propose Eeminaire paralklement au trait “Elements de ontetrie Algébrique”
de J. DIEUDONNE et A. GROTHENDIECK, est de jeter les fondements de dan®trie
Algébrique, suivant les points de vue dans ce dernier ouvrageeféi@nce standart pour tous
les volumes diBeminaireest constitée par les Chapitres I, I, 11l de€Elements de €onetrie
Algébrique(cites EGA I, 11, 111), et on suppose le lecteur en possession du bagagebialgom-
mutative et I'alg2bre homologique que ces chapitres impligéiede plus, dans chaque volume
du Seminaireil sera éféeré librement, dans le mesure des besaindes volumes aétieurs du
mémeSeminaire oua d'autres chapitres puBk ou sur le point de padrae des “Eéments”.

Chaquepartie du Seminaireest centee sur un sujet principal, indi@udans le titre du ou
des volumes correspondants ; Ergnaire oral porte géralement sur une aaa acaédmique,
parfois plus. Les exp@sa I'intérieur de chaque partie @&@minairesont geréralement dans une
dépendance logiquétroite les uns par rapport aux autres; par contre, lesrdiftes parties du
Seminairesont dans une large mesure logiquemenépahdants les uns par rapport aux autres.
Ainsi, la partie “Sclemas en Groupes’eatpeu pes enterement indpendante des deux parties
du SEminairequi la peadent chronologiquement; par contre, elle fait uggfrent appel aux
résultats de EGA V. Voici la liste des parties 8eminairequi doivent paratre prochainement
(cités SGA 1a SGA 7 dans la suite) :

SGA 1. Reetementstales et groupe fondamental, 1960 et 1961.

SGA 2. Cohomologie locale des faisceaux éobnts et thoremes de Lefschetz locaux et glo-
baux, 1961/62.

SGA 3. Schemas en groupes, 1963 et 1964 (3 volumes), en coll. avec M. DEMAZURE.

SGA 4. Théorie des topos et cohomologiale des s@mas, 1963/64 (3 volumes), (en coll.
avec M. ARTIN et J.L. VERDIER).

SGA 5. Cohomologid-adique et fonctiong,, 1964 et 1965 (2 volumes).

SGA 6. Théorie des intersections e&heme de Riemann-Roch, 1966/67 (2 volumes) (en coll.
avec P. BERTHELOT et L. ILLUSIE).

SGA 7. Groupes de monodromie locale eaogrétrie algbrique.

Trois parmi cesSeminairespartiels ontétes diriges encollaborationavec d’autres maéh
maticiens, qui figureront comme co-auteurs sur la couverture des volumes correspondants. Quant
aux autres participants actifs @@minaire dont le Ble (tant au point de vueedactionnel que
de celui du travail de mise au point mathatique) est &l croissant d’ange en anee, le nom

3\oir I'Introduction & EGA | pour des f#cisionsa ce sujet.
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de chaque participant figure egteé des exp@&s dont il est responsable comme @ehcier ou
comme edacteur, et la liste de ceux qui figurent dans un voluéterdhiré se trouve indig@ sur
la page de garde dudit volume.

Il convient de donner quelquesgmisions sur les rapports entreSeminaireet lesEléements
Ces derniergtaient desti@s en principeéx donner un exp@d’ensemble des notions et tech-
nigues juges les plus fondamentales dans Eo@etrie Algebrique,a mesure que ces notions
et techniques elles-émes se @gagent, par le jeu naturel d’exigences deérehce logique et
esttetigue. Dans cette optique, était naturel de cons@ter le SEminairecomme une version
préliminaire desElémentsdestireea étre englobea peu pés totalementdt ou tard, dans ces
derniers. Ce processus ava@ja commene dans une certaine mesure il y a quelque€asn
puisque les exp@s | a IV du pesent volume SGA 1 sont eatement englods par EGA 1V,
et que les exp@s VI a VIl devaient |Ietre d’ici quelques arges dans EGA VI. Cependagit,
mesure que seaveloppe le travail @dification entrepris dans |[&$éments®t dans l&Seminaire
et que les proportions d’ensemble ségisent, le principe initial (d'ags lequel [&Seminairene
constituerait qu’une version @iminaire et provisoire) appdtade moins en moinséaliste en
raison (entre autres) des limites impes par la @voyante natura la duée de la vie humaine.
Compte tenu du soinagéralement appogtdans lagdaction des diffrentes parties dseminaire
il 'y aura lieu sans doute de reprendre une telle partie dariSlégsentqou des traiés qui en
prendraient la rélve) que lorsque des pragr ulerieursa la edaction permettront d'y apporter
des argliorations tes substantielles, aux prix de modifications assez profondes. C’est lexas d
a pesent pour le @sent éminaire SGA 1, comme on I'a dit plus hautgglalement pour SGA 2
(grace aux esultats ecents de Mme. RAYNAUD). Par contre, rien n’'indique actuellement qu’il
en sera ainsi dans un proche avenir pour aucune des parées pltis haut SGA8 SGA 7.

Les eferencesa lintérieur du “Sminaire de ®onetrie Algébrique de Bois-Marie” sont
donrees ainsi. Uneéference inérieurea une des parties SGAASGA 7 du 8minaire est dorére
dans le style 111 9.7, 0 le chiffre Ill designe le nuraro de I'expo8, qui figure en haut de chaque
page de I'expos en question, et 9.7 le n@ro de [enoné& (ou de la éfinition, remarque, etc.)

a l'intérieur de I'expoé. Le cagcleant, des nombresdimaux plus longs peuveatre utili€s,

par exemple 9.7.1, 9.7.2 pouesigner par exemple les diversetapes dans laéinonstration
d’une proposition 9.7. Laéféerence Il 9 ésigne la paragraphe 9 de I'expd$l. Le numero de
'expost est omis pour lesférences internes un expo8. Pour uneéferenced une autredes
partiesdu Seminaire on utilise les r@mes sigles, mais pedes de la mention de la partie en
guestion des SGA, SGA 1 1ll 9.7. Deame, la eference EGA IV 11.5.7 signifie : Ements de
Géontetrie Algebrique, Chap. I\énon& (ou cefinition etc. ..) 11.5.7 ; ici, le premier chiffre arabe
déesigne encore le nueno du paragraphe. A part ces conventions en vigueur dans I'ensemble des
SGA, la bibliographie relativa un exposé sera gréeralement rassentéga la fin de celui-ci, et il

y sera efere a I'intérieur de I'expoé par des nugros entre crochets comme [3], suivant 'usage.

Enfin, pour lacommodidu lecteur, chaque fois que cela sembl@eessaire, nous joindrons
a la fin des volumes des SGA un index des notations, et un index terminologique contenant s'il
y a lieu une traduction anglaise des termes francais@silis

Je tiensa joindrea cette introduction un commentaire extra-néatiatique. Au mois de no-
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vembre 1969 j'ai eu connaissance du fait que I'Institut des Hautes Etudes Scientifiques, dont j'ai
ete professeur essentiellement depuis sa fondation, recevait depuis trois ans des subventions du
Ministere des Arrges. [Bja comme chercheuretbutant j'ai troue extémement regrettable le

peu de scrupules que se font la plupart des scientifiques pour accepter de collaborer sous une
forme ou une autre avec les appareils militaires. Mes motivaoos momenétaient essen-
tiellement de nature morale, donc peu susceptiblesas prises auvesieux. Aujourd’hui elles
acquerent une force et une dimension nouvelle, vu le danger de destruction deckdspmaine

dont nous menace la prdifation des appareils militaires et des moyens de destruction massives
dont ces appareils disposent. Je me suis exlajlleurs de facon plusédaillee sur ces ques-
tions, beaucoup plus importantes que I'avancement de n'importe quelle science (y compris la
mathtematique) ; on pourra par exemple consudtee sujet I'article de G. Edwards dans Feln

du journal Survivre (Aat 1970), Esumant un exp@splus dtaille de ces questions que javais

fait ailleurs. Ainsi, je me suis trowtravailler pendant trois ans dans une institution alors qu’elle

a mon insta un mode de financement que je cogsidcomme immoral et dangeréuEtanta
présent seua avoir cette opinion parmi mes cefjuesa I'HES, ce qui a condan@a I'echec

mes efforts pour obtenir la suppression des subventions militaires du budget de I'IHES, j'ai pris
la décision qui s'imposait et quitte I'lHES le 30 septembre 1970 et suspegalement toute
collaboration scientifique avec cette institution, aussi longtemps qu’elle contiaaecepter de

telles subventions. J'ai demamd M. Motchane, directeur de I'lHES, que I'HES s’abstienne

a partir du ler octobre 1970 des textes reathtiques dont je suis auteur, ou faisant partie du
Séeminaire de @onttrie Algébrique du Bois Marie. Comme il &€ dit plus haut, la diffusion

de ce &minaire vaétre assure par la maison Julius Springer, danséeiesdes Lecture Notes.

Je suis heureux de remercier ici la maison Springer et Monsieur K. Peters pour l'aide efficace et
courtoise gu’ils m’ont appoge pour rendre possible cette publication, en se chargeant en parti-
culier de la frappe pour la photooffset des nouveaux edpoajoués aux ancienssninaires, et

des exposs manquants degminaires incomplets.

Je remercie€galement M. J.P. Delale, qui s’est chiady travail ingrat de compiler I'index
des notations et I'index terminologique.

Massy, aat 1970.

41l va de soi que I'opinion que je viens d’exprimer n’engage que ma propre resporésaition pas celle de la
maison dédition Springer quédite le pésent volume.
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AVERTISSEMENT

Chacun des expés redigs donne la substance de plusieurs egpasaux corecutifs. Il n'a
pas semid utile d’en péciser les dates.

L'expost VII, auquel il est eferé a diverses reprises au cours de I'ex@dAll, n'a paséte
rédige par le corérencier, qui dans les carences orales&tait borre a esquisser le langage de
la descente dans les égbries @rerales, en se placaatun point de vue strictement utilitaire
et sans entrer dans les difficestlogiques soul@es par ce langage. Il est apparu qu’un eRpos
correct de ce langage sortirait des limites désspntes notes, ne serait-ce que par sa longueur.
Pour un expos en forme de la #orie de la descente, je renva@eaun article en @paration de
Jean GIRAUD. En attendant sa parufipje pense gu’un lecteur attentif n'aura pas de pgine
suppker par ses propres moyens aéferences faitmes de I'Expos VIII.

D’autres exposs oraux, se placant &g 'Expo£ Xl, et auxquels il est fait allusicimcertains
endroits du texte, n’ont pas non plat rediges, etétaient destiésa former la substance d’'un
Expo< Xll et d’'un Expog XIll. Les premiers de ces expEsoraux reprenaient, dans le cadre des
sclemas et des espaces analytiques @k@ments nilpotents (tels qu’ils sont introduits dans le
Seminaire Cartan 1960/61) la construction de I'espace analyfiquepésctema localement de
type fini sur un corps vakicomplet:, les treoemes du type GAGA dans le cag best le corps
des complexes, et I'applicati@nila comparaison du groupe fondameng&fim par voie transcen-
dante et le groupe fondamen&tldié dans ces notes (comparer A. Grothendieck, Fondements
de la Geonetrie Algébrique, minaire Bourbakit 190, page 10,&cembre 1959). Les derniers
expoes oraux esquissaient lamgralisation des @thodes dvelopgees dans le texte pouétude
des re@tements admettant de la ramification re@e, et de la structure du groupe fondamental
d’'une courbe comgte privee d’'un nombre fini de points (comparer loc. cif, 182, page 27,
theoeme 14). Ces expés n’introduisent aucuneée essentiellement nouvelle, c’est pourquoi il
n'a pas semliéd indispensable d’en donner urglaction en forme avant la parution des chapitres
correspondants des@hents de €onetrie Algébriqué.

Par contre, les #toemes du type Lefschetz pour le groupe fondamental et le groupe de Pi-
card, tant au point de vue local que global, ont fait I'objet d’@mfthaire &paé en 1962, qui ate

SActuellement paru : J. GIRAUDMéthodes de la descentslémoire 1?2 de la Sodte matlematiques de
France, 1964.

8]ls sont inclus dans le psent volume dans I'Exp. XIl de Mme Raynaud avec uamadnstration difirente de
la demonstration originale expés dans le &minaire oral (cf. introduction).



compktement edige et esta la disposition des usagérSignalons que le€sultats dvelopes
tant dans le @sent 8minaire que dans celui de 1962 seront @gisle facon essentielle dans la
parution de plusieur€sultats clefs dans la cohomolo@igle des @sclemas, qui feront I'objet
d’un Seminaire (conduit par M. Artin et moi-&me) en 1963/64, actuellement egparatiof.

Les expoés | a IV, de nature essentiellement locale étstelementaire, seront abs@b
entierement par le chapitre IV ddsléments de €ongtrie Algebrique dont la premére par-
tie esta I'impression et qui sera sans doute péabiers fin 64. lls pourrontéanmoingtre utiles
a un lecteur qui ésirerait se mettre au courant des pregs essentielles des morphismes lisses,
étales ou plats, avant d’entrer dans les arcanes d’uie sggématique. Quant aux autres ex-
poss, ils seront abso@ls dans le chapitre VAldes “EEments”, dont la publication ne pourra
guereétre envisage avant plusieurs aaes.

Bures, juin 1963.

’Cohomologiectale des faisceaux cétents et toremes de Lefschetz locaux et globd8GA 2), paru dans
North Holland Pub. Cie.

8Cohomologiettale des sddmas(cité SGA 4),a parédtre dans cette Bme €rie.

9En fait, par suite de modification du plan initialemenéyur pour lesElements!’ étude du groupe fondamental
y est reportea un chapitre uétrieura celui qu’on vient d’indiquer. Comparer I'introduction quigsede le pesent
“Avertissement”.
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Expos |

Morphismes etales

Pour simplifier 'exposition, on suppose que tous lessplemas envisags sont localement
noetleriens, du moins aps le nunéro 2.

1 Notions de calcul diferentiel

Soit X un pesclema surY’, soitAx/y ou A le morphisme diagonal’ — X xy X. C'est
un morphisme d’immersion, donc un morphisme d’'immersion &FrdeX dans un ouvert’
deX xy X. Soit.Zy I'id éal du sous-f@sclema ferngé correspondarit la diagonale darig (N.B.
si on veut faire les choses intriguement, sans supposersepag surY — hypottese qui serait
canularesque — on devrait considr I'image inverse ensembliste d& , y dansX, et cesigner
par.#x I'id éal d’'augmentation dans ce dernier. . .). Le faisc#ay .32 peutétre regard comme
un faisceau quasi-céhent surX, on le cenote parfz)l(/y. Il est de type fini siX — Y est de
type fini. Il se comporte bien par rappartextension de la bas¢’ — Y. On introduit aussi
les faisceaulx ., x/ I3+ = %y ce sont des faisceauxatineawsur X, faisant deX un
présclema qu’on peut&noter pam}/y et appeler le @me voisinage infirésimal deX /Y. Le
sorite en est d’une trivialt totale, bien gu’il soit assez lohgil serait prudent de n’en parler
gu’au moment @ on en dit quelque chose de serviable, avec les morphismes lisses.

2 Morphismes quasi-finis

Proposition 2.1 Soit A — B un homomorphisme local (N.B. les anneaux sont maintenant
noethériens), m I’idéal maximal de A. Conditions équivalentes :

(i) B/mB est de dimension finie sur k = A/m.

lcf. EGA IV 16.3.



(ii) mB est un idéal de définition, et B/r(B) = k(B) est une extension de k = k(A).
(iii) Le complété B est fini sur celui A de A.

On dit alors queB est quasi-finsur A. Un morphismef: X — Y est dit quasi-fini erx (ou le
Y -presclemaf est dit quasi-fini er) si 0, est quasi-fini sur; (.. Cela revient aussi dire que
x estisolé dans sa fibrg~!(z). Un morphisme est dit quasi-fini s'il I'est en tout pdint

Corollaire 2.2 Si A est complet, quasi-fini équivaut a fini. On pourrait donner le sorite (i) (ii)
(ii1) (iv) (v) habituel pour les morphismes quasi-finis, mais ce ne semble pas indispensable ici.

3 Morphismes non ramifies ou nets

Proposition 3.1 Soit f: X — Y un morphisme de type fini, v € X, y = f(x). Conditions
équivalentes :

(i) O,/m, 0, est une extension finie séparable de r(y).
(ii) Q}(/Y est nul en z.

(iii) Le morphisme diagonal Ax/y est une immersion ouverte au voisinage de .
Pour I'implication (i)=(ii), on est rameé aussibt par Nakayama au casid” = Spec(k),

X = Spec(k’), ou c’est bien connu et d'ailleurs trivial sur l&finition de &€parable ; (ii=(iii)
d’apres une caraétsiation ageable et facile des immersions ouvertes, utilisant Krull ;=)

car on est encore rame@u cas 0Y = Spec(k) et au le morphisme diagonal est une immersion

ouverte partout. Il faut alors prouver gieest fini d’anneauéparable suk, on est rames pour
ceci au cask est alg@briquement clos. Mais alors tout point férme X est isoé (car identique
a l'image inverse de la diagonale par le morphiskhe~ X x, X défini parz), d’ou le fait que
X est fini. On peut supposer aloks reduita un point, d’anneau, doncA ®, A — A est un
isomorphisme, d'o A = k cqfd.

Définition 3.2  a) On dit alors que f est net ou encore non ramifg, en x, ou que X est net,

ou encore non ramifié, en x surY .

b) Soit A — B un homomorphisme local, on dit qu’il est net ou non ramifg, ou que B
est une algebre locale nette ou non ramifeesur A, si B/r(A)B est une extension finie
séparable de A/r(A) i.e. sir(A)B = r(B) et k(B) est une extension séparable de k(A)3.

Remarques. Le fait queB soit net surA se reconnid déja sur les com@tes deA et deB. Net
implique quasi-fini.

Corollaire 3.3 L’ensemble des points ou f est net est ouvert.

2Dans EGA 11 6.2.3 on suppose de plgigle type fini.
3Cf. remords dans Ill 1.2



Corollaire 3.4 Soient X', X deux préschémas de type fini sur Y, et g: X' — X un Y-
morphisme. Si X est net sur Y, le morphisme graphe I';: X' — X xy X est une immersion
ouverte.

En effet, c’est 'image inverse du morphisme diagoial- X xy X par

ngidX/ZX/XyXﬁXXyX.

On peut aussi introduire I'eal annulateu x/y- de Q}(/Y, appet idéal differente deX /Y ; il
définit un sous-pesctema ferné de X qui, ensemblistement, est I'ensemble des pointX @Y
est ramife, i.e. non net.

Proposition 3.5 (i) Une immersion est nette.
(ii) Le composé de deux morphismes nets I’est.

(iii) Extension de base dans un morphisme net en est un autre.

Se voit indiferemment sur (ii) ou (iii) (le deugime me semble plus amusant). On peut bien
entendu aussi pciser, en donnant déson@&s ponctuels ; ce n’est plugigeral qu’en apparence
(sauf dans le cadre de I&fihition b)), et barbant. On obtient comme d’habitude des corollaires :

Corollaires 3.6 (iv) Produit cartésien de deux morphismes nets en est un autre.
(v) Sigf estnet, f est net.
(vi) Si f estnet, freq est net.

Proposition 3.7 Soit A — B un homomorphisme local, on suppose I’extension résiduelle
k(B)/k(A) triviale ou k(A) algébriquement clos. Pour que B /A soit net, il faut et il suffit que B
soit (comme A-algébre) un quotient de A.

Remarques. — Dans le caswon ne suppose pas I'extensi@siduelle triviale, on peut se
ramenemr ce cas en faisant une extension finie plate convenablé gur detruise ladite
extension.

— Donner I'exemple 0 A est I'anneau local d’'un point double ordinaire d’une courBe,
d’un point du normalié : alorsA C B, B est net sud a extension&siduelle triviale, et
A — B est surjectif maision injectif On va donc renforcer la notion de neitet

4 Morphismeseétales. Regétementsétales

On va admettre tout ce qui nous sekcessaire sur les morphismes plats ; ces faits seront
démontés ulérieurement, s'il y a liets

4Cf. Exp. IV.




Définition 4.1  a) Soit f: X — Y un morphisme de type fini. On dit que f est étaleen x si
f est plat en x et net en x. On dit que f est étale s’il I’est en tous les points. On dit que X
est étale en x sur'Y, ou que c’est un Y -préschéma étale en x etc. ..

b) Soit f: A — B un homomorphisme local. On dit que f est étale, ou que B est étale sur A,
si B est plat et non ramifié sur A.°

Proposition 4.2 Pour que B /A soit étale, il faut et il suffit que E/ﬁ le soit.

En effet, c’est vrai paeément pour “net” et pour “plat”.

Corollaire 4.3 Soit f: X — Y detype fini, etz € X. Le fait que f soit étale en x ne dépend que
de I’homomorphisme local O,y — O, et méme seulement de I’homomorphisme correspondant
pour les complétés.

Corollaire 4.4 Supposons que I’extension résiduelle k(A) — k(B) soit triviale, ou que k(A)
soit algébriquement clos. Alors B /A est étale sss A — B est un isomorphisme.

On conjugue la platitude et 3.7.

Proposition 4.5 Soit f: X — Y un morphisme de type fini. Alors I’ensemble des points ot il
est étale est ouvert.

En effet, c’est vrai @paément pour “net” et “plat”.

Cette proposition montre qu’on peut laisser tombegl@sn@&s “ponctuels” dansé&tude des
morphismes de type firditales quelque part.

Proposition 4.6 (i) Une immersion ouverte est étale.
(ii) Le composé de deux morphismes étales est étale.

(iii) Extension de la base.

En effet, (i) est trivial, et pour (ii) et (iii) il suffit de noter que c’est vrai pour “net” et pour
“plat”. A vrai dire, il y a aussi de€non@&s correspondants pour les homomorphismes locaux
(sans condition de finitude), qui en taatht de cause devront figurer au multiplodogaegm-
mencer par le cas : net).

Corollaire 4.7 Un produit cartésien de deux morphismes étales est itou.

Corollaire 4.8 Soient X et X' de type fini surY, g: X — X' un Y -morphisme. Si X' est non
ramifié sur Y et X étale surY, alors g est étale.

5Cf. remords dans 111 1.2.



En effet,g est le compas du morphisme graphe,: X — X xy X’ qui est une immer-
sion ouverte par 3.4, et du morphisme de projection quétedé car éduit du morphismétale
X — Y par le “changement de bas&” — Y.

Définition 4.9 On appelle revétement étale (resp. net) de Y un'Y -schéma X qui est fini surY et
étale (resp. net) surY .

La premere condition signifie qu&’ est cefini par un faisceau c@nent d’algbres# surY. La
deuxieme signifie alors qué? est localement libre sur (resp. rien du toutetque de plus, pour
touty € Y, lafibre#Z(y) = %,®4, k(y) soit une algbre €parable (= compésfini d’extensions
finies €parables) suk(y).

Proposition 4.10 Soit X un revétement plat de Y de degré n (la définition de ce terme méritait
de figurer dans 4.9) défini par un faisceau cohérent localement libre %8 d’algébres. On définit de
fagon bien connue I’homomorphisme trace 8 — ./ (qui est un homomorphisme de <7 -modules,
ou &/ = Oy). Pour que X soit étale, il f et s que la forme bilinéaire trz,., vy correspondante
définisse un isomorphisme de 9 sur %, ou ce qui revient au méme, que la section discriminant

dxyy = dgpy €TV, NB 0y \ 2)

soit inversible, ou enfin que I’idéal discriminant défini par cette section soit 1I’idéal unité.

En effet, on est ramé&nau cas B Y = Spec(k), et alors c’est un crére de &parabilié bien
connue, et trivial par passagda cbture alg@brique dek.

Remarque. On aura urenon& moins trivial plus bas, quand on ne suppose pas a priorkgue

1 est plat su” mais qu’on fait une hypottse de normakt
par

5 La propri été fondamentale des morphismestales

Théoreme 5.1 Soit f: X — Y un morphisme de type fini. Pour que f soit une immersion
ouverte, il f et s que ce soit un morphisme étale et radiciel

Rappelons que radiciel signifie : injecté, extensionsésiduelles radicielles (et en peut
aussi rappeler que cela signifie que le morphisme reste injectif par toute extension de la base).
La nécesski est triviale, reste la suffisance. On va donner deamahstrations difirentes, la
premere plus courte, la deuxine pluglémentaire.

1) Un morphisme plat est ouvert, donc on peut supposer (rempl&cpat f (X)) que f est
un homeomorphismelr. Par toute extension de base, il restera vrai gjest plat, radiciel, sur-
jectif, donc un horeomorphisme, a fortiori ferée. Doncf estpropre Donc f estfini (réference :



theoeme de Chevalley)&fini par un faisceau c@nent# d'algebres.Z est localement libre, de
plus en vertu de I'hypotse il est partout de rarigdoncX =Y/, cqfd.

2) On peut supposer” et X affines On se rarene de plus facilemerit prouver ceci : si
Y = Spec(A), A local, et sif~!(y) est non vide 4 étant le point ferra deY) alors X =Y
(en effet, cela impliquera que toyte f(X) a un voisinage ouvel tel queX|U = U). On
auraX = Spec(B), on veut prouverd = B. Mais pour ceci, on est ramea prouver I'assertion
analogue en remplacartpar A, B par B ® 4 A (compte tenu quel est fictlement plat surl).
On peut donc supposeér complet Soitzx le point au-dessus de d’apres le corollaire 2.2, est
fini sur A donc @tant plat et radiciel sud) est identiquéx A. Donc on aX = Y II X’ (somme
disjointe). CommeX est radiciel sul”, X’ est vide. On a fini.

Corollaire 5.2 Soit f: X — Y un morphisme d’immersion fernéeet étale Si X est connexe,
f est un isomorphisme de X sur une composante connexe de Y .

En effet, f est aussi une immersion ouverte. On éalit :

Corollaire 5.3 Soit X un Y-schéma net, Y connexe. Alors toute section de X sur Y est un
isomorphisme de Y sur une composante connexe de X. Il y a donc correspondance biunivoque
entre I’ensemble de ces sections, et I’ensemble des composantes connexes X; de X telles que
la projection X; — Y soit un isomorphisme, (ou, ce qui revient au méme par 5.1, surjectif et
radiciel). En particulier, une section est connue quand en connait sa valeur en un point.

Seule la prengre assertion demande unenabnstration ; d’agrs 5.2 il suffit de remarquer
gu’une section est une immersion f&en(carX est €paé surY’) etétale en vertu de 4.8.

Corollaire 5.4 Soient X etY deux préschémas sur S, X net séparé sur S et Y connexe. Soient
f, g deux S-morphismes de Y dans X, y un point de Y, on suppose f(y) = g(y) = x et les
homomorphismes résiduelles k(x) — k(y) définis par f et g identiques (“f et g coincident
géométriquement eny”). Alors f et g sont identiques.

Résulte de 5.3 en se ramenant au aa¥’ o= S, en remplacank parX xg Y.

\oici une variante particulirement importante de 5.3.

Théeoreme 5.5 Soient S un préschéma, X etY deux S-préschémas, S, un sous-préschéma fermé
de S ayant méme espace sous-jacent que S, Xg = X xXg SgetYy =Y xg Sy les “restrictions”
de X etY sur.Sy. On suppose X étale sur S. Alors I’application naturelle

Homg (Y, X) — Homg, (Yo, Xo)

est bijective

On est encore ramérau cas 0Y = S, et alors cela@sulte de la description “topologique”
des sections d& /Y donrée dans 5.3.



Scholie Ce iesultat comporte une assertiomdicité et d’existencale morphismesll peut aussi
s’exprimer (lorsqueX et Y sont tous deux prigtales surS) que le foncteurtX — X, de la
caégorie desS-sctemaseétales dans la cagorie desSy-sctemasétales espleinement fidle,

i.e. établit uneéquivalenceade la premére avec unsous-catégorie pleinede la seconde. Nous
verrons plus bas que c’estéme uneequivalence de la pregmie et de la seconde (ce qui sera un
theome dexistence dé-schemasétales.

La forme suivante, plusarérale en apparance, de 5.5. est souvent commode :

Corollaire 5.6 (“Théoreme de prolongement des eeéments”).Considérons un diagramme

commutatif
X «— Y

|

S «— Y

de morphismes, ou X — S est étaleetYy — Y est une immersion fermée bijective. Alors on peut
trouver un morphisme unique Y — X qui rende les deux triangles correspondants commutatifs.

En effet, remplacant parY et X parX xgY, onestramemaucasoY = S, et alors c’'est
le cas particulier de 5.5 pof = S.

Signalons aussi la coaguence imradiate suivant de 5.1 (que nous n’avons pas éogm
corollaire 1 pour ne pas interrompre la ligne &e$ @velopeea la suite de 5.1) :

Proposition 5.7 Soient X, X’ deux préschémas de type finis et plats sur Y, et soit g: X — X’
un Y -morphisme. Pour que g soit une immersion ouverte (resp. un isomorphisme) il faut et il
suffit que pour touty € Y, le morphisme induit sur les fibres

9y k(y): X @y k(y) — X' @y k(y)

Ie soit.

Il suffit de prouver la suffisance ; comme c’est vrai pour la notion de surjection, on estdamen
au cas d’'une immersion ouverte. D’'apr5.1, il faut erifier queg estradiciel, ce qui est trivial,
et qu'il estétalg ce qui ésulte du corollaire 5.9 ci-dessous.

Corollaire 5.8 (devrait passer au N° 3) Soient X et X' deux Y -préschémas, g: X — X' un
Y -morphisme, x un point de X et y sa projection sur Y. Pour que g soit quasi-fini (resp. net)
en x, il f et s qu’il en soit de méme de g Ry k(y).

En effet, les deux akpres suk(g(x)) gu’il faut regarder pour s’assurer que I'on a bien un
morphisme quasi-fini resp. net ersont les nRémes pouy etg ®y k(y).

Corollaire 5.9 Avec les notations de 5.8., supposons X et X' plats et de type fini sur Y. Pour
que g soit plat (resp. étale) en x, il f et s que g ®y k(y) le soit.

7
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Pour “plat” I'énon@& n’est mis que pour émoire, c’est un des cétes fondamentaux de
platitude®. Pourétale, cela enasulte ; compte tenu de 5.8.

6 Application aux extensionsétales des anneaux locaux com-
plets

Ce nungro est un cas particulier désultats sur les psctemas formels, qui devront figurer
dans le multiplodoque. &anmoins, on s’en tire i@ meilleur compte, i.e. sans |l@t@rmination
locale explicite des morphismésales au R7 (utilisant le Main Theorem). C’est peéatre une
raison suffisante de garder leegent nuraro (méme dans le multiplodoqu@)cette place.

Théeoreme 6.1 Soit A un anneau local complet (noethérien bien siir), de corps résiduel k. Pour

toute A-algebre B, soit R(B) = B ®4 k considéré comme k-algébre, elle dépend donc foncto-

riellement de B. Alors R définit une équivalenceie la catégorie des A-algebres finies etétales
sur A avec la catégorie des algebres de rang fini &parablesur k.

Tout d’abord, le foncteur en question est pleinemerélédcomme il esulte du fait plus
géréral :

Corollaire 6.2 Soient B, B’ deux A-algebres finies sur A. Si B est étale sur A, alors I’application

canonique
Hom g.aiq( B, B') — Homy.ag (R(B), R(B'))

est bijective.

On est ramed au cas 0 A est artinien (en remplacant par A/m"), et alors c’est un cas
particulier de 5.5.

Il restea prouver que pour toutealgebre finie et 8parable (pourquoi ne pas diretale, c’'est
plus court)L, il existe unB étale surA tel queR(B) soit isomorphe& L. On peut supposer que
L est une extensioréparable dé:;, comme telle elle admet uregérateurz, i.e. est isomorphe
a une algbrek[t]/Fk[t] ol F' € k[t] est un poly@me unitaire. On réve F' en un polydme
unitaire F; dansA[t], et on prendB = Alt]/ F; Alt].

7 Construction locale des morphismes non ramiéis etétales

Proposition 7.1 Soient A un anneau noethérien, B une algebre finie sur A, u un générateur
de B sur A, F' € Alt] tel que F(u) = 0 (on ne suppose pas F' unitaire), ' = F'(u) (ou F' est le

6Cf. IV 5.9.




polynéme dérivé), q un idéal premier de B ne contenant pas u', p sa trace sur A. Alors B, est net
sur A,.
p

En d’autres termes, posant = Spec(A), X = Spec(B), X,y = Spec(B,/), X,/ est non
ramifie surY. L’ @énonce esulte du suivant, plus @cis :

Corollaire 7.2 L’idéal différente de B /A contient u' B, et lui est égal si I’homomorphisme natu-
rel A[t]/F A[t] — B (appliquant t dans u) est un isomorphisme.

Soit J le noyau de I'hnomomorphismé& = A[t] — B, ce noyau contient’A[t], et lui est
égal dans le deugime cas enviségdans 7.2. Comme il est surjecfify, , s'identifie au quotient
de Qlc/A par le sous-module engeréadparj(zlc/A et d(J) (il aurait fallu expliciter au N1 la
définition de ’'homomorphismé, et le calcul de2! pour une algbre de polyimes). Identifiant
Qlc/A aC graceala baselt, on trouveB/B-.J’ donc la diferente est engengle par I'ensembld’
des images danB des drives deg< 7 € J, (et il suffit de prendre de§ engendrant/). Comme
F € J, resp.F estun @rérateur de/, on a fini. (N.B. On devrait mettre 7.2. en prop. et 7.1. en
corollaire). On trouve :

Corollaire 7.3 Sous les conditions de 7.1., supposant F' unitaire et que Alt]/F A[t] — B est un
isomorphisme, pour que B, soit étale sur A,, il f et s que q ne contienne pas '

En effet, comme3 est plat surd, étaleéquivauta net, et on peut appliquer 7.2.

Corollaire 7.4 Sous les conditions de 7.3. pour que B soit étale sur A il f et. s. que u’ soit
inversible, ou encore que 1’idéal engendré par F', F' dans Alt] soit I’idéal unité.

Le dernier criere €sulte du premier et de Nakayama (da&hs

11 Un polyrdme unitaireF' € Aft| ayant la propéte énon&e dans le corollaire 7.4 est dit
polynrdbme &parable(si F' n’est pas unitaire, il faudrait au moins exiger que le coefficient de son
part 2 terme dominant soit inversible ; dans le casdest un corps, on retrouve l&fihition usuelle).

Corollaire 7.5 Soit B une algébre finie sur I’anneau local A. On suppose que K(A) est in-
fini ou que B soit local. Soit n le rang de L = B ®4 K(A) sur K(A) = k. Pour que B
soit net (resp. étale) sur A, il faut et il suffit que B soit isomorphe a un quotient de (resp. iso-
morphe a) Alt]/FA[t], ot F' est un polyndme unitaire séparable, qu’on peut supposer (resp. qui
est nécessairement) de degré n.

Il 'y a qu'a prouver la Bcessit. Supposon® net surA, doncL separable suk, il résulte
alors de I'hypotise faite qud./k admet un grérateurs, donc les¢? (0 < i < n) forment une
base deL surk. Soitu € B relevanté, alors par Nakayama leg (0 < i < n) engendrent
le A-moduleB (resp. en forment une base), en particulier on peut trouver un @oigrunitaire
F € Alt]telqueF(u) = 0, et B sera isomorpha un quotient de (resp. isomorpagA([t] / F A[t].
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Enfin, en vertu de 7.4. appligua L/k, F et F’ engendrentd[t] modulemAJt], donc (d’apés
Nakayama dand[t]/F A[t]) F' et F’ engendrenti[t], on a fini.

Théoreme 7.6 Soient A un anneau local, A — ¢ un homomorphisme local tel que O soit
isomorphe a une algebre localisée d’une algebre de type fini sur A. Supposons O net sur A.
Alors on peut trouver une A-algébre B, entiére sur A, un idéal maximal n de B, un générateur u
de B sur A, un polynéme unitaire F' € A[t], tels quen Z F'(u) et que O soit isomorphe (comme
A-algebre) a B,. Si O est étale sur A, on peut prendre B = A[t]/F Alt].

(Bien entendu, on aldes conditions aussi suffisantes...)

Signalons d’abord les agables corollaires :

Corollaire 7.7 Pour que O soit net sur A, il f et s que O soit isomorphe au quotient d’une algebre
analogue et étalesur A.
En effet, on prendr&” = B/, ol B’ = A[t]/F A[t] et aun’ est 'image inverse de dansB'.

n'

Corollaire 7.8 Soit f: X — Y un morphisme de type fini, v € X. Pour que f soit net en ., il
f. et s. qu’il existe un voisinage ouvert U de x tel que f|U se factoriseen U — X' — Y, otl la
premiere fléche est une immersion fermée et la seconde un morphisme étale.

C’est une simple traduction de 7.7.

Montrons comment le jigon de 7.6sulte de Enoné& principal : en effet, il existe par 7.7 un
épimorphismer’ — ¢, ou ¢ a les prop@tes voulues ; mais comm@’ et &' sontétales surd,
le morphismeZ” — ¢ estétale par 4.8 donc un isomorphisme.

Démonstration de 7.6. Elle reprend uneédhonstration du&minaire Chevalley. D'ags le
Main Theoremon aurad = B,, ou B est une algbre finie surA etn en est un iédal maxi-
mal. Alors B/n = K(0') est une extensioreparable donc monege dek; sin; (1 < i <)
sont les i@aux maximaux dé& distincts den, il existe donc urelementu de B qui appartient
tous lesn;, et dont 'image dan#/n en est un §rérateur. OrB/n = B,/nB, = B,/mB, (ou
m est I'idéal maximal ded). Admettons un instant le

Lemme 7.9 Soient A un anneau local, B une algébre finie sur A, n un idéal maximal de B, u
un élément de B dont I'image dans B,/mDB, I’engendre comme algébre sur k = A/m, et qui
se trouve dans tous les idéaux maximaux de B distincts de n. Soit B’ = B[ul], n' = nB’. Alors
I’homomorphisme canonique B, — B, est un isomorphisme.

Lemme 7.10 (aurait dii figurer en corollaire a 7.1. avant 7.5. qu’il implique). Soit B une algébre
finie sur A engendrée par un élément u, soit n un idéal maximal de B tel que B,, soit non ramifié
sur A. Alors il existe un polynéme unitaire F' € A[t] tel que F'(u) = 0 et F'(u) ¢ n.

10



13

14

Soit en effetn le rang de l&-algebrel. = B ® 4 k, d’apres Nakayama il existe un polgme
unitaire de ded¥n dansA[t], tel queF(u) = 0. Soit f le polyndbme déduit deF par duction
modm, alors L estk-isomorphea k[t]/ fk[t], donc par 7.3f'(¢) n'est pas contenu dans |l
maximal deL qui correspondn (£ désignant I'image de dansL, i.e. 'image deu dansL).
Commeyf’(£) est 'image del”(u), on a fini.

Le theoeme 7.6 esulte maintenant de la conjonction de 7.9 et 7.10. Resteuver 7.9.
PosonsS’ = B’ —n/, doncB'S"~! = B.,.

B — BS™' — BS'=B,

T

B — BST'=B,

Soit de neme S = B — n, donc BS~! = B,, on a donc un homomorphisme naturel
BS'"™' — BS~!' = B,, prouvons que c'est un isomorphisme, i.e. quediésnents deS sont
inversibles dan$35’' ', i.e. que tout iéal maximalp de ce dernier ne rencontre pési.e. in-
duitn sur B. En effet, commeBS’" est fini surB’S'~' = B/,, p induit 'unique ideal maximal
n' B, de B/, donc induit I'ideal maximah’ de B’ ; commeB est fini surB’, I'id €alq de B induit
parp étant au-dessus @&, est recessairement maximal, et ne contient pagonc est identique
an. (On vient d'utiliser queu appartienta tout iceal maximal deB distinct den). Prouvons
maintenant que3 S’ égaleB’S’~" : comme il est fini sur ce dernier, on est raragrar Na-
kayamaa prouver legalie modn’BS'~" et a fortiori il suffit de prouver Bgali& modmBS' ' ;
or BS"'/mBS'~' = B,/mB, est engendr surk paru (on utilise ici l'autre propete dew)
donc I'image deB’ (et a fortiori de3’S’~ ') dedans est tout (comme sous-anneau conténant
image deu).

Remarque. On doit pouvoirenoncer le thoeme 7.6 pour un anneauqui est seulement semi-
local, de facora coiffer aussi 7.5 : on fera I'hypodise quer’ /m & est unek-algebremonogne;

on pourra donc trouver um € B dont I'image dand3/m B est un @rérateur, et appartenaat
tous les i@aux maximaux dé& ne provenant pas d&. Les lemmes 7.9 et 7.10 doivent s’adapter
sans difficulé. Plus @reralement, ...

8 Relevement infinitesimal des schmas etales. Application
aux scremas formels

Proposition 8.1 Soient Y un préschéma, Y, un sous-préschéma, X, un Yy-schéma étale, x un
point de X,. Alors il existe un Y -schéma étale X, un voisinage Uy de x dans X, et un Yj-
isomorphisme Uy = X xy Y.

Soit en effety la projection dex dansY;, appliquant 7.6 au homomorphisme loé&ale
Ay — By des anneaux locaux deet x dansY; et X : on trouve un isomorphisme

11
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B() - COno CO - AO [t]/Fvo[ﬂ

ou Fy est un polyldme unitaire etn, est un ical maximal deC;, ne contenant pas la classe
de Fjj(t) dansCy. Soit A I'anneau local dey dansY’, soit /' un polyrbme unitaire dansi|t]
donnantF, par 'hnomomorphisme surjectid — A, (on rekve les coefficients d&}), soit enfin
¢ = Alt]/FAlt] etn I'id @al maximal deg” image inverse deyz par I'épimorphisme naturel
C —C®yAy=Cy. Posons

B =C,

Il est immediat par construction et 7.1 que est étale surA, et qu’on a un isomorphisme
B ®a Ay = Ap. On sait (Chap. 1) qu'il existe ulr-schema de type finiX' et un pointz de X
au-dessus dgtel qued, soit A-isomorpheaC' ; comme ce dernier eétale sutd = 0, on peut
(en prenantX assez petit) supposer queestétale sury’. Soit X = X xy Y;, alors 'anneau
local dez dansX] s'identifiea &, ®4 Ay = B ®4 Ay, donc est isomorpha B,. Cet isomor-
phisme est dfini pas un isomorphisme d’un voisinaffg de x dansX, sur un voisinage de
dansX| (loc. cite), qu'on peut supposer identigaeX, en prenantX assez petit. On a fini.

Corollaire 8.2 Enoncé analogue pour des revétementsétales, en supposant le corps résiduel
k(y) infini.

La déemonstration est la @me, 7.5 remplacant 7.6.

Théeoreme 8.3 Le foncteur envisagé dans 5.5 est une équivalencele caggories

En vertu du teoeme 5.5, il resté@ montrer que touf,-schemaétale X, est isomorph& un
So-schlemaX x .5, ou X est unS-schemaétale. L'espace topologigue sous-jacant devraétre
nécessairement identigaecelui deX,, X, s'identifiant de plus un sous-gsclema ferné deX .
Le probEme est donéquivalent au suivant : trouver sur I'espace topologique sous-ja&ght
a X, un faisceau d'algbresg’x sur fi(0s) (ou f, estla projectionY, — Sy, regar@e ici comme
application continue des espaces sous-jacents), faisaiitden S-présclemaétale X, et un ho-
momorphisme d'algbres0’x — Ox,, compatible avec 'homomorphism&(&s) — fi(0s,)
sur les faisceaux de scalaires, induisant un isomorph8me (s f4(0s,) = Ox,. (Alors
X sera unS-présclemaétale se @duisant suivank,, donc sera&paé surS puisqueX, I'est
surSy, et X réponda la question). Si d’ailleurd’;) est un recouvrement d§, par des ouverts, et
si on a troue une solution du probme dans chacun dé5, il résulte du teoeme d’unicié 5.5
gue ces solutions se recollent (i.e. les faisceaux dtaigs qui les @finissent, munis de leurs
homomorphismes d’augmentation, se recollent), et on constatetaugstl’espace annehinsi
construit au-dessus deest unS-présclemaétale X muni d’'un isomorphismeX xg Sy < Xo.

Il suffit donc de trouver une solution localement, ce qui est éggar 8.1.

Corollaire 8.4 Soient S un préschéma formel localement noethérien, muni d’un idéal de
définition J, soit Sy = (|S |, Os/ 7 ) le préschéma ordinaire correspondant. Alors le foncteur
X — X Xg Sy de la catégorie des revétements étales de S dans la catégorie des revétements
étales de S est une équivalence de catégories.

12



Bien entendu, on appelera egemengtale d'un pesctemaformel S un re\etement des, i.e.
un péesclema formel surS défini a I'aide d’un faisceau cdrent d’algbres#, tel que# soit
localement libreet que les fibresésiduelles; @4, k(s) de % soient des algbresseparables
surk(s). Si on designe pars,, le présctema ordinairg(|S| s/ J"), la donrée d'un faisceau
cohérent d’algbresZ sur S équivauta la donmee d’'une suite de faisceaux @knts d'algbres
B, sur lesX,,, munis d’'un systme transitif d’homomorphismés,, — B,, (m > n) définissant
des isomorphismeB,, ®s,  Os, = B,. ll estimmédiat queZ est localement libre si et seule-
ment si les#,, sur lessS,, le sont, et que la condition dégarabilié est erifiée si et seulement si
elle I'est pour%,, ou encore pour tous l€s,,. Ainsi, 2 estétale surS si et seulement si leB,,
sur lesS,, le sont. Compte tenu de cela, 8&sulte ausdiit de 8.3.

Remarque. Il n’ était pas gcessaire dans 8.4 de se borner au casadegementsC’est cepen-

dant le seul utilié pour I'instant.
part 3

9 Propriétés de permanence

Soit A — B un homomorphisme local éttale, nous examinons ici quelques casume

16 certaine propBte pour A entrdne la néme prop@te pour B, ou reciproquement. Un certain
nombre de telle propositions soréjd cong€quences du simple fait que estquasi-finiet plat
sur A, et nous nous bornerorgsen “rappeler’ quelques-unes4: et B ont méme dimension
de Krull, et neme profondeuf“codimension cohomologique” de Serre, dans la terminologie
encore courante). Il eresulte par example qué est Cohen-Macaulay si et suelmentxsi'est.
Drailleurs, pour tout i@al premierq de B, induisantp sur A, B, sera encore quasi-fini et plat
surA,, pourvu qu’on suppose quesoit localie d'une algbre de type fini sud (cela esulte du
fait que I'ensemble des pointsiaun morphisme de type fini est quasi-fini resp. plat est ouvert);
et d’ailleurstoutidéal premiep de A est induit par un iélal premier de B (car B estfidelement
plat surA). Il en résulte par example queet g ont méme rang et encore quel est sans idal
premier immerg si et seulement € I'est.

Nous allons nous borner donc aux propositions pl@ésbes au cas des morphisnétales.

Proposition 9.1 Soit A — B un homomorphisme local étale. Pour que A soit régulier, il faut et
il suffit que B Ie soit.

En effet, soitk le corps esiduel de4, L celui deB. CommeB est plat surd et queL = B ®4 k
i.,e.n = mB (ou m, n sont les i@aux maximaux ded, B) la filtration m-adique surB est
indentiquea sa filtratiom-adique et on aura

g (B) = g1 (4) @ L.

Il s’ensuit quegr*(B) est une algbre de polydmes surL si et seulement sir*(A) est une
algebre de polyames suk. cgfd. (N.B. on n’a pas utilisle fait queL/k est €parable).
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Corollaire 9.2 Soit f: X — Y un morphisme étale. Si Y est régulier, X I’est, la réciproque
étant vraie si [ est surjectif.

Proposition 9.2 Soit f: X — Y un morphisme étale. Si Y est réduit, il en est de méme de X,
la réciproque étant vraie si [ est surjective.

Celaéquivaut au

Corollaire 9.3 Soit f: A — B un homomorphisme local étale, B étant isomorphe a une A-
algebre localisée d’une A-algebre de type fini. Pour que A soit réduit, il faut et il suffit que B le
Soit.

La nécessit est triviale, puisqud — B est injectif (B étant ficklement plat surl). Suffisance :
soientp; les ickaux premiers minimaux d¢, par hypotlese I'application naturelld — []. A/p;

est injective, donc tensorisant avecAemodule platB, on trouve queB — [], B/p;B est
injective, et on est ramenearprouver que le®/p, B sont eduits. Comme3 /p; B estétale sur
A/p;, on estramener au calsintegre. SoitK’ son corps des fractions, alois— K étant injectif,

il en est de reme (B étantA-plat) deB — B ®4 K, on est ramene prouver que ce dernier
anneau estéduit. Or, B étant localiée d’'uneA-algebre de type fini sur, est I'anneau local
d’un pointz d’un sctema de type fini eétale X = Spec(C') surY = Spec(A), doncB®4 K est

un anneau locales(par rappora un ensemble multiplicativement stable convenable) de I'anneau
C®sKdeX ®4 K. CommeX ®,4 K estétale surk, son anneau est un produit fini de corps
(extensions@parables d&), il en est donc de Bme deB ® 4 K. cqfd.

Corollaire 9.4 Soit f: A — B un homomorphisme local étale, supposons A analytiquement
réduit (i.e. le complété A de A sans élément nilpotent). Alors B est analytiquement réduit, et
a fortiori réduit.

En effet, B estfini etétale sutd, et on applique 9.3.

Théoreme 9.5 Soit f: A — B un homomorphisme local, B étant isomorphe a une A-algébre
localisée d’une A-algebre de type fini. Alors

(i) Si f est étale, A est normal si et seulement si B I’est.

(i) Si A est normal, f est étale si et seulement si f est injectif et net (et alors B est normal par

@)

Nous allons donner deuxechonstrations diffrentes de (i), la premie utilise certaines des
proprietes des morphismes plats quasi-finis (rappelu @but du nuréro) sans utiliser 7.6 (et par
Ia, le Main Theorem) ; c’est I'inverse pour la deexie é@monstration. Enfin, pour (ii) il semble
gu’on ait besoin du Main Theorem en tous cas.

14
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Premiere demonstration. On utilise la condition cessaire et suffisante suivante de nori@alit
d’'un anneau local noeghien A de dimension# 0.

Crit ere de Serre: (i) Pour tout idéal premier p de A de rang 1, A, est normal (ou ce
qui revient au méme, régulier) ; (ii) Pour tout idéal premier p de A de rang > 2, on a
profondeur A, > 2.7

Nous admettrons ici ce cete, qui est cergsfigurer au par. des plats. Son principal avan-
tage est qu'’il ne suppose pas a pridriréduit, ni a fortiori inegre. Ici, on peut &a supposer
dim A = dim B # 0.

D’apes les rappels duédbut du nuréro, les i@aux premierg de A qui sont de rang (resp.
de rang> 2) sont exactement les traces sudes ickaux premierg de B qui sont de rang (resp.
de rang> 2). Enfin, sip etq se correspondenti, estétale surd,, donc a néme profondeur que
A,, et est egulier si et seulement si, I'est (9.1). Appliquant le crére de Serre, on trouve que
A est normal si et suelment Bi l'est.

Deuxieme cemonstration. Supposond3 normal, soitL son corps des fractiong; celui de A
(A estinkgre puisqué I'est). On a vu dans la@monstration de 9.3 qué® 4 K est un compas
fini de corps, comme il est contenu dahg’est un corps, et comme il contieRt c’est L. Un
element deiX’ entier surA est entier sui3, donc est dan® puisqueB est normal, donc dan4
carBN K = A (comme il sulte du fait que3 est ficklement plat sur).

Supposons maintenadt normal, prouvons qués I'est. En vertu de 7.6 on aurB = B,
ou B' = A[t]/FA[t], F etn étant comme dans 7.6. Dordc = B ®,4 K sera un localig
de B ®4 K = K]Jt]/FK]t], et un produit de corps; extensions finieéparables de< ce
dernier produit (comme chaque fois qu’on localise un anneau artinie3zicpar rapporta
un ensemble multiplicativement stable) est un facteur diredg/decorrespondant dore une
décompositiont” = F} F» dansK|[t], le gerérateur del. correspondar ¢ étant annwé ceja par
F;. Or, A étant normal, led’; sont dansA[t] (supposant gu'ils sont unitaires). Remarquant que
B — L = B®, K estinjectif A — K I'étant etB étant plat surd) il s’ensuit qu’on aura
déja Fi(u) = 0. Supposant qu’on ait pri8' de degé minimum, il s’ensuivra qué; = 1 (N.B.
on aural’(u) = F(u)Fy(u) + Fy(u)Fy(u) = F](u)F>(u) puisqueF;(u) = 0, d’ou F{(u) # 0
puisquel’(u) # 0.

Donc on a
(*) L=B®s K =K|[t]/FK]|t]

F étant par suite un polyime €parable dan&[¢] (maisévidemment par &cessairement dans
Alt]). (N.B. Pour l'instant, on a seulement mantessentiellement, que dans 7.6 on peut choisir
F et de telle fagcon que — avec les notations prises icB~— B] = B soitinjectif ; on s’est
servi pour cela de la normaideA ; je ne sais pas si cela reste vrai sans hygettde normak).

'Cf.EGA IV 5.8.6.
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Rappelons maintenant le lemme bien connu, extrait du Cours de Serre de I'an dernier :

Lemme 9.6 Soit K un anneau, F' € K |t] un polyndéme unitaire séparable, L = K[t]/FK]|t], u la
classe de t dans L (de sorte que F'(u) est un élément inversible de L). Alors on a les formules
(oitn =degF):

trp g u'/F'(u) =0 si 0<i<N-—1,
trp g u"t/F (u) = 1.

Corollaire 9.7 Le déterminant de la matrice (u’.u'/F'(u))o<; j<n—1 €st égal a (—1)", donc in-
versible dans tout sous-anneau A de K.

Corollaire 9.8 Soit A un sous-anneau de K, V' le A-module engendré parlesu’ (0 <i<mn—1)
dans L, V' le sous-A-module de L formé des x € L tels que try, /i (vy) € A pourtouty € V (i.e.
pour y de la forme u’, 0 < i < n — 1). Alors V' est le A-module ayant pour base les u'/F'(u)
0<i1<n—-1).

Corollaire 9.9 Suppons que K soit le corps des fractions d’un anneau integre normal A, F ayant
ces coefficients dans A. Alors avec les notations de 9.8, V' contient la cloture normale A’ de A
dans L, qui est donc contenu dans A[u]/F’(u) et a fortiori dans A[u|[F'(u)™"].

Appliquons ce dernier corollaira la situation que nous avions obtenue danslaahstra-
tion : commeF’(u) est inversible dan® qui contientAfu|, B contientA’. D’apres le Main
Theorem, (ow partir du fait queB = A[u],) B est une algbre localiée deA’. CommeA’ est
normal, il en est de Bme deB.

Démonstration de (ii). — On pro@de comme dans l&donstration qui @eede pour prouver
gu’on peut, dans 7.6, choisif de telle facon que I'on ait encore)( Le seul obstacle a priori est
gue,B n’étant plus supp@splat sur4, on ne peut plus affirmer que — L est injectif, de sorte
gue le raisonnement ne s’appliquera a priorieglimage B; de B par ledit homomorphisme. I
s’ensuit aussiit queB; est plat surd (comme localige d’une algbre libre surd). En vertu de
4.8 le morphismé3 — B, estétale, donc un isomorphisme, ce qui aet la @monstration.

(Du point de vue&daction, il faudrait intervertir les deux deenés @monstrations, et mettre
dans un nuraroa part les calculs formels du lemme et de ces corollaires).

Corollaire 9.10 Soit f: X — Y un morphisme étale. Si Y est normal, X I’est, la réciproque est
vraie si [ est surjective.

Corollaire 9.11 Soit f: X — Y un morphisme dominant, Y étant normal et X connexe. Si f
est net, f est étale, donc X est normal et par suite (étant connexe) irréductible.

SoitU I'ensemble des pointslof estétale, il est ouvert, et il suffit de montrer qu’il est aussi
fermé et non videU contient I'image inverse du poinggérique deY” (car pour une algbre sur
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part 4

un corps, non ramié= étale) donc X dominantY’) est non vide. Si: appartienta I'adhérence
deU, alors il appartien& 'adhérence d’'une composanteéductibleU; deU, donca une com-
posante ireductibleX; = U; de X qui rencontrd/, et par suite domin& (car toute composante
deU, plat surY’, domineY’). Par suite, sy est la projection de surY’, 0, — 0, estinjectif
(compte tenu qué,, est inegre). Comme, est normal ev, — ¢, net, on conclua 'aide de
9.5(ii).

Corollaire 9.12 Soit f: X — Y un morphisme de type fini dominant, avec Y normal et X
irréductible. Alors I’ensemble des points ou f est étale est identique au complémentaire du sup-
port de Q2 v i.e. au complémentaire du sous-préschéma de X défini par I'idéal différente 0y .

(C’est cela IEnon@ “moins trivial” auquel ilétait fait allusion dans la remaque dd M.

Remarque. On se gardera de croire qu’'un egementétale connexe d’un séma iréductible
soit lui-méme iréductible, quand on ne suppose pas la base normale. Cette questietudem
au N 11.

10 Rewetementsetales d’'un sclema normal

Proposition 10.1 Soit X un préschéma étale séparé sur Y normal connexe de corps K. Alors
les composantes connexes de X; de X sont integres, leurs corps K; sont des extensions finies
séparables de K, X; s’identifie a une partie ouverte non vide du normalisé de X dans K; (donc
X a une partie dense du normalisé de Y dans R(X) = L = [[ K).

D’apres 9.10X est normal, a fortiori ses anneaux locaux sorggnés, donc les composantes
connexes deX sont ireductibles. Comme; est normal, et fini et dominant au-dessusydel
résulte d’'un cas particuliea(peu pes trivial d'ailleurs) du Main Theorem qu¥; est un ouvert
du normali€¢ deX dans le corpgy; de X.

Corollaire 10.2 Sous les conditions 10.1, X est fini sur Y (i.e. un revétement étale de Y') si et
seulement si X est isomorphe au normalisé Y' de Y dans L = R(X) (anneaux des fonctions
rationnelles sur X).

En effet, on sait que ce normaigst fini suy” (Y étant normal e/ K séparable), inverse-
ment siX est fini surY il I'est surY’, donc son image dans$’ est ferngée, d’autre part elle est
dense.

Une algebreL de rang fini surk’ sera ditenon ramifée surX (ou simplement non ramée
sur K, si X est sous-entendu) i est une algbre €parable suf<, i.e. compoge directe d’ex-
tensions 8parabledy;, et sile normali Y’ deY dansL (somme disjointe des normadis deY’
dans lesk;) est non ramif (= étale par 9.11) sur’. Donc :
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Corollaire 10.3 Pour tout X fini sur Y et dont toute composante irréductible domine Y,
soit R(X) I’anneau des fonctions rationnelles sur X (poduit des anneaux locaux des points
génériques des composantes irréductibles de X), de sorte que X — R(X) est un foncteur, a
valeurs dans les algebres de rang fini sur K = R(Y'). Ce foncteur établit une équivalence de
la catégorie des revétement étales connexes de Y avec la catégorie des extensions L de K non
ramifiées sur'Y'.

Le foncteur inverse est le foncteur normalisation.

Suppongy” affine, donc éfini par un anneau normal de corps des fractions’. Soit L une
extension finie dgX compo$ directe de corps, alors pagfihition la normaleeY”’ deY dans
L est isomorphé& Spec(A’), ou A’ est le normalié de A dansL. Dire queL est non ramig&
surY signifie queA’ est non rami& (ou encore etale) surA. si A est local, il revient au
méme de dire que les anneaux locadfx(ou n parcourt I'ensemble fini des &hux maximaux
de A’, i.e. de ses idaux premiers induisant '@l maximaim de A) soient non ramié (= étale)
sur X lI'anneau localA. Enfin, notons aussi que le @it par le discriminant (4.10) peut aussi
s’appliquer dans cette situation (plusrgralement, une variante dudit ene devrait £noncer
ainsi, sans condition pliminaire de platitude lorsqu& domineY’, Y étant anmoins supp@s
localement inkgre :A — B etB — B ®, K = L sont injectifs — alorsr;, /x est cefinie —
ettry x(wy) induit uneforme biliréaire fondamentalds x B — A, i.e. il existe des;; € B
(1 < i < n,n =rang deL sur K) tels quetr(x;z;) € A pour touti, j et det(tr(z;z,)) est
inversible dansA).

Le sorite (4.6) implique aus$it le sorite de la non ramification dans le cadre classique :

Proposition 10.4 Soient Y un préschéma normal intégre, de corps K. (i) K est non ramifié
sur Y. (ii) Si L est une extension de K non ramifiée surY, si Y’ est un préschéma normal de
corps L et dominant Y (par exemple le normalisé de Y dans L) et M une extension de L non
ramifiée sur Y', alors M /K est non ramifiée sur X (transitivitt de la non ramification). (iii)
Soit Y un préschéma normal intégre dominant Y, de corps K'/ K ; si L est une extension de K
non ramifiée sur Y, alors L @ K’ est une extension de K' non ramifiée sur Y' (propriété de
translation).

De plus:

Corollaire 10.5 Sous les conditions de (iii), si Y = Spec(A), Y’ = Spec(A’), alors le normalisé
A'deY'  dans L' = L @ K’ s’identifiea A @ 4 A’, ou A est le normalisé de A dans L.

Habituellement, les gens (queépugnent la consiération d’anneaux non iegres, fussent-
ils compogs directs de corp®noncent la propeie de translation sous la forme (plus faible)
Suivante :

Corollaire 10.6 Sous les conditions de (iii), soit L, une extension comp@&ede L/K (non ra-
mifiée surY') et de K'/K. Alors L, /K’ est non ramifiée sur Y'. Dans le cas ou Y = Spec(A),
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Y’ = Spec(A’), on aura de plus
A= A[A, A

i.e. 'anneau A’ normalisé de A’ dans L, est la A-algébre engendrée par A’ et le normalisé A de
Adans L.

Ce dernier fait est d'ailleurs faux sans hypegk de non ramification, @me dans le cas
d’extensions comp@es de corps de nombres

Pour terminer ce nuéro, nous allons donner l'inter@ation de la notion de rétementtale
correspondard I'image intuitive de cette notion : il doit y avoir le “nombre maximum” de points
au-dussus du point congi® y € Y, et en particulier il ne doit pas y avoir “plusieurs points
confondus” au-dussus de Pour cemontrer les @sultats dans ce sens avec toute &aegalite
désirable, nous allons admettre ici la proposition 10.7 plus bas (doént@wistration sera dans
le multiplodoque, Chap. IV, par. 15, et utilise la technique des ensembles constructibles de Che-
valley, et un petit peu de &worie de descente.)

Un mrophisme de type fini: X — Y est dituniversellement ouvesi pour toute extension
de la bas&”’ — Y (avecY’ localement noe#rien) le morphismg’: X' = X xy Y/ — Y’
est ouvert, i.e. transforme ouverts en ouverts. On peut d’ailleurs se borner all ¥agst de
type fini surY (et meme a1 Y’ est de la formé&’[t,, ..., t,], ou lest; sont des indtermirees).
Un morphisme universellement ouvert est a fortiori ouvert @proqueetant fausse), d’autre
part sif est ouvert,X etY étantiréductibles, alors toutes les composantes de toute les fibres de
f ont méme dimension (savoir la dimension de la fibgarique f ~1(2), z le point ggrérique
deY). Enfin siY est normal, cette demgie condition implique &ja quef estuniversellement
ouvert (treoeme de Chevalley). Il s’ensuit par exemple qug siX — Y est un morphisme
guasi-finj avecY normal iréductible, alorg est universellement ouverte (ou encore : ouverte)
si et seulement si toute composant@&ductible deX domineY. Rappelons aussi qu’un mor-
phisme plat (de type finBtant ouvert, est aussi universellement ouvert. Celinpinaires poss,
“rappelons” la

Proposition 10.7 Soit f: X — Y un morphisme quasi-fini séparé universellement ouvert. Pour
touty € Y, soit n(y) le “nombre géométrique de points de la fibre f~'(y)”, égal a la somme
des degrés séparables des extensions résiduelles K (z)/K (y), pour les points x € f~1(y). Alors
la fonction n — n(y) sur'Y est semi-continue supérieurement. Pour qu’elle soit constante au
voisinage du point y (i.e. pour qu’on ait n(y) = n(z;), ot les z; sont les points génériques des
composantes irréductibles de Y qui contiennent y) il faut qu’il existe un voisinage U de y tel que
XU soit fini sur U8

Corollaire 10.8 Siy +— n(y) est constante et Y géométriquement unibranche °, les composantes
irréductibles de X sont disjointes.

8Cf.EGAIV 15.5.1
SPour la efinition, cf. ci-dessous11, p. 21
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Proposition 10.9 Soit f: X — Y un morphisme étaleséparé. Avec les notations 10.7 la fonc-
tion n +— n(y) est semi-continue supérieurement. Pour qu’elle soit constante au voisinage du
point y, (i.e. pour qu’on ait n(y) = n(z;), ot les z; sont les points génériques des composantes
irréductibles de Y qui contiennent y) il faut et il suffit qu’il existe un voisinage ouvert U de y tel
que X |U soit fini sur U, i.e. soit un revétemenétalede U.

Corollaire 10.10 Pour qu’un morphisme étale séparé f: X — Y ,Y connexe, soit fini (i.e. fasse
de X un revétementtalede Y) il faut et il suffit que toute les fibres de f aient méme nombre
géométrique de points.

Dans 10.8 et son corollaire, il n'y avait pas d’hypese de normakt surY'. Si on fait une
telle hypotkese, on trouve &noné& plus fort (pris le plus souvent comme lafahition de la non
ramification d’'un regtement) :

Theoreme 10.11Soit f: X — Y un morphisme quasi-fini séparé. On suppose que Y est
irréductible que toute composante de X domine Y, que X soit réduit (i.e. Ox sans éléments
nilpotents). Soitn le degré de X surY (somme des degrés, sur le corps K de Y, des corps K; des
composantes irréductibles X; de X ). Soit y un point normal de Y. Alors le nombre géométrique
n(y) de points de X au-dessus de y est < n, I’égalité ayant lieu si et seulement si il existe un
voisinage ouvert U de y tel que X |U soit un revétementétalede U.

Le “seulement si'gtant trivial, provons le “si”. Soit le point gerérique deY’, on an(z) =
(somme des degs €parables de#;/K) < n et par 10.7 on &(y) < n(z) < n, I'égalié
impliquant queX |U estfini surU pour un voisinagé/ convenable dg. On peut donc supposer
X fini surY et la fonctionn(y’) surY constante. Enfin par 10.8 est alors €union disjointe de
ses composanteséaductibles et pour prouver qu’il est non rar@iény, on est rame@au cas 0
X estiréductible, donc irigre. Enfin on peut supposgr= Spec(0,). Le theoreme se &duit
alorsa I’énoné classique suivant :

Corollaire 10.12 Soient A un anneau local normal (noethérien comme toujours) de corps K,
L une extension finie de K de degré n, degré séparable n,, B un sous-anneau de L fini sur
A, de corps des fractions L, m I’idéale maximal de A et n' le degré séparable de B/mDB sur
A/mA = k (= somme des degrés séparables des extensions résiduelles de cet anneau). On a
n’ < ng et a fortiori n’ < n. Cette derniére inégalité est une égalité si et suelment si B est
non ramifié (= étale) sur A.

Il reste seulemend montrer quer’ = n implique queB estétale surA. Rappelons la
demonstration quand est infini : on doit seulement montrer qé& = B/mB est €parable
surk ; s'il n’en était pas ainsi il enasulterait (par un lemme connu) qu’il existe @lémenta de
R dont le polyrdome minimal surk est de dedgr > n'. Cetélement provient d'urelementz de
B, dont le polydme minimal surs” (en tant quélement del.) est de ded < n ; d’autre part ce
dernier a ses coefficients dadspuisqueA est normal, et donne donc paduction modn un
polyndbme unitairel” € k[t], de dege < n = n’, tel queF'(a) = 0, absurde.

20



26

part 5

27

Dans le cas gréral (¢ pouvantétre fini), reprenant le langag&agnetrique, on consigre
Y’ = Spec(A[t]) qui est ficelement plat suk’, et le point @rériquey’ de la fibreSpec(k|t]) de
Y’ sury. Alors X est net sul” eny si et seulement sk’ = X xy Y’ = Spec(B][t]) est net en
vy’ surY’, comme on constate augstitD’autre part, d’aprs le choix de/, son corpsé&siduel est
k(t) donc infini. Commae,’ est un point normal d&’, on est rame®au cas @cdent.

11 Quelques com@ments

Nous avons éja dit qu’un re@tementétale connexe d’'un séma ineégre n’est pasécessai-
rement inégre. Voici deux exemples de ce fait.

a) SoitC' une courbe algbriquea point double ordinaire, C’ sa normalige,a etb les deux
points deC” au-dessus de. SoientC! (i = 1, 2) deux copies d€”, a; etb; le point deC! qui
correspondha resp.b. Dans la courbe somn@] 11 CY, identifionsa] etb, d’'une part,a, etb,
d’autre part (on laisse au lecteur le soin deqiser le processus d’identification ; il sera expéiqu
au Chap. VI du multiplodoque, mais dans le cas des courbes sur un cogpsig@gment clos
est trai€ dans le livre de Serre sur les courbe£htigues). On trouve une courb®& connexeet
réductible qui est un regtementétale de de@2 deC'. Le lecteur erifiera que de fagcorggeérale,
les reetementsttales connexes “galoisiens” de C' dont I'image inverseC” x C’ est un
revetementrivial de C’ (i.e. isomorphe la somme d’un certain nombre de copiedesont
“cycliques” de deggn, et pour tout entien. > 0, on peut construire un rétemengétale connexe
cyclique de ded¥rn. Dans le langage du groupe fondamental qui séreelbpge plus tard, cela
signifie que le quotient de;(C) par le sous-groupe invariant feenengends par I'image de
m1(C") — m (C) (homomorphisme induit par la projection) est isomorphe au compadsfz.
De facon plus pgcise, on doit pouvoir montrer que le groupe fondamentdal’ éest isomorphe
au produit libre (topologique) du groupe fondamentaltpar le compactié deZ. Notons que
ce sont des questions de ce genre qui ont daraissanca la “theorie de la descente” pour les
sckemas.

b) Soit A un anneau local complet igre, on sait que son normaid’ est fini surA (Na-
gata), donc c’est un anneau semi-local complet, donc local puisqu’il égrétSupposons que
I'extension ésiduelleL/k qu’il définit soit non radicielle (dans le cas contraire, on dira que
A est gonetriguement unibranche, cf plus bas). Ce sera le cas par exemple pour 'anneau
R[s,t]/(s* + t*)R][s, t], ou R est le corps deseels. Soit alorg’ une extension galoisienne fi-
nie dek telle quelL ®; k' se decompose; et soiB une algbre finieétale surA correspondant
a I'extension esiduellek’ (rapellons queB est essentiellement unique). AloB8 = A’ ® 4 B
sur B a l'algebre esiduelleL ®;, k' qui n'est pas locale, don&’ n’est pas un anneau local
donc gtant complet) a des diviseurs deComme il est contenu dans I'anneau total des frac-
tions deB (car libre surA’ donc sans torsion suf’ donc sans torsion suf, donc contenu dans
B ®4 K = BEK) = A’(K) ®k By = B puisqueA’(K) = K) il s’ensuit queB n’est pas
integre. Dans le cas de l'anneBls, t]/(s* + t*)R[s, t], prenant’/k = C/R, on trouve pout3
'anneau local de deux droiteé&antes du plan en leur point d’intersection.
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Notons d’ailleurs que s'il existe un rétement connexetaleX deY intégre qui ne soit pas
irreductible, alors toute composantecituctible deX donne un exemple d’'un rétement non
ramifié X’ deY’, dominantY’, qui n'est pas%tale surY". Dans le cas de I'exemple a), on obtient
ainsi queC” est non rami surC, sansetreétale en les deux pointset b (comme on constate
d’ailleurs directement par inspection des coetd des anneaux locaux deeta : du point de
vue “formel”, C" au pointa s’identifiea un sous-s@ma ferné deC' au pointz, savoir I'une des
deux “branches” d€’' passant par).

Dans a) et b), on voit que la non validitdes conclusions de 9.5. (i) et (ii) estdidirecte-
ment au fait qu'un point d& “éclate” en des pointdistinctsdu normali& (dans b, le fait que
I'extension Esiduelle soit non radicielle dog@tre interpetee geonetriquement de cette facon).
De facon pecise, nous dirons qu’'un anneau locakmne A estgéonétriguement unibranche
si son normalié n'a qu’un seul i@al maximal, I'extensionéasiduelle correspondanétant ra-
dicielle ; un pointy d’'un préscteéma inégre est dit onetriquement unibranche si son anneau
local I'est. Exemples : un point normal, un point de rebroussement ordinaire d’une courbe, etc...
Il semble que st admet un point qui n’est pas unibranche, il existe toujours diteavenétale
connexe non igductible d&" ; c’est du moins ce que nous avons mérdans le cas b), lorsque
Y estle spectre d’'un anneau local complet. On peut montrer par contsétqus les points d&
sont geonetriguement unibranches, alors toxdtprésclema non ramié connexe dominant est
étaleet irreductible. La @monstration reprend celle de 9.5, en utilisanteggalisation suivante
du theorme 8.3, qui sera@montée plus tarcx 'aide de la technique de desceffte

Soit Y’ — Y un morphisme fini, radiciel, surjectif (i.e. ce qu’'on pourrait appeler un
“homéomorphisme universel”). Congns le foncteuX — X xy Y’ = X' desY -présctemas
dans lesY’-présclemas. Ce foncteur induit urequivalence de la cagorie desY-sctemas
étales avec la c&gorie des’”’-sctemasetales On pourra appliquer par exemple &sultat dans
le cas @ Y’ est le normalig deY’, Y étant suppdsunibranche (eY” fini surY’, ce qui est vrai
dans tous les cas qu’on rencontre en practique), ou au cag’d’(en sandwich” entré” et son
normali€ (qui n’a plus besoin @tre fini surY’).

10Cf, 1X.4.10. Pour une @monstration plus directe, cf. EGA IV 18.10.3, utilisant une variante de 9.5 pour des
anneaux locaux@pnétriguement unibranches.
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Expos I

Morphismes lisses : @neralites, proprietes
diff erentielles

Les renvoisa I'expo% | sont indiges par I. On rappelle que les anneaux sont reveths, et
les pesclemas localement nodihiens.

1 Géneralités
SoitY un presclema, soient,, ..., t, des indtermirées, on pose

(1.1) Y[t .. ta] =Y ®z Z[t, ... 1)

DoncY[ty,...,t,] estunY-schema, affine au-dessus te défini par le faisceau quasi-cérent
d'algébresdy [t4,...,t,]. La donrée d’'une section de cegsclema au-dessus dé équivaut
donca la done den sections de/y (correspondant aux images depar 'homomorphisme
correspondant). Si” est au-dessus d€, on a

(12) Y[t1,7tn] Xy Y/:Y/[tl,...,tn],

(ce qui implique que la dor&e d’unY -morphisme d&” dansY'[¢4, .. ., t,| €quivauta la doniée
den sections d&y), d’autre part on a

(1.3) (Yt ta)) gt - oo t) = Yt .o ]

en vertu de de la formule analogue pour les anneaux de @lgsa surZ. La formule (1.2)
implique queY'[ty, .. ., t,] varie fonctoriellement avekr.

Yt1,...,t,] est de type fini et plat au-dessuse
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part 6

Définition 1.1 Soit f: X — Y un morphisme, faisant de X un Y -préschéma. On dit que [ est
liss€ en x € X, ou que X est lisse surY” enz, s’il existe un entier n > 0, un voisinage ouvert U
de x, et un Y -morphisme étale de U dans Y[ty ..., t,|. On dit que f (resp.X) est lisses’il est
lisse en tous les points de X . Une algébre B sur un anneau A est dite lisse en un idéal premier
p de B, si Spec(B) est lisse sur Spec(A) aupoint p ; B est dite lisse sur A si elle est lisse sur A
en tout idéal premier p de B. Enfin, un homomorphisme local A — B d’anneaux locaux est dit
lisse (ou B est dite lisse sur A)? si B est localisée d’une algébre de type fini B, lisse sur A.

On note que la notion de liséide X surY est locale suX et surY ; si X est lisse sul’, il
est localement de type fini str.

Proposition 1.1 L’ensemble des points x de X en lesquels f est lisse est ouvert.

C’est trivial sur la @finition.

Corollaire 1.2 Si B est lisse sur A en p, alors il est lisse sur A en q pour tout idéal premier q
de B contenu dans p.

1.1 impligue aussi que les deux damr@s @finitions 1.1 cincident dans leur domaine com-
mun d’existence.

Proposition 1.3 (i) Un morphisme étale, en particulier une immersion ouverte, un morphisme
identique, est lisse. (ii) Une extension de la base dans un morphisme lisse donne un morphisme
lisse. (iii) Le composé de deux morphismes lisses est lisse.

(i) est trivial sur la @finition, on a plus pFcigment :

Corollaire 1.4 étale = quasi-fini + lisse.

(ii) résulte ausditt du fait analogue pour les morphismesles (I 4.6) et pour les projec-
tionsY(ty,...,t,] — Y (cf (1.2)). Pour (iii), cela @sulte formellement du fait que c’est vrai
sepaément pour étale” (1 4.6) et des projections du typégt, ..., t,] (cf (1.3)), et des deux
faits cites pour (ii) : Supposons lisse surZ et X lisse surY’, prouvons queX est lisse su¢ ;

on peut supposey” étale surZ[t,,...,t,| et X étale surY'[sy, ..., s,], la premere hypotese
implique donc qué&’[sy, ..., s,,] estétale sutZ[t, ..., t,][s1,. .., Sm] = Z[t1, ..., Sm], dONCX
estétale sutZ|ty, . . ., sn|, cqfd.

Remarque 1.5 L'entier n qui figure dans éf. 1.1 est bien @termiré, car on constate au<it
gue c’est la dimension de I'anneau local:ddans sa fibref ! (f(:p)). On l'appelle “dimension
relative” deX surY. Elle se comporte additivement pour la composition des morphismes.

1Ancienne terminologie f estsimpleenz, ouz est un poinsimplepour f. Cette terminologie f@taita confu-
sion dans divers contextes (alres simples, groupes simples) etiétte abandorie.
2|l vaut mieux dire alors, comme dans EGA IV 18.6.1, gaiest “essentiellement lisssur A.
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2 Quelques crieres de lissié d’'un morphisme

Théoreme 2.1 Soit f: X — Y un morphisme localement de type fini, soit z € X ety = f(z).
Pour que f soit lisse en x, il faut et il suffit que (a) f soit plat en z, et (b) f~'(y) soit lisse sur
k(y) enx.

Le compog de deux morphismes pla@tant plats, eY'[tq,...,t,] — Y étant un morphisme
plat, on voit que lisse implique plat ; compte tenu de 1.3 (ii) cela prouvédassit. Supposons
(a) et (b) \erifiees, soient” un voisinage affine dg d’anneauA, U un voisinage affine de
au-dessus d&, d'anneauB. PrenantU assez petit, on peut supposer par (b) qu’il existe un
k(y)-morphismeétale

9: Ulf ' (y) — Specklty, ... . t,] (k= k(y))

d éfini parn sectionsy; du faisceau structural dé|f~!(y). On constate facilement qu'on peut
supposer que leg (qui a priori sont deglements deB @4 k = BS™!,0uS = A —p, plidéal
premier deA correspondard y) proviennent de sections du faisceau structurdl’ ddonc quey
est induit par un morphisme, encore &gt

g: V—)Y[tl,,tn]

(quitte & multiplier lesg; par un némeélément non nul d&). Or V' est plat su” par (a), il en
est de néme deY'[ty, .. ., t,], d’autre party induit un morphismetale entre les fibres au-dessus
dey, doncg estétale enx par (I 5.8), cqfd.

Corollaire 2.2 Soient S un préschéma, f: X — Y un S-morphisme de type fini, Y étant de
type fini et plat sur S, x € X, s la projection de x sur S. Pour que f soit lisse en x, il faut et il
suffit que X soit plat (ou encore : lisse) sur S en x, et que le morphisme f,: Xy — Y induit sur
les fibres de s soit lisse en .

Seule la suffisance demande urarabnstration, etasulte du crigre 2.1, joint au crédre de
platitude (1 5.9).

Pourénoncer le &ésultat suivant, “rappelons” qu’un morphisnfie X — Y localement de
type fini est ditequidimensionne¢n le pointz € X si (posanty = f(x)) on peut trouver un
voisinage ouverUU de x, dont toute composante domine une composant® del que, pour
tout y’ € Y, les composantes &ductibles def~!(y/) N U aient toutes une &me dimen-
sion incependante deg’. Il suffit d’ailleurs dans cette condition de prendre pguies points
gérériques des composantestiuctibles d&” passant pay, et le pointy. Si par exempleX
etY sont inggres etf dominant, la condition signifie que les composantesfdésy) passant
parz ont “la bonne” dimension, i.e. la dimension de la fibengrique (rappelons gu’elles sont
toujours> la dimension de la fibrearerique). Sif estéquidimensionnel em, la dimension de
sa fibre enc étantn, etsig: U — Y' = Y[ty,...,t,] estunY-morphisme d’'un voisinag€ de
x, induisant un morphisme sur les fibres;dgui est quasi-fini en (ou encore, ce qui revient au
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méme, Sig est quasi-fini en:), alors on montre que toute composantéductible dd/ passant
parz domine une composanteéductible deY”’. D’ailleurs en vertu du “lemme de normalisa-
tion”, un tel g existe toujours (etaciproquement, s'’il existe un-morphisme quasi-fing d’un
voisinage ouvert/ dez dans unY-sctema de la form&” = Y'[t,...,t,], tel que toute com-
posante dé/ passant par domine une composante &€, alors f estequidimensionnel en).
Ceci pog :

Proposition 2.3 Soient f: X — Y un morphisme localement de type fini, x un point de X,
y = f(x), on suppose O, normal. Pour que f soit lisse en x, il faut et il suffit que f soit
équidimensionnel en x, et que f~1(y) soit lisse sur k(y) en z.

On voit aussibt sur la eéfinition qu’un morphisme lisse egtuidimensionnel (N.B. un mor-
phisme plat de type fini n’est pagcessairemeréquidimensionnel em, méme si sa fibre em
estireductible). Prouvons l&ciproque. Commg—!(y) est lisse suk(y) enz, on peut supposer
(remplacant au besoil par un voisinage convenable dequ’il existe unY -morphisme

g: X = Y[ty,....t,] =Y’

induisant un morphismétale sur les fibres dg, et a fortiori quasi-fini enz. Donc g est non
ramifie, et (f étantéquidimensionnel en) les composantes &ductibles deX passant pax
dominent chacun une composanteYdea fortiori 'ThomomorphismeZ,, — ¢, déduit deg (ou
y" = g(x)) estinjectif. Cet homomorphisme est de plus non rag&iéto,, est normal puisque
locali® de l'anneaw’,[ty,...,t,], qui est normal puisquée, I'est. Donc 'homomorphisme
o, — 0, estetale (1 9.5 (ii)).

Remarques 2.4L énon& precedent vaut encore en remplagant 'hypesh ques, est normal
par I'hypottrese plus faible quE estgéonetriquement unibrancheny, (cf.l 11)- puisque (I 9.5)
vaut sous cette hypodse. Profitons de I'occasion pour signaler eénme temps que si le corps
résiduel d’'un anneau local igre A est alggbriquement clos, alors analytiquementne (i.e.

A est inkgre) implique gonetriqguement unibranche, l&cgiproqueétant vraie de plus dans
toute caggorie de “bons anneaux”, de facorepise dans une d@gorie d’anneaux stable par les
opérations usuelles, etida compétion d’'un anneau local normal est normale (condition remplie,
en vertu du “toeme de normali analytique” de Zariski, dans la égjorie des algbres affines

et leurs localigesy.

“Rappelons” enfin dans le contexte actuel ésultat suivant , @ a Hironak& qui permet
parfois de s’assurer qug *(y) est un schma eduit, i.e. que c’est aussi ce que de nombreux
géonetres al@bristes consigraient abusivement comme la fibre (sans multi@jcde f au-
dessus de (savoir f~!(y) )

Proposition 2.5 Soient f: X — Y un morphisme dominant de type fini de préschémas réduits,
y un point de Y tel que 0, soit régulier. On suppose que toutes les composantes de f~'(y) sont

SCf.EGAIV7.S8.
4Cf. EGA IV 5.12.10.
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de multiplicités 1 (cf définition plus bas), et que f~'(y).sq est normal. Alors f~(y) est réduit
donc normal, X est normal en tous les points de f~'(y), enfin X est plat sur Y en tous les points

de f~*(y).

On dit qu’une composanté de f~(y) est demultiplicité 1 si, z désignant le point@rérique
deZ, on a (i)dim 0, = dim 0, (i.e. Z n'est pas “composante exdentaire”, c’esk-dire n’est
pas “de dimension trop grande” ; (ii) I'shl maximal deZ, est engendr par I'ideal maximal de
0, (qui a priori, en vertu du choix de, engendre un iell de @finition ded,).

Compte tenu de 2.3 ou de 2.1 on trouve donc :

Corollaire 2.6 Soient f: X — Y un morphisme dominant de type fini de préschémas réduits,
y un point de Y tel que 0, soit régulier. Pour que f soit lisse aux points de X au-dessus de v,
il faut et il suffit que les composantes de f~'(y) soient de multiplicités 1, et que f~'(y)sq soit
lisse sur k(y).

Cette situatioretait surtout consiglée par le pagsquandy” était le spectre d’'un anneau de
valuation discete A, etétait cesigree commuament sous des vocables tels que : “séldurction
de X par rapport la valuation donge est jolie’. . De plus,X désignait alors un sous-seima
(si on peut dire) ferra d’'un P’ (K étant le corps des fractions df et faute d’'un adquat, le
role plus intringque d’un objet “éfini surA” (et non seulement suk’) n’apparaissait gere.

3 Propriétés de permanence

Proposition 3.1 Soit f: X — Y un morphisme, soit x € X ety = f(x). Supposons f lisse
en x. Pour que O, soit réduit (resp. régulier, resp. normal) il faut et il suffit que 0, le soit.

Ceténoné est en effet connu quard est de la formé&[¢;, ..., t,], et il est &monté dans
(I,n° 9) pour un morphismétale ; le cas gréral s’en @duit aussiit gracea la cefinition 1.1.

Nous ne @étaillons pas ici les autres propés de permanencegsultant éja de la seule
platitude, ou du fait queX est localement quasi-fini et plat au-dessus dixprésclema de
la formeY(t,...,t,] (ou, comme nous dirons, qué est Cohen-Macauley au-dessusde
Signalons seulement que de ce dernier fsuite que

(3.1) dim 0, =dim 0, +n —d, proft 0, =prof 0, +n—d

ou n est la dimension de la fibre dfeenz, etd le degé de transcendance éér) surk(y), d’ou
(posantcoprof = dim — prof)

(3.2) coprof 0, = coprof 0, (°)
5Pour ces formules, cf. EGA IV 6.1 et 6.3.

27



part 7

36

Il en résulte par exemple qug, est Cohen-Macaulay (resp. sans composantes in@es)gi et
seulement si il en est deéme des,,.

4  Propriétes differentielles des morphismes lisses

Pour simplifier, nous nous restreindrons pour I'essentiel au calcéreiffiel d’ordrel, nous
bornanta de rapides indications pour I'ordre €ujeur (i les €sultats sont tout aussi simples).

Pour la @finition du faisceau des-différentielles(2y ;- d’'un d'un Y-présclema X, cf.
(I N°1). Supposons qu& etY soient desS-présctemas, le morphisme structural X — Y
étant unS-morphisme. Alorsf définit un homorphisme de Modules (compatible aygc

(4.2) fr (251//5 — Q)l(/s

en d’autres termes7}(/s estcontravarianten le S-présctemaX . D'ailleurs (4.1)équivauta un
homorphisme de Modules siXr

(4.1bis) [ (Qxl//s) - )1(/5

également @no€ par f* a defaut de mieux, et qui s'ikse dans une suite exacte canonique
d’homorphismes de Modules

(4.2) F* (9v5) = Oxys = Qxyy — 0

Tous ces homorphismes soréfahis par la condition d@tre de nature locale (ce qui ranme au
cas affine) et de commuter avec leemgteursl. L'exactitude de (4.2) est classique et triviale,
et se transcrit dans le cas affine en la suite exacte (correspandarttomorphismé3 — C' de
A-algebres) :

Lemme 4.1 Soit f: X — X un morphisme de S-préschémas. Si f est non ramifié (resp. étale)
alors f* (Q} /S> — 2% /g est surjectif (resp. un isomorphisme). La réciproque est vraie dans le
cas “non ramifié”, si f est supposé localement de type fini.

Le cas non ramié resulte de la suite exacte (4.2) et de (I 3.1), mais peut aussi se voir direc-
tement dans le caale. Considrons le diagramme

X/Y

A
X—=Xxy X —= X xg X

.

Y YXSY
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dans lequeK xy X s’identifie au produit fibg deY et X xg X surY x5 Y. Commef est non
ramifie, X — X xy X est une immersion ouverte, donc le faisceau “conormal” de 'immersion
compoge Ay, s de cette dermire avecX xy X — X xg X estisomorphe 'image inverse
sur X du faisceau conormal pour I'immersioki xy X — X xg X. D'autre part, X — Y
étantétale donc platX xgs X — Y xg Y est plat, donc le faisceau conormal pour 'immersion
X xy X — X x5 X estisomorphé I'image inverse du faisceau conormal pour I'immersion
Y — Y xgY,ie.limage inverse déy ¢. La conclusion engsulte.

Lemme 4.2 Soit X = Yty,...,t,], Y étant un S-préschéma. Alors la suite d’homorphismes
canoniques
0— f* (2y5) = x5 — Qxyy — 0

est exacte et Q}(/Y est libre de base les dx/yt;.

La verification (purement affine) est imagdiate. (N.B. on conntdéja I'exactitude de (4.2)).

Combinant ces deugnon@s et @finition 1.1, on trouve

Theoreme 4.3 Soient f: X — Y un morphisme lisse de S-préschémas, alors :

(i) La suite d’homorphismes canoniques
0— f~ (911//5) - 9)1(/5 - Q%(/Y —0

est exacte.

(i) 2% Jy est localement libre, son rang n en x est égal a la dimension relative de f en x.

Corollaire 4.4 L’homorphisme f* <Q§/5> — Q)lqs est injectif, son image dans Q)lc/s est loca-
lement facteur direct.

Soitu: F' — G un homorphisme de Modules sur leepctemalX, on dit qu’il estuniversel-
lement injectifenx € X, si ’'homorphismeF, — G, de &,-modules est injectif, et reste tel par
tensorisation avec toutg,-algebre (ou, ce qui revient augdme d’ailleurs, avec tout,-module).

Il suffit par exemple qu’il existe un voisinage ouvértlex tel queu induise un isomorphisme de
F|U sur un facteur direct dé'|U, cette condition est ausséoessaire lorsquE et G sont libres

(et de type fini) dans un voisinage dede facon pecise dans ce cas les conditions suivantes sont
équivalentes :

() u estinjectif enz et Coker u libre enz ;

(i) Il existe un voisinage ouver/ de z tel quew induise un isomorphisme dE|U sur un
facteur direct d&7|U ;

(ii) wu est universellement injectif en;
(iv) 'homorphismeZ,®k(x) — ¢, ®k(z) sur les “fibres” restreintes induit parest injectif ;

(v) Lhomorphisme transp@sG — F' est surjectif au point (ou, encore, ce qui revient au
méme, au voisinage de.
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(Démonstration circulaire, (iv-(v) résulte de Nakayama, d’autre partv{i) puisque un fais-
ceau quotient localement libre estiaessairement facteur directle@retriquement, la situation
envisa@e signifie que: corresponda un isomorphisme du fibrvectoriel dont le faisceau des
sections est#, sur un sous-file du fibeé vectoriel analogueélini parG. Bien entendu, il ne
suffit pas pour cela qu& — ¥ soit injectif.

Corollaire 4.5 Soit f: X — Y un morphisme de S-préschémas, localement de type fini, x € X,
y = f(x), s la projection de x ety sur S. On suppose Y lisse eny sur S. Conditions équivalentes :

(i) f estlisse en x.

(ii) X estlisse surY enx, et f* (Q;/S) — Q)l(/s est universellement injectif en x, i.e. c’est

un homorphisme injectif en x et son conoyau {2 /y est libre en x).

La necessit resulte de 1.3 (iii) et de 4.3 (i) (ii), prouvons la suffisance. Commedlgs
(9 € 0,) engendrent le modul@}(/y en z, on peut trouver deg; (1 < i < n) tels que
les images dedg; dans(Q)l(/Y) forment une base de ce module. Pren&néassez petit, on

peut supposer que les proviennent de sections dey, et cefinissent donc uny’-morphisme
g: X = Y' =Y]t,...,t,]. Utilisant 'hypothese et lemme 4.2, on voit facilement que I'ho-

morphisme correspondagt (Ql,/s> — )1</S est bijectif enz, ce qui nous ra@nea prouver
le

Corollaire 4.6 Soit f: X — Y un morphisme de S-préschémas lisses. Pour que f soit étale en
x € X, il faut et il suffit que f* (911//5> — )1(/5 soit un isomorphisme en .

On sait que c’est@cessaire par 4.1, et cette condition implique guest non rami& enx
par le méme lemme. En vertu de 2.2, on est rafan cas 0.5 = Spec(k). CommeY” est lisse
sur k, il est regulier, donc a fortiori normal, et en vertu de (I 9.5 (ii)) on est rag#prouver
queo, — O, est injectif, ou encore qu€, et &, ont meme dimension. Or ces dimensions sont
respectivement les rangs ﬂé/k et Q}(/k eny resp.z, doncégaux en vertu de I'hypodése.

Remarques 4.7 X etY étant suppdss lisses sufb, le critere 4.5 (i) de lissé def: X — Y
peut encore €noncer en disant que pour toute X, 'applicationtangente(relativementa la
baseS) de f enz, i.e. le transpdse de 'homorphisme dégz) espaces vectoriels de dimension
finie, fibres restreintes dg* (911//5> et 9)1(/5 enz, estsurjective C’est b une hypothse bien

familiere en particulier parmi les gens travaillant avec les espaces analytiques. Lésgain
non singularié qu’ils font d’ordinaire (qui signifie qué&X et Y sont “lisses sufs”, cf N° 5)
ne semble due g&’la peur gu’inspirent encor@ bien des gonetres les points singuliers des
varietes algbriques ou espaces analytiques.

Signalons le cas particulier suivant de 4.6 :
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Corollaire 4.8 Soient X un S-préschéma, g: X — S|ti,...,t,| un S-morphisme, défini par les
sections g; (1 <1 < n)de Ox, x un point de X tel que X soit lisse sur .S en x. Pour que g soit
étale en x, il faut et il suffit que les dg; (1 < i < n) forment une base de 921(/5 en x (ou, ce qui

revient au méme, que leurs images dans (2}1(/5(33) = (Q}(/S) ®g, k(z) forment une base de cet

espace vectoriel sur k(x)).

SoientX un presclema,Y un sous-pesclema ferng de X défini par un faisceau c@hnent
7 d'idéaux. Donc #/_#? peutétre consiérée comme un faisceau cétent suit” (le faisceau
conormalde Y dansX). Si maintenantX’ est unS-présclema, on a une suite exacte canonique
de faisceaux quasi-céhents sul”

(4.3) )75 Y5 @y Oy — 15— 0

dont la partie de droite n’est autre que (4.2) (avedle deX etY interchangs, compte tenu
que()é/x = 0), tandis que 'homomorphismeZ / 72 — Q}(/S ®gy Oy est ceduit de ’homo-
morphisme (en gréral non lireaire)g — dg par passage aux quotients. L'exactitude de (4.3)
est classique et d'ailleurs triviale, et s'integpg dans le cas affine par la suite exacte suivante
(correspondanta un homomorphisme surjectif — C' de A-algebres, de noyau) :

(4.3bis) J)J? = Qp a0 C—Qty—0  (C=BJJ)
(suite exacte qui avaitajh éte utilisee implicitement dans lagsnonstration de (1 7.2) ).

Proposition 4.9 Soient X un S-préschéma, Y un sous-préschéma fermé de X défini par un
faisceau cohérent ¢ d’idéaux sur X, x un point de X, g; (1 < ¢ < n) des sections de Ox,
définissant un S-morphisme

g: X = S[ty,...,t,] =X’
enfin p un entier, 0 < p < n. On suppose X lisse surS enzx. Les conditions suivantes sont
équivalentes :

(i) Il existe un voisinage ouvert X, de x dans X tel que g|X; soit étaleet que Y = Y N X,
(trace de Y sur X) soit 'image inversedu sous-préschéma ferméY' = Slt,.1,...,t,] de
X' =S[t1,...,t,) (e les g (1 <i < p)engendrent 7 |X;):

Y3 X1

l létale

Y/:S[tp+1,‘..,tn]—>X/:S[tl,...,tn]

(i) Y est lisse surS enz, les g; (1 < i < p) définissent des €léments de Z,, les dg;(x)
(1 <i < n) forment une base deQ)l(/S(x) surk(x), les dgj(x) (p+1 < i < n) forment une
base de?;. /5(2) sur k(z) (ou les g; désignent les restrictions des g; a'Y'; les différentielles
sont prises par rapport a.S).
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(iii) Les g; (1 < i < p) définissent un syseme de grérateursle 7, et les dg;(x) (1 <i <n)
forment une base de2y ¢ (x) sur k(z).

(iv) Y est lisse surS en z, les g; forment un Syseme minimal de grérateurs deZ,, les dg;(x)
(p + 1 < i < n) forment une base dey, ¢ (x) sur k(z).

De plus, sous ces conditions, 7| 7 2 est un Module libre sur Y en x, admettant comme base
enx les classes des g; (1 < i < p), et lhomomorphismeanonique ¢/ #? — Q)I(/s ® Oy est
universellement injectif em.

Remarque. Cela implique que est bien étermiré par les autres conditions, soit comraag
du Module libre_#/_#?2, surY enz, ou encore lewombre minimum de&yérateursde 7, sur
X, ou enfin par le fait que la dimension relativedeel. S enz estn — p.

Démonstration. Supposont d’abordi) verifie. Alors par (1 4.6 (iii))Y; estétale sury”, donc
par cefinition il est lisse suiS enx (de dimension relative. — p), il en est donc de @éme de
Y. Il résulte alors de (4.8) que ldg; (1 < ¢ < n) forment une base d@}(/s enz, et que les
dg. (p + 1 < i < n) une base defz;/s enz, d'ou il résulte par la suite exacte (4.3) que dgs
(1 <4 < p) sont lirkairement indpendants dang’ /_#? (consicere comme Module sur’) en
z; comme legy; (1 < i < p) engendrent?,, il S’ensuit que leg; mod _#? forment unebase
de 7/ #? enz. Celaimplique d’'une part que lgs (1 < i < p) forment un systmeminimal
de gerérateurs de#,, d’autre part que 'homomorphismg’ / 72 — Q)l(/s ® Oy de (4.3) est
universellement injectif em (car applique une base d’'un Module libre:esur une partie d’'une
base d’un Module libre em - N.B. il s’agit deY-Modules). Cela prouve que (i) implique (ii),
(i), (iv), ainsi que les derrires assertions de proposition 4.9.

(iii) implique (i) en vertu de corollaire 4.8.

(i) implique (i). En effet, la pren@re hypotlese dans (ii) signifie que (quitteremplacerX
par un voisinage ouvert dedansX) ¢ induit un morphismé:.: Y — Y’. D’apres 4.8, les deux
autres hypotbeses de (ii) signifient que estétale enz, et h étale enx. Soit alorsY” I'image
inverse deY”’ parg. DoncY est un sous-@sctema ferngé deY”, qui estétale sury”” enx par
(14.6 (iii)) puisqueg estétale enc. Donc le morphisme d'immersion — Y est lui-mémeétale
(1 4.8) donc une immersion ouverte (I 5.8 ou | 5.2), donc remplacant ed¢qrar un voisinage
ouvert convenabl&’; dex, on obtient (i).

Ce qui pecedeétablit I'equivalence des conditions (i) (ii) (iii), et le fait qu’elles impliquent
(iv), il restea prouver que (i) (ii), ce qui est imngédiat (compte tenu qu@)l(/s est libre surX
enz) une fois qu’on sait que le fait qué est lisse suf enz implique que #/_#? est libre sur

Y enz, et 'homomorphisme? / 7% — )y, ® Oy universellement injectif em. Ce dernier
point est inclu dans le

Théoreme 4.10Soient X un S-préschéma lisse, Y un sous-préschéma fermé de X défini par

un faisceau cohérent ¢ d’idéaux sur X, x un point de X. Les conditions suivantes sont
équivalentes :
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(i) Y est lisse surS enzx.

(ii) Il existe un voisinage ouvert X, de x dans X et un S-morphisme étale
g: X1 — X' =S[ty,....t,]

tel que Y1 = Y N X (trace de Y sur X;) soit le sous-préschéma de X; image inverse
par g du sous-préschéma fermé Y' = S[t,q,...,t,] de X' = S[ty,...,t,], pour un p
convenable.

(iii) 11 existe des gererateursg; (1 < i < p) de 7, tels que les dg; forment une partie
d’une base de Q)lc/s en x (ou, ce qui revient au méme, tel que les dg;(x) dans _Q)l(/s soient
linéairement indépendant sur k(z)).

(iv) Le faisceau ¢/ #? estlibre surY en x, et "'homomorphisme canonique

d: 7| 7% — 02%)s® Oy

est universellement injectif en x ; ou encore : la suite d’homomorphismes canoniques
O_’///2—>Q)l(/s®ﬁy—>911//s—>o

est exacte en x, et !2}1, /s est localement libre en x.

Démonstration. On sait @&ja que (ii) implique (i), (iii), (iv) d’'apes ce qui pecede. Prouvons
gue (i)=(ii) (ce qui aclevera en rame temps la @monstration de 4.9) En vertu deethieme
4.3 (i), les deux derniers termes dans la suite exacte (4.3) sont des Modules libredsairc,
comme les images daniglf/s ®ey Oy desdg (g € Ox) engendrent ce module endonc leurs
images danﬁ}/s engendrent ce dernier enon peut trouver deg; (p + 1 < i < n) dansOx
tels que lesig, forment une base dQ}V/S, puis (en vertu de I'exactitude de (4.3)) cor@igr le
syseme deslg; (p + 1 < i < n) en une base du termeaaian par deglements de la forméyg;

(1 <i<n)oulesg; (1 <i < p)sontdansf,.Lesg; proviennent de sections d&y sur un
voisinage der dansX, qu’on peut supposé&gala X . On est alors sous les conditions de 4.8 (ii),
et on aétabli que cela implique la condition 4.8 (i), did@.10 (ii).

Limplication (iii) =(ii) dans 4.10 esulte ausditt de I'implication (iii) =-(i) dans 4.8. Donc
(i) (ii) (ii)) sont équivalents, et impliquent (iv). Enfin, il est trivial que (iv) implique (iii), compte
tenu que deg; € _#Z, qui forment une base d¢Z, mod _#? engendrent?, (Nakayama).

De plus, la @monstration qui @eede montre ceci :
Corollaire 4.11 Soient X un S-préschéma, Y un sous-préschéma termé défini par un faisceau

cohérent ¢ d’idéaux sur X, x un point de Y. On suppose X et} lisses surS enz. Soient g;
des sections de ¢ (1 < i < p). Les conditions suivantes sont équivalentes :

(i) Les g; engendrent ¢, et les dg;(x) sont linéairement indpendantgans Q}(/S(x) sur ().
(ii) Les g; mod _¢? forment une basede ¢/ 7% enux.
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(iii) Les g; forment un systéme minimal de générateurs de ¢#..

(iv) On peut trouver d’autres sections g; (p + 1 < i < n) de Ox sur un voisinage X; de
X, définissant avec les précédents un morphisme étaleX; — X' = S[ty,...,t,] tel que
Y1 =Y N X, soit 'image inversepar g du sous-préschéma fermé Y’ = S[t,1,...,t,] de
X/ - S[tl, ce ,tn}

En particulier :

Corollaire 4.12 Soient X un S-préschéma, I' une sectionde Oy, Y le sous-préschéma des zéros
de F' (défini par I’Idéal cohérent F.0Ox ), x un point de Y. On suppose X simple sur X en x. Pour
que Y soit lisse sur S en X, il faut et il suffit que ou bien F' soit nul au voisinage de x, ou bien
que dF(x) # 0 (ou dF(x) désigne I'image de dF' dans I’espace vectoriel Q)lqs(x) sur k(z)).

C’est suffisant en vertu de 4.10 énie (iii). C’est recessaire, car commg’ est engendr par
un élement, il faut d’abord que# /_#2 au pointz soit libre de rang< 1. Si ce rang esf, i.e.
7| 7?* = 0enz, il sensuit queJ = 0 enz par Nakayama, i.eF’ est nul au voisinage de.
Si ce rang est, alorsF’ forme un systme minimal de grérateurs de# enzx, et on conclut par
(4.11,equivalence de (i) et (iii)).

Corollaire 4.13 Soient Y un S-préschéma localement de type fini, S’ un S-préschéma plat,
Y'=Y xg 5, 2’ un point de Y’ et x son image canonique dans Y. Pour que Y soit lisse sur S
en X, il faut et il suffit que Y soit lisse sur S” en z'. En particulier, si S’ — S est plat et surjectif,
Y est lisse sur S ssi Y’ est lisse sur S'.

Il N’y a a prouver que la suffisance (I&eessié aéte vue dans 1.3 (ii)). On peut supposer
(remplacanfy” par un voisinage convenable deY’ par I'image inverse de ce dernier) qle
est affine de type fini su$ affine, doncY” est isomorphéin sous-pesclema ferngé d’un sciema
Slti, ..., t,). Par suiteY”’ s’identifiea un sous-gsctema ferng deX’ = X xg 5’. CommeX
est lisse suiS, donc X’ lisse surS’, on peut appliquer les cétes de lissé 4.10. Ici, le criere
(iv) donne le esultat ausdiit.

Remarques 4.14Le critere (iii) de treoeme 4.10 rarite detre appé! critere jacobien de lis-
site. Il permet de reconnaitre, &oriquement, si uy-présclema don@ Y est lisse suiS en un
pointx deY’, puisque il existe toujours un voisinage ésomorphea un sous-g@sclema d’'un
S-présctema lisseX, par exempleX = S[ty,...,t,]. C'est d’ailleurs poutX = S[ty,...,t,],

S = Spec(A), gu'onénonce d’habitude le céte jacobien (bien entendu, dans le cas classique
envisa@ par ZariskiA était un corps). On laisse au lecteur de donr@rdné relatifa la doniee
d'unidéalJ de Aft,...,t,] et d’'un iceal premier le contenant, auquel on est ainsi conduit. No-
tons qu’il semble bien a I'’heure actuelle (et surtout depuis que Nagata est pargemraliser

par des rethodes non-diéfrentielles le thoeme de Zariski disant que I'ensemble des points
reguliers d’un scema al@brique est ouvert) que le @&ie jacobien n’a gere d’in€rét que sous

la forme a1 nous le donnons ici (i.e. en utilisant exclusivement de€ufftiellesrelativeset

non pas des diffrentiellesabsoluesi.e. relativesa 'anneau de constantes abs@u Comme
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bien souvent, la consiation des diffrentielles est plus commode ici que celle deswations.
Notons enfin que st est lisse sulS enz, de dimension relative, alors il existe un voisinage
ouvert dex dansY isomorphea un sous-sctema deX = Sfti,...,t,] avecn = m + 1,
comme il ésulte de la éfinition et de 1 7.6.

SoientA un anneau noeéien,z; (1 < i < n) desélements ded, J I'id €al engendr par
lesz;. On dit que lesr; forment unsyséme Egulier de @rérateursde J si ’homomorphisme
surjectif canonique

(A/D[t1, ... ta] — gr’(A)

défini par lesx; (ou le deuxeme membre &signe I'anneau graduasso@ a A filtré par les
puissances d€) est unisomorphismeCette condition signifie aussi que

() Lhomomorphisme surjectif canonique
Sapa(J)J?) — gr’ (A)

(ou, le premier membreésigne 'algbre syngtrique duA/.J-module.J/J?) est un iso-
morphisme, et

(i) J/J?* estlibre et admet pour base les classesigesiod J2.

Sous cette forme, on voit que $i# A, lesx; forment unsyséme minimal de gérateursde
J, et quetout autre systme minimal de @érateursde J est un systme égulier de @rérateurs
(N.B. “minimal” est pris au sens strict : nombre minimune@ments, qui n’esequivalent au
sens : minimal pour l'inclusion, que si est local) ; d’autre part, si = A, tout syseme de
gérérateurs de/ est egulier.

La condition de egularie d’'un syseme de @rerateurs d’'un iéal est stable par localisation
par un ensemble multiplicativement stable quelconque, et d’autre part on voit tout de suite que
pour que(z;) soit un systme minimal de grérateurs de/, il suffit déja que pour tout igal
maximalm contenant/, lesx; définissent un systme égulier de @rérateurs de/ A, dansA,,.
Cela nous ramme donc au casid est un anneau local d'&hl maximakn, et ai lesz; sont dans
m. Alors lesz; forment un sygtme Egulier de @rérateurs de/ si et seulement si ils forment
une A-suite au sens de Serfei.e. si pour tout tel quel < i < n, z; est non-diviseur de dans
Af(xq, ..., x;)A.

Enfin, dans le castpbA est une algbre sur un anneali, et a1 A/.J est isomorphe comme
B-algebrea B (de sorte qué/ est le noyau d’'un homomorphisme BealgebresA — B), alors
les z; forment un systme egulier de @rérateurs de/ si et seulement si ’lhomomorphisme
canonique

Bl[t1, ... ta]] — A

défini par lesz; (ou le deuxeme membre @signe le comite s&’epar’al@A/J”Jrl de A pour la
topologie @&finie par les puissances dgest unisomorphisméil est en tout casurjectif).

5Nous dirons maintenant plit“suite A-réguliere”, cf. EGAOry 15.1.7 et 15.1.11.
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Tous ces faits sont bien connus, et figurent sans doute dans le cours de Seétare'atgn-
mutative edige par Gabriela peu de choses gs. (Qi on trouveN autres caraérisations des
A-suites, dans le casiod est un anneau local).

Soit.J un idéal dans un anneau noétlenA. On dira que/ est unidéal reguliersi pour tout
ideal premiem de A, JA, admet un sysime égulier de grérateurs. Il suffievidemment de le
vérifier pourp O J, et on peut de plus se born&p maximal. Plus §réralement, soit# un
Idéal sur un pesclema localement noéitien X, on dit que_# est unldéal réguliersi pour tout
r € X, _#,estunidal ded, qui admet un sysime egulier de grerateurs. Cel&quivauta la
conjonction des deux conditions suivantes :

(&) Lhomomorphisme canonique surjectif

So) (] F?) — e’ (Ox)

est un isomorphisme et
(b) Le faisceau d&x/_#-Modules ¢/ #?* estlocalement libre.

On dit alors aussi que le souségclemaY de X défini par_¢ (donc tel quedy prolonge
par 0 soit isomorphex 0x/_#) estrégulierement immegdansX, et on dfinit de méme (de
facon évidente) la notion de morphismeimimersion éguliere, (resp.réguliere en un point
x), morphisme d'immersio’” — X identifiantY” (resp. un voisinage convenable dg a un
sous-pésclema ferng regulierement immerng dans un ouvert d&'. (Il ne faut pas dire : sous-
présclema egulier, car cela signifierait que les anneaux locauX’dmnt €guliers). Enfin, des
sectionsy; de ¢ sont appedessyséme egulier de @rérateurssi pour toutr € X, lesélements
correspondants d€, forment un systme égulier de grérateurs de 7, (terminologie compa-
tible avec celle introduite pour de€igerateurs d’un idal d’'un anneau). Cela signifie aussi que
I’lhomomorphisme surjectif canonique

ﬁy[tl, e ,tn] — gr/(ﬁx)

défini par lesz; est un isomorphisme. Si on sait par avance queedild#Z est egulier, cela
signifie aussi, simplement, que en tout painte Y, les z; définissent unédasede ¢/ 72

sur Oy,,.. (N.B. cette condition est vide 3i est vide). Ainsi, pour que# admette un systme
régulier de @rérateurs, il faut et il suffit que# soit régulier, et ledy-Module ¢/ _#? soit
globalement libre (et non-seulement localement libre), i.e. que I’'homomorphisme canonique
Se, (Z ] 7?) — gr” (Ox) soit surjectif, et que l&-Module ¢/ _#? soit globalement libre.

Un anneau augmeadtest dit Eguliersi I'id éal de 'augmentation eskgulier. Ainsi, siA est
un anneau local, con®te comme augmeatdans son corpesiduelk, alors A est un anneau
local regulier si et seulement si c’est un anneau augagufulier.

(A vrai dire, il semble qu’ilétait inutile de commencer par faire le soritélpninaire pour les
anneauy, il y a iréreta commencer avec les faisceaux tout de suite. Si on veut quelque chose dans
le cas noetérien, c’est la dfinition adopée ici - a priori moins stricte que celle par ldssuites
de Serre - qui semble @ierable pour les besoins du calcul diéntiel. Bien entendu, pour bien
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faire, il faudrait cevelopper aussi au moins une partie de &otie des morphismes lisses dans le
cadre non-noefirien’, probablement en partant du érié jacobien, de faganobtenir si possible
toutes les propétes formelles essentielles des morphismes lisses et des morplésatessi.e.
lisses et quasi-finis ; legciproques seules faisant appales hypotbses noegriennes).

Apres ces longs ptiminaires terminologiques, un petit@heme :

Théoreme 4.15Soient X un S-préschéma localement de type fini, Y un sous-préschéma fermé
de X défini par un faisceau cohérent ¢ d’idéaux sur X, x un point de X . On suppose maintenant
Y lisse surS enx (et rien sur X ). Alors les conditions suivantes sont équivalentes :

(i) X estlisse sur S enx

(i) L’immersioni: Y — X est réguliére en x, i.e. _#, est un idéal régulier de U,

Corollaire 4.16 Supposons Y lisse sur S. Pour que X soit lisse sur S dans un voisinage de
Y (i.e. aux points de Y') il faut et il suffit que Y soit régulierement plongé dans X, i.e. que
I'immersioni: Y — X soit réguliére.

Démonstration. (i) implique (ii). On applique 4.10 ceire (ii), commeg: X; — X estplat,

pour montrer que I'image inverse padu sous-pesclemaY’ de X’ est ggulierement plong,

on est rameda prouver qu&” = S[t,11,...,t,| est égulierement plong dansS[t,, ... .t,], ce
qui est trivial (les; (1 <4 < p) forment un sy8me Egulier de gréerateurs de I'l@al cEfinissant
Y’ dansX’).

(i) implique (i). Soitg; (1 < i < p) un syseme égulier de @rérateurs deZ, et soient
gi (p+1 < i < n)desélements de&f'x , tels que leurs imageg dansdy,, définissent un
morphismeetale

Yi =Y = S[tpr1, .-, ta)

d’un voisinages; deY dansY”’. Lesg; (1 < ¢ < n) proviennent de sections (deeme nom)
de Ox sur un voisinageX; de z, et on peut supposeY; = X, Y; = Y. On obtient ainsi un
morphisme

g: X — X' = S[t,...,t,]

et tout revienta montrer que ce morphisme étaleenx. PrenantX; assez petit, on peut sup-
poser que leg; (1 < i < p) forment un systme egulier de @rérateurs de# sur toutX. En
particulier, ils engendreny?, donc le sous-f@sclemaY” de X s'identifiea 'image inverse pag
du sous-pesclemaY”’ de X’. Soitz’ = g(x), alors la fibre deX” — X enz’ est donc identiqua
la fibre deY” — Y’ enz, donc esétale suik(x’), doncg estnon ramifé enx, restea prouver que
g estplatenz. Or le grad@ asso@&a Oy, - filtré par les puissances dg; estlibre sur 0y ,/
en tous degs, d’autre part le graduasso@a Oy, filtré par les puissances dg, = #7.0x ,
est isomorphe (sous ’hnomomorphisme canonique) au produit tensorieededpnt pardy

‘Comme il est dit dans I'avant-propos, c’est chose faite maintenant, cf. EGA IV 17, 18
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(puisque I'un et I'autre anneau sont des anneaux de palgsan — p indétermirées,a anneau
de constant®y- ./, resp.0y,), enfin surCx: ./ 7!, = Oy Ox .| ¥. = Oy, estplat.

D’apres un criere geréeral de platitude (valable pour un homomorphisme local d’anneaux
locaux noetkriensA’ — A, A’ étant muni d’'un i@al.J’ # A’ tel que le gradé asso@ soit libre
surA’/.J’ en toute dimension) il s’ensuit que est plat sutX’ enx, cqfd.

Corollaire 4.17 Soient X un préschéma localement de type fini sur Y, ¢ une section de X sur
Y,y unpointdeY, z =i(y), # le faisceau d’idéaux sur X défini par le sous-préschéma i(Y")
(que nous supposons fermé pour simplifier I’énoncé, condition vérifiée si X est un schéma).

Les conditions suivantes sont équivalentes :
(i) X estlissesurY enx
(ii) ¢ est une immersion réguliere en y

(iii) La O,-algébre complétée de O, pour la topologie définie par les puissances de 7, est
isomorphe a une algebre de séries formelles O [[t1, . . ., t,]].

(i11 bis) 1I existe un voisinage ouvert U de y tel que le faisceau d’algébres @12*(@’ x/ Z ") sur
O soit isomorphe a un faisceau de la forme Oy [[t1, . .. ,t,]] au-dessus de U.

(iv) 1I existe un voisinage ouvert U de y, et un voisinage ouvert V de x, et enfin un Y -
morphisme g: V. — Ulty,...,t,], tel que g soit étale, que s induise une section de V'
sur U, transformée par g en la section nulle de Ulty, . . ., t,| surU.

L’ équivalence de (i) et (ii) est un cas particulier dédéme 4.15, en faisarit’™ = S,
I’ équivalence déii) et (iii) (et moralement de (ii) et (iii bis)) @t signa¢ avec les “rappels”.
quanta I'equivalence de (i) et (iv), elle seeduit facilement de #oeme 4.10 équivalence des
conditions (i) et (ii) dudit).

Corollaire 4.18 Soit X un préschéma lisse au-dessus de S. Alors le morphisme diagonal
AX/SI X —-X Xg X

est une immersion eguliere ou comme on dit encore, X est “différentiablement lissesur S.

En effet, c’est un cas particulier de corollare 4.16, puis§ust X x ¢ X sont tous deux lisses
surs.

Remarques 4.18Rappelons (I 1) que sK est un pesclema au-dessus d& on introduit les
faisceaux quasi-ca@hments d’AIg‘abres@;/S = Oxxox/ 7% surX, (ol #x désigne le faisceau
d’'ldéaux qui @finit la diagonale danX xg X), consicrée comme faisceau dé'x-algebres
gracea la premere projectionpr;: X xg X — X. Les 32;;/5 forment un systme projectif
d’Algebres suiX, dont la limite projective est née@;’g’/g et n’est autre que le faisceau structural
du compéte formel deX x g X le long de la diagonale (en supposant mainteté&idcalement
de type fini surS, donc Iesﬁg/s coherents). Dire queX est differentiablement lisse suff
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(i.e. que le morphisme diagonaly,s est une immersioréguliere) signifie aussi que’s ¢ est
regulier, en tant que faisceau d’'alyyes augmeatversd'y, i.e. queQﬁ(/S est localement libre et
I’lhomomorphisme surjectif canonique

Sﬁx<Q§(/S) - gf*(@;o/s)

est un isomorphisme, ou enfin que tout pointXié& un voisinage ouvert sur lequel le faisceau
d’Algebres augmeaesZ’s) ¢ soit isomorphe un faisceawx [[t1, . . . , t,]].

Soit s une section deX sur S, ¢ le faisceau d’'i@aux surX qu'elle céfinit (supposant
pour simplifier ques(S) est fern&), on a alors des isomorphismes canonique& dealgebres
augmenges :

(4.4) S(Pxys) =0x/ J"  $(PR)s) = lmOx/ 7"

Ces isomorphismes sont fonctoriels dans un @&ident par changement de base, et (compte
tenu de ce fait) redonnent une caéation des faisceaux d’ﬁgres@;/s sur S. Si par
exempleS = Spec(k), k un corps, alors la do@e d’'une sectios de X sur S équivauta la
donree d’'un pointz de X rationnel surk, et les formules @cedentes signifient que I'on a un
isomorphisme dé-algebres

(4.5) P s(x) = Op fmpt!

ce qui justifie le nom faisceau des parties principales d’ordresur X rel. a S” donr‘éé@}}w
On voit de plus sur (4.4) qua X est diferentiablement lisse suff en tout point des(S), alors
X est lisse surS en tout point des(S), (corollaire 4.17)la réciproqueétantégalement vraie
(corollaire 4.18). Compte tenu de 4.13, on en conclut facilement gqXeest unS-présclema
localement de type finiX est lisse sulS si et seulement si il est plat si$ret differentiellement
lisse surS. (N.B. I'hypothese de platitude est essentielle, comme on voit en prenantpour
sous-pésclema ferné des).

Notons encored titre de rappel, qu’on obtient uriezuxeme structure d’algbre sur 9”;;/5
gracea la projectionpr,: X xg X — X, se céduisant d'ailleurs de la pedentea 'aide de
I"involution canoniquelu faisceau d’anneauﬁgg/s, induit par 'automorphisme de syatrie de
X xg X. On note patl’y,; ou simplement”, 'homomorphisme de faisceaux d’anneaux

qui correspona@ cette deuxime structure d’Algbre. Compte tenu de I'isomorphisme (4.4), cet
homomorphisme transforme une sectipde &'y en une sectiod”(f) de e@;}/s dont I'image
inverse par une sectiorde X surS s’identifiea I'image canonique dg¢ dansl'(X, Ox/_#"t1).
Celajustifie le nom desyséme des parties principales d’ordrede f” donnéad” f, notamment
dans le caswS = Spec(k), envisag dans la formule (4.5).

Pour finir, notons que 'homomorphisme (4.6) peiite consiére comme lbpérateur
differentiel d’ordre< n (&) (relativement au @sclema des constante®) universelsur Oy,

8Pour tout ce qui concerne legsent aliga, on pourra consulter EGA IV 162816.12.

39



en convenant d’appeler émteur diferentiel d'ordre< n de &'x dans un Modulg”, un homo-
morphisme de faisceaux qui se factorise en

D:ox 5 Py F

ou u est un homomorphismée ¢'x-Modules d’ailleurs uniqguement @ermiré par D. Cette
définition concorde avec laédinition recurrente intuitive ) est un ograteur diferentiel d’ordre

< n si pour toute sectiop de &x sur un ouverl/ de X, f — D(fg) — D(f) est un oprateur
differentiel d'ordre< n — 1 surU). Il s’ensuit quesi X est diferentiablement lisse suf, le
faisceau d’anneaux des emateurs diférentiels de tous ordres a la structure simple bien connue
en calcul diferentiel sur les vagites differentiables, et en particulier admet localement une base
de O0'x-Module ferneé despuissances diveesen des oprateurs permutablégiz; (1 < i < n).

Si S est un faisceau d@-algebres Q = corps des rationnels) il suffit de prendre les péiyres
ordinaires en le$/jz,;. Dans ce cas d'ailleurs, etels exceptionnellement, pour qué soit
differentiablement lisse si¥f, il suffit deja queQ}(/S soit localement libre.

Remarque 4.19 La terminologie “immersionéguliere”, “idéal gulier”, etc.. introduite dans

ce nun&ro a rencon& une opposition assez vive érgrale (Chevalley, Serre). On a propos

“ideéal de Cohen-Macaulay” ou ‘&l de Macaulay” ou “idal macaulayen”, ce qui moralement
obligeraita adopter aussi “immersion de Cohen-Macaulay” ou “imersion de Macaulay”. Cette
terminologie cependant conflicte avec une augg @mploge dans de futuregdactions du
multiplodoque, @ un morphisme (de type fini) est dit “Cohen-Macaulay” en un point s'il est

plat en ce point, et si la fibre passant par ce point y a un anneau local qui soit un anneau de
Cohen-Macaulay. En attendant de trouver une solution satisfaisante, nous garderons sous toutes
réserves la terminologie introduite dans ce @uth

5 Cas d'un corps de base

Proposition 5.1 Soient k un corps, X un préschéma de type fini sur k, x un point de X etn la
dimension de X en x, f: X — Specklty,...,tn] =Y un morphisme, défini par des éléments
fi € T'(X : Ox). Les conditions suivantes sont équivalentes (et entrainent que X est lisse sur k
en x, et a fortiori régulier en x d’apres 3.1) :

(i) f estétale en x.
(ii) Les df; forment une base de Q% sk €N,
(iii) Les df; engendrent Qy ;. en .

Comme (i) implique que X est lisse sur k en x, I’'implication (i)=-(ii) est un cas particulier de
4.8, (ii)=(iii) est trivial, reste a prouver (iii)=>(i). Or sir (iii) est Vérifié, f est net en x en vertu
de lemme 4.1, donc (remplagant x par un voisinage ouvert) quasi-fini, donc dominant par raison
de dimensions. Comme Y est régulier, il s’ensuit que f est étale par (I 9.5 (ii)) ou (1 9.11).

9C’est celle adoyite dans EGA)y 15.1.7.
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Corollaire 5.2 Sous les conditions préliminaires de 5.1, supposons que r(x) soit une extension
finie parablele £, et que les f; (1 < i < n) définissent des éléments de m,. Alors les conditions
précédentes équivalent a

(iv) Les f; forment un systéme de générateurs de m, (ou encore : les f; mod m? forment une
base de m, /m? sur x(z)).

En effet, (iv)=>(iii) en vertu de la suite exacte

et compte tenu de Q}i(x)/k = 0 puisque r(x) est étale sur k. D’autre part (ii) implique (iv), car
comme X et Spec(r(x)) sont lisses sur k en x, on peut dans la suite exacte précédente mettre un
0 sur la gauche en vertu de 4.10 (iv).

Corollaire 5.3 Soit x un point de X (de type fini sur k). Si X est lisse sur k en x, alors U, est
régulier, la réciproque étant vraie si k(x) est une extension finie séparable de k.

En effet, la Eciproque ésulte de 5.2, en prenant un syse egulier(f;) de ¢erérateurs de
m,. (N.B. au lieu de 5.2, on peut aussi invoquer ledfeme 4.15). On conclut :

Proposition 5.4 Soit X un préschéma de type fini sur k. Si X est lisse sur k, il est régulier, la
réciproque étant vraie si k est partait.

Pour la Eciprogue, on note qu’en vertu de 5.8,est lisse suk en tout point ferrg, donc
partout puisque I'ensemble des pointsibest lisse est ouvert.

Théeoreme 5.5 Soient X un préschéma de type fini sur k, x un point de X, n la dimension de X
en x, k' une extension partaite de k. Les conditions suivantes sont équivalentes :

(i) X estlisse sur k en .
(ii) Qﬁ(/k est libre de rang n en .
(iibis) Q% /i, €st engendré par n éléments en x.
(iii) X est différentiablement lisse sur k en x.

(iv) Il existe un voisinage ouvert U de x tel que U ®y, k' soit régulier (i.e. les anneaux locaux
de ses points sont réguliers).

On a (i)=(ii) par 4.3, (ii)=-(iibis) trivialement et (iibis}>(i) gracea 5.1. CommeX est plat
surk, on a (ix=(iii) en vertu de 4.18. On a #-(iv) puisque lisse est invariant par extension de
la base et impliqueggulier, et (iv}=(i) car par Proposition 5.4, on voit qué ®,, k" est simple
surk’, doncU est simple suk par 4.13.

Prenant pour le point gererique deX suppog irréductible, on trouve :

Corollaire 5.6 Soit K un anneau d’Artin local localisé d’une algébre de type fini sur le corps k
(par example, K peut étre une extension de type fini de k), soitn le degré de transcendance sur K
de son corps résiduel. Conditions équivalentes :
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54 (i) K est une extension finie séparable d’une extension transcendante pure k(tq, . .. ,t,) de k.
(ii) Qﬁ(/k est un K -module libre de rang n.
(ii bis) Q& /) estun K -module admettant n générateurs.

(iii) Le complété O’ de K ®; K pour la topologie définie par les puissances de 1’idéal d’aug-
mentation K ®, K — K est une K -algebré augmentée “réguliére”, i.e. isomorphe a une
algebre de séries formelles en K (N. B. Si K est un corps, cela équivaut a dire que O’ est
un anneau local régulier).

(iv) K est une extension séparable de k.

En effet, on peut toujours con&er K comme l'anneau local du pointegerique d’un
sclema de type fini iductible X sur k, et les conditions enviségs sont les conditions de
méme nom dans 5.5, en prenant dans (iv) péumne extension akpriguement close de Seule
implication K séparable suk = X lisse surk enx, demande une&monstration. Or on est
aussibt ramer gicea 4.13 au castole corps de base est donc alg@briquement clos, donaio
il existe un pointz de X rationnel surk. Mais alorsX est lisse suk ena d’aprés 5.4, a fortiori
il est lisse suk en le point @rériquex, cfqad°.

z

On remarquera que dans le cas & est une extension de type fini de I'équivalence
de (i) (ii) (ii bis) (iv) est bien connue, mai que nous ne nous sommes servis d’aucune de ses
équivalence éja connues. Bien entendu, la proposition 5.1 contient comme cas particulier qu’un
suite délementsz; (1 < ¢ < n) est un “base de transcendan&parante” dek’ sur £ si et
seulment si legz; forment une base dif -module$2y ,, fait bien connu par ailleurs.

Corollaire 5.7 Soit X un préschéma de type fini sur un corps k. Pour que X soit lisse sur k, il
faut et il suffit que QO Ik soit localment libre, et que les anneaux locaux des points génériques des
composantes irréductibles de X soient des extensions séparable de k. (cette derniere condition
étant automatiquement vérifiée si k est parfait et X réduit).

On peut supposex connexe, soit: le rang deﬂﬁqk suppog localment libre. D’agpgs I'hy-
55 pothese et 5.6, c’est aussi le dégie trancendance des extensiong diéfinie par les anneaux
locaux des points@reriques deX, donc toutes les composante€ductibles deX sont de di-
mensionn. On conclut alors grcea 5.5.

On fera attention que ${ est une extension finie (nokcessairemenéparable) dé;, alors
Q). est unk-module libre, donc posam{ = Spec(K), 2%, est un faisceau localement libre,
et X est eduit, sans queX soit necessairement lisse sir Etendant alors les scalairésla
cléture algbrique déet, on trouve un exemple analoguey b est algbriquement clos, mai&
en revanche i&tant pasé&duit.

Corollaire 5.8 Soient X un préschéma de type fini sur le corps k, x un point de X, n la dimen-
sion de X en x, p la dimension de O, i.e. la codimension dans X de I’adhérence Y de x dans X ;

10Cf. Errataa la fin du pésent Exp. Il (p. 44)
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donc n — p le degré de transcendance de r(x) sur k. Soient f; (1 < i < n) des éléments de O,
tels que f; € m, pour 1 <1 < p. Les conditions suivantes sont équivalentes

(i) le germe de morphisme en x
X — Spec(k[tl, o ,tn])

défini par les f; est étale en x.

(i) Les f; (1 <1 < p) engendrent m, i.e. forment un systéme régulier de paramétres de O, et
les classes dans k(x) des fj (p+1 < j < n) forment une base de transcendance séparante,
(i.e. les dfj (p + 1 < j < n) forment une base de Q}{(I)/k, ou encore engendrent Q}{(I)/k).

Supposons (i) &rifié. Il en ©sulte que legf;(x) forment une base déﬁ(/k(x) (4.8) donc leurs
imagesif,(x) dansQ}{(x)/k engendrent cet espace vectoriel BUComme lesf; pourl <i < p
sont nuls, il s’ensuit qu'il suffit de prendre le;(z) avecp + 1 < i < n. Comme le degr
de transcendance a€x) surk estn — p, il résulte alors du corollaire 5.6 it (iii) (appliqwe
aK = x(z)) queY est lisse suk en son point grériquexr, et que lesif,(z) (p+1 < i < n)
forment unebasede Q! ., surx(z). Par suite, la condition (ii) de 4.9 esgnifiee, donc aussi
la condition (iii) et en particulier leg; (1 < ¢ < p) forment un systme de @rérateurs den,.
Commed?, est de dimensiop, ils forment donc un systne egulier de paragtres enc. Cela
prouve (ii).

Supposons (ii) &rifie. En vertu de la suite exact (5.1), il s’ensuit que #gx) en-
gendrenﬂﬁ(/k, d’ou (i) gracea prop. 5.1.

Corollaire 5.9 Soient X un préschéma de type fini sur le corps k, x un point de X, n la di-
mension de X en x, p la dimension de O, i. .e la codimension de I’adhérence Y de x dans X,
donc n — p le degré de transcendance de r(x) sur k. Conditions équivalentes

(i) O, est régulier et (x) est une extension séparable de k.

(ii) X est lisse sur k en x, et ’homomorphisme canonique
m, /m2 — Qlﬁz/k ®g, k(z) = Q%{/k(l’)

est injectif.

(iii) Iyades f; € 0, (1 <1i < n)avec f; € m, pour 1 < 1 < p, tels que le germe de
morphisme en x de X dans Spec(k:[tl, e ,tn]) défini par les f; soit étale en x (i.e. par 5.1
tels que les df;(x) engendrent Qﬁ(/k(:ﬁ)).

(iv) Ily ades f; € 0, (1 <i <n)tels que les f; (1 <1i < p) engendrent m, et que les df;(x)
(p + 1 < j < n) engendrent Q}c(:v)/k: sur k(x).

L’ équivalence de (iii) et (iv) ésulte du corollaire 5.8, ces conditiogguivalent aussi
d’aprés 4.9 au fait queX est lisse suk enz et que la condition (ii) de 4.10, eséxifiee. Donc
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elleséquivalent au fait queX est lisse suk enx et que la condition (iv) de 4.10 esénfiée,
donca 5.9 (ii). Ou au fait queX est lisse suk enz et que la condition (i) de 4.10 esénfiée,
qui ici signifie simplement que(x) est €parable suk. Cela implique 5.9 (i), il resta prouver
gue 5.9 (i) 'implique, i.ea prouver le

Corollaire 5.10 Soit = un point d’une préschéma de type fini sur le corps k, tel que x(x) soit
séparable sur k. Pour que X soit lisse sur k en x, il faut et il suffit qu’il soit régulier en x (i.e. que
I’anneau local O, soit régulier).

En effet, s'il en est ainsi, on peavidemment trouver deg € 0, (1 < i < n) satisfaisant la
condition 5.9 (iv).

Errata Dans le pesent nuraro, cemonstration de 5.6, on a utigide fait qu’un scema de
type fini réduit non vide sur un corps d@briqguement clos admet au moin un poiagulier
(donc lisse), fait qui se@montre d’habitude par vois défentielle (via le tboeme de Zariski
gue I'ensemble des point&guliers deX est ouvert). Si on veugviter un cercle vicieux, il
faut demontrer que si/k est une extensioréparable de type fini, et si les € K son tels
que dg i f; forment une base d@}(/k, (1 < i < n), alorsn est le dege de transcendance
de K surk i.e. lesf; sont algbriquement indpendants. La&monstration de ce fait I'aide du
critere de Mac-Lane est bien connue, cf. Bourbaki,ebige, Chap. V par. 9 th. 2 : on prend un
polyndmeg € klty,...,t,] de degé minimal tel quey(fi,..., f.) = 0, onadonc

dg B

d’ou (puisque legf; forment une base dé}(/k) le fait que lesig/dt; annulent fi, ..., f,), donc
sont nuls d’apgs le cara@re minimal degy, donc sik est de caraéristiqued on ag = 0, et Sik
est de caraéristiquep # 0 on ag = h(t},...,t"). Utilisant le criere de Mac-Lane, on voit
que le polytomeh € klty,...,t,] annule aussify, ..., f,), d'ou encoreg = 0 par le caracre
minimal deg.
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Expose Il

Morphismes lisses : propretes de
prolongement

1 Homomorphismes formellement lisses

Dans Il, nous nous sommes béga la consiération d’homomorphismes de type fini, et
par congquent, dans les homomorphismes locadux» B d’anneaux locaux, au casid est
isomorphea une algbre localige d’'uneA-algebre de type fini. Ce cas est insuffisant pour di-
verses applications, notamment éogetrie formelle ou en gonétrie analytique. Par exemple,
'anneau de &ries formellesB = A[t4,...,t,] a (du point de vue de laépnetrie formelle)
les proprétes d’'une algbre lisse surd. En c¢eonetrie analytique, il en est deéme de I'an-
neau local d'un pointy, z) d’'un produitY x C™ consiceré comme algbre sur I'anneau local
dey ; d'ailleurs, la compktee de cette akpre est isomorpheel'algebre deséries formelles en
indétermirees sur le complé de 'anneau de bagg,. C’est ce qui conduia poser la dfinition
qui suit.

Définition 1.1 Soit u: A — B un homomorphisme local d’anneaux locaux (noethériens, on
le rappelle). On suppose x(B) fini sur k(A). On dit que u est un homomorphisme formelle-
ment lisse ou que I’alébre B est formellement lisse Sud, s’il existe une A-algébre locale finie,
libre sur A, telle que les composants locaux de I’anneau semi-local B @3 A' = B’ soient A’-
isomorphes a des algébres des séries formelles sur A’ 1.

(On cénote parA, B les anneaux compiées deA, B). CommeB’ est fini et libre surB,
c’est bien un anneau semi-local, compalirect d’anneaux locaux complets, dont chacun est
encore un module libre suB, donc a néme dimension qué donc queB. Il s’ensuit que
le nombre de variables dans les anneaux déres formelles envis@&s dans 1.1 estgala
dim B — dim A = dim B — dim A, et en particulier indpendant du composant local choisi. On

1Pour une éfinition plus @grérale et plus conceptuelle, motaepar 2.1 ci-dessous, c.f. EG#y 19.3.1.
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voit tout de suite que c’est aussi la dimension de I'annBat k = B/mB, ou k = A/m est le
corps Esiduel ded ; on I'appellera ladimension relative dé par rapporta A.

Remarques 1.211 estévident que la €finition 1.1 ne épend que de I'homomorphisme sur les
compktes A — B déduit deA — B, ce qui justifie dans une certaine mesure la terminolo-
gie. Nous nous repentons ici de lafmhition 3.2 b) et 4.1 b), qui risque d’'induire en erreur, et
préférons dire “formellement non ranéfi et “formellementétale” dans les cas envisegydans
ces afinitions, Eservant la terminologie “non ranéf” et “étale” au caso B est localige d’'une
A-algebre de type finf. Le lecteur rifiera aussit que “formellemenétale” équivauta “for-
mellement lisse et quasi-fini”. Enfin, signalons qu’il y a uriinition raisonnable de “formel-
lement lisse” sans aucune hypesie pealable sur I'extensiorésiduellex(B)/x(A) (suppoge

ici finie), englobant entre autres les homomorphismes lochux B tels queB soit plat sur A

et B/mB uneextension 8parablede A/m = k (pas récessairement de type fini) ; par exemple,
un p-anneau de Cohen est formellement simple sur 'anneau des grtaidigues. C’est la pro-
priete de rebvement des homomorphismes (comparer 2.1) qui doit devefiitibn dans ce cas
géeréral. Pour les applications que nous avons en vue, le casdiaaits la dfinition 1.1 nous suf-

fira; par la suite, dans “formellement lisse” nous sous-entendi@estensioné&siduelle finie”.

Lemme 1.3 Si B est formellement lisse sur A, B est plat sur A.

Comme la platitude est invariante par complétion, on peut supposer A et B complets. Comme
la platitude est invariante par extension plate locale (donc fidelement plate) de I’anneau de base,
on est ramené en vertu de définition 1.1 au cas ot B est une algebre de séries formelles sur A.
Mais alors en tant que A-module, B est isomorphe a un produit de A-modules isomorphes a A,
donc (I’anneau de base A étant noethérien) est A-plat comme produit de A-modules plats.

Mettons-nous sous les conditions de 1.1. Comme les extengsiusielles des composants lo-
caux deB’ sur A’ sont triviales, il s’ensuit qué, ®; £’ est unek’-algebre artinienne dont les
composants locaux ont des extensioasiduelles triviales @ L, k, k&’ sont les corpsasiduels
deA, B, A’). Cette condition @cessaire pour que I'extension finie libtesatisfasse la condition
éenoné&e dans 1.1 est aussi suffisante, commesililte aussitt de 1.4 (i) et 1.5 ci-dessous.

Proposition 1.4 Soit A — B un homomorphisme local d’anneaux locaux, a extension résiduelle
finie soit A’ une A-algebre finie locale sur A, de sorte que B’ = B ® 4 A’ est finie sur B, donc un
anneau semi-local également noethérien. (i) Si B est formellement lisse sur A, alors les localisés
de B en ses idéaux maximaux sont formellement lisse sur A’. (ii) La réciproque est vraie si A’
est libre sur A.

On est aussit rame® au cas 0 A, B sont complets.

() Soit A” une extension finie libre locale dd telle que les composants locaux de
B" = B ®4 A” soient des algbres de &ries formelles surd”. Faisant I'extension des sca-
laires A” — A" @4 A" — A", ou A” est un composant local d&’ ® 4 A’, on voit que les

20u mieux, “essentiellement non raréifiresp. “essentiellement nétale”, comparer EGA IV 18.6.1.
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composants locaux d8” ® ,» A” = B®4 A" sont des algbres deé&ries formelles sud”’. Or
onaaussB®4 A" = (B4 A') @4 A” = Bea A", d’autre part commel” est libre surA,
A" @4 A est libre surd’ et il en est de r@me par suite del’”” qui en est facteur direct, ce qui
prouve queB’ est formellement lisse sut’.

(i) Soit A” une A’-algebre finie libre locale telle que les composants locaux de
B @, A" = B ®4 A” soient des algbres de &ries formelles sud”. CommeA’ est libre
surA, A” I'est aussi, don@ est formellemenlissesur A.

Proposition 1.5 Soit A — B un homomorphisme local d’anneaux locaux, a extension résiduelle
triviale. Pour que B soit formellement lisse sur A, il faut et il suffit que B soit isomorphe a une
algebre de séries formelles sur A.

Il N’y a a prouver que la&cessi¢, et on peut supposer et B complets. Soitn (n) I'id éal
maximal deA (B) et soientty, ..., t, desélements den qui definissent une base de I'espace
vectoriel

(n/n?) /Im(m/m?) = n/(n®> + mB)

Cesélements éfinissent donc un homomorphisme dialgebres locales
Bl = AHtla Cee 7tn“ — B

prouvons que c’est un isomorphisme. Il suffit de prouver que pour toute puissérmzem, on
obtient un isomorphisme eduisant mod m? (puisqueB; et B sont les limites projectives
des anneaux correspondaréduits mod m?, ¢ variable). Comme3 et B; sont desA-modules
plats donc les gradis assoésa la filtrationm-adique s’obtiennent en tensorisant patA), sur

k = A/m, les anneauB; /mB; resp.B/mB, on est rameda montrer que3; /mB; — B/mB
est unisomorphisme. Compte tenu de 1.3, on est ainsi laaweoas 0 A est uncorpsk. D’autre
part, siA’ est A-algebre finie libre locale telle quB ® 4 A’ soit une algbre de éries formelles
sur A’ (N.B. cette algbre est locale, puisque I'extensi@siduelle deB sur A est triviale), pour
prouver queB; — B est un isomorphisme, il suffit de prouver gie®4 A’ — B @4 A’ I'est.
Cela nous ramne au casw?B est c;ja une algbre de éries formelles (il fallait commencer par
cette Bduction, avant de se ramener au cas d’'un corps de base). Mai®astsin anneau local
reguliera corps de re@sentants, et il est bien connu (et imadiat par consigration des grades
assocdesa la filtrationn;-adique et-adique surB; et B) que B; — B est un isomorphisme, ce
qui ackeve la g&monstration.

Corollaire 1.6 Si B est formellement lissglsur A, alors il existe une A-algebre finie locale A’
telle que les composants locaux de B @y A = (B ®4 A’) soient isomorphes a des algébres de
séries formelles sur A’.

En effet, siL/k est 'extension &siduelle deB /A, on consi@ére une extensiok’/k, telle que
les extensionsésiduelles dans 1&'-algebre L @, k' soient triviales. Soitd” une algbre finie
libre surA telle queA’/mA’ =k’ (on sait qu'il en existe, par exemple en se ramenant de proche
en proche au casudt’/k est monogne, et alors on rele dansA les coefficients du polygme
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minimal d’'un ¢erérateur de’ surk). Elle est locale. Alor83 ® 4 A’ a en ses idaux maximaux
des extensionssiduelles triviales au-dessus de céllde A’, et on ackvea l'aide de 1.5.

Corollaire 1.7 Soit A — B un homomorphisme local d’anneaux locaux. Pour que B soit for-
mellement lisse sur A, il faut et il suffit que B soit plat sur A et que B/BmB soit formellement
lisse sur k = A/m.

Faisant une extension finie libre locadé convenable del et utilisant 1.4 (ii), on est raménau
cas al I'extesion ésiduelle deB3/A est triviale. On sait d’ailleurs par 1.4 (i) et 1.3 que les condi-
tions énon&es sont écessaires. Pour la suffisance, il suffit de remarquer quentedstration
de 1.5 prouve, sous les hypetes faites ici, qué? est une algbre de éries formelles sud
(supposant et B complets, ce qui est loisible).

Remarque 1.8 Il ne serait pas difficile de&@elopper, pour les homomorphismes formellement
lisses, I'analogue de toutes les pra@ties des morphismes lissétudées dans Il. Pour les pro-
prietes differentielles, cela demande cependant une modification defilsittbn habituelle des
différentielles de Khler (cf. 1), les produits tensoriels coragls remplacant les produits tenso-
riels ordinaires. Nous nous contentongwquer ici ces dmes, ce qui pgroedeétant suffisant
pour notre propos.

Il restea faire le lien entre la lissgtformelle, et la notion de lis&étdevelopge dans Il (et
dont nous n’avons encore fait nul usage) :

Proposition 1.9 Soit A — B un homomorphisme local, B éntant localisée d’une A-algebre de
type fini. Pour que B soit lisse sur A, il faut et il suffit qu’il soit formellement lisse sur A.

Utilisant 1.7 et 2.1, on est ramemu cas B A est un corps.

Utilisant 1.4 (ii) et 4.13 une extension convenabl&e k nous ranéne au casuwl’extension
résiduelle pouB/k est triviale. En vertu de 1.5 (resp. 5.B)est alors lisse sut (resp. formel-
lementlisse surk) si et seulement sB est un anneau locakgulier (resp. son com@e est une
algebre de éries formelles suk). Or il est bien connu que ces deux conditions santivalentes
('extension Esiduelleétant triviale).

2 Propriete de reevement caraceristique des homomorphis-
mes formellement lisses

Théoreme 2.1 Soit A — B un homomorphisme local d’anneaux locaux définissant une exten-
sion résiduelle finie. Les conditions suivantes sont équivalentes :

(i) B est formellement lisse sur A
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(ii) Pour tout homomorphisme local A — C, ou C' est un anneau local complet tout idéal
J de C contenu dans r(C'), et tout A-homomorphisme local B — C'/J, il existe un A-
homomorphisme (nécessairement local) B — C' qui le releve.

(iii) Pour toute A-algébre C' (pas nécessairement un anneau noethérien) tout idéal nilpotent .J
de C, et tout A-homomorphisme B — C' continu (i.e. s’annulant sur une puissance de
r(B)), il existe un A-homomorphisme B — C' (nécessairement continu lui aussi) qui le
releve.

(iv) Méme énoncé que (ii) et (iii), mais C' étant un anneau local artinien, fini au-dessus de A.

(iv bis) Comme (iv), mais J étant de plus de carré nul.

Remarque. Pour la suite de cet exp@snous nous servirons seulement de I'implication (iv)
= (i) ou (iv bis) = (i); l'implication directe (i) = (ii) sera prouee par une autre @hode
au r suivant lorsqueB est locali€e d’'une algbre de type fini sur. Rappelons que dans
la “bonne” theorie des thoemes de Cohénla propréte (ii) ou (iii) devient la @finition des
homomorphismes formellement lisses, alors que 1.1 devient unegteogairactristique valable
seulement dans le cas d’'une extensigsiduelle finie. On fera attention que des pétgs (i) et
(iii) aucune n’'est plus grérale que I'autre. On pourrait donner une préfiri@quivalente) qui
les coiffe toutes deux, en introduisant un anneaédirement topologesC', sépaté et complef

un idéalfermé topologiquement nilpotene C', et un homomorphisme contiti — C' (faisant
donc deC' une A-algebre topologique) ; nous laisserons cette modification au lecteur.

Démonstration de 2.1. Nous prouverons @- (iii) = (ii), puis (iv) = (i). Comme (ii)=- (iv)
est trivial, et I'equivalence de (iv) et (iv bis) se voit par ugeurence imradiate sur I'entien
tel queJ” = 0, cela ackvera la @mostration.

(i) = (iii). Une récurrence imrdiate nous ragme au casw./?> = 0. CommeC est fini sur
A, il existe une puissanae? de I'ideal maximal ded qui annuleC'. Divisant parm?, et notant
que B/m?B est encore formellement lisse sdym? par 1.4 (i), on peut supposet artinien.
Comme B est plat surA par 1.3,B est libre surA puisqueA es artinien. Donc il existe un
homomorphisme dg-modules
w: B—C

qui releve I'hnomomorphisme doin.: B — C'/J. Posons

flzy) = w(zy) —w(@)wly)  (z,y € B)
alorsf(z,y) € J, etf estdonc une applicatiof-bilinéaire deB3 x B dans/. Pour qu'il existe un
relevement: B — C dew qui soit un homomorphisme d’afpres, il faut et il suffit qu’il existe
une applicatiom4-linéaireg: B — J telle quev = w + ¢ soit un homomorphisme d’addpres,
ce qui s’ecrit
g(1) =1—-w(1)
9(@,y) —u(x)g(y) —u(y)g(x) = —f(z,y)  (pourz,y € B)
3Cf. EGAOy 19.3,19.8
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C’est la un systme d’equationinéairesdansHom 4(B, J), a seconds membres dahsdonc il
a une solution si et seulement si le gyae correspondant dafi®m 4 (B, J) ®4 A’, & seconds
membres dand’ = J ®4 A’, a une solution, —A’ designant une afpre ficklement plate sur
A. Or soit A’ une algebre finie et libre sur, locale, telle queB’ = B ® 4 A’ soit une algbre
de €ries formelles surl’ (N.B. on peut dans notreednonstration supposet et B complets,
comme on constate auggit. CommeA’ est libre de type fini sud, on a

Homu(B,J) ®4 A" = Homyu (B', J')

et on constate que le sgshe déquations obtenu dari$om 4 (B’, J') est celui qui étermine
les homomorphismes dé’-algebresB’ — C' = C ®4 A’ qui relevent ’lhomomorphisme

u': B' — C"/J' déduit deu par extension des scalaires en “corrigeant” par un homomorphisme

de A’-modulesg’: B’ — J' 'homomorphisme ded’-modulesw’: B’ — C’ déduit dew par
extension des scalaires. (Noter gdeengendreB’ commeA’-module). On est ainsi raméer
prouver (iii) lorsqueB est unealgébre de &ries formellesur A, B = A[[ty, ..., t,]|. Relevons
alors de facon quelconque les images dangd dest; en destlementsz; de C. Comme les;

mod J sont nilpotents«: B — C/J étant continu) il en est de @me des:; (puisque.J est
nilpotent), donc leg; définissent un homomorphisme continu delgebres topologiques dé

dansC discret, relevanévidemment, cqfd.

(iii) = (ii). Soitn I'id éal maximal de&”, et pour tout entieg > 0, soit
C,=C/m® | J,=(J+n?)/n

doncC,/J, s'identifiea une alg@bre quotient d€’/.J, d’autre part 'homomorphisme compos
uq: B— C/J — C,/J, est continu d&B dansC,/ J, discret, et/, est un igal nilpotent dans
C,. On construit alors de proche en proche delsomomorphismes

vg: B —

tels que (a), releveu, et (b)v, relevev,_;. La possibilie de la currence seérifie ai€ment,
car comme
u,: B— C/(J+n%) et v,,: B— C/mi!

définissent le lme homomorphisme
B—C/(J+n)+nt™=C/(J+n"™")=Cyy/Jy
a savoiru,_1, ils définissent un homomorphisme
B—C/J, ou J,=(J+n)Nnit D>nd

(dont ils proviennent I'un et I'autre paéduction). On est donc ramea relever un homomor-
phismeB — ('/J; de B dans un quotient d&’, par un ickal J;/n? contenu dang/,, donc
nilpotent, et cela est possible d’&grl’hypottese (iii).
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Ceci fait, lesv, définissent un homomorphisme dedans la limite projective” desC,.
CommeJ est ferng, J est la limite projective des,, doncv releveu, cqfd.

(iv) = (i). On constate d’abord aussitque si (iv) est @rifie, (iv) reste erifie pour las
composants locaux dB ® 4 A’ sur A’, si A’ est une algbre locale finie sud. Prenant4’ libre
sur A et telle que les extensionssiduelles dé3’ au-dessus dd’ soient triviales, on est ramen
gracea 1.4 (ii) au cas 0la extension&siduelle deB sur A est triviale. Nous allons prouver alors
le résultat un peu [&cis :

Corollaire 2.2 Sous les conditions de 2.1, supposons de plus I’extension résiduelle de B au-
dessus de A triviale. Alors les conditions équivalentes de 2.1 équivalent aussi aux deux conditions
suivantes (en supposant dans (v) A et B complets) :

(iv ter) Comme (iv), mais I’anneau local artinien C' fini sur A étant restreint a avoir une extension
résiduelle triviale (et de plus, si on y tient, I’'idéal J étant de carré nul).

(v) 1l existe un A-homomorphisme local (ot n = dimn/(n®> + mB))
u: B— By = Al[t1,...,t,]]
induisant un isomorphisme
n/(n* +mB) = ny/(nd +mBy)
ol n (ny) est I'idéal maximal de B (B;), m celui de A.
Démonstration. Comme (iv bis) impliquevidemment (iv ter) — en faisant abstraction du
canular de l'iéal de ca@ nul—, il suffira de prouver (iv tegs (V) = (i).

(iv ter) = (v). Choisissons une basg. . . a, den/(n*> + mB), ce qui cfinit donc un homo-
morphisme local del-algebres

B — Bl/(nf—i—mBl) = /{Z[tl,...7tn]/(t1,...,tn)2

gu’'on peut relever de proche en proche, en vertu de (iv ter) en des homomorphismes de
algebres deB dansB; /n?, B;/n? etc, d’di en passard la limite projective 'hnomomorphisme
B — B, ayant la propgt voulue.

(v) = (i). Comme dans le diagramme commutatif

m/m? n/n? n/(n*+mB)——0

| |

m/m?> ——n; /0> ——n;/(n? + mB) —=0

les deux lignes sont exactes, et l&cHes verticales exmes surjectives, laéithe nédiane est
surjective et il s’ensuitB etant complet) qué3 — B; estsurjectif Soientz; (1 < i < n)
desélements deB qui relevent lest;. lls définissent donc un homomorphisme dealgebre
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B; — B, qui sera surjectif pour la @me raison que, et donc la compdsavecu est l'identie
par construction. Don@; — B est aussi injectif, et est par suite un isomorphisme. On trouve
donc

Corollaire 2.3 Sous Ies conditions de 2.2 (v), u est nécessairement un isomorphisme.

Cela acleve de prouver qu® est formellement lisse sut. On a d’ailleurs en i@me temps
retrouve 1.5 (mais il N’y a gare de néritea ca).

3 Prolongement infinitesimal local des morphismes dans un
S-schema lisse

Théoreme 3.1 Soit f: X — Y un morphisme localement de type fini. Conditions équivalentes :
(i) f estlisse

(ii) Pour tout préschéma Y surY, tout sous-préschéma fermé Y, de Y' ayant méme espace
sous-jacent que Y, tout Y -morphisme go: Yy — X et tout z € Y, il existe un voisinage
ouvert U de z dans Y’ et un prolongement g de go|Yy N U en un Y -morphisme U — X.

(ii bis) PurY’, Y] et z comme dans (ii), posant X' = X xy Y', X{j = X xy Y, toute section de
X, sur'Yy se prolonge en une section de X' au-dessus d’un voisinage ouvert U de z.
(iii) Pour tout Y -schema Y’, spectre d’un anneau artinien local fini sur quelque 0, (y € Y),

tout sous-préschéma fermé non vide Y, de Y’, et tout Y -morphisme go: Yy — X, il existe
un Y -morphisme g: Y' — X qui prolonge g.

(iii bis) Pour tout Y', Y] comme dans (iii), posant X' = X xy Y’, X = X Xy Y{, toute section

de X|) surY, se prolonge en une section de X' surY”.

Demonstration. leéquivalence de (ii) et (ii bis) d’'une part, de (iii) et (iii bis) d’autre part, est
triviale, ainsi que I'implication (ii)=- (iii). Il reste donca prouver (i)=- (ii) et (i) = (i).

(i) = (ii). Soit x = g¢o(z). RemplacantX par un voisinage ouvert convenable de
et Y’ par le péesctema induit sur I'ouvert imageéciproque de ce dernier pags, on peut
supposer queX estétale au-dessus dglty,...,t,|. Consicrons leY-morphisme compds
Yy — X — Y[ty,...,t,], il est cefini parn sections du faisceady,, qui peuvent donc se
prolonger au voisinage deen des sections d€y, donc on peut supposer que le morphisme
en question &t prolong@ en unY -morphismeY’ — Y;. En vertu de (5.6) il existe alors un
unigueY -morphismey: Y’ — X qui releve le pecedent, et prolonge ené@me tempg,, cqfd.

(i) = (i). Comme 'ensemble des pointsi ¢ est lisse est ouvert, il suffit de prouver qu’il
contient toutr € X qui estfermé dans sa fibre. Soif = f(z), alors&,, est une algbre surg,,
localiste d’'une algbre de type finia extension&siduelle finie. D’autre part, I'nypothese (iii)
implique que tout homomorphisme d& dans una alkgbreA/.J, ou A est une algbre artinienne
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locale finie surd,, et J un idéal contenu dans son radical, sek& en un homomorphisme de

0, dans l'alggbre A (compte tenu qu’un morphisme d’tipec(B), B anneau local, dan¥ est

détermiré biunivoguement par un homomorphisme local dan(z € X) dansB). Par 2.1 il
part 14 s’ensuit quer, est formellement lisse sur,, donc lisse suv, en vertu de 1.9.

Corollaire 3.2 Soit f: X — Y comme dans 3.1. Conditions équivalentes :
(i) f estétale
(ii) On a la condition (ii) de 3.1 avec unicité du prolongement g de gy a U.
(iii) On a la condition (iii) de 3.1 avec unicite de g.

Il suffit de noter, dans la@monstration de (#-(ii) ci-dessus, qu’on ne peut avoir unieit
(quandY; n’est pas identique Y’ au voisinage de) que sin = 0 (condition qu’on saiétre
suffisante).

Corollaire 3.3 Soit X un préschéma localement de type fini sur un anneau local completA, y
Ie point fermé de Y = Spec(A) et z un point de f~'(y) rationnelsur x(y). Si X est lisse surA
enz, alors il existe une section s de X surY “passant par x” i.e. telle que s(y) = .

En particulier, siX est lisse su#, alors I'application naturelle
[(X/Y)—-T(X ®ak/k)

des sections d& surY dans I'ensemble des points de la filfre' () = X @4 k rationnels suk,

est surjective. Ce faiktait surtout bien connu et utiéslorsqueA est un anneau de valuation
69 discrete etX est propre surl (en fait, projectif surd), auguel cas les sections desurY” (i.e.

les “points deX a valeurs dang!”) s’identifient aussi aux sections rationnelles, i.e. aux points

de X ®,4 K = Xk (qui est un scema propre et simple sut) a valeurs dang = corps des

fractions deA i.e. aux points deX rationnels sur'.

4 Prolongement infinitesimal local desS-schemas lisses

Théeoreme 4.1 Soient Y un préschéma localement noethérien, Y, un sous-préschéma fermé
ayant méme espace sous-jacent, X, un Yy-préschéma lisse, x un point de X,. Alors il existe
un voisinage ouvert U, de x, un préschéma X lisse sur Y, et un Yy-isomorphisme :

h: U0:>X><va0.

e plus, si est une autre solution de ce probléme, alors “elle est isomorphe a la
De pl Us, X', 1 t t lution d bl 1 “ell t he a 1
premiére au voisinage de x”.

On laisse au lecteur degwmiser ce qu’on veut dire paai.lOn peut noter que pouk, donrg,
une solution du Pb pésrevienta la doniee, surly, d’'un faisceau d’algbres% sur f, ' (0y)
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(ou f, est I'application continue sous-jacente au morphisme strudtiyrab Y5), muni d’un ho-
momorphisme d’anneau® — ¢y, compatible avec 'homomorphisme!(0y) — f~1(0y,),
tels que

(a) cet homomorphisme induit un isomorphisme

B Q1091 | (Ory) = Oy

(b) Uy muni deZ devient unY -présctema lisse.
De cette facon, le sensgmis de I'assertion d’unidtlocale devient particidremengvident.

Démonstration. On peut supposéjalqueX, estétale sur uryyty, ..., t,] = Y. Or ce der-
nier peutétre consiéré comme un sous-psclema ferné deY’ = Y'[t4, ..., t,], ayant néme es-
pace sous-jacent. Par (1 8.3), il existe Xirétale su®”’, et unY;-isomorphismeX xy- Yy = X'.
On a gage pour I'existence. Pour I'uni@t on utilise la propéte 3.1 (ii) des morphismes lisses,
en tenant compte du

Lemme 4.2 SoientY un préschéma, Y un sous-préschéma fermé défini par un faisceau d’idéaux
¥ localement nilpotent, X et X' desY -préschémas, u: X — X' unY -morphisme. On suppose
X plat surY . Pour que u soit un isomorphisme, il faut et suffit que ug: X Xy Yy — X' Xy Yy le
soit.

Démonstration facile, en passant au cas affine et regardant lesegradsoés. On no-
tera d’ailleurs que Bnon& analogue, obtenu en remplacant “isomorphisme” par “immersion
fermée”, estegalement valable, et sans hypegh de platitude.

Remarque 4.3 Il est essentiel de noter que le prolongement Io¢albtenu dans 4.f’est pas
canonigue en d’autres termes I'isomorphisme local entre deux solutions n’est pas unique, i.e.
il existe en @réeral desY -automorphismes non triviaux d€ induisant I'identieé sur le sous-
présclema ferné X, = X xy Y;. C'est pour cela gu'il faut s’attendre, pour la construction de
prolongements infingsimauxglobauxde pgésclemas simplesa I'existence d’'une obstruction

de nature cohomologique, qui ser&gigee plus basr® 6).

5 Prolongement infinitesimal global des morphismes

SoientT" un espace topologiqu&, un faisceau de groupes ski, P un faisceau d’ensembles
surT sur lequels opere @ droite, pour fixer les iges). On dit que” estformellement principal
homognesous?, si 'homomorphisme bien connu

G P —>PxP

de faisceaux d’ensemblesedlit des oprations de4 sur &, est unisomorphismell revient
au neéme de dire que pour tout € T, &2, estvide ou un espace principal homagesous le
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groupe ordinaireZ,, ou aussi que pour tout ouvdrtde T, #(U) est vide ou un espace princi-
pal homogne sous le groupe ordinai®& ). On dit queP est unfaisceau principal homagne
sousG s'il I'est formellement et si en plus le’, sont non vides (en d’autres termestaisles
2, sont des espaces principaux horangs, donc non vides, sous {¢9*. Rappelons que I'en-
semble des classes isomorphisme @s) de faisceaux principaux homages sou¥ s'identifie

a I'ensemble de cohomologié'(7',%), qui est aussi le groupe de cohomologie usuel'de
coefficients dan¥’ lorsque est commutatif. On a ainsi, pour to# principal homogne, une
classe caraétistiquec(#?) € H'(T, %), dont la triviali€ est iecessaire et suffisante pour qie
soit trivial (i.e. isomorph@& ¥, sur lequels opere par translationd droite), ou encore pour que
& ait une section.

Proposition 5.1 Soient S un préschéma, X et Y des préschémas sur S, Y, un sous-préschéma
fermé de Y défini par un Idéal # surY” de caré nul Soit gy un S-morphisme de Y, dans X, et
P(qo) le faisceau sur'Y dont les sections sur un ouvert U sont les prolongements g: U — X de
90o|U MYy en un S-morphisme g. Alors & (go) est un faisceau formellement principal homagme
(de tacon naturelle) sous le faisceau en groupes commutatif

9 = Homg,, (95(2x/s), )

Posons? = Z(gy). Nous devons &ffinir pour tout ouvert/ deY une application
PU)x9U)— 2(U)

de facon que (a) pour € Z(U) fixé, I'applications — gs de¥(U) dansZ?(U) est bijective
(b) Z(U) devient un ensembkegroupe d’oprateurs? (U) (c) les applications @edentes sont
compatibles avec les épateurs de restriction pour un ouvertc U. La vérification de (c) sera
triviale, on peut donc pour simplifier suppodér= Y. La vérification de (b) (qui est, si on veut,
de nature locale) sera lagssau lecteur, nous nous bornerons donc, poyrarnZ?(Y') donre, de
définir une bijection naturelle d¢(Y") sur#2(Y'). Donc on suppose do@rkja unS-morphisme
g: X — Y, eton cherche une bijection canonique

(*) HomﬁYO (93(%&/3)7 ) = 2(Y)

ou Z(Y) est 'ensemble des-morphismesy’ de Y dansX induisant le fBme morphisme
go: Yo — X queg. La donree d'un telg’ estéquivalentea la donige d’'unS-morphisme
h:Y — X xg X tel quepr; o h = g, ethoi = (go,g0) , OUpr;: X xg X estla premére

projection,i: Y, — Y l'immersion canonique, efgo, g0): Yo — X xg X est le morphisme
Ax/s90 de composantg, g -

ho=

X xg X 0=(90,90) Y,
S~ _n

lprl N lz

X ! Sy

41l semble péféerable d’adopter le terme plus court et plus parlanttdestur souss”, introduit dans la tese de
J. GIRAUD.
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Commebh, se factorise par 'immersion diagonaley,s et queY est dans le voisinage infi-
nitesimal d’ordrel deY; (i.e. #2 = 0) lesh chercles se factorisentaressairement (de fagon
unique) par le voisinage infirisimal du premier ordre de la diagonale, lequel s’identifie (en
tant que X -présclema gécea pr,) au spectreX’ du faisceau d'algbresdx + 9)1(/5 (ou le
deuxieme terme est conge comme un |dal de ca@ nul), le morphisme diagon& — X’
correspondana l'augmentation canonique de ce faisceau @htgs. Posons’ = X’ xx Y,

Yy =Y xy Yy = X' xx Yy, de sorte que lels cherclés sont en correspondance biunivoque avec
les sections: deY” surY” qui prolongent une section doéew, deY; surY,. On peut d’ailleurs
identifierY” au spectre du faisceau d'algres sut” o = g*(Ox + 2% 5) = Oy +g* (2% ), €t

Y, au faisceau d’'algbresery = o7/ @4, Oy, = ﬁYO—FQS(Q)l(/S), alors la section est celle éfinie

par I'augmentation canonique dg dansdy,. Donc #(Y") s’identifiea 'ensemble des homo-
morphismes d’algbresey — &y qui induisent 'augmentation canoniqué#, — 0y,. Or les
homomorphismes d’'aibres — 0y correspondant biunivoquement aux homomorphismes
de Modules# — < (posant pour simplifietZz = g*(Q)l(/S)), et on s’inéressea ceux qui
induisent 'homomorphismeul .#, — Oy, (oU .#, = .# ®¢, Oy,)i.e. qui appliquent# dans
lidéal_# de 'augmentation. On trouve donc 'ensemblem, (7, ¢ ) = Homg, (4, J)
(puisque_¢ est annug par_#). C'est la bijection canonique cheie ¢).

Tenant compte de I'implication @&-(iii) dans 3.1, on trouve :

Corollaire 5.2 Si X est lisse sur S (du moins aux points de go(Yy)) alors & est méme un fais-
ceau principal homagnesous le faisceau en groupes commutatifs ¢, qui en 1’occurrence peut
aussi s’écrire

G = 98(9)(/5) Rey, /
ol gx s est le faisceau sur X dual de (2} /g0 1.e. le faisceau tangenbu faisceau deséativationg

de X par rapport a S. (Cette derniére formule provient du fait que 25, /s est alors libre de type
fini).

En particuliera ce faisceau principal homege correspond une classe de cohomologie dans
H' (Y, %), dont 'annulation est écessaire et suffisante pour I'existence dismorphismeg
prolongeant,. Et s’il existe un tel prolongement, 'ensemble de tous les prolongements possibles
est un espace homege sous le groupd® (Y, ¥).

Dans 'application des gthodes de la@pnetrie formelle, la situation est le plus souvent la
suivante : on donne deux-présclemasX etY’, un Ideal colerent.# surS, on dcesigne pars,
le sous-pesclema ferné deS défini par.#"*!, et on pose

Xn:XXSSn , Yn:YXSSn.
On suppose gu’on a us},-morphisme :
gn: Y?’L - XTL

(ou, ce qui revient au Bme, unS-morphismeY, — X ou encore unS,,;-morphisme
Y, — X,.1, puisque un tel morphisme indui€cessairemerit, — X,), et on cherche le

56



74

75

prolonger en urb,,, ;-morphisme

On+1- Yn+1 - Xn+1

(Si on peut continuer irefiniment, on obtient donc un morphisrﬁ’e—> X pour les pesclemas
formels compdtes deY et X pour les Igaux ¥ 0y et .#0y). On peut appliquer 5.1 en y
remplacant(S, X, Y, Yo, go) par (Sn+1, Xnt1, Yai1, Ya, 9n), le faisceau? devient ici le fais-
ceau des homomorphismes de Modulesgfle?y, /g ) dans ¢ = J"1Gy /9720y,
Comme_¢ est annué par.# 0y, on peut remplacer alo@;((}}(nﬂ/sm) par le faisceau qu'il
induit surYy, savoirh;;(Q}(/S), ol hy est le composY, — Y,, — X,,.1, ou encore le compés
Yo — Xo — X401, OU go: Yo — X, est induit parg,,. Comme I'image inverse de}
surXy = X1 Xs,,, S0 estQ}(O/SO, on voit qu’on a aussi

n+l/Sn+1

4 = Homy, (95(12x,/s,), 7" Oy | I 0y)
Donc on obtient le

Corollaire 5.3 Soient S, X,Y, .7 g, comme ci-dessus, soit &(g,) le faisceau sur Y dont
les sections sur un ouvert U sont les prolongements g, de g, en un S,.,-morphisme
Y1 — X,i1. Alors & est un faisceau formellement principal homogéne sous le faisceau
en groupes
— 1 +1
g = Homy, (gg(ﬂxo/so)v 8o, (Ov))

En particulier :

Corollaire 5.4 Side plus X est lisse sur S (du moins aux points de go(Yy)) alors & est méme un
faisceau principal homogéne. En particulier, il définit une classe d’obstruction dans H'(Y,,9),
dont I’annulation est nécessaire et suffisante pour 1’existence d’un prolongement global g,
de g,. Et s’il existe un tel prolongement, I’ensemble de tous les prolongements globaux est un
espace principal homogeéne sous H°(Y;,,%). Enfin, dans le cas envisagé, le faisceau & peut aussi
s’écrire

g = gS (gXo/So) ®ﬁYO gr,r;rﬁly(ﬁY)

Pro&dant de proche en proche, on voit donc que si tousHE%;,%,) son nuls (o
Y = 95(8x0/50) @ &'y, (Oy)), alors partant avec ug, quelconque, on peut le prolonger
successivement ef., 1, . ... En particulier, si¥ est nilpotent, on pourra trouver un prolonge-
mentg de g, aY. La condition de nullié desH! est \érifiee en particulier st; est affine. On
trouve donc :

Corollaire 5.5 Dans I’énoncé du théoréme 3.1, on obtient une condition nécessaire et suffisante
équivalente aux autres en supposant que le Y’ qui intervient dans (ii) (ou (ii bis)) est affine, et en
exigeant I’existence d’un prolongement globa} de gy a tout Y.
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On notera que la@monstration de 3.1 ne pouvait pas nous donnegseltat directement.

Un cas important est celutd” estplat sur.S, alors on a donc
gr"(Oy) = et"(0s) ®ay, Oy,
et lorsque de plus leg™(0s) sontlocalement libres suf, on trouve

gﬂ = Homﬁy (98<Q;(0/SO>7 ﬁYo) ®ﬁso gr”(ﬁs)’

ou encore, SD}<O/50 est lui aussi localement libre (par exempidisse sursS)

Gy = gf)k(gXo/So) Qas, gr"(Os)
Si par exempleS est affine d’anneau affing, .7 étant @&fini par un ickal I de A, on trouve
H'(Y0,%,) = H' (Yo, %) ®a4 gri(A)

pour touti (en effet, la question est locale stif, et on est raménau cas 0 on tensorise par
un Module libre).Dans ce cas, la nullé deH! (Y;, %) implique que toutes les obstructions aux
prolongements successifs glesont nullesOn obtient donc :

Corollaire 5.6 Soient (S, X,Y, .7, g,,) comme plus haut, supposons de plus X lisse sur S, enfin
S affine, et les gr"(Os) = #™/ ™+ localement libres. Alors I’obstruction a construire g, 1 se

trouve dans H'(Yy, %) @4 g’y T (A) (ot A est I'anneau de S, I I'idéal de A définissant .%), en
posant

G = QS(QXO/SO)
Si H°(Yy, %) = 0, alors g,, peut se prolonger en un S-morphisme §: Y — X.

Bien entendu, ceésultat resterait vaIa/b]e tel quel, si on partait, au lieuSegrésclemas
ordinairesX etY’, de§-préschiamas formels7-adiquesk et?). Il permet de prouver par exemple
que certains s@mas formels propres sur un anneau local complet (par exemple) sont en fait
algebriques. En effet, prélant comme dans le lemme 4.2, on trouve :

Corollaire 5.7 Sous les conditions de 5.6, si gy est un isomorphisme il en est de méme de g.

(N.B. le méme Esultat vaut pour les immersions fexes).

On obtient ainsi :

Proposition 5.8 Soient A un anneau local complet d’idéal maximal m, corps résiduel k, soient
X et deux préschémas formels m-adiques sur A, plats sur A (i.e. pour tout n, X,, et'Y,, sont
plats sur A, = A/m"), on suppose Xy = X ®4 k lisse sur k et H'(Xo, gx,/x) = 0. Alors tout
k-isomorphisme de Y, sur X se prolonge en un A-isomorphisme de ) sur X ; ce prolongement
est unique si de plus H°(Xo, gx,/x) = 0.
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Cela donne en particulier u@sultat dunicité de pésclema formel lisse sud se eduisant
suivant un pesctemaX, donré (moyennant'(X,, gx,,x) = 0). De plus, siX etQ) proviennent
de sclemas ordinaires propres sdr soientX etY’, alors on sait d'afs le tleoeme d’exis-
tence de faisceaux ené@netrie formelle (cf expas au £minaire Bourbaki, R 182 )) qu'il
y a correspondance biunivoque entre degsomorphismed” = X et le A-isomorphismes des
compktes formels, donc

Corollaire 5.9 L’énoncé précédent 5.1 reste valable en y remplacant X et %) par des A-schémas
ordinaires X etY , propressur A.

Enfin, lorsqueX est un scema formel propre sud, et que?) est de la form&” ol Y est
un sclema ordinaire propre sut, alors la proposition 5.8 donne des conditions suffisantes pour
qu’on puisse trouver un isomorphisme deavecY’, donc pour que le sé@ma formelX soit en
fait “algébrique” (i.e. isomorpha unX, X un sclema ordinaire propre su, lequel sera alors
canoniquement@&termiré). C'est ce qui lieu notamment sk, = P}, (ou plus gréralement,
si X, est un scema de $\eri—Brauer, i.e. devient isomorpliel'espace projectif type sur la
cléture algbrique dek) : tout sclema formel propre et plat sut, de fibrelP}, est algbrisable,
et de fagon plus fgcise est isomorphe au coraf@ formelm-adique dé”’,. En particulier (gace
au treoeme d’existence) tout séima ordinaire propre sut, de fibreP;, estisomorphaP’, (A
étant un anneau local complet). Utilisant ladhie de la descente, on peut prouver qué siest
pas completX devientisomorph@P” en faisant une extensiofi — A’ finie etétale de la base
(et sous cette forme, I&sultat reste valable pour une fibre qui est uresth de $veri—Brauer).

6 Prolongement infinitesimal global desS-schemas lisses

Sous les conditions du&eeme 4.1, on se propose de chercher s'il existe esgiemaX
lisse surY” tel queX xy Y, soitYy-isomorphea X, sachant qu’un tel sé&ma “existe localement
surX,". Reprenant la rathode de construction de proche en proche, on est canchritplacel”
par la lettreS, a supposer qu’on se donne un soussgtema ferné S, de.S défini par un faisceau
d’'idéaux.#, (qu’il n’est plus recessaire de supposer localement nilpot@nt)iroduire les sous-
présclemas ferras S, de S définis par les#"*!, et a supposer qu'on s’est doarnun sous-
présclemal,, lisse surS,. On se propose de trouver ) , -présctemalX, ; “qui se eduit
suivantX,,”, i.e. muni d’un isomorphisme

XnJrl XSn_H Sn — Xn

qui soitlissesur.S, ;1 (ou, ce qui revient au Bme par 2.1plat sur S, ;). Comme nous I'avons
signak dans dans N4, une telle donee revienta la don@e d'un faisceau d’abghres# sur
f~*(0s,,,) (ou f est 'application continue sous-jacente au morphisme struciurat> S,,),
muni d’une augmentatio® — Oy, compatible avec 'augmentatight' (s, . ,) — f~(0s,),

5Cf. EGA 11 5.4.1 pour la @monstration
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et satisfaisant deux conditions (a) et (b) que nous rééarirons pas, nous bornaatnoter
gu’elles sont denature localesur I'espace topologique sous-jacenk,,. On sait d’apes 4.1
gu’une solution existe localement. Elle est de plus un#(®on unique) isomorphismegs, du
moins localement. Commencgons paggiser ce point :

Proposition 6.1 Soit X,, 1 sur S, se réduisant suivant X,, sur S,,. Alors le faisceau (sur I’es-
pace topologique sous-jacent a X,,, ou encore a X,) des S, 1-automorphismes de X, 1 qui
induisent I’identité sur X,, est canoniquement isomorphe a

g = 9Xo/S0 ®ﬁso gr}+1<ﬁ5)

(en tant que faisceau de groupes).

En effet, par 5.4 et 4.2 ce faisceau est un faisceau principal hemecgpus/. Comme il est
muni d’une section privégiée (I'automorphisme identique dé,.,), il s’identifie donc comme
faisceau d’ensembles¥. Il faut vérifier que cette identification est compatible avec les struc-
tures de groupe. C’est facile, et d’ailleur un cas particulier désultat plus gréral sur la com-
patibilité des structures de fibs principaux, dans 5.1 et 5.3, avec la composition des morphismes
(résultat que nous @honcons pas ici, mais qui se doit de figurer dans le hyperplodoque ).

En patrticulier, le faisceau sux, des germes d’automorphismes de ., (avec les struc-
tures expliciees) escommutatif Il s’ensuit que siX|_ , est une autre solution du préiohe,
isomorphea X, ; au-dessus de l'ouvetf de X, alors I''somorphisme déut(X,)|U sur
Aut(X] . ,)|U déduit par transport de structure d’'un isomorphisiig.,|U = X ,,|U, ne
dépend paslu choix de ce dernier. (Ce n’est d’'ailleur autre que I'isomorphisme identiqéé de
lorsque on identifie I'un et 'autre faisceau d’automorphis@mésgracea 6.1).

On céduit de 6.1 :

Corollaire 6.2 Soient X,, 1, X, lisses sur S, et “se réduisant suivant X,,”. Alors le faisceau
(sur I’espace sous-jacent a X) des S, 1-isomorphismes de X, 1 sur X] ,, induisant I’indentité
sur X,,, est de fagon naturelle un faisceau principal homogene sous ¥ .

Cela exprime en effet qu&,, ., et X] ., sontisomorphes localement, et que le faisceau des
germes d’automorphismes du premier&st

Notons maintenant qu’en vertu de 4.1, on peut toujours trouver un recouvréihede X,
par des ouverts (qu’on peut supposer affines), et pouritouat sclema lisseX‘ sur S, ., se
réduisant suivant/; = U,,. Supposons pour simplifiek,, separ, donc lesU;; = U, N U;
sont encore des ouversfinesde X,,. Comme leH' d’un tel ouvert,a valeurs dans le faisceau
quasi-colerent?, est nul, on en &duit par corollaire 6.2 qu&™|U;; est isomorphé X7|U;; ;
soit

fii: XUy = X7|Uy
un tel isomorphisme. Il estadermire a une section s de& surU,;. Posons, pour tout triple
d’indices :
fj(zk) :fﬂ|ka ou Ul'jk:UiﬂUjﬁUk.
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Si on avait
7 k j
(1) Y =1,

il s’ensuivrait que les(” se “recollent” par leg;, donc qu'ils dfinissent une solutioN = X,
du probBme chercé. Une telle solution existe plug€geralement, si on peut modifier lgs en
desf!. :

Jt

(2) fii = tigii (95 € T(Ui, 9))

de telle fagon que leg;; satisfassent la condition de transiteiti-dessus. Cette condition suffi-
sante pour I'existence d’une solution est augsiessaire, comme on voit en se rappelant qu’une
telle solutionX doit, sur chaqué’/;, étre isomorphe X*, ce qui permet donc de choisir des
isomorphismes

fi: X|Ui = X°

et de cfinir des ‘ ‘
fii = (LU (filU;) ™ XUy = XU

satisfaisant la condition de recollement.

Or posons
3 Fiare = (B Fls s

c’est un automorphisme d&‘|U;;;, que nous identifieron& une section d& gracea 6.1. On
constate que c’est utrcocyclef du recouvrement ouve = (U;), a coefficients dan¥, par

un petit calcul formel laigs au lecteur. Le @me calcul montre que moyennant (2), la condition
de recollement (1pour lesf;; équivauta la formule

(4) [ =dyg,

ou g = (g;;) est consiére comme uné-cochaine dez a coefficients dan¥. Doncla condi-

tion néecessaire et suffisante pour I'existence d’'une solution du emélest que la classe
de cohomologie danil?(% ,%) définie par le cocycle (3¥oit nulle. Notons dailleurs que
puisqueZ = (U;) est un recouvrement affine d€, qui est unsckema H?*(%,¥) s'iden-

tifie a H*(X,,¥). Il est immédiat d'ailleurs que la classe de cohomologie ainsi obtenue dans
H?(Xy,%) ne cepend pas du recouvrement affine coa&@dOn I'appellera laxlasse d’obstruc-

tion au prolongement d&,, en un scemax, ,, lisse surs,, ;.

Supposons cette obstruction nulle. Alors un raisonnement eggpiss haut montre que
toute solutionX = X, estisomorph& une solution obtenue par recollemanpartir d’iso-
morphismesf;, qu'on peut supposer sous la forme (2), la condition de recollemétent’ autre
gue (3). Lensemble deg admissibles est donc un espace principal hagnegsous le groupe
7 (% ,4) desl-cocycles deZ a coefficients dang. De plus, on constate tout de suite agisix
cochaineg; et ¢’ (telles qualg = dg’ = f) définissent des solutions isomorphes si et seulement
si le cocycley — ¢’ est de la formelh, ol h = (h;) € C°(%,%). On trouve donc :
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Théoreme 6.3 Soient (S, .#, X,,) comme ci-dessus, X,, étant supposé séparé®. Alors on peut
définir canoniquement une classe d’obstruction dans HQ(XO, &) (ou Y est défini dans 6.1), dont
I’annulation est nécessaire et suffisante pour I’existence d’un schéma X, lisse sur S, .1 se
réduisant suivant X,,. Si cette obstruction est nulle, alors I’ensemble des classes, a isomorphisme
pres (induisant I’identité sur X,,) de S, 1-préschémas X,, | se réduisant suivant X, est de fagon
naturelle un espace principal homogéne sous H' (X, %).

Remarques 6.4A partir de 6.1, les raisonnements faits ici sont purement formels, et se trans-
crivent avantageusement dans le cadre desgoaies locales, ou @me des cé&gories fibees
gérérales. La classe d'obstructi@nl’existence d’'un objet “global” d’une cagorie (dont on

peut trouver un objet “localement”, et dont deux objets sont toujours “isomorphes localement”,
le groupe des automorphismes de tout okjgint commutatif) ainsi obtenu dans le contexte
géréral, contient comme cas particulier le “dedrxie homomorphisme bord” dans une suite
exacte de faisceaux de groupes n@cessairement commutatif&tdé par exemple par Gro-
thendieck dans Kansas ou Tohoku). Le cal@lgte par cocycles fait ici doit dor&tre regaré
comme un pis-aller,@a la non existence d’'un texte def@érence satisfaisant.

6.5 On notera que dans 6.3, il N’y a pas eémgral délement priviegié dans I'espace princi-
pal homogne envisag soustH!(X,,¥). Cela se traduit notamment par le fait que I'on obtient
(localisant surS) un faisceau principal homeége suiS,, de groupe structur@’ £,(¢), qui n’est
pas recessairement trivial, i.e. quéfinit une classe de cohomologie dahg.S,, R' f.(¢)) qui
n'est pas Bcessairement nulle. (Lorsque I'on suppose que la classed?( Xy, %) n'est pas
nulle, mais nulle “localement au-dessus&iei.e. définit une section nulle d&? £, (%), i.e. un
element nul dansl®(Sy, R? £.(9))).

6.6  On ne sait pour I'instard peu pés rien sur le racanisme algbrique @réral des classes
de cohomologie introduites dans ce renm et ses relations avec le néra pécedent, et on ne
sait rien en dire de pcis dans les cas particuliers les plus simples, tel le cas desashabliens

sur des anneaux artinieh€On esgre qu'il se trouvera des gens pour chiader la question, qui
semble particuérement intressante. Elle est intimemengdi en particuliea la “theorie des
modules” des structures @griques.

Corollaire 6.7 Supposons que H*(X(,%) = 0, alors un X, existe, et il est unique a isomor-
phisme preés si de plus H' (X, ¥4) = 0.

En particulier, on en conclut, en piedant de proche en proche (et remarquant qu’uarseh
affine est acyclique pour un faisceau quasiaeht) :

6Cette condition est en fait inutile, et on péviter les calculs de cocycles plus haut. Cf. le livre de J. GIRAUD,
Cohomologie Non ABlienne & parétre dans Springer Verlag 1971). Comparer remarques 6.4.
’On sait maintenant que cette obstruction est toujours nulle dans ce cas.
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Corollaire 6.8 Sous les conditions du théoréeme 4.1, si X, est affine, alors il existe un X lisse
sur Y se réduisant suivant X, et cet X est unique a isomorphisme (non unique) pres.

On notera que la&@monstration directe du th. 4.1 ne pouvait nous donnegsdtat.

Corollaire 6.9 Sous les conditions de 6.3, supposons S affine d’anneau A, .# défini par un
idéal I de A, enfin les gr", (Og) = #" /9" localement libres. Alors H'(X(,¥) s’identifie a
H(Xo, %) ®a gr7™(A), oo

0 = 9x0/S05

donc la classe d’obstruction au prolongement de X, se trouve dans H?( Xy, %) ®4 gr'ft(A), et
si elle est nulle, I’ensemble des classes (a isomorphisme pres) de solutions est un espace principal
homogéne sous H( Xy, %) ®4 gr ™' (A).

En particulier :

Corollaire 6.10 Sous les conditions de 6.9 supposons
H2(X079X0/So) = 07

alors il existe un schéma formel I -adique sur le complété formel .# -adique S de S, qui soit “lisse
sur S (i.e. les X, sont lisses sur les S,,) et qui se réduise suivant X, i.e. muni d’un isomorphisme

%Xssn;Xn.

Si de plus H'(Xy, gx,/s,) = 0, alors un tel X est unique & isomorphisme pres.

En effet, on construit de proche en prockig,, X, .., etc., d'al X en passand la limite
inductive desX;. L'assertion d’unicié figure @&ja au 1t precedent.

7 Application a la construction de sckmas formels et de
schemas ordinaires lisses sur un anneau local complet

Les fesultats du Riprécadent permettent parfois de prouver I'existence d’urésth formel
m-adique sur un tel anneau, sduisant suivant un séma lisseX, surk donré. Distinguons
deux cas :

a) A est “d’égales caradristiques”(c’est le cas en particulier giest de caraéristique0).
Alors on sait qu'il existe ulsous-corps de repsentants dd, i.e. un sous-corps tel queA — k
induise un isomorphismé&’ = k. Alors il existe neme un sabma ordinaire lisse surd se
réduisant suivan,, savoirX = X, ®; A, A étant considré comme une afgpre surk grace
a ’homomorphisme: — k' — A défini park’. Il faut cependant noter que cette construction
n'est pas “naturelle”; il est facile de se convaincréjéddans le castoA = k[t]/(t?), alggbre
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des nombres duaux) qu’un autre homomorphisme @weetent: — A (défini en I'occurence
par une @rivation absolue dé dans lui-néme) @finit un X’ sur A qui en geréral n’est pas
isomorphea X (si H'(Xo, gx,,x) # 0). Il serait d’ailleurs inéressant détudier (pourk de ca-
raceristigue0, ou non parfait et de cap > 0) quels sont lesX lisses surA qu’on obtient
ainsi,a quelle condition deux homomaorphismes- A définissent desi-schemas isomorphes.
Néanmoins, I'existence dé suffit a entréner que la prengire obstruction au rebYement deX,,
qui est dansi*( Xy, gx,/x) ®, m/m?, est recessairement nulle. Bien entendu, quand on a&elev
alors X, en X lisse surd/m?, la nouvelle obstructioa la construction d&’, ne sera engréral
pas nulle : elle sera fonction d’uglement variable dans un certain espace principal hemeg
sousH!( Xy, %) ® m/m? et se trouve danH?(X,, %) ® m?/m? : il conviendrait détudier la
situation de faconétaillee

b) A est d'inegales caradristigues.Dans ce cas, on ignore tout, (sauf si par chance
H?(Xo, 9x,/x) = 0, auquel cas on peut construire un &eta formelm-adique simple surl
se eduisant suivant). Méme siA = Z/p*Z et si X, est un scBma “afglien” de dimensiorz,
on ne sait pas si on peut relever enXin= X, lisse surA®, d'autre part, on n'a pas d’exemple
d'un X, dont on ait proug gu'’il ne provient pas d’'un séma ordinaireX lisse surA. (J'ai
I'impression que cela doit exister, avég une surface projectivé) Signalons simplement que
d’'apres le tieoeme de Cohen, il existe yranneau de CoheB de corps esiduelk et un ho-
momorphismeB — A induisant I'isomorphisme identique sur le corgsiduels ; par suite, le
résultat “le plus fort” de rélvement serait obtenu en prenant pdwmn p-anneau de Cohen : s'il

existe une solution (ordinaire ou formelle) au-dessus d’'un tel anneau, il en existe une au-dessus

de tout anneau local complet de corpsiduelk. En particulier, comme pour yrranneau de Co-
henm/m? s’identifie canoniquemeritk, on voit quepour tout sckma lisseX, sur un corpsk

de caracéristiquep > 0, il existe une classe de cohomologie d&ii$X,, gx,,,) premere obs-
truction au redvement deX, en un scbma lisse sur up-anneau de Cohen; on ignore si elle
peutétre non nullé.

Méme si on arrive de proche en progheonstruire lesY,, se eduisant suivanky, cela ne
donne en gréral qu'un scbmaformel X lisse surA, se éduisant suivank,. LorsqueX, est
propre surA, il reste la question sk est en fait alg@brisable, pour pouvoir obtenir un ssha
ordinaire propre surA et simple surd, se eduisant suivank. Le seul criere connu (signél
dans le @minaire Bourbaki, et qui figure dans le€Elents, Chap. lll, 4.7.1) est le suivant Xsi
est propre suri, et si.Z est un faisceau inversible sfirtel que le faisceau indui; sur X,
soit ample (i.e. une puissance tensorielle convenafjfé, n > 0, provient d’'une immersion
projective deX,) alors il existe un sadma.X projectif surA, et un faisceau inversible ample
sur X, tels que(X,.%) s’en ceduise par comption m-adique. Cela nous ane doncgtant
donre un faisceau localement libig sur X, (que nous choisirons inversible ample pour notre
propos), de le prolonger en un faisceau localement lur X. Pour ceci, on est raméra

8Elle est sans doutetdrite par I'og@ration crochet de Kodaira-Spencer (dnSnaire Cartan, 1960/61, Exp. 4).

9C’est maintenant prowy cf. note 7 page 62.

10yn tel exemple &t depuis construit par J.P. Serre (Proc. Nat. Acad. Sc. USA, vol.41, pp 108-109, 1961),
du moins pour certaines dimensions. D. Mumford a @ounan exemple (non pulé) avec uneurfacealgébrique.

1E|le peutétre non nulle, comme sigréaén note 1@ la page 64.
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construire de proche en proche des faisceaux localement #hrasr lesX,,. La discussion est
toute analogua celle du N 6, (cf. remarque 6.4), léfe essentiebtant jo par lefaisceau des
automorphismesd’un &, qui induisent l'identié suré,, : on montre aussit que ce faisceau
s'identifiea

(>I<) g = Homﬁxo ((/gao, go X gr?}“(ﬁx)) = HOI’HﬁXO ((gao, (ga()) & gr}“(ﬁx)
qui est encore un faisceau en groupes commutatifs. On trouve :

Proposition 7.1 Soit S un préschéma muni d’un faisceau quasi-cohérent d’idéaux ., X un
préschéma sur S, S, le sous-préschéma de S défini par #™"*1, et X,, = X xg S,, ( pour tout
entier n). Soit &, un faisceau localement libre sur X,,, on se propose de le prolonger en un
faisceau localement libre &, 1 sur X, . Alors &, définit une classe d’obstruction canonique
dans H*(X(,%9), o0 ¥ est le faisceau quasi-cohérent donné par la formule ci-dessus, classe dont
I’annulation est nécessaire et suffisante pour I’existence d’un &,,, 1 prolongeant &,,. Si cette classe
est nulle, alors I’ensemble des classes, a isomorphisme prés (induisant 1’identité sur &,,) de solu-
tions &, 1, est un espace principal homogeéne sous H' (X, 9).

Cette proposition donne lieu aux corollaires habituels. Signalons seulem&nesi plat
sur.S, alors on peuécrire

g = HomﬁXO ((9@0, (9@0) ®@’SO gIJ}Jrl(ﬁs)
d’'ou, siS est affine d'annead et siles.#™/.#™*! sont localement libres, la condition suffisante
H? (X(), g@) =0 avec g() = Hom/,»XO ((500, (o@()>

pour I'existence d’'urt;, .1, donc de proche en proche pour I'existence de prolongements succes-
sifs&,, (im=n,n+1,etc..).

Revenant la situation de @part, on trouve donc :

Proposition 7.2 Soient A un anneau local complet, X un schéma formel propre et plat sur A, tel
que X, soit projectif et que H*(X,, Ox,) = 0. Alors il existe un schéma X projectif sur A dont
le complété formel m-adique est isomorphe a X.

Conjuguant avec 6.10, on trouve :

Théoreme 7.3 Soient A un anneau local complet de corps résiduel k, X, un schéma projectif et
lisse sur k, tel que
HQ(X(L gXo/k) = Hz(X07 ﬁXo) =0

Alors il existe un schéma lisse et projectif X sur A, se réduisant suivant X.

Plus geréralement, si on se donne U, lisse surd,, = A/m"*! se eduisant suivani,
alors il existe unX lisse et propre sud et un isomorphism& @4 A, = X,,.
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Corollaire 7.4 Toute courbe lisse et propre sur k provient par réduction d’une courbe lisse et
propre sur A.

C’est ce eultat qui sera I'outil essentiel (avec leétheme d’existence de faisceaux en
86 Géonetrie Formelle) pouétudier le groupe fondamental dg par voie transcendante.
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Expos IV

Morphismes plats

Nous donnons ici surtout les propés de platitude qui nous ont servi dans les egBpos
précedents. Unétude plus dtaillee se trouvera au Chapitre 1V des &kients de €onetrie
Algébrique” en peparatiof, oli onétudie de fagon sysmatique la situation suivanteX: étant
localement de type fini sur localement noetrien, et cohérent surX etY'-plat, donner des
relations entre les prog@tes deY’, celles de%, et celles des faisceaux dafents induits pag
sur les fibres d& — Y (du point de vue notamment de la dimension, de la dimension cohomolo-
gique, de la profondeur etc). On a notamment une facon systatique d’obtenir des @oemes
du typeSeidenbergu Bertini (pour les sections hyperplanes). lasultat essentiel pour I'appli-
cation des rathodes de platitude dans ce contexte est le suivant (qui 8erardé plus bas) :
SiY estinegre, X de type fini suf’, % cohérent surX, il existe un ouvert non vid¢’ deY” tel
que.Z soitY -plat aux points deX’ au-dessus d€. Une deuxéme facon, sans doute encore plus
importante, dont la platitude s’introduit ereGetrie Algébrique, est léhéorie de descenteroir
par exemple les deux expesde Grothendieck sur le sujet aenSinaire BourbakKi La platitude
semble ainsi une des notions techniques centraleseni@rie Algebrique.

Rappelons que la notion de platitude etfalplatitude @&té introduite par Serre dans GAGA.
Un expo& des N 1 et 2 suivants se trouvera aussi dans Alg. Comm. de Bourbaki (qui bien en-
tendu, comme le titre du livre I'indique, ne se borne pas au cas d’anneaux de base commutatifs)

Contrairement aux expés pecdents, nous ne supposons pas que les anneaux &w/isag
sont recessairement noéthiens.

1 Sorites sur les modules plats

Un module)M sur I'anneauA est ditplat (ou A-plat si on veut peciserA) si le foncteur

ICf.EGAIV1let12.
2et, pour un expasplus @taille, les Exposs VIl et IX plus bas.
3N. Bourbaki, Algzbre Commutative, Chap. | (Modules Plats), Act. Sc. Ind 1290, Paris, Hermann (1961).
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TMNI—>M®AN

(qui est en tous cas exact a droite) egacti.e. transforme monomorphismes en monomor-
phismes. Il revient au éme de dire que le premier fonctew@rivé a droite, ou tous les foncteurs
dérivesa droite, sont nuls, i.e. que 'on a

Tor{(M,N) =0  pour toutN,
resp. qu’on a
Tor(M,N)=0  pouri > 0, toutN.

Comme lesTor; commutent aux limites inductives, il suffit d’ailleurs dérifier ces conditions
pour N de type fini, et @me (prenant alors une suite de composition\d@ quotiens mo-
nogenes) que I'on ait

Tord (M, N) =0

si N monogene, i.e. de la formel/I, I étant un i@al deA. Notons d’ailleurs que
Tor (M, A)]) =0 <= T@, M — M =A@, M

estinjectif, comme on voit sur la suite exacte dBs:, compte tenu d&or?' (M, A) = 0. Donc
M platéquivauta dire que pour tout igal 7, ’lhomomorphisme naturel

I ®@aM— IM

est un isomorphisme. Il suffit d’ailleurs de I&nfier pour/ de type fini, a fortiori il suffit de
vérifier que le foncteun/ ® est exact sur les modulée type fini

Comme chaque fois qu’on a un foncteur ex&csi on identifie, pour un sous-objat de NV,
T(N') a un sous-objet d&(N), on a
T(N'NN"y=T(N"YNT(N")
T(N'+ N")=T(N")+T(N")
pour deux sous-objet§’, N” de V.

Une somme directe de modules plats, un facteur direct d’'un module plat, est plat. En particu-
lier, A étant plat, un modul&bre, donc aussi un modulgrojectif, est plat. Le produit tensoriel
de deux modules plats est plat, etAdiest plat surA, alorsM ® 4 B est plat surB pour tout
changement de baseB (a cause de I'associatigidu produit tensoriel et du fait qu’'un com@os
de foncteurs exacts est exact)./iest plat surB, B plat surA, alorsM est plat surd (méme
raison).

La suite exacte de¥or, plus la “commutativié duTor, donne :

Proposition 1.1 Soit0 — M' — M — M" — 0 une suite exacte de A-modules, M" étant plat.
Alors
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(i) cette suite reste exacte par tensorisation par n’importe quel A-module N

(ii) pour que M soit plat, il faut et il suffit que M’ le soit.

On peut donc dire que du point de vue du comportement par produits tensoriels, les modules
plats sont “aussi bons” que les modules libres ou projectifs (et la suite exacte de 1.1 en particulier
est “aussi bonne” que si elle splittait).

Soit S une partie multiplicativement stable dé, alors S™'A est plat surA, car
S'A® N = S~IN est un foncteur exact eN. Si M estA-plat, alorsS™'M = S'A@ M
estS~!A-plat, la eciproqueétant vraie siv/ — S—'M est un isomorphisme, i.e. si lesc S
sont bijectifs dans\/ (a cause de la transiti@tde la platitudeS—'A étant plat surd). Plus
géréralement, le cas d’un morphisme dégotemasX — Y et d'un faisceau quasi-cohereft
surX dont on veugtudier la platitude par rappaaty” conduita la situation avec deux anneaux :

Proposition 1.2 Soient A — B un homomorphisme d’anneaux, M un B-module, T une partie
multiplicativement stable de B.

(i) Si M est A-plat, alors T~ M est A-plat (donc aussi S—! A-plat pour toute partie multipli-
cativement stable S de A s’envoyant dans T').

(ii) Inversement, si M, est plat sur A, pour tout idéal maximal n de B, M,, est plat sur A (ou,
ce qui revient au méme, sur A, ot m est I’idéal premier de A image inverse de n) alors
M est A-plat.

On a en effet la formule, fonctorielle par rapportatmoduleN :
T'M@uN=T"M®4N)

car les deux membres sont fonctoriellement isomorph€s 'B @5 M ®p N(p) (avec
Ny = N ®4 B) en vertu des formules d’associatvidex. Il s’ensuit aussiit que siM ®4 N
est exact enV, il en est de reme del'"!M ® 4 N (comme compasde deux foncteurs exacts),
d'ou (i). Etil s’ensuit de r@me (ii), car pour &rifier I'exactitude d’'une suite d8-modules, il
suffit de \erifier I'exactitude des locales en tous les &hux maximaux dés.

Proposition 1.3 (i) Soit M un A-module plat. Si x € A est non diviseur de 0 dans A, il est
non-diviseur de 0 dans M. En particulier, si A est intégre, M est sans torsion.

(i) Supposons que A soit intégre et que pour tout idéal maximal m de A, Ay, soit principal
(par exemple A anneau de Dedekind, ou méme principal). Pour que le A-module M soit
plat, il faut et il suffit qu’il soit sans torsion.

On obtient (i) en notant que I'homdaitie » dansM s’obtient en tensorisant paid I'ho-
mothétie x dansA. Pour (ii), on peut supposegéf A principal gécea 1.2 (ii) ; il faut montrer
gue siM est sans torsion, alors pour touéa I de A, l'injection I — A tensorige parM est
une injection, ce qui signifie que leégerateurr de I est non diviseur dé dans)M, O.K.
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2 Modules fidelement plats

Un foncteurF d’une caégorie dans une autre est fidele si pour toutX, Y, I'application
Hom(X,Y) — Hom(F(X), F(Y)) est injective. S'il s’agit d’'un foncteur additif de &gories
additives, il revient au @me de dire qué'(u) = 0 implique v = 0, et cela implique que
F(X) = 0 impligue X = 0. Pour queF’ soitfidele et exactil faut et il suffit que la condition
suivante soit @rifiee : pour toute suitd/” — M — M" de morphismes dar, la suite trans-
formée'(M') — F(M) — F(M") est exactei etseulement da précdédente I'est. Ou encore :
F est exact, ef'(X) = 0 implique X = 0. (N.B. pour pouvoir parler d’exactitude, il faut sup-
poser les c&gories en je@bélienne$. Supposons qu’on ait une famil{@Z;) d’objets non nuls
de ¥ tels que tout objet non nul dé€ ait un sous-objet admettant un quotient isomorphen
M;. Alors F' fidele et exacéquivauta : F' exact, etF'(M;) # 0 pour touti. Si ¢ est la catgorie
des modules sur un anneau on peut prendre par exemple pqu;) la famille desA/m, m
parcourant les igaux maximaux del. (En effet, tout module non nul admet un sous-module
non nule monogne, donc isomorphieunA/I, I idéal+# A, lequel par Krull admet un quotient
A/m). De ces sorites, onédluit en particulier :

Proposition 2.1 Soit M un A-module. Conditions équivalentes :
(i) Le foncteur M ® 4 est fidele et exact.
(i bis) M estplat, et M ® 4 N = 0 implique N = 0
(iter) M estplat, et M ® A/m # 0 pour tout idéal maximal m de A.

(ii) Pour toute suite d’homomorphismes N’ — N — N, la suite tensorisée par M est exacte
si et seulement si la suite initiale I’est.

On dit alors queV/ est unA-modulefidelement platEn particulier, siV/ est ficklement plat,
alorsN — N’ est un monomorphismeé&gimorphisme, isomorphisme) si et seulement si I'ho-
momorphisme tensoispar)M I'est. Un module figélement plat edidele puisque 'homotktie
f dansM s’obtient en tensorisant paf I'homothétie f dansA.

On voit comme dans 1. les proptés de transitivé habituelles : le produit tensoriel de
deux modules fidlement plats est falement plat, siV/ est filklement plat sud, M ®4 B
est ficklement plat suB pour toute extension de la bade— B, si B est uneA-algebre qui est
fidelement plate suA et si M est unB-module ficklement plat, c’est us-module ficelement
plat.

Corollaire 2.2 Soit A — B un homomorphisme local d’anneaux locaux, M un B-module de
type fini. Pour que M soit fidelement plat sur A, il faut et il suffit qu’il soit plat sur A et non nul.

Résulte du criere (i ter) et de Nakayama. En particulipgur queB soit A-plat, il faut et il
suffit qu’il soit ficklementA-plat.
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Proposition 2.3 Soit A — B un homomorphisme d’anneaux, M un B-module qui est
fidélement plat sur A. Pour tout idéal premier p de A, il existe un idéal premier q de B qui
I’induise.

Divisant parp, on est rame@au cas 0p = 0. Localisant en I'idal premie), on est rameg
au cas a A est un corps. Maid/ étant ficclement plat sud est non nul, a fortiorB # 0, donc
B a un ickal premier, qui ne peut gu’induire l'uniquesial premier ded ! Geonetriguement, on
peut dire que I'existence d’'un faisceau quasi@emt.# sur X = Spec(B) qui soit “fidelement
plat” relativement A, implique queX — Y = Spec(A) estsurjectit

Corollaire 2.4 Supposons M plat sur A, de type fini sur B et supp. M = Spec(B) (i.e. My # 0
pour tout idéal premier q de B). Alors les idéaux premiers q de B contenant p B minimaux
induisent p.

On est encore ramérau cap = 0 (car les hypothses se conservent toutes en divisant), donc
A integre. On est raméra I'énoné suivant :

Corollaire 2.5 M étant come dessus, tout idéal premier minimal q de B induit un idéal premier
p de A qui est minimal.

En effet, localisant ep et q, on est ramel@a prouver que s et B sont locaux et 'homo-
morphismeA — B local, M un B-module non nul plat sud, et si B est de dimensiof, alors
A est de dimensiof. Par 2.2 et 2.3, on conclut que touéal premier ded est induit par un idal
premier deB, donc par I'iceal maximal ded donc est I'iceal maximal, cqfd. @onétriguement,
2.5 signifie que toute composanteéiductible deX = Spec(B) domine quelque composante
irréductible de&Y” = Spec(A) (moyennant I'existence d’un faisceau quasi@amnt de type fini
sur X, de supportX, et plat par rappo Y).

On notera qu’on n'a pas eusupposer dans 2M fidelement plat sud, mais rien ne garantit
alors 'existence d’'un idal premier contenaptB (donc d’'un minimal parmi de tels).

Proposition 2.6 Soiti: A — B un homomorphisme d’anneaux. Conditions équivalentes :
(i) B est un A-module fidelement plat.
(ii) B est plat sur A, et Spec(B) — Spec(A) est surjectif
(ii bis) B est plat sur A, et tout idéal maximal est induit par un idéal de B.
(iii) @ est injectif et Coker ¢ est un A-module plat.

(iv) Le foncteur Mgy = M ® 4 B en le A-module M est exact, et I’homomorphisme fonctoriel
canonique M — M p) est injectif.

(iv bis) Pour tout idéal I de A, I ® 4 B — I B est un isomorphisme, et I’'image inverse de I B dans
Aestégaleal.
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On a (i)= (ii) par 2.3, (ii) = (ii bis) est trivial, (ii bis)=- (i) par le criere (i ter) de 2.1. On a
(iii) = (iv) par 1.1, (iv)= (iv bis) trivialement (en faisamt/ = A/I dans la deuxime condition
(iv bis)), et (iv bis)=- (i) en vertu du criérede platitude par &@hux vu au dbut de 1 et du crétre
2.1 (iter). Enfin, (iv)=- (iii) par une €&ciproque facile de 1.1, et @- (iv) car si/NV est le noyau de
M — M ®4 B=T(M), alors (" étant exact) — T'(N) estnuldaIT(N) = N ®4 B =0,
d'ou N =0, cqfd.

3 Relations avec la comption

Soient4 un anneau noeéien,/ un ideal dansd, A le £pak compéte deA pour la topolo-
gie I-préadique, et pour tout-moduleM, soit M son compéte pour la topologid -préadique.
C’est unA-module, d’ai un homomorphisme canonique

M®A//l\—>]/\4\.

LorsqueM parcourt les modulede type finjle foncteurM — M est exact, comme ilsulte
facilement dutheoreme de Krull : SiV C M, la topologie deN est celle induite par la topo-
logie de M. CommeM ®,4 A est exact droite, on en conclut @sent (en &solvant) par

L — L' — M, avecL et L' libres de type fini) que I’'homomorphisme fonctoriel plus haut est un

isomorphismeé]\//f étant aussi exaétdroite) et par corégjuent quel/ 4 A est aussi un foncteur
exacten M. Par suite :

Proposition 3.1 Soient A un anneau noethérien, I un idéal de A, alors le complété séparé A de
A (pour la topologie I -préadique) est plat sur A.

Corollaire 3.2 Pour que A soit fidelement plat sur A, il faut et il suffit que I soit contenu dans
le radical de A.

En effet, il suffit d’appliquer le crédre 2.1 (i ter).

Ces esultats @sument tout ce qu’on sait dire, du point de vue de &alg lireaire, sur les
relations entred et A. Le corollaire 3.2 est surtout utiBdorsqued est un anneau local noéttien
et quel est contenu dans I'eehl maximaim (et le plus souvent, lui egtgal).

4 Relations avec les modules libres

Proposition 4.1 Soient A un anneau, I un idéal de A, M un A-module. Supposons qu’on soit
sous I’une ou I’autre des hypotheses suivantes :

(a) I est nilpotent
(b) A est noethérien, I est dans le radical de A, et M est de type fini.
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Pour que M soit libre sur A, il faut et il suffit que M ® A/I soit libre sur A/I, et que
Tor (M, A/T) = 0.

C’est recessaire, prouvons la suffisance. $ej} une famille delements deV/ dont I'image
dansM ® A/I = M/IM y définit une base sut /I (c’est une famille finie dans le cas (b)). Soit
L le A-module libre construit sur le @me ensemble d’indices, on a donc un homomorphisme
L — M tel que la tensorisatio’ par A/ induit un isomorphism&’(L) = T(M). Si Q est
le conoyau dd. — M, on a doncl'(Q)) = 0, d’'ou @ = 0 en vertu de Nakayama (valable sous
'une ou l'autre condition (a) ou (b)). Dont — M est surjectif, soitR son noyau, on a donc
une suite exacte

0—-R—-L—->M-—0
d’ot, commeTor?' (M, A/I) = 0, une suite exacte¢ — T(R) — T(L) — T(M) — 0, d’'ol
T(R) = 0, d’ou encorel'(R) = 0 en vertu de Nakayama (tenant compte que dans le ca® (b),
est de type fini puisqud était suppos noetkerien).

Corollaire. On peut remplacer la condition Tor{(M, A/I) = 0 par : I’homomorphisme cano-
nique surjectif

(*) gr}(M) ®ay1 gr(A) — gr (M)

est un isomorphisme.

En effet, siM est libre, cela est certainemerérifié. Il faut donc prouver que si/ ® A/I est
libre surA/I et la condition sur legr vérifiée, alorsM est libre. On reprend la&nonstration
ci-dessus en construisaht— M, il résulte de I'hypothse que cet homomorphisme induit un
isomorphisme pour les graés assoés, donc son noyau est contenu dans l'intersectiod’des
donc est nul (comme il est trivial dans (a), et bien connu dans (b)). Cqfd.

Corollaire 4.3 Supposons que A/I soit un corps. Alors les conditions suivantes sur M sont
équivalentes :

(i) M est libre

(ii) M est projectif
(iii) M est plat

(iv) Tor{"(M,A/I) =0

(v) L’homomorphisme canonique () est bijectif.

En effet, dans le cas envigag/ @ A/ est automatiquement libre.

Le réesultat pecedent est valable dans les deux cas suivants :

(&) M est un modulguelconquesur un anneau locad dont I'idéal maximall estnilpotent
(par exemple un anneau local artinien).

(b) M estun modulele type finsur un annealocal noetlérien
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Rappelons pour émoire :

Corollaire 4.4 Supposons que A soit un anneau local noetterien inegred’idéal maximalm = 1,
de corps résiduel k = A/, de corps des fractions K. Soit M un module de type fini sur A. Alors
les conditions équivalentes (i) a (v) précédentes équivalent aussi a

(vi) M ®4 K et M ® 4 k sont des espaces vectoriels de méme dimension (i.e. le rang de M sur
A est égal au nombre minimum de générateurs du A-module M ).

Demonstration imradiate : on laisse au lecteur le soin dayaliser au casioA est seulement
suppoé san€léments nilpotents : il faut alors exiger que les rangd/deour les icéaux premiers
minimaux deA soientégauxa la dimension de I'espace vectorigl ® 4 k.

5 Criteres locaux de platitude

Proposition 5.1 Soit A un anneau muni d’un idéal I, M un A-module. Supposons
Tor(M,A/I") =0  pourn >0

alors I’homomorphisme canonique surjectif

(=) gr7(M) @41 gr(A) — gr (M)

est un isomorphisme. La réciproque est vraie si I est nilpotent.

L’hypothese signifie que les homomorphismes
I"®a M — I"M
sont des isomorphismes, di@aussidt le fait que les homomorphismes
I’"‘/[’“rl Qs M — I"M/I" M

sont des isomorphismeséBproquement, supposons cette conditierifiee et/ nilpotent, prou-
vonsTor{!(M, A/I") = 0 pour toutn. C'est vrai pourn grand, proédons par&currence des-
cendante sur, en le supposant progpourn + 1. On a un diagramme commutatif

M®[n+1*>M®In*>M®([n/I"+1)*>O

L] |

0 ——> M [ MI" MI" /M ——

ou les lignes sont exactes. Par hypesth, la derire feche verticale est un isomorphisme, et
I’hypothése de &currence signifie aussi que la prena feche verticale I'est. 1l en est donc de
méme de la fiche verticale iediane, ce qui a@ve la @monstration.

La proposition suivante att degage au moment duéninaire par Serre; elle permet des
simplifications substantielles dans l&pent nuraro.
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Proposition 5.2 Soient A — B un homomorphisme d’anneaux, M un A-module. Les condi-
tions suivantes sont équivalentes :

(i) Pour tout B-module N, on a Tor{"(M,N) = 0;
(ii) Tor{(M,B) =0, et M(py = M @4 B est B-plat.

On a un isomorphisme fonctoriel
M®sN=(M®®ysB)®g N

qui exprime le premier membre, congid comme foncteur en/, comme un comp@sde deux
foncteursM — M ®4 B etP — P ®g N. Comme le premier transforme modules libres sur
A en modules libres suB, donc projectifs en projectifs, on a la suite spectrale des foncteurs
compogs

Tor, (M, N) « Tor (Tor, (M, B), N)

d’ou une suite exacte pour les termes de basélegr
0 « Tor?(M ®4 B,N) « Tor{(M, N) « Tor{(M, B) ®4 N

Si (i) est \erifie, alors on conclut de cette suite exd€te” (M @4 B, N) = 0 pour toutN, i.e.
M ®4 B estB-plat, d’au (ii). Siinversement (ii) estérifié, alors dans la suite exacte les termes
entourantTor? (M, N) sont nuls, donc on a (i).

Corollaire 5.3 Supposons que B = A/1, alors les conditions précédentes équivalent a la sui-
vante :

(iii) Tor{(M, N) = 0 pour tout A-module N annulé par une puissance de I.

En effet, (i) signifie qu’il en est ainsi sV est annw par/. On en @duit (iii) en appliquant
I'hypothese aux " N/ N.

Corollaire 5.4 Sous Ies conditions de 5.3, les conditions envisagées impliquent que I’homomor-
phisme fonctoriel

(*) gr](M) @1 g (A) — gr; (M)
est un isomorphisme, et que M ® 4 A/I est plat sur A/1.
Il suffit d’appliquer (iii) et (5.1). Utilisant la&ciproque de 5.1 dans le cAsilpotent, on trouve :

Corollaire 5.5 Soient A un anneau muni d’un idéal nilpotent I, M un A-module. Les conditions
suivantes sont équivalentes :

(i) M est A-plat
(i) M ®4 A/I est AJI-plat, et Tor{(M,A/T) =0
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(iii) M @4 A/I est A/I-plat, et ’'homomorphisme canonique (x) sur les gradués est un iso-
morphisme.

En effet, ce sont respectivement les conditions (iii) et (i§gdentes, et celles de corollaire 5.4.

Ne supposons plus nilpotent, alors on aura seulement a priori dans 5.5 les implications (i)
= (ii) = (iii). D’autre part, comme la condition (iii) reste stable en divisant par une puissance
de, on voit en vertu de 5.5 qu’elle implique

(iv) pour tout entiem, M @ A/I™ est plat surA/I".

On se propose de donner des conditions moyennant lesquelles on peut en conclure (i), i.e.
gue M est A-plat. Je dis qu’il suffit pour ceci qud soit noetleérien et queM satisfasse la
condition de finitude suivantepour tout module de type finV sur A, M ® 4 N est €pate
pour la topologiel-préadique (Il suffirait de le \erifier si N est un idal de type fini dansl).

En effet, prouvons que sous ces conditionsysi— N est un monomorphisme de modules de
type fini, M ® 4 N’ — M ®4 N est un monomorphisme. Il suffit en effet de montrer que le
noyau est contenu dans 1€ M @4 N') = Im(M ®4 I"N' — M ®4 N'), ou encore dans les
Im(M @4V — M®s N')=Ker(M @4 N — M®4 (N'/V])), otV parcourt un sygime
fondamental @nombrable de voisinages de 0 da¥fimuni de sa topologié-adique). D’apes

le theoreme de Krull, la topologi¢-adique deV’ est induite par celle d&', on peut donc prendre
V! = N'NI"N. Consicrons alors le diagramme commutatif

M @4y N ——=M Q4 (N//Vri)

| |

M@s N——=M®4 (N/I"N)

98 CommeN’/V! et N/I"N sont annuds parl”, le deuxeme homomorphisme vertical s’identifie
a celui céduit de I'hnomomorphismamjectif N'/V! — N/I"N en tensorisant sudl/I™ avec le
(A/I™)-moduleplat M @4 A/I", il est dondnjectif. Par suite, le noyau d&f ® 4 N’ — M ®4 N
est contenu dans celuidé @4 N' — M @4 (N'/V), ce qu’on voulait.

La condition de “finitude” envisage surM est \erifiee en particulier sb/ est un module de
type fini sur uned-algebre noethrienne,B telle quel B soit contenu dans le radical de: en
effet, alorsM ®4 N est un module de type fini su8 pour tout module de type finV sur A,
part 20 donc €pak par Krull pour la topologié-adique= sa topologig / B)-adique. On trouve ainsi :

Théoreme 5.6 Soient A — B un homomorphisme d’anneaux noethériens, I un idéal de A tel
que I B soit contenu dans le radical de B, M un B-module de type fini. Les conditions suivantes
sont équivalentes :

(i) M est A-plat
(i) M @4 A/I est AJI-plat, et Tor{(M,A/T) =0
(iii) M @4 A/I est A/I-plat, et ’homomorphisme canonique
g7 (M) @41 gr,(A) — gr (M)
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est un isomorphisme.

(iv) Pour tout entiern, M ® 4 A/I" est plat sur A/I™.

Ce esultat s’applique surtout lorsquk B sont des anneaugcauxnoettériens,A — B un
homomorphisme local, gt un ideal maximal (et on peugduire aussit 5.6a ce cas). Un cas
intéressant est celuliod /T est un corps, i.e. maximal, auquel cas la condition qlé® 4 (A/1)
est plat surd/I devientinutile ; de plus, comme alors lag/™ sont des anneaux locaux artiniens,
la condition (iv) signifie que led/ @4 (A/I™) sontlibressur lesA/I".

Corollaire 5.7 Soit A — B un homomorphisme local d’anneaux locaux noethériens,
u: M’ — M un homomorphisme de B-modules de type fini, supposons M plat sur A. Alors
les conditions suivantes sont équivalentes :

(i) u est injectif, et Coker u est plat sur A.
(i) ua k: M' ®4s k — M ®4 k est injectif
(ou k désigne le corps résiduel de A).

()=(ii) en vertu de 1.1, prouvons l&ciproque. Tout d’abord est injectif, car il suffit de le
vérifier sur les gradues assesj ai cela esulte d’un caé commutatif que le lectew@crira. Soit
M" sonCoker, on a donc une suite exacte

0—-M —=M-—-M —0

d’oul par la suite exacte d&sr, compte tenu de I'hypoése (i) et délors (M, k) = 0, larelation
Tori' (M”, k) = 0, doncM” est plat surd par le tleoRme 5.6.

Corollaire 5.8 Soys les conditions de 5.6, soit J un idé{ll de B contenant I B et contenu dans
le radical. Soient A le complété I-adiques de A et B et M les complétés J-adiques de B et M.
Pour que M soit A-plat, il faut et il suffit que M soit A-plat.

(N.B. la suffisance@sulterait @ja facilement de 3.2). On utilise le e (iii) de 5.6 dans la
situation(A, B, I, M) et dans la situatioA, B, [ A, M'). On constate que les conditions obte-
nues pour 'un et l'autre cas soatjuivalentes, grcea 3.2.

Corollaire 5.9 Soient A — B — C des homomorphismes locaux d’anneaux locaux noethé-
riens, M un C-module de type fini (N.B. C n’intervient que pour pouvoir mettre une condition de
finitude sur M ). On suppose B plat sur A. Soit k le corps résiduel de A. Conditions équivalentes :

(i) M est plat sur B.
(ii) M est plat sur A, et M ® 4 k est plat sur B ® 4 k.
Limplication (i)=-(ii) est triviale, prouvons (ig=(i). On applique le criére (iii) de 5.6a
(B,C,mB =1,M),commeM ®p (B/I) = M ®&p(B®ak) =M R4k, la premere condition
de ce crikre signifie peciement quel/ ® 4 k est plat suB ® 4 k, parfait. La deux@me condition
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du critere est @rifiee parce qué/ est plat surd et B plat surA, par une formule d’associati@t
du produit tensoriel. — Bien entendu, sefaranta 5.5 au lieu de 5.6, on obtient @non@
analogue sans condition noétfenne et de finitude, quand en suppose en revanche géal tid
de A est nilpotent. (Le fait quen ait &t pris maximal n’est d’ailleurs pas intervenu ; mais c’est
en un sens le casit' maximal” qui est “le meilleur possible™).

6 Morphismes plats et ensembles ouverts

Rappelons d’abord quelquessultats sur les ensembles constructibles, qui sont d’ailleurs
demontés dans des notes en circulation dunfinaire Dieudon&Rosenlicht sur les Sémas*.

Soit X un espace topologique. On dit avec Chevalley qu’une parti¥ dstconstructiblesi
elle est eunion finie de parties localement feres.

Lemme 6.1 Soit X un espace topologique noethérien, soit Z une partie de X . Pour que Z soit
constructible, il faut et il suffit que pour toute partie fermée irréductible Y de X, Z N'Y est non
dense dans Y ou contient une partie ouverte non vide de I’espace Y .

On en akduit, utilisant un lemme bien connu d’Adgre Commutative :

Lemme 6.2 (Chevalley) Soit f: X — Y un morphisme de type fini de préschémas, avec Y
noethérien. Alors f(X) est constructible.

Lemme 6.3 Soient X un espace topologique noethérien dont toute partie fermée irréductible
admet un point générique, U une partie constructible de X, v € X. Pour que U soit un voisinage
de x, il faut et il suffit que toute générisation y de x (i.e. touty € X tel que x € y) soit dans U.

En particulier

Corollaire 6.4 Soit X un espace topologique noethérien dont toute partie fermée irréductible
admet un point générique, U une partie de X . Pour que U soit ouverte, il faut et il suffit qu’elle
satisfasse les deux conditions suivantes :

(a) U contient toute générisation de chacun de ses points
(b) sixz € U, alors U N T contient une partie ouverte non vide de I’espace .

En effet, U est nécessairement constructible griace a 6.1, et on applique le critére 6.2 qui
prouve que U est un voisinage de ses points.

Corollaire 6.5 Soit f: X — Y un morphisme de type fini de préschémas, avec Y localement
noethérien, x un point de X, y = f(x). Pour que f transforme toute voisinage de x en un
voisinage de y, il faut et il suffit que pour toute générisation y' de vy, il existe une générisation x’
de x telle que f(x') = v/.

ACf.EGA 01 9, EGA IV 1.8 et 1.10.
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On peutévidemment supposer qué et Y sont affines, donc noethiens. La condition est
suffisante, car il suffit de prouver quyéX) est un voisinage dg, or f(X) est constructible par
6.1, et il suffit d’appliquer le crére 6.3. La condition estatessaire, car soit’ = i/, et soitF’
la réunion des composanteséductibles deg’_; (Y”’) qui ne contiennent pas Alors X — F' est
un voisinage ouvert de, donc son image est un voisinageyeet a fortiori contient)’, donc
il existex], € X — F tel quef(z}) = y/. Consicrons une composanteéductible def ' (Y”)
contenant:/, elle contient Bcessairement (car autrement elle serait contenue danssoitz’
son point @rérique. C’est une &érisation der, et f(z') est une @rérisation def (z}) = v/
contenue dang”’, donc eségalay’, cqfd.

Théoreme 6.6 Soient f: X — Y un morphisme localement de type fini, avec Y localement
noethérien, F' un faisceau cohérent sur X de support X, plat par rapport a Y. Alors f est un
morphisme ouvert (i.e., transforme ouverts en ouverts).

Il suffit de prouver le crigre 6.5 pour tout point € X. Or les grérisationst’ de x corres-
pondent aux iéaux premiers de,, cellesy’ dey correspondent aux &ghux premiers de,, et il
faut donc erifier que tout i@al premier dev, est induit par une igal premier deJ,,. Or F,, est
un ¢, module non nul et plat, donc figlement plat sur, par 2.2. On peut donc appliquer
2.3, ce qui ackve la @&monstration.

Remarques. Comme la platitude se conserve par extension de la base, on voit que sous les
conditions de 6.5 est nemeuniversellement ouverf’ignore cependant, lorsqi€ est inegre
et X de type fini surY’, si f induit sur toute composant¥, de X un morphisme ouvert, ou

102 méme seulemeriquidimensionnet i.e. dont toutes les composantes des fibres drnendi-
mension (on sait seulement qixe domineY’). La question estéea la suivante : soitl — B
un homomorphisme local d’anneaux locaux néens, tel que3 soit plat surA etm B soit un
ideal de @finition de B, (ce qui implique d’ailleurslim B = dim A). Est-il vrai que pour tout
idéal premier minimap; de B, on adim B/p, = dim B ? Signalons seulement que &ponsex
la premere question estagative quand on remplace I'hypetfe de platitude de 6.5 par la seule
hypotrese quef soit universellement ouvert.

Lemme 6.7 Soient A un anneau intégre noethérien, B une A-algeébre de type fini, M un B-
module de type fini. Alors il existe un élément non nul f de A tel que M soit un module libre
(a fortiori plat) sur Ay.

Soit K le corps des fractions dd, alors B ® 4 K est une algbre de type fini su¥, et
M ®4 K un module de type fini sur cette degné. Soitn la dimension du support de ce module,
nous raisonnerons pageurrence sun. Sin < 0i.e. siM ®4 K = 0, alors prenant un nombre
fini de gerérateurs dé\/ sur B, on voit qu'il existe unf € A qui annule ces@rérateurs, donc
M, d'ou M; = 0 et on a gagé. Supposons > 0. On sait que l&B-moduleM/ admet une suite
de composition dont les quotients successifs sont isomoipldes modules3 /p;, lesp, étant

SLa réponsea la deuxéme question est affirmative, celiela premére regative n@me sif estétale; cf.
EGA IV 12.1.1.5 et EGA Eif, 33.
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des ickaux premiers d&. Comme une extension de modules libres est libre, on est &@men
cas @ M lui-méme est de la form8/p, ou encore identiqua B, B étant uneA-algebreintegre
Appliquant le lemme de normalisation de Noethdn K -algebre B ® 4 K, on voit facilement
qu’il existe unélementf non nul deA tel que B, soit entier sur le sous-annea|ty,. .., t,],
ou lest; sont des indtermirees. Donc on peutajh supposeB est entier su€’ = Alty, ..., t,],
c’est donc urC-module de type fini sans torsion. Seitson rang, il existe donc une suite exacte
deC-modules :

0—-C"—=B—-M—0

ou M’ est unC-module de torsion. Il s’ensuite que la dimension de Krulldw 4, K-module
M' ®, K est strictement irdrieura cellen de C ® 4 K. D’apres I'hypotlese de &currence,
il s’ensuite quea condition de localiser par rappartun f non nul convenable dd, on peut
supposer qué/’ est unA-module libre. D’autre part.™ est unA-module libre. DoncB est
alors unA-module libre, on a fini.

Lemme 6.8 Soient A un anneau noethérien, B une algebre de type fini sur A, M un B-module
de type fini, p un idéal premier de B, q I’idéal premier qu’il induit sur A. On suppose M, plat
sur Aq (ou sur A, c’est pareil). Alors il existe un g € B — p tel que

(a) (M/qM), est plat sur A/q.
(b) Tori'(M, A/q), = 0.

En effet, appliquant 6. @ (A/(q), B/qB,M/qM) on voit d’abord qu’il existe unf dans
A — q tel que (M /qM), soit plat surA/q. D’autre part, commel/, est plat surA, on a
Tor{!(M, A/q), = Tor'(M,, A/q) = 0, donc commélor;'(M, A/q) est unB-module de type
fini, il existe ung € B — p tel gu’on ait (b). On peut alors (remplacanpar g f) supposer qu’on
a en néme temps (a), ce qui prouve le corollaire.

Corollaire 6.9 Avec les notations de 6.8, pour tout idéal premier p’ de B contenant p et ne
contenant pas g, M, est plat sur A (ou, ce qui revient au méme, sur Ay, ot q est I’idéal premier
de A induit par p’).

Il suffit d’appliquer le criere 5.6 (ii) au sysime (A, By, q, My ), en utilisant la localisation
desTor.

Théoreme 6.10Soit f: X — Y un morphisme de type fini, avec Y localement noethérien, et
soit F' un faisceau cohérent sur X . Soit U I’ensemble des points x € X tels que I, soit plat sur
O'f(z). Alors U est un ensemble ouvert

Démonstration : On peut supposEret Y affines, d’anneauX et A, donc F' défini par un
B-module M de type fini. On applique le céte 6.4. La condition (a) eskvifiée trivialement
par 1.2 (i), rest& verifier la condition (b) de 6.4. C’est ce quite fait dans le lemme 6.8 et le
corollaire 6.9.
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Dans beaucoup de questions, la forme plus faible suivanteé&hethe 6.10 est suffisante
104 (qui resulte @ja du lemme 6.7, et neégessite donc ni la technique des constructibles, ni le
théoeme 5.6) :

Corollaire 6.11 Sous les conditions de 6.10, si on suppose Y intégre, alors il existe un ouvert
non vide V dans Y tel que F soit plat relativement 'Y en tous les points de f~(V).

En effet, 'ensemble ouveff contient la fibre du point&rérique deY” (puisque I'anneau local
de ce point est un corps), donc il contient un ouvert de la fofmé1’), X étant de type fini
surY. De 6.11, on conclut aussi facilement &sultat suivant, Y est suppos noetkerien (mais
pas recessairement iagre) : il existe une partition d€ en des parties localement fezesY;
telles que (munissanf de la structureé@duite induite)F’ induise sur chaqud’; = X xy Y; un
faisceau plat par rappaaty;.
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Expos V

Le groupe fondamental : generalites

O Introduction

Le présent @minaire est la suite dueiinaire 1960. Nousferonsa ce dernier par des sigles
tels que (SGA | 9.7) qui signifie :&ninaire de @onetrie Algébrique, expas |, N°9.7. Les
numéros des exp@s de 1961 suivront ceux de 1960. Noétérons awElements de Eonretrie
Algébrique de DieudorgrGrothendieck par des sigles tels que (EGA | 8.7.3).

Le present expds resume (avec deeyers comg@ments) les derniers expssde 1960, qui
n'avaient pagte rediges.

Comme en 1961, nous nous limiterons @émgle ¢gréralea des pesctemas localement
noetteriens, bien que souvent cette restriction soit inessentielle. Nous admettrons dan€l’expos
VI la théorie de la descente &ttment plate,&sunée dans 8minaire Bourbaki R190. S'il y
a lieu, nous en donnerons un expgsus @taille dans un expésulterieut, une fois que le lec-
teur aura eu I'occasion de se convaincre de I'@itle cette technique, pour laethrie du groupe
fondamental.

1 Présctemaa groupe fini d’'opérateurs, presclema quotient

SoientX un pesclema,G un groupe fini oprant surX par automorphismes, droite pour
fixer les ickes. SiX est affine d’annead, G opere donc par automorphismagauche sud.

Pour tout pesclema Z, G opere a gauche sur I'ensemblHom(X, Z), on peut donc

consickrer 'ensemble
Hom(X, 2)

ICF. Exp. VI et Exp. VI
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des morphismes invariants pat Il depend fonctoriellement d&, on peut se demander si ce
foncteur est “regsentable”, i.e. isomorpteun foncteurZ — Hom(Y, Z). Cela signifie qu’on
peut trouver un gFsclemay’, et un morphisme invariant p&f

p: X —=Y
tel que pour toutZ, I'application correspondantig— gp
Hom(Y, Z) — Hom(X, Z)¢

soit bijective. On dit alors quéY’, p) est unprésctema quotientle X par g (il est determiré a
isomorphisme unique ps).

Proposition 1.1 Soient A un anneau sur lequel le groupe fini G opére a gauche, B = A% le
sous-anneau des invariants de A, X = Spec(A) et Y = Spec(B), p: X — Y le morphisme
canonique (évidemment invariant par G). Alors
(i) A est entier sur B i.e. p est un morphisme entiet.
(ii)) Le morphisme p est surjectif, ses fibres sont les trajectoires de G, la topologie de Y est
quotient de celle de X .
(iii) Soit x € X,y = p(z), G, le stabilisateur de x, alors r(x) est une extension algébrique
quasi-galoisienne de r(y) et I’application canonique de G, dans le groupe Gal(x(z)/k(y))
des k(y)-automorphismes de r(x) est surjectif.

(iv) (Y, p) est un préschéma quotient de X par G.

Les énonés (i) (i) (i) sont bien connus en alpre commutativieet sont mis seulement
pour meémoire, sauf I'assertion sur la topologie, qui provient du faiggal suivant, coresquence
facile du tleoreme de Cohen-Seidenberg : un morphisme entier eséféren transforme fergs
en fermes). Notons tous de suite :

Corollaire 1.2 Sous les conditions précédentes, I’homomorphisme naturel Oy — p,(Ox )¢ est
un isomorphisme.

Cela esulte aussit de la formule
(STMA)S = 571(A%)

valable pour toute partie multiplicativement stalsledle B = A¢ (formule qui se module, et
s’énonce plus gréeralement pour un changement de bdse> A’ qui estplat), appligLee au cas
ou S est engendr par urélementf de B.

L'assertion (ii) et cor. 1.2 impliquent facilement (iv) ; plusrgralement, on aura ceci :

Proposition 1.3 Soient X un préschéma a groupe d’automorphismes finis G, p: X — Y un
morphisme affine invariant tel que Oy — p*(ﬁ’x)c. Alors les conclusions (i) (ii) (iii) (iv) de 1.1
sont encore valables.

2Cf. N. Bourbaki, Alg. Comm. Chap. 51 et§2, th. 2.
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En effet, pour (i) (ii) (iii) on peut supposey donc X affine, et siB, A sont leurs an-
neaux, I'hypotise impliqueB = A%, il suffit d’appliquer 1.1. Pour (iv), on utilise (i) et
ﬁy = p*(ﬁX)G

Corollaire 1.4 Sous les conditions de 1.3, pour tout ouvert U de Y, U est un quotient de
X|U =p }(U) par G.

En effet,p~! (U) — U induit parp satisfait aux r@mes hypotbses que.

Si maintenantX est unZ-présclema et les oprations deZ sont desZ-automorphismes,
alors par (iv)Y est unZ-présctema. Ceci dit :

Corollaire 1.5 Pour que X soit affine resp. séparé sur Z, il faut et il suffit que Y le soit. Si X
est de type fini sur Z, il est fini surY" ; si de plus Z est localement noethérien, Y est de type fini
sur Z.

CommeX est affine et a fortioriepae surY’, siY est affine resp.&paé surZ, X I'est aussi.
Réciproquement, supposofsaffine surZ, prouvons qué” I'est : on peut gacea 1.4 supposer
7 affine, et on est raméa prouver que sk est affineY I'est, ce qui sulte de la étermination
explicite deY” commeSpec(A)¢ faite dans 1.1. De @me, comme: X — Y est entier donc
universellement ferg, et surjectif, il s’ensuit que st est £paé surZ, Y 'est aussi (lemme
dégager!); en effet, dans le diagramme

Xx, X2y «,v
AX/ZT TAY/Z

X Y

le morphismeX x, X — Y xzY estferng, donc transforme la diagonale (feéx@) deX x , X
en une partie fer@e deY” x ; Y, qui n’est d’ailleurs autre que la diagonale de ce dernier puisque
p est surjectif. — SILX est de type fini suZ, il I'est a fortiori surY donc il est fini surY’
(puisqu’il est @ja entier surY’). Supposons de plug localement noetrien, prouvons qu&
est de type fini suZ. On peut gacea 1.4 supposef affine. Comme I'espace topologiqué
est quasi-compact et que X — Y est surjectify” estégalement quasi-compact dorgzinion
108 finie d’ouverts affines, et par 1.4 on est rar@e cas 0 Y est affine, doncX affine. Mais alors
'anneauA de X est une algbre de type fini sur I'anneall de Z qui est noetérien, et il est
connu queB = A“ est alorsegalement une adpre de type fini suf’ (car A sera entre, donc
finie sur une sous-adpre B’ de B de type fini surC, donc commeB’ est noetkrien, B est
part 22 également finie suB’, donc de type fini su€).

109 Corollaire 1.6 Pour que X soit affine resp. un schéma, il f et s que Y Ie soit.

Définition 1.7 Soit X un préschéma ou un groupe fini G opére a droite. On dit que G opere de
facon admissible’il existe un morphisme p: X — Y ayant les propriétés de 1.3 (ce qui implique
que X /G existe et est isomorphe 2Y").
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Proposition 1.8 Soit X un préschéma ot le groupe fini G opére a droite. Pour que GG opére de
facon admissible, il faut et il suffit que X soit réunion d’ouverts affines invariants par GG, ou
encore que toute trajectoire de G dans X soit contenue dans un ouvert affine.

Cette derrgére condition esévidemment impligée par la prendre, eta son tour elle I'im-
plique; car soitl’ une trajectoire dé-, U un ouvert affine la contenant, I'intersection des trans-
formés del/ par lesg G est alors un ouvef’ stable pals, contenanf” et contenu dans I'ouvert
affine U. Comme dané/, toute partie finie a un sy&mne fondamental de voisinages ouverts af-
fines, il existe un voisinage ouvert affihede 7" contenu dang/’. Ces transforras par leg) G
sont donc affines et contenus dafsjui estséparg, donc leur intersectioti” est un ouvert affine
qui est invariant pafs et contientl”. — Ceci po§, la condition envisae dans 1.8 esEcessairg
car on prendra les images invers€sd’ouverts afiines’; recouvranty’. Elle est suffisante, car
on peut alors par 1.1 construire les quotieYits= X; /G ; dans chaqué; I'image deX; N X
est un ouverl;; s'identifianta X;;/G par 1.4, en particulier on eréduit des isomorphismes
Y;; — Y;; permettant de recoller l&§ pour construire’’. Serre pefere construire directement
I'espace topologique quotiefit de X parG, mettre dessus le faisceea{0'x )¢ et verifier que
Y devient un pesctema et qu’on est alors sous les conditions de 1.3.

Corollaire 1.7 Si G opérant sur X est admissible, il en est de méme pour tout sous-groupe H
de G (donc X/ H existe).

Cela peut aussi seévifier directement sur la situation 1.3, en notant qu’on peut toujours
supposerX affine sur unz et less € G operent parzZ-automorphismes (on prend par exemple
Z =Y);onen effet :

Corollaire 1.8 Supposons X affine sur Z, et les opérations de G des Z-automorphismes. Alors
G opére sur X de facon admissible. Si X est défini par un faisceau quasi-cohérent o/ d’algébres,
Y est défini par le faisceau </ “ des invariants de </ par G.

Proposition 1.9 Supposons que G opére de fagcon admissible sur X, et que X/G = Y soit
un préschéma sur Z. Considérons un morphisme de changement de base 7' — Z, posons
X' = X xz 7Y =Y xz Z', de sorte que G opére encore par transport de structure sur
X', le morphisme p’: X' — Y’ étant invariant. Si Z' est plat sur Z, alors p’ satisfait encore les
hypothéses de 1.3 i.e. 0%, — p.(Ox:)¢ est un isomorphisme (p’ étant de toutes fagons affine).
Donc G opére de fagon admissible sur X', et (X/G) xz Z' = (X xz Z')/G.

On peutévidemment supposéef = Y, on est ramedau cas 0 de plusY” etY” sont affines.
Il faut montrer que siB est le sous-anneau des invariantstepérant dansA, et si B’ est une
algebre surB plate surB, alors B’ est la sous-akjpre des invariants d¢’ = A @z B’. C'est
immeédiat, car la suite exacte

0— B - 41, A@

(ou le dernier terme signifie une puissancedjest al j(x) est le sy®me des -« — z, s € G)
reste exacte par tensorisation pgr
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On fera attention que I'’hypoéise de platitudétait essentielle pour la valiéidu €sultat ; en
particulier, siY”’ est un sous-g@sclema ferné de X (par exemple r@me un point ferra deX),
X' son image inverse dan§, alorsY’ ne s’identifie pagn ¢ggrérala X’/G. Nous verrons qu'il
en est Banmoins ainsi sk estétale sury’.

Pour finir, donnons un formalisme aussi commode que trivial. Seih pesctema. Comme
dans la catgorie des m@sclemas, les sommes directes existent, on peut pour tout ensémble
consicerer le pesctema somme d’une familléY;);,cr de pésclemas tous identiquesY’, ce

110 présclema sera nétY” x E. Il est caradtrise par la formule

(%) Hom(Y x E,Z) = Hom(E, Hom(Y, 7))

ou le deuxemeHom désigneévidemment I'ensemble des applications de I'ensenibldans
'ensembleHom (Y, Z). On a un morphisme canonique

YXxE—=Y

faisant de&” x £ un pesclema su”. Comme les produits fibs commutent aux sommes directes
(dans la catgorie des frsclemas) on aura, s est un pesclema sur un autreZ, pour un
changement de basg — 7 :

Y XE)xzZ' =Y xzZ")x E
(formule surtout utile sEZ = Y'). D’autre part, on conclut trivialement de |&fihition
YXE)XF=Yx(ExF)=(YxXFE)xy (Y xF)

(la dernere formule cependangésultant de la commutatigtsignate plus haut)

PourY fixe, on peut regardéf x £ comme un foncteur ef, a valeurs dans les gsclemas
surY’, foncteur qui commute aux produits finis d’aprla formule peadente, (ce qui permet par
exemplea tout groupe ordinairé& de faire correspondre un sana en groupe¥ x G surY,
qui sera fini sul” si Y l'est, etc...). Plus greralement, ce foncteur est “exacgauche”, mais
Nous n'aurons paa nous en servir ici. Ce foncteur commute aussi trivialement aux sommes
directes, et il est aussi “exaatdroite”, comme on voit aussit sur la formule de é&finition (x).

En particulier, si le groupe fir: operea droite dans I'ensemblg, alors il ogerea droite dans
Y x E,etona
(Y x E)/)G=Y x (E/G)

ou en fait le quotient du premier membre satisfait aux conditions de 1.3 (c’e<tdimth
2 Groupes de @&eccomposition et d'inertie. Casetale
111 Soit G groupe fini o@granta droite sur le ggsclemaX. Siz € X, on appellegroupe de
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décomposition de le stabilisateur7,(x) dex. Ce groupe opre canoniquemen&(gauche) sur
le corps ésiduelx(z), et I'ensemble deglements de&~,(x) qui operent trivialement est appel
groupe d'inertiede z, no& G;(x).

Supposons qué; opere surX de facon admissible et qug soit un pésclema sur un
présclemaZ. Fixons-nous urr € Z, et une extension adpriquement clos€ de x(z) ayant
un degé de transcendance frjeura celui des:(x)/k(z), ol z est un point deX au-dessus de
z. On peut regarde$pec(£2) comme unZ-sckéma, et les points d& a valeurs dan§ corres-
pondent aux homomorphismes gl )-algebress<(z) — €2, ol = est un point deX au-dessus de
z; commes? aété prise assez grande, tout paintle X au-dessus de est la localié d’un point
de X a valeurs dang. Si X (Q2) etY (2) désignent respectivement I'ensemble des pointX'de
etY avaleurs dan€, on a une application naturelle

X(©Q) =Y (Q),

d'autre part,G opére surX () et I'application pecdente est invariante péf. Ceci po§, les
conclusions (ii) et (iii) de 1.3 s’interptent aussi ainsil:application precedente est surjective
et identifieY (€2) au quotientX (Q2)/G. De plus, siz est la localie dea € X(2), alors le
stabilisateur dex dansG n’est autre que le groupe d’inerti@’;(x). Tout ceci est d’ailleurs vrai
sans supposde “assez grand”, cette degte hypotkse sert uniquemeatassurer qu’on peut
caracériser le groupe d’inertie de to@éement deX au-dessus de comme un stabilisateur
“geonetriqgue”. On en conclut par exemple augsit

Proposition 2.1 Faisons une extension de la base 7' — Z,d’ott X' = X x5 Z'. Soit x’' un point
de X', x son image dans X, alors on a G;(z) = G;(2').

Il suffit, dans les consgtations ci-dessus, de prendre pOuune extension assez grande de
k(Z') (ou z, 2’ sont les images de, =’ dansZ, 7).

Proposition 2.2 Sous les conditions de 1.3, supposons Y localement noethérien, X fini surY .
Soit H un sous-groupe de G, considérons X' = X/H (cf 1.7), soitx € X, 2’ son image dans X'
ety son image dans Y.

(i) Si H O Gy(x), alors I’homomorphisme ¢, — O, induit un isomorphisme sur les
complétés.

(i) Si H D G;(z), alors I’homomorphisme 0, — O, est étale i.e. X' est étale surY en x'.

—~

SoitY; = Spec(0,), faisons le changement de base— Y, on trouve unX; = X xy Y; fini
surYi, sur lequel opere, le quotienétantY; par 1.9. Soity; I'unique point deY; au-dessus de
y, commex(y) = k(y1), il S’ensuit que la fibre d& eny estisomorpha celle deX; eny,, d'ou
un unique pointr; de X; au-dessus de. D'ailleurs par 1.9 on aurX,/H = X; = X' xy Yj,
soit 2} I'image dex; dansX/, il est au-dessus d¢, et on \erifie facilement §’ étant de type
fini surY’) que I'homomorphism&,, — &, induit un isomorphisme sur les congfits. Donc
on est rame@ au cas 0 Y est le spectre d'un anneau local complet, ggitdonc X le spectre
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d’'un anneau finiA sur B, compog d’'un nombre fini d’anneaux locauk, correspondants aux
pointsx; de X surY. Si A, correspondhz = x, alorsA s'identifiea 'anneauHomg, (G, Ap)
des fonctionsf: G — A, telles quef(st) = sf(t) pours € Gy, les ogerations deGG sur
ces fonctionsetant eéfinies par(uf)(t) = f(tu). On voit donc que sH est un sous-groupe
quelconque dé, alors A est 'anneau des fonctions G — A, telles que

f(stu) = sf(t) pours € G4, u € H

donc c’est un anneau semi-local dont les composants locaux correspondent aux doubles classes
Gq.aH dans@, a la double classeédinie para € G correspondant (gce a I'application

f — f(a)le sous-anneaulf(“) de Ay, ou H(a) = G4 N aHa™'. Dailleurs, le composant

local de A" correspondand I'image ' de x est aussi celui correspondamta double classe

G4H de I'element neutre, son composant local est ddffé"”. Si doncG, € H, on trouve

AOGd = A% = B, ce qui prouve (i). Pour prouver (ii), on peut, en passaahe extension finie

plate convenable de, et utilisant 2.1, se ramener au casl@xtension ésiduellex(z)/x(y) est

triviale. Mais alors7;(x) = G4(z), et on est ramenau cas @edent.

Corollaire 2.3 Sous les conditions de 2.2, supposons G;(x) = (e), alors X est étale surY en x.
Donc si G;(x) = (e) pour tout x € X, alors X — Y est un morphisme étale.

Il'y a une Eciproque partielle :

Corollaire 2.4 Supposons X connexe et le groupe G fidelé sur X. Pourquep: X — Y = X/G
soit étale, il faut et il suffit que les groupes d’inertie des points de X soient réduits a I’élément
neutre. S’il en est ainsi, G s’identifie au groupe de tous les Y -automorphismes du Y -schéma X .

Compte tenu de 2.3, on peut suppo&eetale sury’. Mais si uns € G est dans uidz;(z), il
résulte alors de | 5.4 que s@e trivialement su&, donc est [element unié puisque- est fictle,
ce qui prouve la prergre assertion. Soit un Y -automorphisme dé&(, soitz € X. D'apres la
proposition 1.3, il existe um € G tel ques(x) = u(z), et induisant le me homomorphisme
résiduelk(z) = x(z’) queu. Par loc. cit. on a dong = u, ce qui ackve la @monstration.

Remarque 2.5 L'hypothese que&s opere fickRlement n’esévidemment par surabondante dans le
corollaire 2.4. Il en est de @me de I'hypothse queX est connexe, comme on voit par exemple
en prenanX =Y x E, E étant un ensenble fini, &t le groupe des permutations ée G opere
avec force inertie,@anmoingY x £)/G =Y x (E/G) =Y, et X estétale su®y’. Prenant pour

G un groupe strictement plus petit que le groupe aiyique deF, mais ogrant transitivement
sur E/, on voit qu’il y aura aussi deg-automorphismes d& ne provenant pas d&.

L'exemple type d’'un group&: opérant sant inertie est celui dé x G, sue lequel on fait
opérerG gracea ses oprations sur le facteur par translations droite : unY -présctemalX a
groupe d’'o@rteursa droiteGest dittrivial s'il estisomorpaY x G.

Pour faire le lien entre le psclemasa groupes finis d’oprateurs et la notion de fibiprinci-
pal dans une cagorie(lien dont nous n’aurons pas besoin d’ailleurs pour la suit@whingire,
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mais important dans d’autres contextes) les caraitibns suivantes sont utiles. Nous fixons un
présclema de bas#&’, et nous plagons dans le égbrie des”-préscliemas. Siz est un groupe

114 fini, nous poserons pour &gerGy = Y x G, c’est donc un séma en groupes finis sur (cf
n°1), et siX est unY -présctema, on a

XXy Gy =X x@G

(méme Eference). La dorge d’'unY’ -morphismeX xy Gy — X équivaut don@ la doniee d’'un
Y-morphismeX x G — X, i.e.ala don®e pour touy € G d'unY-morphismel,: X — X.
On constate aus$it que pour que la do@e desl, définisse sutX une structure de psclema
a groupe d'oprateursa droiteG, (i.e. T,, = T,T,, T. = 1id,) il faut et il suffit que leY-
morphisme correspondatd xy, Gy — X définisse surX une structure dé -présctema ‘a
Y-sckema en groupes d'@pateurs, (au sengeral des objeta ¢-groupe d’o@rateurs dans
une caégorie®’). Supposons qu’il en soit ainsi. Rappelons duest ditformellement principal
homognesousGy-3 si le morphisme canonique

XXyGYHXXyX

dont les composantes sont respectivememt et le morphisme de multiplication
m: X Xy Gy — X, est un isomorphisme. En I'occurence, identifiant le premier merabre
X x G, le morphisme consé&té est celui quia toutg € G, associe le morphisne

(idX,Tg) = (’ldX Xy Tg)AX/yZ X —-X XyX

et par suite, dire qu& est formellement principal homege sous-y signifie aussi qU& xy X
est isomorphea la somme directe des transfares de la diagonale lggéments(e, g) de
G x G(operant surX xy X de faconévidente) o e cesigne IElement unié deG. Si on ne
veut pas distinguer la gquche et la droite et donner une formule qui reste applicable au produit de
plus de deux facteurs identiquasX, on peut formuler la condition en disant que le morphisme
canonique

X Xg(GxG)— X xy X

obtenu en attachant au couple ¢’) le morphisme
(Tg,Tg/) = (Tg Xy Tg/)AX/yZ X —-X Xy X
et faisant oprerG a qauche sufr x G par 'hnomomorphisme diagonal ;

s(9.9') = (sg.59),
est unisomorphisme

115 La notion despace principal homageest ceduite de celle de I'espace formellement prin-
cipal homog@ne en ajoutant un axiome su@plentaire, assurant que le “quotient” depar Gy
existe et est @ciement I'object unié a droite de la c&gorie, iciY. Cet axiome peut varier

3on dit plubt maintenant X est un pseudo-torseur sos .

89



116

Vv

suivant le contexte, et s’explicite souvent le plus comément (dans le yoga de la “descente”)

en exigeant que I'objed operateurs devienne “trivial” i.e. isomorphe au prodditxy Gy (en
'occurrenceX x () par un changement de base convenable, de typaspr(de telle facon,

en practiguea permettre la technique de descente; cf. Grothendieck, Technique de descente et
theoemes d’existence en@metrie Algbrique, #m. Bourbaki N 190, pages 26 28)Dans

cet ordee d'iées, signalns ici la cara@gisation des filirs principaux homagnes de groupé&’

(au sens de loc.cit.) :

Proposition 2.6 Soient Y un préschéma localement noethérien, X un Y -préschéma a groupe
fini G' d’opérateurs opérant a droite. Les conditions suivantes sont équivalentes :

(i) X estfinisurY,Y = X/G, les groupes d’inertie des points de X sont réduits a I’unité.

(ii) Il existe un changement de base fidelement plat et quasi-compact Y1 — Y tel que
X, = X Xy Y] soit un Y;-préschéma a opérateurs trivial, i.e. isomorphie a Y; x G.

(ii bis) Comme (ii), mais Y, — Y étant fini, étale, surjectif.

(iii) X est formellement principal homogene sous Gy, et fidélement plat et quasi-compact sur
Y.

Démonstratior(i) = (ii bis) On prendray; = X, notant queX — Y est bien finiétale par 2.3
et surjectif. Montrons qu&’; est alors trivial sulv;, ce que esultera du

Corollaire 2.7 Si (i) est vérifié et si X admet une section sur Y, alors X est un espace a
opérateurs trivial.

En effet, cette section permet defohir unG-morphismeX x G — X, surjectif puisqué- est
transitif sur les fibres d&X, injectif puisqueG opere sans inertie ; enfin, c’est un isomorphisme
local en virtu de | 5.3 puisqu& estétale sury”. Donc c’est un isomorphisme.

(ii bis) implique trivialement (ii), qui implique (i) cas les inggients de (i) sont “invariants”
par extension fidéiment plate quasi-compacte de la base &hiBaire Bourbaki cé plus haut
pour “fini”; pour les groupes d’inertie, on applique 2.1 , et pdur= X/G, une Eciproque de
1.9 dans le cas d’'un changement de Haddement platque nous avions oul@id’expliciter).

Nous avons prow (i) = (iii) en passant en prouvant @- (ii bis). Enfin (iii) = (ii), cas la
premiere hypotlese dans (iii) signifie @cisement puisqu&’ est ficklement plat et quasi-compact
surY.

Définition 2.8 Un Y -préschéma X a groupe d’opérateurs a droite G satisfaisant les conditions
équivalentes de 2.6 est appelé un revétement principal d&’, de groupe de Galois.

4Cf. Exp. VIl pour la treorie de la descente plate.
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3 Automorphismes et morphismes de redtementsetales

Proposition 3.1 Soit X étale séparé de type fini sur'Y localement noethérien, soit G un groupe
fini opérant sur X par Y -automorphismes. Alors G' opére de facon admissible et le préschéma
quotient X /Y est étale surY .

On ne suppose pas fini surY, cependanX est quasi-projectif su¥” d’ou I'existence de
X/G gracea 1.8. Prouvons d'abord

Corollaire 3.2 Le morphisme X — X /G est étale.

On peut suppose&videmment transitif sur 'ensemble des composantes connexe¥ de
puis par considration du stabilisateur d’'une composante connexe,Xjust néme connexe.
Enfin, on peut supposer gagopere ficklement. Mais alors on voit comme dans 2.4 Guepere
sans inertie, donc par 2.3 il s’ensuit g¥e— X /G estétale. On conclut grce au

Lemme 3.3 (remords a I’exposé I). Soient X — X' — Y des morphismes de type fini, x un
point de X, x’ et y ses images. On suppose Y localement noethéien. Si deux des morphismes
envisages sont étales aux points marqués, il en est de méme de troisisieme.

Il reste seulemenrd regarder le castoX — X' et X — Y sontétales enc et prouver que
117 X' — Y l'est enz’ (ce qui est le cas dont nous avons besoin pour 3.1). Faisant une extension
plate convenable de la basg on est ramed au cas 0 I'extension ésiduellex(z)/x(y) est
triviale. Consi@rons les homomorphismés — ¢,, — 0, et les homomorphisme£duits par
passage aux conggés, I'hypottese signifie que, — &, etd,, — 0, sont des isomorphismes,
d’ou aussibt queﬁy — O, en estun, ce qui prouve le lemme.

Corollaire 3.4 Si X est fini et étale sur Y, alors X /G est fini et étale surY .

Proposition 3.5 Soient X,X’' deux revétements étales de Y. Alors tout Y -morphisme
f: X — X' se factorise en le produit d’'un morphisme étale surjectif X — X" et de I'immersion
canonique X" — X' d’une partie X" de X' a la fois ouverte et fermée.

On sait (1 4.8) quef estétale, donc un morphisme ouvert, d’autre psrétant fini sury’, f
est ferng, doncf(X) = X" est une partié la fois ouverte et ferée deX’. On a fini (N.B. il
suffisait queX”’, au lieu d’un reetemengtale, soit non ramié surY’).

Corollaire 3.6 Avec les notations précédentes, X — X' est un épimorphisme strict dans la
catégorie des préschémas, et X' — X7 est un monomorphisme (et méme un monomorphisme
strict) dans la catégorie des préschémas.

La premere assertion signifie paéfinition que la suite de morphismes

pri
X XX//X—>X—>XH
pr2
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est exact, et cel@sulte du fait qu&X’ — X" estfini e t fidklement plat, comme on voit facilement
(cf Grothendieck, loc cit). L'assertion duale pakif — X’ est encore plus triviale.

Le corollaire 3.6 nous sera utile pour l&trie du groupe fondamental ad NMuivant ; il est
possible (pour ceux qui n'aiment pas la notioBgimorphisme strict) de remplacer le corollaire
3.6 par telle variante que le lecteur arrangeison gdit personnal. Profitons seulemsnt de I'oc-

118 casion pour signaler qu'une factorisatign=f’f”, avec f” un épimorphisme strict ef’ un

monomorphisme, eséeessairement uniqaeisomorphisme unique @s (dans toute cagjorie) ;
cepandant, il peut exister ereme temps une factorisatigh= f; f, ayant les propétés duals :
f2 estunépimorphismeyf; un monomorphisme stricttgalement uniqua isomorphisme unique
pres), qui ne soit pas isomorphda pecdente : il suffit de prendre par exemple laécatrie des
espaces vectoriels totologiqueggaes, si ony tient), et pour: X — X’ un morphisme tel que
u(X) ne soit pas feri@.

Proposition 3.7 Soient Y un préschéma connexe localement noethérien, y un point de Y, {2 une
extention algébriquement close de k(y). Pour tout X sur Y, on désigne par X ({2) I’ensenble
des points de X a valueurs dans §). Soient X,X' des revétements étales de Y et u: X — X’
un Y -morphisme tel que I’application correspondante X ({2) — X'({2) soit un isomorphisme.
Alors u est un isomorphisme.

On est imnediatement raménau cas 0 X' est connexe. Comm& — X’ est fini etétale,
on sait que le nombreggnetrique de points dans une fibre #e— X’ est constant, etgala 1
si et seulment si le morphisme sorgsiglest un isomorphisme. Or ce nombre est aussi le nombre
part 24  d’éléments dans une fibre d&(?) — X’(12), d’ou la conclusion.

4 Conditions axiomatiques d’une tleorie de Galois

Soit ¢ une caggorie, F' un foncteur covariant d& dans la cagorie des ensembles finis.
Supposons les conditions suivantes satisfaites :

(G 1) ¢ a un objet final et le produit fibe de deux objets au-dessus d’'un tr@ise danss’
existe (cet axiome peut aussesoncer en disant que da#sles limites projectives finies
existent).

(G 2) Les sommes finies dafs existent (donc aussi un objet initial, , jouant le ble de I'en-
semble vide), ainsi que le quotient d’'un objet@gar un groupe fini d’automorphismes.

(G3) Soit u: X — Y un morphisme danss’ , alors u se factorise en un produit

X —=Yy’'—“=Y ,avecu’ unépimorphismestrict et «” un monomorphisme, qui est
119 un isomorphisme sur un sommando directde

SRappelons qu’un objet de ¢ est appe?# objet final si pour toutX dans®, Hom(X,e) a exactement un
element. On dfinit de facon duale un objet initial d€.
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(G 4) Le foncteurF est exach gauche (i.e. transforme u@i droite en uné a droite, et com-
mute aux produits filée).

(G5) F commute aux sommes directes finies, transfoapenorphismes stricts e@pimor-
phismes, et commutee au passage au quotient par un groupe fini d’automorphismes.

(G 6) Soitu: X — Y un morphisme dan®’ tel queF'(u) soit un isomorphisme, alorsest un
isomorphisme.

Notre objet est construire un groupe topologigudimite projective de groupes finis, et une
équivalence de la cagiorie® avec la cégorie?’ () des ensembles finisia opere contiriment
(i.e. de telle facon que le stabilisateur d’'un point soit un sous-goupe ouvert, ou encore qu'il
existe un groupe quotient discret quiesp ceja sur I'ensemble envisay, I'équivalence construite
transformant le foncteur doérF' en le foncteur d’inclusiorgvident de#’(7) dans la catgorie
des ensembles finis. On notera tout de suite que é&goae? () construitea I'aide d’un groupe
topologiquer , et le foncteur d’inclusion @edent, satisfont bien aux conditions (Gal{G 6).

Nous proédons en plusieustapes.

a) Soitu: X — Y dans%. Pour queu soit un monomorphisme, il faut et il suffit{(«) le soit
(Utilise (G 1), (G 4), (G 6)).

En effet, dire que: est un monomorphisme signifie que la projection: X xy X — X
est un isomorphisme.

b) Tout objetX de% est artinien
En effet, siX’ — X” — X sont des monomorphismes tels gkieX’) et F'(X") aient
méme image dang’(X), alors par a)F'(X’) — F(X”) est un isomorphisme, donc
X' — X" estunisomorphisme par (G 6).

c) Le fonteur F’ est strictement pro-regisentable (cf. Grothendieck, Technique de descente
et theoemes d’existence ené&dnetrie Algébrique, II, £minaire Bourbaki 195,&vrier
1960).

En effet, d’apes loc cit prop. 3.1, celésulte de b) et (G 4). On peut donc trouver un
syseme projectif sur ordonre filtrant :

P = (Pi)iel
120 dans%’, considtré comme pro-objet d&’, et un isomorphisme fonctoriel
(%) F(X) = Homp,o4) (P, X) = lim Home (P}, X)

]

Cet isomorphisme eséali® par urelement

p € lim F(P,) = F(P)

7
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On peut supposer de plus que les homomorphismes de transjtioft, — P;(i > j) sont
desépimorphismeset quetout épimorphisme®, — P’ soitéquivalenta unépimorphisme
P, — P; pourj < ¢ convenable (ce quiétermine le sysime projectifP de fagcon essen-
tiellement unigue).

Un objetX € ¥ est ditconnexes’il n’est pas isomorpha la somme de deux objets @é
non isomorphea I'objet initial ¢ .

d) LesP; sont connexes et non isomorplkes;.

Si X est une uni& a gauche, on &'(X) = () par (G 5) appligé a la somme directe
d’une famille vide, et &ciproquement par (G 6). Donc &1’ est un objet d&” qui n’est
pas unié a gauche, i.e. tel que&(X’) # (0, il n’existe aucun morphisme d&’ dansX.
Donc si unP; est uni€ a gauche, alorsest un plus granélément de I'snsemble d ;indices
ordonre filtrant /, et la formule §) signifierait /(X)) = Hom(FP;, X) =ensemble &duit

a unélement pour toufX, ce qui est absurde puisqé& ¢, ) = (). Donc lesP; sont non
isomorphea ¢ .

Supposons qu'on af®; = F/(A) I1 F(B), en particulier [eElementa; de F'(P;), correspon-
dant par ¢) a ’hnomomorphisme identiqug; — P;, est dang”'(A) I1 F(B), par exemple
dansF'(A). Cela signifie qu'il exisre ury > i tel quey;;: P, — P, se factorise en
P, - A — P, = Al B, ou la deuxeme feche est le morphisme canonique. Donc
F(P;) — F(P,) se factorise ett’(P;) — F(A) — F(P,) = F(A) 1l F(B), et comme
F(P;) — F(P,) estsurjectif par (G 5), il s’ensuit qué(B) = (), doncB est isomophé
P

e) Tout morphisme:: X — Y dans%, avec X non isomorphe ¢, etY connexe, est un

épimorphisme strict. Tout endomorphisme d’un objet connexe est un automorphisme

Consicerons la factorisation (G 3) de commeX # ¢ il résulte de (G 6) qué'(X) # ()
doncF(Y’) # () doncY’ # ¢, doncY étant connexey” s’identifieaY’, doncu est un
épimorphisme strict. Supposons qusoit un endomorphisme de I'objet conneXeprou-
vons que c’est un automorphisme. En effet, on peut supposem isomorphe ¢, donc
u est unépimorphisme strict par ce quigrede, doncF'(u) est unépimorphisme par (G
5), et commeF'(X) est un ensemble fink'(u) est bijectif. Doncu est un automorphisme
par (G 6).

En particuliertout endomorphisme d’'uR; est un automorphisme

f) Les conditions suivantes sur uf sontéquivalentes (i) L'application unjective naturelle

Hom(P;, P;) — Hom(P, P;) ~ F(FP;) est aussi surjective, i.e. pour tout P — P; il
existe unv: P, — P, tel queu = vy; (0U ¢; est 'Thomomorphisme canonique — P;).

(i) Le groupeAut(P;) opere de facon transitive suf(F;). (iii) Le groupeAut(P;) opere

de fagon simplement transitive st F;).

En effet, identifiantHom (P, P;) a F(F;), I'application envisage dans (i) n'est autre
que v — F(v)(p;). L'équivalence des trois conditions provient alors du fait que
Hom(P;, P;) = Aut(F;) et que I'application prcdédente esté&ja injective.

Un P, satisfaisant les conditiorexjuivalences (i)(ii)(iii) de f) est appebaloisien
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g) Pour tout X dans¥, il existe unP; galoisientel que toutu € Hom(P, X) se factorise en

SoitJ = Hom(P, X) = F(X), c’est un ensemble fini, donc il existe ## tel que tout
u: P — X se factorise enp —~ P; —— X , ou encore tel que le morphisme naturel

P— X7  (J=Hom(P, X))

se factorise en
Pj

pP——>bj— X’
En vertu de (G 3), le morphism@ — X se factorise en le produit d’'un monomorphisme
par unépimorphisme strict, que I'on peut prendre de la forme P; — P,. On est donc
rameréa prouver que’; est galoisien. Soft un indice> j tel que tout morphism& — P,
se factorise paP — P, — P;. Notons que le morphisme naturg] — X se factorise
encore en le compés

p,-tE.p Uy

ou la premere feEche est ugpimorphisme strict par €), et la dearie un monomorphisme.
On veut prouver que pour un morphisme degin P, — P;, il existe ub endomorphisme
de P, tel quey = vpy,. Mais pour tout, € Hom(P;, X) , consicronsuyy € Hom( Py, X)

, il est donc de la forme/y;, avec um’ € Hom(P;, X) bien cetermiré. L'application
u +— u' de J dansJ ainsi cefinie pary est d’ailleurs injective cap est unépimorphisme
en vertu de e); elle est donc bijective puisque I'enserndldst fini. L'application bijective
u — ' deJ dansJ définit donc un isomorphisme: X7 — X rendant commutatif le
diagramme

Pik U
Py "> P, —— X/

pkLpiLXJ

D’apres les prop@tes d’unicie de la factorisation d’'un morphisme en produit d’'un mono-
morphisme par uapimorphisme strict, il s’ensuit (puisqudui aussi est uepimorphisme
strict par €)) que I'on peut trouver un morphismeP;, — P, qui laisse le diagramme com-
mutatif, cqfd.

On en conclut en particulier ques P; galoisiens forment un syshe cofinal dans le
syséme desP;). On aura donc, puisque pour un objet galoisieion a

Hom(P, P;) = Hom(P;, P;) = Aut(F)),
par passaga la limite :

Hom(P, P) = lim Hom(P, P;) = lim Hom(P;, P;) = lim Aut(FP;)

ou la limite projective est prise sur l€3 galoisiens. D’ailleurs, moyennant 'identification
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Hom(P, P;) = F(P;), et compte tenu quE transformeepimorphismes e@pimorphismes,
on voit que les homomorphismes de transition dans leesystprojectif pecdent sont
surjectifs. On conclut de tout ceci :

h) Ona

Hom(P, P) = Aut(P) = lim F(F;) = lim Aut(F),
ou la limite projective est prise sur |€3 galoisiens
En particulierAut(P) apparé comme limite projective d'un sysime projectif de groupes
finis (les homomorphismes de transitietant surjectifs), on le munira de la topologie li-
mite projective des topologies digtes.On designera parr et on appellera groupe fon-
damental(de ¥ muni de F) le groupe oppasa Aut(P). Ce groupe ogre donca droite
sur P, c'est la limite projective de groupes finis opéranta droite sur les®; galoisiens,
m; étant le groupe oppés Aut(F;).
Compte tenu de 'isomorphisme fonctoriel

F(X)=Hom(P, X)

et de la @finition der , on voit donc quer opered gauchesur F'(X) , et d’ailleurs de fagon
continue d’apeés g) (cas avec les notations de g), c’est emfadfui opere surF'(X)). Il est
trivial que pour tout morphisme: X — Y dans# , le morphisme'(u): F(X) — F(Y)
est compatible avec les emtions der. On peut donc conséter par la suiteF' comme un
foncteur covariant

F: % — %(m)
ou ¢’ () est la caégorie des ensembles fini © opérea gauche contiament
Nous allons maintenan&finir un foncteur en sens inverse :

G: € — €(n)

par la formule
G(E)=P x, FE,

ou P x, E est cfini comme solution du probime univerel&sung par
Homy (P %, E, X) — Hom,(F, Hom(P, X))

(ou dans le deugime membrélom (P, X)) = F(X) est consiéré comme ensemblaior
operea gauche). Il faut prouver I'existence de I'objetx . E.

i) Soit un objet de&& ou un groupe finiG opérea droite, etE un ensemble finiwG opérea

gauche. Alors7 x4 E existe, et I'application canonique
F(Q) x¢ B — F(Q xg E)

est un isomorphisme
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Comme les sommes directes finies existent damar (G 2), et que”’ y commute par (G
5), on est ramen aussidt au cas @ G opere transitivement suf, car si lest; sont les
trajectoires d&; dansE, on aura

QxcE=1Q xgEj.
J

Soit alorsa € FE, soit H son stabilisateur, on voit augsitsur la éfinition que@ xq F
s'identifiea Q/H. D’ou I'existence, gicea (G 2), et la propétt de commutation pour
gracea (G 5).

j) SoitE un objet deg’(w), et soitP; galoisien tel quer; opére cgja sur E. Alors P; x ., E existe
et on a un isomorphisme canonique

E——>F(P; X5, E)

Si j > ¢ est tel que P, soit galoisien, alors I'hnomomorphisme canonique
Pj X7, E — P; x;, E estun isomorphisme

La premere assertion est un cas particulier de i), compte tenunguapere de facon
simplement transitive suf'(F;) qui est d’'un point marggl ¢;, d’ou un isomorphisme
F(P) x,, E ~ E.Pour la dew&me assertion on utilise par exemple (G 6).

Soit, pout tout j, ¥, la sous-cd#tgorie pleine de¥ formée des X tels que
Hom(P;, X) — Hom(P, X) ~ F(X) soit bijectif. On sait par g) qué& est éunion
filtrante desé;. On a donc pouX € € :
Hom,(E, Hom(P, X)) ~ Hom(E, Hom(P;, X)) ~ Hom,, (£, Hom(P;, X))
~ Hom(P; X, E, X)
125 et compte tenu de la degre assertion dans j) on trouve un isomorphisme fonctoriel en

I'objet X de¥; :
Hom,(F,Hom(P, X)) ~ Hom(P; x,, F, X)

Comme cela est vrai pour toytet ces isomorphismes fonctoriels, pguvariable, s’in-
duisent mutuellement, on conclut :

k) Sous les conditions dg le morphisme compésies morphismes canoniques
E — Hom(P,, P, x,. E) — Hom(P, P, x,.. E)

fait de P, x,, £ une solution du pro@me univerel éfinissantP x, E , i.e. ce dernier
existe et on a un isomorphisme

Px,FE—=P %X E
Cela acleve la construction du foncteGi{( £). On a d’autre part un homomorphisme fonc-
toriel

a:idgr — FG
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i.e. un homomorphisme fonctoriel en I'objetde ¢’ (r) :
a(E): E— FG(E) = F(P x, E)
savoir le compas des morphismes canoniques
E — F(P)x, E — F(P x, E)

(ou le premier provient du point margy € F'(P)). Conjuguant j) et k), on trouve :

[) L’homomorphismer est un isomorphisme
On cEfinit de néme un homomaorphisme fonctoriel

B: GF — idg
i.e. un homomorphisme fonctoriel en I'obj&tde % :
B(X): Px, F(X)— X
126 comme assoéiaur-homomorphisme
F(X) — Hom(P, X)

inverse de l'isomorphisme canoniquéom(P, X) — F(X) .

m) Les composs

F(X)Q(F(X))FGF(X)F(ﬁ(X))F(X)

sont les isomorphismes identiques
Ane qui trotte.
Compte tenu de l) il sS’ensuit :

n) L’homomorphisme est un isomorphisme
part 25 Nous avons ainsi obtenu lésultat promis :

Theoreme 4.1 Soit € une catégorie satisfaisant les conditions (G 1), (G 2), (G 3) du début
du numéro, et F' un foncteur covariant de ¢ dans la catégorie des ensembles finis, satis-
faisant les conditions (G 4), (G 5) et (G 6). Alors les constructions canoniques précédentes
définissent des équivalences de catégories F': ¢ — € (m) et G: € (r) — € quasi-inverses
I'une de I'autre. De fagon précise, il existe un pro-objet P de ¢, et un isomorphisme fonc-
torie]l F(X) < Hom(P, X), 7 est le groupe opposé au groupe des automorphismes de P,
topologisé de facon convenable, de facon que m opere de facon continue sur les ensembles
Hom(P, X) ~ F(X). Enfin G est donné par G(E) ~ P x, E.
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Remarques 4.2L° énoné& des conditions (G 1§ (G 6) devient plus simple et plus sympathique
si on remplace (G 2) et (G 5) respectivement par :

(G’ 2) Les limites inductives finies dargs existent.
(G’ 5) Le foncteurF est exach droite (i.e. commute aux limites inductives finies).

Ces conditions sont en apparence plus fortes que (G, 2) et (G 5), masuitea aussit du
théoeme de structure 4.1 qu’elles sont efmées par (G 1i (G 6). On notera cependant que
dans les cas qui nous a@resseront, la@rification de (G 2) et (G 5) semble effectivement plus
simple que celle de (G’ 2) et (G’ 5). Jignore si dans la condition (G 3), le fait«fusoit un
isomorphisme sur un sommande directtdae pourraietre omis.

5 Catégories galoisiennes
127

Définition 5.1 On appelle catégorie galoisienne une catégorie ¢ équivalente i une catégorie
% (m), oum est un groupe compact, limite projective de groupes finis (i.e. totalement disconnexe).

Pour la définition de € (), cf début du N° 4. En vertu du th. 4.1, € est galoisienne si et
seulement si elle satistait les conditions (G 1) a (G 3), et s’il existe un foncteur I’ de C' dans
la catégorie des ensembles finis satistaisant les conditions (G 4) a (G 6) (i.e. qui est exactet
conservatif dans une terminologie générale). Un tel foncteur sera appelé foncteur fondamental
de la catégorie galoisienne ¢ © ; il est pro-représentable par un pro-objet que nous noterons Pr ;
un pro-objet P tel que le foncteur associé soit fondamental est appelé pro-objet fondamentaDe
cette faccon, la catégorie des foncteurs fondamentaux sur ¢ est anti-équivalente a la catégorie
des pro-objets fondamentaux ; si I’ et P se correspondent, le groupe Aut F' est donc isomorphe
a I'opposé du groupe Aut P, donc le groupe noté w dans le numéro précédent n’est autre que
Aut P. Rappelons qu’au numéro précédent nous avons construit, a partir d’un foncteur fonda-
mental donré F', une équivalence de € avec € () (ot m = Aut(F’)) qui transforme le foncteur
F' en le foncteur canonique de € (), dans la catégorie des ensembles finis. Dans ce cas type
¢ = € (), F = foncteur canonique, le pro-objet fondamental associé a F' n’est autre que le
systeme projectif des quotients discrets m; de 7.

Il peut étre utile d’expliciter la cagorie des pro-objets d€(r). On trouve :

Proposition 5.2 La catégorie Pro- €'(m) est canoniquement équivalente a la catégorie ¢’ () des
espaces, a groupe topologique T d’opérateurs, qui sont compacts et totalement disconnexes.

Comme cette derare contients’(r) comme sous-cagorie pleine (correspondant aux es-
pacesa operateurs compacts discrets) et que les limites projectives y existent, on a en tous cas
un foncteur canonique: Pro-% (7)) — %”’(w), au syskme projectif) = (Q);) correspondant
I'objet X = lim. @; de%¢”(r). Pour cfinir un foncteur en sens inverse, il suffit defidir un

6l semble péféerable d’adopter le terme plus parlant de “foncteur fibre”.
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foncteur contravariant d&”(7) dans la catgorie des foncteurs’ — (Ens) exactsa gauche, et
on prendra pour touk € ¢”’(r) le foncteurh(X)(E) = Hom(X, F) (le Hom étant pris dans
¢’ (m)). Il estimmediat par @finition que les foncteurs et g sont adjoints I'un de I'autre, et que
hg est canoniquement isomorphe au foncteur identiquede? (). Il restea prouver (pour
établir queg et h sont quasi-inverses 'un de l'autre) que tout objetdlér) est isomorphe
un objet de la formg(Q), ou @ € Pro- % (n), en d’autres termestout espaceX a groupe to-
pologiquer d’opérateurs, qui est compact et totalement disconnexe, est isomanahe limite
projective d’espacea operateurs finis discretSCommeX est limite projective de ses quotients
finis discrets (en tant qu’espace topologigue saisatpurs), on est ramea montrer que dans
'ensemble de ces quotients, il y a un sk cofinal qui est invariant par Il suffit pour cela de
montrer que pour un tel quotieAt’, 'ensemble des transfos de ce quotient par les@tions
der est fini, (on prendra alors le sup desdits transfgngui sera un quotient invariant majorant
X’). Ou encore, qu’il y a un sous-groupe invariant ouvértle = tel que leselements de ce
sous-groupe invarient’. Or X’ correspond une partition finie d& en ensembles ouveris,.
Par raison de contin@tet de compaditder, il existe un voisinagé” de I'élement neutre de

tel ques € V impliques.X; C X; pour touti, doncs invarie X'. Or on sait que les sous-groupes
invariants ouverts de forment un systme fondamental de voisinage del#ment neutre, ce qui
acteve la @monstration.

Remarquons qu’on voit encore plus simplement que kegmatelnd %’ () est canoniquement
équivalentea la caégorie des ensembles @ opere contifiment. Nous n’en aurons pas besoin
iCi.

Proposition 5.3 Soient ¢ une catégorie galoisienne, F' un foncteur fondamental sur C,
P = (P,) Ie pro-objet associé, normalisé de la facon habituelle. Soit X € C'; pour que X
soit connexe, il faut et il suffit que 7 opére transitivement sur £ = F/(X).

On est rame@au cas typ& = ¢ (), I’ = foncteur canonique,loc’est trivial.

Corollaire 5.4 Conditions équivalentes sur X : (i) X est connexe et % (4 (ii) le groupe 7 est
transitif sur E = F(X), et F(X) # 0 (iii) X est isomorphe a un P;.

L’ équivalence de (i) et (ii)@sulte aussi&ja facilement de N 4, e).

Proposition 5.5 Soit ) = (Q;);c; un pro-objet de C, normalisé de la fagon habituelle, et soit
G le foncteur correspondant G(X) = Hom(Q, X) de ¢ (dans (Ens)). Les conditions suivantes
sont équivalentes :

() G commute aux sommes directes finies
(i) G commute a la somme de deux objets
(iii) Les Q; sont connexes et % ()¢
(iv) Q estisomorphe aw/H, ou H est un sous-groupe fermé de 7.

(v) Le foncteur G est isomorphe au foncteur E +— E* (ensemble des invariants par H ) défini
par un sous-groupe fermé H de .
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N.B. dans IEnon& de (iv) et (v), on suppose choisi un foncteur fondamental, permettant

d’identifier ¢ a la caégorie®’(r).

Démonstration. On peut suppos€r= % (w). L'implication (i) = (ii) est triviale, (ii) =- (iii)

se prouve comme la progté d) du N 4. Prouvons (iii)= (iv). En effet, on sait quéim. Q;
est non vide comme limite projective d’ensembles finis non vides.dait point de@i Q;, il
définit un homomorphisme d’'espac@®gerateurs

T — @

qui estsurjectif car pour tout le compog m — @ — Q; I'est, puisquer est transitif dang);
en vertu de 5.3. Si donH est le sous-groupe de stabilisateuragen obtient un isomorphisme
m/H = Q. Les implications (iv)= (v) et (v) = (i) sonta nouveau triviales.

Proposition 5.6 Soient 6" une catégorie galoisienne, P un pro-objet fondamental de € et F' le
foncteur fondamental associé. Soit P’ = (P/);c; un pro-objet de ¢, mis sous forme normale, et
F’ le foncteur associé (X ) = Hom(P’, X) et ¢ dans (Ens). Conditions équivalentes :

(i) P~ P, ouencore F' ~ F.

(i) P’ est fondamental, ou encore que I est fondamental.
(iii) F’ transforme somme de deux objets en somme, et X # () implique F/(X) # (.

(iv) Les objets de € connexes et # () sont exactement les objets isomorphes a un P.

On a trivialement (i)=- (iii) et (i) = (ii), de plus (ii)= (iv) en vertu de 5.4 (appliza P’ au

lieu de P). De plus (iii) ou (iv) implique en vertu de 5.5 qu# est de la former/H ou H est un
sous-groupe ferender. Dans le cas (iii), il existe pour tout sous-groupe invariant ouvede
unrm-homomorphismé”’ = rn/H — =« /7', d'ou H C 7/, d’'ou H = (0) et par suite (i), cqfd.

Corollaire 5.7 Soit ¢ une catégorie galoisienne. Les pro-objets fondamentaux sont isomorphes,
les foncteurs fondamentaux sont isomorphes.

En d’autres termeda categorie des foncteurs fondamentaux est un gridgaonnexd’,

qgu’on peut appeler lgroupdde fondamentatle la cagégorie galoisienn&’. Si ¢ = % (), le
groupe des automorphismes d’un objet du grégdedondamental est isomorplaer, cet iso-
morphismeétant bien étermire a automorphisme igtieur pes. (N.B. on appellgroupdde
une caégorie al tous les morphismes sont des isomorphismes, gideponnexegroupdde
dont tous les objets sont isomorphes). Les pro-objets fondamentaiXatenent un groupiale
connexeéquivalenta I'oppo® du groupdde fondamental. Sk, I’ sont deux foncteurs fonda-
mentaux, assoesa des pro-objets fondamentaéx P’, alorsHom(F, F’) = Isom(F, F’) est
parfois noé 75 r et joue le ble d’'un “ensemble delasses de chemirde F' a F'”. En parti-
culier, 7 = mr N'est autre que lgroupe fondamental d& en F' construit dans le nuéro
précdent. Quant au pro-objét assock a I, il joue le ©le d’'unrevetement universel e de
I'objet final e, de%’.
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Il peut étre commode d’avoir une description @é(a équivalence @s) en termes de son
groupdade fondamental’, sans passer par un choix d’'un objet particuliede ce dernier. Oa
tout objetX de% est assoéi le foncteurE'y sur le group@de fondamental, &fini par

Ex(F) = F(X),

a valeurs dangEns). (Un tel foncteur est connu en topologie sous le nom de ésystlo-
cal” sur le groupde) F'(X) = Ex(F) peutétre apped lafibre de X en F, et le foncteur
Ex le foncteur-fibre assogia X . Le foncteurEy a la propréte suivante pour toutF', Ex (F')
est un ensemble fintide groupe topologique» = Aut(F') opére contiiment Pour un fonc-
teur covariant dona¢é du groupdde fondamental dan@ns), la condition pécdenteaquivaut
d’ailleursa la néme condition pouun £ fixé quelconque. Ceci pés

Proposition 5.8 Le foncteur X — FEx est une équivalence de la catégorie € avec la catégorie
des foncteurs covariants du groupoide fondamental I" de ¢ dans (Ens), qui satisfont la condition
soulignée plus haut.

En effet, soitFy un objet du groupiale fondamental, et soit, = Aut(Fy), alors le foncteur
¢ — &(Fp) est uneéquivalence de la deuxine catgorie envisage dans 5.8 avec la égforie
¢ (m), comme on constate ausdit D’'autre part, le compé@sde ce dernier et du foncteur
X — Ex est l'équivalence naturell&@ — %(m). Il en résulte que le foncteuk — FEx
lui-méme est unéquivalence.

Corollaire 5.9 La catégorie Pro- ¢ est équivalente canoniquement a la catégorie des foncteurs
covariants ¢ du groupoide fondamental I" dans la catégorie des espaces topologiques, satistaisant
la condition : pour tout objet I’ de T, {(F') est un espace compact totalement disconnexe a groupe
topologique w d’opérateurs.

Ici encore, on peut &rifier cette condition sug, il suffit de la \erifier pourun F. La
démonstration est la @me que pour 5.8.

Remarque 5.10 Soit (F;).cs une famille d’objet du groupgde fondamental’. Posons pour
s, s €85

Hom(s, s') = Hom(Fy, Fy)
de sorte ques devient lui-méme un groupimle connexe et I'application — F, un foncteur
pleinement figle deS dansI’, soit f. Consicrant alors le foncteuk — FE, o f de% dans la
caggorie de foncteuHom(S, (Ens)), on obtient une variante de 5.8 (et 5.9) ateremplaé&
parS. L'énoné ainsi obtenu seeduit au tleoeme 4.1 lorsqué est gduita un point, et n’est
autre que 5.8 lui-ame siS est 'ensemble des objets dle

Nous allons utiliser 5.9 pouéinir un pro-objet canonique &8. Pour ceci, nous consgdons
le foncteur dd” dans la catgorie des espaces topologiques (étma des groupes topologiques) :

[+ F— Aut(F) =7p
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Ce foncteur satisfait la condition envigggdans 5.8, 'espaceoperateursf (F') sousrr n'est
autre querr, consickre comme espaca operateurs sous lui-eme par les automorphismes
intérieurs. Donc le foncteuf correspona un pro-objet d&” determiré a isomorphisme unique
pres, qui est rame un pro-groupe dé€ et qui est appél le pro-groupe fondamental d€, jouant

le rdle d’'un syséme local de groupes fondamentaux. C’est donc un pro-griuges défini
par la condition qu’on ait un isomorphisme fonctoriel €n

F(II) ~ g

Si X est un pro-objet quelconque @& on a un morphisme canonique
IxX—X

qui fait de X un objeta groupe d'oprateursx gauche&= dansPro- %'. Il suffit pour ceci de noter
gue pourF’ variable, on a une application canonique

TI(F) x X(F) — X(F)

i.e.
Aut(F) x Ex(F) — Ex(F), ou 7w Xx F(X)— F(X)
qui est fonctorielle ert'. Elle est aussi fonctorielle ek, donc pour tout morphism& — Y de

pro-objets, le diagramme
IxX — X

l |

[IxYy — Y
correspondant est commutatif.

Remarque 5.110n se gardera de confondre un pro-objet fondamehtédui n’est pas muni
d’une structure de groupe, et est connexe) avec le pro-groupe fondamental (quigraype-et
en geréral non connexe). De facongmise,G est connexe si et seulementrgi opérant sur lui-
méme par automorphismesémnieurs est transitif, i.e. i est eduita I'€lément neutre, ou encore
¢ equivalentea la cagégorie des ensembles finis. Une autre&l#hce essentielle est qGeest
détermiré a isomorphisme unique s, etP n’est cetermiré qu’a isomorphisme non uniquegs.

Soit £ un ensemble fini et congdons le foncteur constant sur le groigel’, de valeurE :
il définit en vertu de 5.8 un objet &€, not E, et qui peut aussi s'interpter comme la somme
de E exemplaires de I'objet final, de ¢’. On peut consiérer £, comme un foncteur eR, de
la cakgorie des ensembles finis dans leégatrie?’, et ce foncteur estxact donc transforme
groupes finis er¥-groupes, etc... Si don¥ est un objet d& sur lequel le groupe finiz opere
a droite, on voit qu’on peut consder X comme un objet d& ayant urfs’-groupe d’o@rateurs
a droiteG¢. On dira donc par extension d’'une terminologé@ngrale relativea des objeta ¢ -
groupes d’oprateurs, qu& estformellement principal homamesousG si X est formellement
principal homogne sous-y, i.e. sile morphisme canonique

XxGy—XxX
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déeduit de l'ogeration deG4 sur X a droite, est un isomorphisme. On dit qiXe est princi-
pal homognesousG s'il I'est sousGy, i.e. s'il I'est formellement, et si de plus le quotient
X/G = X /Gy estey. Sion se fixe un foncteur fondamental, d’'aneéquivalence dé& avec
une cakgorie?’(r), X correspond un ensemble sur lequeloperea gauche contiiment, soit
E = F(X). Faire ogerer G sur X a droite revient alor& faire ogrer G sur 'ensemblef a
droite, de fagcon que les émtions de7 commutenta celles der. On constate alors ausit
que X est principal homogne sous~ si et seulement si 'ensemblé est un espace principal
homogne sous- i.e. si et seulement & y opere de fagon simplement transitive. (D’ailleuys
est formellement principal homeége sss principal homogneou vide). Comparant avec 5.3,
on voit que siX est principal homogne soug~ et connexgalors ’lhomomorphisme doénde
G dans le groupe oppés Aut(X) est unisomorphisme et d’ailleurs pour qu’un objekX de
C' soit connexe et principal homéege sous le groupe oppa Aut(X), il faut et il suffit, avec
les notations du N 4, qu’il soit isomorphée un P; galoisien Dans le cas typ& = ¢(r), cela
signifie queX est isomorph& un quotient der par un sous-groupe invariant.

Supposons toujours doarun foncteur fondamentdl. Alors la donree d’'un X principal
homogene sous un groupe fidi opéranta droite, et d’'un point. € F(X), estéquivalentea
la donree d’'un homomorphisme dedans le groupé&:. En effet,a un tel homomorphisme on
fait correspondre I'ensemble = G, en y faisant oprerm a gauche drcea ’homomorphisme
donrem — G et les translationa gauche dé-, et en y faisant ofrerG a droite par translation
a droite, le point marqeia de E' étant I'element unié deG. Gracea ce qui pecede, on obtient
ainsi de fagon essentiellement unique tout triple G, a) ayant les propétes envisages plus
haut, puisque un ensemkdgooint margé principal homogne sous un groupe s’identifiea ce
dernier. De cette fagcon, on a une inté&tation gonetrique directe du foncte@ — Hom(r, G)
de la caggorie des groupes finis dafBns), foncteur qui est pro-repsentable I'aide der, et
dont la consiération fournirait donc une autre construction du grou@essocd a F'.

6 Foncteurs exacts d’une catgorie galoisienne dans une autre

Proposition 6.1 Soient ¢, " deux catégories galoisiennes, H : € — %' un foncteur covariant,
F' un foncteur fondamental sur 6" et F' = F’' o H. Conditions équivalentes :

(i) H est exactei.e. exact a gauche et exacte a droite.

(ii) H est exacte a gauche, transforme sommes finies en sommes finies, et épimorphismes en
épimorphismes (ou encore : objets # (), en objets # (D1 ).

(iii) I est un foncteur fondamental sur € .

Limplication (i)=(ii) est un fait geréral aux catgories. D’ailleurs la prerare forme donee
a (ii) implique la seconde, comme on voit en notant qugE gist un objet d&’, alorsX est+# ()
sss le morphism€& : e est unépimorphisme ; on notera que étant suppds exactea gauche
transformez,, eney.. La deuxeme forme dongea (ii) implique (iii), car F' étant exach gauche
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donc pro-repesentable est justiciable de 5.6 eré (iii). Enfin (iii) implique (i), comme il esulte
du fait querF’ est exact, et “conservatif” (i.e. satisfait 'axiome (G6) de @uo).

Soit alorsI' le groupdde fondamental d&’, I” celui de%’. Donc si H est exact, alors
F'+— F' o H estun foncteur du groujaeI” dans le groupieI’, gu’on cenotera patH :

"H(F')(X) = F'(H(X))
qgu’on peut ausskcrire, avec la notatiof'(X) = Ex(F') introduite dans nugéro 6 :
Epx)(F') = Ex("H(F"))

Cette derrgre formule montre, compte tenu de 5.8 ou 4.1, que le foncteur ékast cetermiré
(a isomorphisme unigue @) quand on coniitde focteur correspondahkl. Fixons-nous ur”,
soit FF = 'H(F"), alors' H définit un homomorphisme dé; = Aut(F’) danslly = Aut(F) :

'H:Mp —p (F="H(F)=FoH).

D’ailleurs la formule plus haut montre (compte tenu de 5.8) que cet homomorphisme a la pro-
priee suivante : pour tout ensemble fihi ou I opere contifiment, le groupdl. opere
égalementontinimentgracea I'’homomorphisme @cedentll,r — II1r. Applicant ceci aux
quotients dedl par ses sous-groupes invariants ouverts, on voit que la conditem@dente
signifie aussi que 'homomorphisme corgsigl est continu. Bciproquement, donnons-nous un
objet F' deT, un objetF” deI” et un homomorphisme continu

u: HF/ — HF,

il lui correspond donc un foncteur d€(I1) dans#'(II'), manifestement exact, donc en vertu de
4.1 il lui correspond un foncteull de ¢ dans%” qui est exact, et tel qued : 11, — Iy Soit
préciementu. On peut aussi, au lieu d'un homomorphisme de groupes, partiffdhateur

U:T"—-T

qui est tel que poutout F' € TV (ouun F" € T, cela revient au @me) 'lhomomorphisme
correspondantl» — Il soit continu : un tel foncteur est isomorpaeain foncteur de la forme
‘H,ou H: ¢ — %' est un foncteur exactedermiré a isomorphisme unique @s. Ainsi :

Corollaire 6.2 Pour qu’un foncteur H: € — %’ de catégories galoisiennes soit exact, il faut et
il suffit qu’il existe des équivalences € (1) — € et ¢’ — % (I1) qui transforme le foncteur H en
le foncteur ¢ (I11) — % (I1') associé a un homomorphisme de groupes topologiques I1" — TI.

Corollaire 6.3 Soient ¢, ¢ deux catégories galoisiennes, I, I leurs groupoides fondamentaux.
Alors la catégorie des foncteurs exacts de ¢ dans ¢ est équivalente a la catégorie des foncteurs
U: 1" — T ayant la propriété suivante : pour tout F' dans I'" (ou un F’ dans 1", cela revient au
méme), posant ' = U(F"), ’homomorphisme

HF/ = Allt(F/) — HF = AUt(F)

défini par U est continu.
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Consicerons le groupe fondamentdlde ¢, alors un foncteur exadt le transforme en un
pro-groupeH (IT) de¢”, nous allons dfinir un homomorphisme

I — H(II)

(ou IT" est le pro-groupe fondamental &), par la condition que pour tout objét’ de I,
I’lhomomorphisme correspondant

F'(I') =1l — F'(H()) =1l (QUF =F oH ="H(F"));
soit 'homomorphisme naturel
Aut(F') — Aut(F' o H).

Comme ce dernier est fonctoriel €, il définit bien en vertu de 5.8 un homomorphisme de
pro-objets, et en fait de pro-groupes,€le Cet homomorphisme est @dissoce au foncteurH.

Soit maintenant/’ un deuxeme foncteur exact, de la égprie4” dans une cé&gorie galoi-
siennes”. Il est trivial qu'on a
t(HIH) — thH/
(N.B. on a k une identi¢ de foncteurs, et non seulement un isomorphisme canonique). On a une

propriete de transitivié analogue pour les homomorphismes agsodes pro-groupes fondamen-
taux.

Nous allons maintenant integder les propBtes du foncteur exadt en termes de I'homo-
morphisme correspondant

w: I — I (oUF' = F' o H).

Il est commode d’introduire la notion dbjet poncté de la caggorie galoisienn®” (muni de son
foncteur fondamental’) : c’est par @finition un objetX de% muni d’unéléments de F/(X). Il
s'interpete donc comme un ensemble fini d - opere contifimenta gauche, muni d’un point
a. Donc les objets poncisconnexesle ¢ s’identifient en vertu de 5.3 aux sous-groupes ouverts
dellr. SiU etV sont deux tels sous-groupes, correspondarkss objets ponods conexes,

Y de @, alors il existe un homomorphisme ponetde X dansY si et seulement 9V C V, et
cet homomorphisme est alors unique. Bien entendu, le fonéfetnansforme objets ponats

en objets poncis (puisque’” = F’ o H). Notons d’autre part qu’un sous-groupe féraiiun
groupe tel qudlr est l'intersection des sous-groupes ouverts qui le contiennent; par &lite,
N sont deux sous-groupes fees) alors\M C N si et seulement si tout sous-groupe ouvert qui
contientNV contientégalement\/. Gracea ces remarques, on prouve facilement ésttats qui
suivent :

Proposition 6.4 Soit X un objet ponctué connexe de €, associé a un sous-groupe ouvert U de
Ilz. Pour que u contienne u(Ilz) il faut et il suffit que H(X ) admette une section ponctuée
(resp. soit completement décomposé).
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On appellerasection— sous-entendu : au-dessus de l'objet final — d’'un objed’une
caiégorie galoisienn&’, un morphisme de I'objet final, dans.X, ce qui revieni@a la doniee
d’'un élementa de F'(X) invariant parlly ; si X est poncté, on dit qu’on a unsection ponctée
si elle est compatible avec les structures poeestusurX etey, i.e. sia est peciment I'objet
marqle deF'(X). Une telle section est donc unique, et existe si et seulement si I'objet éarqu
de F'(X) est invariant paflr. Enfin, un objet d’un c&gorie galoisienne est diompktement
décompos s'’il est isomorphea une somme d’objets finaux, i.e.I$f- opere trivialement dans
F(X) - conditionévidemment plus forte que I'existence d’une section paetiorsqueX est

138 ponctle. La proposition 6.4&sulte trivialement desadinitions et remarques @eedentes.

Corollaire 6.5 Pour que u soit trivial, il faut et il suffit que pour tout objet X de ¢, H(X) soit
completement décomposé.

Proposition 6.6 Soit X' un objet ponctué connexe de €”, associé a un sous-groupe ouvert U’
de I1y. Pour que U’ contienne Ker u, il faut et il suffit qu’il existe un objet ponctué connexe
X de € et un homomorphisme ponctué de la composante connexe ponctuée X, de H(X') dans
X' (donc que X soit isomorphe comme objet ponctué a un quotient de la composante connexe
neutre de 1’'image inverse d’un objet ponctué de ¢ ). Si u est surjectif, la condition précédente
équivaut aussi a la suivante : X est isomorphe a un H(X), ott X est un objet ponctué de € .

(On appellecomposante connexe neutfein objet poncté X d’'une caégorie galoisienne
%, 'unique sous-objet connexe ponetde X ; il corresponda la trajectoire sousl» du point
marqle deF'(X), en vertu de 5.3). Comme le fait qu& contienneKer u ne cepend pas de la
ponctuation choisie d&”’ (car une autre ponctuation reviemtemplacef/ par un sous-groupe
conjugweal), on voit :

Corollaire 6.7 Pour que U’ contienne Ker u, il faut et il suffit qu’il existe un objet X de €
(qu’on peut supposer connexe) et un morphisme d’un composante connexe de H(X) dans X'.
Si u est surjectif, cela signifie aussi que X' est isomorphe & un objet de la forme H(X).

Corollaire 6.8 Pour que u soit injectit, il faut et il suffit que pour tout objet X' de ¢ il existe un
objet X de ¢ et un homomorphisme de d’un composante connexe de H(X) dans X'.

Proposition 6.9 Les conditions suivantes sont équivalentes :
(i) L’homomorphisme u: I1p — Iy est surjectif.
(ii) Pour tout objet connexe X de ¢, H(X) est connexe.

(iii) Le foncteur H est pleinement fidele.

Ce dernier fait signifie que pour deux objéfs Y de% I'application naturelle
Hom(X,Y) — Hom(H (X), H(Y))

part 28  est bijective.
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Corollaire 6.10 Pour que u soit un isomorphisme, il faut et suffit que H soit une équivalence de
catégories, ou encore que les deux conditions suivantes soient vérifiées :

1. pour tout objet connexe X de ¢, H(X) est connexe

2. tout objet de € est isomorphe a un objet de la forme H(X).

Proposition 6.11 Soient H: € — €' et H': € — €" des foncteurs exacts entre catégories ga-
loisiennes, F" un foncteur fondamental sur ", posons F' = F"H' et ' = F'H, et considérons
les homomorphismes associés

l
u . mpn — Tpr U:. mpr — TR

Pour que Ker v C Im(u’) i.e. pour que uu' soit ’homomorphisme trivial, il faut et suffit que pour
tout objet X de ¢, H'(H (X)) doit complétement décomposé. Pour que Ker(u) D Im(u’), il faut
et il suffit que pour tout objet ponctué connexe X' de €" tel que H'(X') admette une section
ponctuée, il existe un objet X de € et un homomorphisme d’une composante de H(X) dans X'.

La premere assertionésulte de la dergre affirmation de 6.4. La dewtne Esulte de la
conjonction de 6.4 et 6.6.

Remarque 6.121l n’est pas vrai en gréral, sous les conditions de 6.8 giié soit isomorphe

un objet de la formé{ (X'). On peut montrer que pour que tout objet connexe (donc tout objet)
de%” soit isomorphé un objet de la formé/ (X), il faut et il suffit queu soit un isomorphisme
derr sur un sous-groupkcteur directde . En pratique cependant, on construit directement
un homomorphisme — w5 inversea droite deu a I'aide d’un foncteur exact convenable
de%” dans?.

Proposition 6.13 Soient ¢ une catégorie galoisienne munie d’un foncteur fondamental F', S un
objet connexe de €, €' la catégorie des objets de ¢ au-dessus de S. Alors ¢’ est une catégorie
galoisienne, et le foncteur X — H(X) = X x S de € dans €’ est exact. Soit a € F(5), et soit
F' le foncteur de ¢ dans la catégorie des ensembles finis défini par

F'(X') = image inverse de a par F(X') — F(S)
Alors on a un isomorphisme ' = F’ o H, et ’homomorphisme correspondant
u:.mpr — TR

est un isomorphisme de 7 sur le sous-groupe ouvert U de 7 stabilisateur de I’élément marqué
a de F(X).

La demonstration est laiés au lecteur.
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7 Cas des pescltemas

Soit S un pesclema localement noethien etconnexeet soit
a: Spec(2) — S
un point geonetrique deS, a valeurs dans un corps élgriquement clo§). On posera
¢ = catgorie des redtementetales de5
et pour un objefX’ de %, i.e. un re@temengtaleX de.S, on pose
F(X) = ensemble des point&gneétriqgues deX au-dessus de.

Ainsi, F' devient un foncteur su¥’ a valeurs dans la dagorie des ensembles finis. Les pro-
prietes (G 1)a (G 6) sont satisfaites : pour (G 1), c’est contenu dans les sorites de 1.4.6, (G 2)
résulte de 3.4, (G 3) de 3.5 et delit du N 2, enfin (G 6) est prow dans 3.7. On peut
donc appliquer leséasultats des N 4,5,6. Cela permet en particulier défohir un pro-objetP
de ¥ repsentantF’, appeé revetement universel dé au pointa, et un groupe topologique
m = Aut(F) = Aut’(P), appeé groupe fondamental dé ena, et noé 7,(S, a). Le fonc-
teur I définit alors unegquivalence de la cagories” avec la cagorie des ensembles finis o
m = m (S5, a) opere contiiment. Cett&quivalence permet donc d’integter les oprations cou-
rantes de limites projectives et limites inductives finies sur desteevents (produits, produits
fibrés, sommes, passage au quotient, etc...) en termesélagiops analogues da#§ ), i.e. en
termes des dirationsévidentes sur des ensembles finisnoopere. Notons d’ailleurs, puisque
les composantes connexes topologiques d’udtesuentetale sonégalement des rétements
étales, quin objetX de% est connexe dar si et seulement si il est topologiquement connexe
en vertu de 5.3, cela signifie donc gueopere transitivement darfs(.X ). Notons que pour qu’un
objet X de% soit fidelement plat et quasi-compact sucomme il est éja plat et quasi-compact
sur.S), il faut et suffit queX — S soit surjectif i.e. soit upimorphisme dan®’, ou encore que
X # (). On conclut alors du ciétre 2.6 (iii) queX est un regtement principal de&X de groupe

G si et seulement si il est un espace principal hoémegsousr dans la caggorie?, (tel gu'il a
ete cefini dans N 5).

Si ¢’ est un autre point@&pnétrique deS (correspondané un corps algbriquement clos
2, qui peutétre different def2 et qui peut n@me avoir une caragtistique diferente), il @finit
un foncteur fibref” = F,, de ¥ dans la cagorie des ensembles finis, qui est encore exact,
donc isomorph& ' = F,. Par suite, les groupes fondamentayxs; a) pour a variable sont
isomorphes entre eux. Orésigne parr;(S;a,a’) I'ensemble des isomorphismesu(ae qui
revient au r@me, I'ensembles des homomorphismis)— F,, des foncteurs fibres assésj on
obtient ainsi urgroupddedont I'ensemble des objets est I'ensemble des poitsrgtriques de
S, les groupes fondamenta@tant les groupes d’automorphismes des objets dudit grdepo
L'ensembler (S;d’, a) peutétre appe# I'ensemble des classes de cheming @e’. Ces classes
se composent donc de fagénidente. Enfin, on peutédinir un pro-groupdl; de ¢, qu’on
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pourra appelepro-groupe fondamental d& ou syseme local des groupes fondamentaux Sur
défini a isomorphisme unique @s par la condition qu’on ait un isomorphisme, fonctoriel en le
point geonetriquea de S :

F,(ITY) = 7,(S; a)

(cf. remarque 5.10). En particulier, siest un point ordinaire dé&, la fibre deG ens est un
pro-groupe suk(s), limite projective de groupes finitales suf:(s) ; on pourrait appeler ce pro-
groupele groupe fondamental dg en le point ordinaires de S, le noterr; (.S, s). Par cfinition,
ses pointsa valeurs dans une extension &bgiquement closé€ de k(s) sont leséléments de
m1(S;a), ou a est le point @onetrique deS défini par ladite extension. En particulier, (prenant
pour S le spectre d’'un corpsd tout corpsk est asso@ canoniguement et fonctoriellement un
pro-groupe su¥k, qu’'on pourrait noterr, (k), limite projective de groupes finistales sur, et
dont les points dans une extension&dgquement clos@ de k s’'indentifient auxeléments du
groupe de Galois topologique dgk, ol k est la cbture galoisienne dé dans( (cf. 8.1). Ce
grouper (k) ne semble pas encore avoir retenu I'attention destaigtes.

Soit maintenant
f:8—S

un morphisme d’'un g@sclema connexe localement noetlen dans un autre, sait un point
géonetrique deS’ et soita = f(a’) son image directe darts Alors le foncteur “image inverse”
induit un foncteur de la cagorie?’(S) des reetement®tales de5, dans la catgorie?’(S’) des
revetementetales dev’ :

f*:4(S)— €S

On a d’ailleurs un isomorphisme de foncteurs
Fa e Fa/ O f’,

de sorte quég* est un foncteuexact auquel s’appliguent legsultats du R 6. On a en particulier
un homomorphisme canonique

u=m(f;a):m (S d) = m(S;a)(d = [f(a))

qui permet de reconstituer le foncteur image inverse, comme ueatyn de restriction des
groupes d'oprateurs. Les progrtes du foncteurf® s’expriment de fagcon simple par les pro-
prietes de ’lhomomorphisme de groupes asssccomme il @&t explicie dans le R 6. Si en
particulier S est un regétementétale deS, alors 'homomorphismes est un isomorphisme de
m(S’,a’) sur le sous-groupe ouvert ae(S, a) qui définit le revetemeniétale connexe ponatu
S’ de S (i.e. le stabilisateut/ dea’ € F,(S’) dansm(S; A)).

Si on césire interpeter les homomorphismes( f; a’) pour un point @ongtrique variable:’,
on doit, conforn@menta ce qui &té dit dans le R 6, consi@rer un homomorphisme

ML (f) : T — f2(I17)
de pro-groupes suf, et prendre I’'hnomomorphisme correspondant pour les fibkges®gtriques.
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Proposition 8.1 Soit S le spectre d’un corps k, et soit {2 une extension algébriquement close de
k, définissant un point géométrique a de S a valeurs dans (). Soit k la cl6ture séparable de k dans

Q. Alors il existe un isomorphisme canonique de (S, a) sur le groupe de Galois topologique
de k/k.

Soit k' la cloture algébrique de k dans §2, il correspond donc a un point géométrique b
de S, a valeurs dans k'. L’homomorphisme naturel de foncteurs F, — F, est évidemment
un isomorphisme, car un k-homomorphisme d’une extension finie séparable de k dans 2
prend nécessairement ses valeurs dans k et a fortiori dans k'. D’autre part, le groupe '
des k-automorphismes de k'/k opére de fagon évidente sur F,, d’ou un homomorphisme
7' — Aut(Fy) = Aut(F,) = m1(S;a). D autre part, il est bien connu que I’homomorphisme
naturel de 7' dans le groupe 7 des automorphismes de k /k est un isomorphisme. On obtient ainsi
un homomorphisme canonique m — m(S; a), reste & montrer que c’est un isomorphisme. En ef-
fet, cet homomorphisme est injectif, car un élément du noyau est un automorphisme de k/k qui
induit I’identité sur toute sous-extension séparable finie, donc est trivial. Cet homomorphisme
est surjectif, car si X est un revétement étale connexede S, donc défini par une extension finie
séparable L/k, alors m est transitif sur I’ensemble des k-homomorphismes de L dans k', comme
bien connu.

Proposition 8.2 Soient S un préschéma connexe, localement noethérien et normal, K = k(s)
son corps de fonctions = le corps résiduel en son point générique s, () une extension
algébriquement close de K, définissant un point géométrique o’ de S’ = Spec(K) et un point
géométrique a de S. Alors I’homomorphisme 7,(S’;a’) — m(S;a) est surjectif. Lorsqu’on
identifie le premier groupe au groupe de Galois de la cloture séparable K de K dans ) (cf.
8.1) alors le noyau de I’homomorphisme précédent correspond par la théorie de galois a la sous-
extension de K / K composée des extensions finies de K dans Q2 qui sont non ramifiées sur S.

La premere assertion signifie que I'image inverse Sud’un re\étemengétale connex& de S
est connexe, i.e. qu& est inegre, ce n'est autre que (1.10.1). Le noyau de 'homomorphisme
précedent s’interpgte alors comme forindes automorphismes @&/ K qui induisent I'identié

144 sur les ensemblek, (X), ou on peut supposer le reiementetale X de S connexe. Mais cela
signifie que cet automorphisme induit I'ide@tisur les sous-extensions finiesidé X qui sont
non ramifees suiS, ce qui prouve la dergre assertion.

Remarque. Gracea cette interggtation du groupe fondamental duépctema normalS en

- termes de tborie des Galois habituelle, I&fihition était connue dans ce cas depuis longtemps.
part
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9 Cas des pesctemas non connexes : cagories multigaloi-
siennes

Soit S un piesclema localement noethien, et soientS;);c; Ses composantes connexes.
Alors la caégorie?’(S) des reétements$tales deS estéquivalentea la caégorie produit des
% (S;), qui S'interpetent en termes des groupes fondamentauxSgame fois choisie un point
géeontetrique dans chaque. Dans I'application de la #orie de la descente pour les morphismes
étales, il est parfois malcommode de faire choix pour fud’'un point geonétri que des;. Il
est plus commode alors de recouxita geréralisation naturelle de 5.8 pour integper ¢’(.S)
comme une cé&gorie de foncteurs sur le groude des points gnétriques deS, consicre
comme somme des grouples correspondants aux composantes connexes tks foncteurs
en question sont les foncteuasvaleurs dans la dagorie des ensembles finis, satisfaisant la
propriete de continuié analoguea celle invogée dans 5.8. En pratique, on aura une famille
(a;)ic de points @onetriques des, telle que toute composante connekele S en contienne
au moins un, et on pourra alors, comme dans 5.10, remplacer le gdeuge tous les points
géonetriques des5 par le group@de analogue dont 'ensemble sous-jacentlesBien entendu,
ces considrations devraient s'igser dans desédinitions gerérales concernant les égories
qui sontéquivalentes des catgories produits de dagories de la form&’(r), et qu’on pourra
appelercategories multigaloisienne®lous en laisserons leethil au lecteur.
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Categories fibrees et descente

145
O Introduction

Contrairement ce qui avaiete annoné dans l'introduction de I'exp@specedent, il s’est
averé impossible de faire de la descente dans lagmie des gsclemas, reme dans des cas
particuliers, sans avoiredelop@ au pealable avec assez de soin le langage de la descente dans
les caégories gréerales.

La notion de “descente” fournit le cadré&mgral pour tous les préces de “recollement”
d’objets, et par corexjuent de “recollement” de @&gories. Le cas le plus classique de recol-
lement est relatity la donee d’'un espace topologiqué et d’'un recouvrement d& par des
ouvertsX; ; si on se donne pour toutun espace filér (disons)E; au-dessus d&’;, et pour tout
couple(i, j) un isomorphismg;; de E;| X;; sur E;| X;; (ou on poseX;; = X; N X;), satisfaisant
une condition de transitiét bien connue (qu’okcrit de fagon al@gge fy; f;; = fri), on sait
gu'il existe un espace fibrE sur X, défini a isomorphisme @s par la condition que I'on ait
des isomorphismef: E|X; = E;, satisfaisant les relations, = f,f;' (avec I'abus d&criture
habituel). SoitX’ 'espace somme de¥;, qui est donc un espace fibau-dessus d& (i.e. muni
d’une application continug’ — X). On peut interpgter de fagon plus concise la d@ades”;
comme un espace fibl’ sur X', et la doniee desf;, comme un isomorphisme entre les deux
images inverses (par les deux projections canonigaést £ de £’ sur X’ = X' xx X, la
condition de recollement pouvant alor&sfire comme une idenéitentre isomorphismes d’es-
paces fibesE}" et £’ sur le produit fibé triple X"’ = X’ x x X’ x x X' (ou E}"” désigne I'image
inverse deE’ sur X' par la projection canonique d’indi@g La construction de7, a partir de

146 E’ etdef, est un cas typique de prede de “descente”. D’ailleurs, partant d’un espacefibr
sur X, on dit queX est “localement trivial”, de fibré”, s’il existe un recouvrement ouverk;)
de X tel que lesE|X; soient isomorphed F' x X, ou ce qui revient au Bme, tel que I'image
inverseE’ de E sur X’ = [ [, X, soitisomorphé X x F'.

Ainsi, la notion de “recollement” d’objets comme celle de “localisation”d’une pégprsont
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lieesa I'etude de certains types de “changements de h&se> X. En Geonetrie Algébrique,
bien d’autres types de changement de base, et notamment les morpRismeX fidelements
plats, doivengétre consiéres comme correspondaiiun pro@ce de “localisation” relativement
aux pesclemas, ou autres objets, “au-dessusXdeCe type de localisation est utiéisout autant
gue la simple localisation topologique (qui en est un cas particulier d’ailleurs). Il en estrde m
(dans une moindre mesure) eg@retrie Analytique.

La plupart des dmonstrations, seeduisanta des erifications, sont omises ou simplement
esquisées ; le cagcheant nous cisons les diagrammes moigdents qui s’introduisent dans
une cemonstration.

1 Univers, cakgories,equivalence de catgories

Pouréviter certaines difficuits logiques, nous admettrons ici la notiokudivers qui est un
ensemble “assez gros” pour qu’on n’en sorte pas par lestipns habituelles de laébrie des
ensembles ; undxiome des Univetgarantit que tout objet se trouve dans un Univers. Pour des
détails, voir un livre en @paration par C. Chevalley et le cénéncier*. Ainsi, le sigle(Ens)
désigne, non pas la &gorie de tous les ensembles (notion qui n’a pas de sens), maisdgacat
des ensembles qui se trouvent dans un Univers @g@gue nous ne pciserons pas ici dans la
notation). De reme,(Cat) désignera la c&gorie des cé&gories se trouvant dans I'Univers en
question, les “morphismes” d’'un objéf de (Cat) dans un autrd’, étant par éfinition les
foncteursde X dansY'.

Si & est une cagorie, nous @signons paOb(%) 'ensemble des objetde ¢, parF1(%)
I'ensemble deséchesde @ (ou morphismes d&’). Nousécrirons doncX € Ob(%’) enévitant
'abus de notation courant’ € %. Si % et%’ sont deux cagories, urfoncteurde ¢ dans%¢”’
sera toujours ce qu’on appelle comrdament un foncteucovariantde ¢ dans%” ; sa donge
implique celle de la cé&gorie d’'arriee et la catgorie de épart,4 et ¢’. Les foncteurs d&
dans%” forment un ensemble, tlom (%, ¢”), qui est 'ensemble des objets d'uneégarie
notteHom(%, ¢”). Par finition, unfoncteur contravariant d& danss” est un foncteur de la
categorie oppoges° de ¥ danss”.

Nous admettrons la notion dienite projectiveet delimite inductived’'un foncteur
F: 9 —%,

et en particulier les cas particuliers les plus courants de cette notion : produé@sieast et
produits fibés, notions duales de sommes directes et de sommes argalgjaeh les propgies
formelles habituelles de ces@ations.

Par exemple, dans la égforie(Cat) introduite plus haut, les limites projectives (relatives
a des catgories.# se trouvant dans I'Univers choisi) existent ; 'ensemble d’objets (resp. I'en-

1Les auteurs éfinitifs sont C. Chevalley et P. Gabriel. Le livre doit sortir en I'an 2000. Cf. aussi SGA 4 VI.7.1
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semble de #iches) de la cagorie limite projectives” des®;, s’obtient en prenant la limite pro-
jective des ensembles d’objets (resp. des ensemblead®efl) des cayoriess;. Le cas le plus
connu est celui du produit d’'une famille de @gories. Nous utiliserons constamment par la suite
le produit fibé de deux c&gories sur une trosme.

Pour tout ce qui concerne les egobries et foncteurs, en attendant le livre ezparation éja
signak, voir [1] (qui est @cessairement fort incomplet@éme en ce qui concerne lesrgralites
esquisges dans le psent nuraro).

Prenons cette occasion pour expliciter la notioagdiivalence de cagories, qui n'est pas
expoge de fagon satisfaisante dans [1]. Un fonctBurg — %" est ditfidele (resp.pleinement
fidele) si pour tout couple d'objets, 7" de ¢, l'applicationu — F(u) de Hom(F'(S), F(T))
148 est injective (resp. bijective). On dit queest uneequivalenceale caégories siF' est pleinement
fidele, et si de plus tout objet’ de ¢’ est isomorphé un objet de la formé’(S). On montre
gu’il revient au néme de dire qu'il existe un fonctett de ¢’ dansé quasi-inverse dé", i.e.,
tel queG F' soit isomorph&id,. Lorsqu’il en est ainsi, la dorae d’'un foncteu: ¢/ — ¢ et
d’'un isomorphismep: GF — idy équivauta la dontee, pour touts” € Ob(%”), d’'un couple
(S, ) formé d’un objetS de % et d’'un isomorphisme: F'(S) — S’, soit(G(S), ¢(S5)). (Avec
ces notations, il existe un foncteur uniqggé — % ayant I'application donee S — G(S)
comme application-objets, et tel que I'applicatisn— (.S) soit un homomorphisme de fonc-
teursF'G — idy ). Enfin, siG est un foncteur quasi-inverse dg et si on choisit des isomor-
phismesy: FG = idy ety: GF = idy, alors les deux conditions de compatil@fitsury,
1» énonées dans [1, 1.1.2] sont en f&tuivalentes I'une I'autre, et pour tout isomorphisme
part 30 choisi, il existe un isomorphisme unique tel que lesdites conditions soient satisfaites.

2 Categories sur une autre

Soit & une caggorie dansUniv, c’est donc un objet d€at, et on peut consifer la
caigorieCat, s des “objets deCat au-dessus dé&”. Un objet de cette cagorie est donc un
foncteur

p: F —E

On dit aussi que la cagorie.#, munie d’un tel foncteur, est ur@tegorie au-dessus d&, ou
une&’-categorie On appellera doné-foncteur d’une cagorie.# sur& dans une cégorie
suré&’, un foncteur
[ F -9
tel que
af =p

ou p etq sont les foncteurs-projection podt resp.%. L'ensemble deg’-foncteursf de.# dans
¢ est donc en correspondance biunivoque avec I'ensembleedbgfl d'origine# et d’extiemité

149 ¢ dansCat, s, sans pourtant qu’on aidlune identi (puisque la dorée d’unf comme dessus
ne cetermine pas7 et¥ en tant que c&gories su¥’) ; mais bien enendu, comme dans toute
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autre cakgories/s, on fera couramment I'abus de langage consistadentifier les€’-foncteurs
(au sens explict plus hautp des feches dans une éorieCat /..

On césignera par
Homg (7 ,9)

'ensemble deg’-foncteurs de# dans¥. Bien entendu, un compegsle&’-foncteurs est ue’-
foncteur (la composition en question correspondant géinition a la composition desdthes
dansCat ).

Considerons maintenant deufk-foncteurs
g F -9

et un homomorphisme de foncteurs :
u: f—g
On dit queu est un&-homomorphismeu un *homomorphisme dé&-foncteurs, si pour tout
€€ Ob(%),0na
q(u(§)) = idpe)

en paroles : posaitt = p(§) = ¢f(§) = q9(§) € Ob &, le morphisme
u(§): f(§) — 9(&)

dans¥ est unidg-morphisme. (De facon&ayérale, pour tout morphisme: 7' — S dansé’,

et toute catgorie¥ au-dessus dé&’, un morphismev dans¥ est appeéd un a-morphisme

si g(v) = «, ¢ désignant le foncteur projectiod — &). Si on a un troig#me &-foncteur

h: % — 4 etun&-homomorphisme: ¢ — h, alorsvu estégalement u#-homormorphisme.
150 Ainsi, les &-foncteurs de# dans¥, et les&-homomorphismes de tels, forment une sous-

categorie de la ca#gorie Hom(.#,¥) de tous les foncteurs d& dans¥, qu’'on appellera

la categorie dess’-foncteurs de# dans¥ et qu’on notera

Homg/, (ﬁ, g)
C’est aussi la sous-@ajorie noyau du couple de foncteurs
R,S: Hom(%,9) —=Hom(%#,&) ,

ou R est le foncteur constanééini par 'objetp deHom(.%, &), etai S est le foncteuy — go f
défini parq: 4 — &.

Pour finir ces @reéralites, il restea cefinir les accouplements naturels entre le€gaties
Hom,_(.#,%) par composition dé&’-foncteurs. En d’autres termes, on veéfidir un “fonc-
teur composition” :

() Homy, (#,9) x Homg,_(4,) — Homy,_(F, )
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lorsque.#, ¥, 2 sont trois catgories su¥’, de telle facon que ce foncteur induise, pour les
objets, I'application de compositiofy, g) — ¢f de &-foncteursf: .7 — Y etg: ¥ — .
Pour ceci, rappelons qu’oretinit un foncteur canonique :

(i) Hom(.%,¥) x Hom(¥, %) — Hom(%, 7€)

qui, pour les objets, n’est autre que I'application de compositfon) — ¢f de foncteurs, et qui
transforme une dche(u, v), ou

u f—=f, vig—g
sont des fiches danklom(.#,¥) resp. dandlom(¥, 77), en la feche
viu:gf —4gf
définie par la relation :

vxu(€) = o(f'(£))-g(u(€)) = g'(u(€))v(f(£))

Il est bien connu que I'on obtient bien ainsi un homomorphisme fddans ¢’ f/’, et que (pour
f, g etu, v variables) on obtient ainsi un foncteur (ii), i.e. qu'on a

0) id, *id; = idg;

(1 (V' xu')o (vxu)= (v ov)x (u ou)

Rappelons aussi qu’on a une formule d’associdtigitur les accouplements canoniques (ii), qui
s’exprime d’une part par I'associati@iti.g) f = h(gf) de la composition de foncteurs, et d’autre
part par la formule

(1 (w*v)*xu=wsx*(v*u)

pour les produits de composition d’homomorphismes de foncteurs: (¢ — f' etv: g — ¢
sont comme dessus, ell @n suppose domnde plus un homorphisme: h — k' de fonc-
teursh,h': 2 — J¢'). Je dis maintenant quersque.#, ¢4 sont desf-categories, le foncteur
composition canoniquéi) induit un foncteur(i). Comme on sait €ja que le compasde deux
&-foncteurs est u’-foncteurs, cela revierd dire quelorsquew: f — f' etv: g — ¢ sont
des homomorphismes defoncteurs, alors « u: gf — ¢ f’ estégalement un homomorphisme
de &-foncteurs.Cela €sulte en effet trivialement de&fihitions. Comme les accouplements (i)
sont induits par les accouplements (i), ils satisfotd néme prop@te d’associativié, expringe
aussi dans les formulésg) f = h(gf) et (w * v) x u = w * (v * u) pour dess-foncteurs et des
&-homomorphismes d€-foncteurs.

Pour compéter le formulaire (1), (II), (lIl), rappelons aussi les formules :

(V) vxidg =v et idg*xu=u,
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ou pour simplifier orécritv * f ouwu * g au lieu dev x u, lorsqueu resp.v est 'automorphisme
identitique def resp.g.

De la cEfinition des accouplements (gsulte quédom,,_(.#,¥) est un foncteur e#’, ¢,
de la caégorie produitCat ,»° x Cat,s dans la cakgorieCat. Si en effetg: 4 — ¥, estun
&-foncteur, i.e. un objet dBlom,,_(¥,%,), alors faisant dans (i} = ¢, il lui correspond un
foncteur

g«: Homy, (F,9) — Homy, (7 ,9)

On cefinit de la fagcon analogue, pour ghfoncteurf: .%; — %, un foncteur
f* : Homg/,(f,%) — Homg/,(fl,%)

Pour abeger, on ésigne ces foncteurs aussi par les sigles go f resp.g — gof (qui désignent
seulement, en fait, les applications correspondantes sur les ensembles d’objess)tdl de la
propriete d’associativié indigLee plus haut que de cette facon, on obtient bien comme a@nonc
un foncteurCatj, x Cat s — Cat.

3 Changement de base dans les @&jories suré

Comme dan€at les limites projectives (relativemeatles cagories# élements déjniv)
existent, il en est de &me dansCat,s, en particulier les produits cé@giens y existent, qui
s'interpretent comme des produits fédm dangCat. Conformrément aux notationségérales, si
7 et¥ sont des c&gories au-dessus d& on cesigne par

y)(gg

leur produit dangCat ., i.e. leur produit fibe au-dessus d€ dansCat, en tant que cagorie
au-dessus d€. Ainsi, # x . ¢ est muni de deu¥’-foncteurspr; et pry, qui definissent, pour
toute caégorieZ au-dessus dé€, une bijection

Homg(%ﬂ,f X e g) = Homg(%ﬂ,f) X HOIIlg(%,g) .
Cette bijection provient d’'ailleurs d’'un isomorphisme detgatries
Homy,_ (', F xs%9) = Homg,_(#,F) x Homg,_(H,9)

en prenant les ensembles d’objets des deux memhiidg, foncteurécrit est celui qui a pour
composantes les foncteurs— pr o h eth — pryoh du premier membre dans les deux facteurs
du second. On laisse au lecteur le soin éefier qu’on obtient bien ainsi un isomorphisme (le fait
analogueetant vrai, plus greralement, chaque fois qu’on a une limite projective dégaties —

et non seulement dans le cas d’un produit&)br

Rappelons d’ailleurs gu’on a (comme it dit dansle R 1) :
Fl(ﬁ X e g) = Fl(ﬁZ> XF1(&) Fl(g) s
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la composition desdiches se faisant d’ailleurs composante par composante.
Dans la suite, nous congitbns un foncteur
A& — &

et pour toute cd&gorie.# au-dessus dé’, on consi@re.# x, & comme une cé&gorie au-
dessus de&” graceapr, ; en d’autres termes, nous integpons I'ogeration “produit fibe” comme
une oferation“changement de base’le foncteur): &’ — & prenant le nom défoncteur
de changement de baseConformément aux faits gréraux bien connus, on obtient ainsi un
foncteur, ditftoncteur changement de baseur \ :

A" Cat/(ga — Cat/(go/ s

(adjoint du foncteur “restriction de la base” gaitoute cagorie.#’ au-dessus d€’, de foncteur
projectionyp’, associe#’, consikré comme cdtgorie au-dessus de par le foncteup = A\p).
Comme il est bien connu dans le casngral d’'un foncteur changement de base dans une
cagégorie, le foncteur changement de base “commute aux limites projectives”, et en particulier
“transforme” produits fibgs suré” en produits fibes surs”.

Soient.7 et¥ deux caégories au-dessus d& on va cfinir unisomorphisme canonique
() Homg, (F',9') S Homyg/ (F xXs8',9) OUF =F xs8,9 =9 xs &'
Pour ceci, consigrons le foncteur
1Y =G x5 —9G

et cefinissons (i) par
Fr—prioF |

qui a priori cesigne un foncteur
(ii) Hom(%',49") — Hom(%',9)

Il faut donc \erifier seulement que ce dernier induit un foncteur pour les soégiamags (i), et
gue ce dernier est un isomorphisme. Que (ii) induise une bijection

HOng//_(JOZ/,g/) = Hom,g/_(ﬂ X g gl,g)

est la prop@té caracdtristique du foncteur changement de base. Il reste dqmouver que sk,
G sont dest”-foncteurs#’ — ¥¢’, alorsl’application

Ur—priou

induit une bijection
Hom (F,G) = Homg(pry o F,pri o G)
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La vérification de ce fait est imatiate, et laisse au lecteur.
Il résulte de cet isomorphisme (i), et de la fin du Ruopécedent, que
Homg//_(ff X g g,,g X g (o(a/)

peutétre consi@éré comme un foncteur ené&’, #, ¥, de la caégorie
Catj, x Catj, x Cat,s dans la catgorie Cat, isomorphe au foncteuréfini par I'ex-
pressionHom,,_(F x ¢ &',%). En particulier, pourZ, ¢ fixés, on obtient un foncteur eff,

&' — Homyn, (F',9') = Home,_(F x5 &',9 xs &), et en particulier le5’-foncteur de
projection\: & — & définit un morphisme i.e. un foncteur

)‘,*9[,% : Homg/_ (ﬁ, g) — Hom(g’//_ (y/, g/)
gue nous allons expliciter. Pour les ensembles d’objets des deux membres, c’est I'aplication
fef=fxsé

qui exprime la @pendance fonctorielle d& x » &’ de I'objet.# suré&’. D’autre part, consigrons
deux&-foncteurs
f9: % -9

et un homomorphisme d@-foncteurs
u f—g

on va expliciter 'homomorphisme d€'-foncteurs correspondant :
u: f — g

Pour tout
§'=(£8) € Ob(F)

avec

oy
m
®)
=N
Y

), ST eOb(&), p(§)=A9)=5

le morphisme

(9(¢),5") dans?’

:\
—~
Iy
S—
™
—~
Iy
S~—

I
Ve
-
—
"~
S~—

2!
SN—
QQ\
—
"
N

Il

est ckfini par la formule
u'(€) = (u(§),ids)
(ce qui est bien u’-morphisme dan¥’, carq(u(&)) = A(ids/) = idg).

Consicerons maintenant u#i-foncteur quelconque

N & — &

120



157

Vi

et le foncteur correspondant
Homg//_(ﬁ X e gl,g X e 5’) — Hom,gu/_(ﬁ X g @@”,g X g (a@//) ,

je dis que ce foncteur n'est autre que le foncteur qu’on obtient par leegeqmécedent, en
partant deZ’ et ¥’ sur&’ et en considranté” comme une c&gorie surs”’, compte tenu des
isomorphismes déransitivit &€ de changement de basg”

F'xp &' S5 F'=F xo&" et G xo8" 5G9 =G x8"
qui impliquent un isomorphisme canonique
Homg///_(}ﬂ X g1 éa//,g/ X g1 (ga”) = Homg///_(ﬁ X e g”,% X g g”)

La verification de cette compatibiéitest imnédiate, et laigse au lecteur.

Les foncteurs qu’on vient deéfinir sont compatibles avec les accouplemeréfnis au
numéro pécdent, de facon prise, si¥, ¢, 7 sont des cd@gories au-dessus dg et si on
pose

ﬁ’:ﬂ\xgé” , g/:ngcgol , %/:%X(gé‘” ,

on a commutativé dans le diagramme de foncteurs suivant :
Homg, (#,9) x Homg, (¥, #) — Homg,_(F, )
A},%X/\%,%l l)\}%

Homg)/_(ﬁ’, g/) X Homg//_(%’, e%ﬂ,) — Homg//_ <¢$/, %/)

ou les feches horizontales sont les foncteurs-compositigimi au nuréro pecedent. Cette
commutativié s’exprime par les formules

(9f) =4d'f

pour f € Homg(F#,9), g € Homg (¥, ), (formule qui exprime simplement la fonctori&lit
du changement de base), et la formule

(vxu) =0 xu

lorsque u: f — f; est une #che deHom,, (#,¥) etv: g — g une feche de
Hom,_ (¢, 7¢). La vérification de cette formuleesulte facilement desfinitions.

Dans la suite, nous nous @resserons surtoatHom (.7, %) (et certaines sous-&gories
remarquables de celle-ci) lorsqu& = &, et introduisons pour cette raisons une notation
speciale :

[(9/&) = Homs(£,9) , D(9/&) = Ob(¥/&)) = Homs (¥, &).
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Remarques. Lorsqueé est une cagorie ponctuelle, i.eOb(&’) et F1(&) réduitsa un seul
élement, ce qui signifie aussi qdeest un objet final de la cagjorieCat, alors la donge d’'une
caggorie surg’ estéquivalentea la done d’une catgorie tout court, (car il y aura un foncteur
unique de# dans&). De fagcon plus gcise,Cat . est alors isomorpha Cat. De plus, les
cakgoriesHom,,_(#,%) ne sont alors autres que [Ebom(.#,¥). Rappelons alors que la
formule fondamentale

Hom (7, Hom(.%,%4)) = Hom (¥ x J,9)
(isomorphisme fonctoriel en les trois arguments qui y figurent), permet d’igterpr
Hom(%,9)

axiomatiquement, en termes interrieta caégorieCat, de sorte que le formulaire connu des
caégoriesHom apparé comme un cas particulier d'un formulaire valable dans lesgmies
telles queCat, ou des “objetsHom” (définis par la formule @cedente) existent. Il y a une
interpiétation analogue dHom,,_(.%,%) lorsqu’on supposa nouveaus’ quelconque, par la
formule

Hom(27, Homs,_(F,9)) = Homg(F x H#,9)

(isomorphisme fonctoriel en les trois arguments). De cette facon, les @Espformelles ex-
poses dans les N2, 3 sont des cas particuliers desultats plus gréraux, valables dans les
cakgories o les objetsHom,,_(.#,¥) (lorsque.#, ¢ sont deux objets de la &jorie au-
dessus d’un troisime &) existent.

4 Categories-fibres ;equivalence def-catégories

Soit .7 une caggorie suré, et soitS € Ob&. On appellecattgorie-fibre deZ en S la
sous-catgorie.#s de.# image Eciprogue de la sous-&iorie ponctuelle d& définie pars.
Donc les objets de#s sont les objectg de .7 tels quep(§) = S, ses morphismes sont les
morphismes. de .# tels quep(u) = idg, i.e. lesS-morphismes dans?. Bien entendu,#s
est canoniqguement isomorphe au produitéilsf x, {S}, ou {S} désigne la sous-cagorie
ponctuelle des” définie parS, munie de son foncteur d’inclusion da#s Il en résulte (compte
tenu de la transitivé du changement de base) que si on fait le changement de\ ba%e— &,
alors pour touts” € Ob(&”), la projectionpr, : .F#' = .% X, & — % induit un isomorphisme

Fl, — Fs (oS =AS)).

Proposition 4.1 Soit f: .% — % un &-foncteur. Si f est pleinement fidéle, alors pour tout
changement de base &' — &, le foncteur correspondant ': F' = F Xe 8 — G =G Xz &'
est pleinement fidele.
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La vérification est imradiate ; plus §réeralement, on peut montrer que toute limite projec-
tive de foncteur pleinement fde (ici, f/ et les foncteurs identiques da#is&”) est un foncteur
pleinement fiéle.

On notera que I'assertion analogad.1, ou “pleinement fille” est remplage par €quiva-
lence de ca@tgories”, est faussegg@ pour? = &. Cependant :

Proposition 4.2 Soit f: .% — ¢ un &-foncteur. Les conditions suivantes sont équivalentes :

(i) 1l existe un &-foncteur g: ¢ — F et des &-isomorphismes
9f = idz, fg = idy.
(ii) Pout toute catégorie &' sur &, le foncteur
fl=fxe&  F =F xe& -9 =9 x5 &'

160 est une équivalence de catégories.

(iii) f est une équivalence de catégories, et pout tout S € Ob(&), le foncteur fs: Fs — Ys
induit par f est une équivalence de catégories.

(iii bis) [ est pleinement fidéle, et pour tout S € Ob(&) et tout n € Ob%¥s, il existe un
¢ € Ob(Fs) et un S-isomorphisme u: f((§) — 7.

Démonstration. Evidemment (i) implique qyiest uneequivalence de cagories (notion qui
se ckfinit par la néme condition, maistles isomorphismes de foncteurs ne sont pas astreints
a étre desf-morphismes). D’autre part, iesulte des fonctoriabis du nurgéro peécdent que
la condition (i) est conseee apes changement de bagé — &. Il s’ensuit que (i)= (ii).
Evidemment (ii)=- (iii), car il suffit de faire” = & et&”’ = {S}. Il est encore plus trivial que
(iii) = (iii bis), restea prouver que (iii bis}= (i). Pour ceci, choisissons pour topte Ob(%¥)
un g(n) € Ob(%) et un isomorphisme(n): f(g(n)) — n qui soit tel queg(u(n)) = idg,
ou S = ¢(n). C'est possible grcea la deuxeme condition (iii bis). Comme il est connu et
immédiat, le fait quef est pleinement fiele implique quey peut de fagon uniguétre consiére
comme un foncteur d& dans.#, de fagon que les(n) définissent un homomorphisme (donc
un isomorphisme) fonctoriel: f¢ = idy. De plus, par construction est un&-foncteur etu
un &-homomorphisme. Aux dor@es pecdentes correspond alors un isomorphisme fonctoriel
v: gf — id#, défini par la condition qug * v = u * f, et on constate tout de suite que c’est
egalement u@’-morphisme, cqfd.

Définition 4.3 Si les conditions précédentes sont vérifiées, on dit que f est une équivalence de
catégories sur &, ou une & -équivalence.

Corollaire 4.4 Supposons que le foncteur projection p: % — & soit un foncteur transportable,
i.e. que pour tout isomorphisme «.: T' — S dans & et tout objet £ dans ., il existe un isomor-
phisme u dans .F de source £ tel que p(u) = «. Alors tout &-foncteur f: .F# — & qui est une
équivalence de catégories, est une & -équivalence.
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Résulte du criere (iii bis).

Corollaire 4.5 Soit f: % — ¢ une &-équivalence. Alors pour toute catégorie 5 sur &, les
foncteurs correspondants :

Homg, (¥, ) — Homg,_(F, )
Homg, (A, %) — Home,_(H,9)

(cf. N° 2) sont des équivalences de catégories.

Cela €ésulte du criére (i) par le raisonnement habituel.

5 Morphismes cartesiens, images inverses, foncteurs cér
siens

Soit.# une cakgorie sui&’, de foncteur-projectiop.

Définition 5.1 Considérons un morphisme
a:n—E

dans %, et soient

On dit que « est un morphisme caésiensi pour tout i € Ob(Zr) et tout f-morphisme
w: ' — &, il existe un T-morphisme unique w: ' — n tel que u = « o W.

Cela signifie donc que pour togt € Ob(.%r), I'applicationv — a o v :

(i) Homy(n', 1) — Homy(n', §)

est bijective. Cela signifie aussi que le coupjex) représente le foncteur eyi %7 — Ens du
deuxeme membre. Si pour un morphisnfieT” — S dansé donrg, et un{ € Ob(%g) donrg,

il existe un tel coupldn, «), i.e. un morphisme ca&siena dans.# de buté, tel quep(a) = f,
alorsny est cetermire dans%; a isomorphisme unique gs. On dit alors quEmage inverse de¢

par f existe et un objety de.% muni d’'un f-morphisme ca#ésiena: n — £ est apped une
image inverse dé par f. Souvent on suppose choisi une telle image inverse chaque fois qu’elle
existe (# étant fiXe) ; on notera alors I'image inverse par des symboles telsfg€), ou sim-
plementf*(£) ou ¢ xg T lorsque ces notations n’entr@nt pas des confunsions ; le morphisme
canoniquen: n — £ sera alors n@, dans ce qui suit, par;(£). Si pour touté € Ob(Fg),
l'image inverse de& par f existe, on dira aussi que foncteur image inverse pagf dans.7
existe et f*(¢£) devient alors urfoncteur covariant e, de.#5 dans.%,. Ceci provient du fait
gue le deuxéme membre dans (iegpend de facon covariante ge.e. de facon g@cise @signe
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un foncteur deZ;. x %5 dansEns. Cette @pendance fonctorielle poyit (£) s’explicite ainsi :
consicerons deg-morphismes cagsiens

=€ af =€

et unS-morphisme\: ¢ — ¢, alors il existe uri’-morphisme et un seul: n — n’ tel que I'on
ait

o=
(comme il Esulte du fait que’’ est carésien).

Notons aussi le fait imgédiat suivant : cons&tons un diagramme commutatif

£

| [

é‘/ (a—/ 7,]/
dans#, ou « eta’ sont desf-morphismes, ek un S-isomorphismey:, unT-isomorphismPour
gueca soit carésien, il faut et il suffit que’ le soit

Définition 5.2 Un &-foncteur F': .7 — & est appelé un foncteur caisiens’il transforme mor-
phismes cartésiens en morphismes cartésiens. On désigne par Hom,(-#,%) la sous-catégorie
pleine de Homy,_ (% ,%) formée des foncteurs cartésiens.

Par exemple, considérant & comme une catégorie sur & grice au foncteur identique, tout
morphisme de & est cartésien, donc un foncteur cartésien de & dans .% est un foncteur section
F: & — % qui transforme tout morphisme de & en un morphisme cartésien ; un tel foncteur
s’appelle une section cagésiennede .% sur &.

Proposition 5.3 (i) Un foncteur F': % — < qui est une &-équivalence, est un foncteur
cartésien. (ii) Soient F', G deux &-foncteurs isomorphes# — . Si I’un est cartésien, I’autre
I’est. (iii) Le composé de deux foncteurs cartésiens % — ¢ etd — F est un foncteur cartésien.

L'assertion (iii) est triviale sur la sur laédinition, (ii) résulte de la remarqueguédant 5.2,
(i) résulte facilement de laédinition et du criere 4.2 (iii) ; plus pecig£ment, un morphisme
dans. est carésien si et seulement Bi(«) I'est.

Corollaire 5.4 Soit F': .% — ¢ une &-équivalence. Alors pour toute catégorie 7 sur &, les
foncteurs correspondants G — G o F' et G — F o (G induisent des équivalences de catégories :

Hom,..«(¢, 5) = Hom . (F, )
Homcart(%> y) :) Homcart(%a g)

Cela se éduit de la facon habituelle de 4.2 érié (i) et de 5.3 (i) (ii) (iii). On peut f@ciser
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quele &-foncteurG: ¢4 — 7 est carésien si et seulement 6l o F' I'est, et de némeun
&-foncteurG: s — F est carésien si et seulement&io G I'est.

Il résulte de 5.4 (iii) que si on congitk la sous-cégorieCatjf;"t de Cat » dont les objets
sont les némes que ceux d€at, ., et dont les morphismes sont les fonctecastésiensalors
on a comme au N2 des accouplements :

Hom,,,((#,9) x Hom,(¥4, ) — Hom . (F, 7))

induit par ceux du R 2, permettant de con®derHom,...(-#,%) comme un foncteur eff, ¢,
de la caégorie(Ca’cj’j}“)o X Carc‘;}rt dansCat). Nous aurons besoin de cette remarque surtout
pourlecaso.7 =¥ :

Définition 5.5 Soit.% une catégorie sur &. On désigne par
LimZ /&
la catégorie des & -foncteurs cartésiens & — %, i.e. des sections cartésiennes de .% sur &.

D’aprées ce qu’on vient de diré,im.7 /& est un foncteur er#, de la caiiagorieCat‘/’f;rt dans
la cakgorieCat.

Nous verrons plus bas les relations entre cetégatponLim et la notion de limite projective
de caégories, ainsi que de nombreux exemples.

6 Catégories fibrees et caégories prefibrées. Produits et chan-
gement de base dans icelles

Définition 6.1 Une catégorie .7 sur & est appelée une caggorie fibEe (et on dit alors que le
foncteur F — & est fibrant) si elle satisfait les deux axiomes suivants :
165 — Fib; Pour tout morphisme f: T — S dans &, le foncteur image inverse par [ dans .%
existe.
— Fiby Le composé de deux morphismes cartésiens est cartésien.
Une catégorie .% sur & satistaisant la condition Fiby est appelée une caggorie pefibrée suré’.

Si.%# est une cagorie fibée (resp. @fibrée) suré’, une sous-cégorie¥ de.# est appdie
unesous-cakgorie fibee(resp. unesous-catgorie pEfibreg si c’est une catgorie fibée (resp.
préfibree) suré, et si de plus le foncteur d’inclusion est @&sien. Si par exempl& est une
sous-catgoriepleinede .7, on voit que cela signifie que pour tout morphisihel” — S dans
& et pour toutt € Ob(9Ys), f5(£) estT-isomorphea un objet de,. Un autre cas idressant
est le suivant :# étant une c&gorie fibe suré, consickrons la sous-cagorie¥ de.7 ayant
mémes objets, et dont les morphismes sont les morphisarssiensde .% ; en particulier les
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morphismes de&7s sont les isomorphismes d&s. On voit de suite que c’est bien une sous-
caiégorie fibEe deZ, car dans la bijection

HOmT(nla 77) = HOmf (77/7 5)

relativea un f-morphisme caésien dans#, auxT-isomorphismes du premier membre corres-
pondent les morphismes castens du second. Pagfihition, les sections casiennesy — #
(correspondent alors biunivoquement atstoncteurs quelconque$ — ¢ (mais on notera que
le foncteur naturel

Homg, (£,9) — Hom (&, F) = Lim(F /&)
est fickle, mais en @réral n’est pas pleinement &, i.e. n’est pas un isomorphisme).

Remarques. Soit.# une cakgorie surs’. Les conditions suivantes soegjuivalentes : (i) Tous
les morphismes de&# sont carésiens (ii).# est une cagorie fibEe suré, et les.#g sont des
groupades, (i.e. tout morphisme dangg est un isomorphisme). On dit alors qyé est une
166 caggoriefibrée en groupiessur &. Ce sont elles gu’on rencontre surtout engtthie des mo-
dules”. Si& est un groupiae, on montre que les conditions (i) et @juivalent aussa la sui-
vante : (iii) .# est un groupiule, et le foncteur projection: .% — & est transportable (cf. 4.4).
Par exemple, s# et.# sont des groufdes tels qué&b & et Ob.# soient Eduitsa un point,
de sorte que®’ et.# sont cefinis,a isomorphisme @s, par des groupés et I, et le foncteur
p: F — & est &fini par un homomorphisme de groupest’ — E, alors.# est fibé suré’ si et
seulement sp est surjectif, i.e. sp definit une extension du grouge par le groupe&= = Ker p.

Proposition 6.2 Soit F': .% — ¢ une &-équivalence. Pour que .% soit une catégorie fibrée
(resp. préfibrée) sur &, il faut et il suffit que ¢ le soit.

Résulte facilement desfinitions et de la remarque siggal plus haut qu’un morphismer
dans.# est carésien si et seulement Bi(«) I'est.

Proposition 6.3 Soient %, %, deux catégories sur &, et soit « = (ay, ay) un morphisme dans
F = F1 Xg Fy. Pour que « soit cartésien, il taut et il suffit que ses composantes le soient.

Soit en effet; le but ety la source dey;, et soitf: 7" — S le morphisme d&’ tel quea; et
oy soient desf-morphismes. Pour tout = (1, 75) dans.#r, on a un diagramme commutatif

Homr (', n) Homy (7', §)

| |

Homqp (1, m1) x Homp(nh, 1m2) —— Homy(n}, &1) x Homy (s, §2)

ou les feches verticales sont des bijections. Donc si 'une dashéls horizontales est une bi-
jection, il en est de @me de l'autre. Cela montreef que siay, ay sont carésiens (donc la
deuxieme feche horizontale est bijective) alard’est. La reciproque se voit en faisant dans le
diagramme ci-dessug = n; d’'ou Hom (7}, n;) # (), d’abord pouri = 2 ce qui prouve quey;
est carésien, puis poui = 1 ce qui prouve que., est carésien.
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Corollaire 6.4 Soit F = F| xg Fo, et soit F' = (F, F») un &-foncteur 4 — % . Pour que
Z soit cartésien, il faut et il suffit que F et I, le soient. On obtient ainsi un isomorphisme de
catégories

Homcart(ga yl X g yZ) ; Homcart(ga Lg}) X Homcart<gvy2)
et en particulier (faisant Y = &) un isomorphisme de catégories
Lim(%) x¢ F/E) = Lim(F, /&) x Lim(.F, /&)

Corollaire 6.5 Soient .#; et .#, deux catégories fibrées (resp. préfibrées) au-dessus de &, alors
leur produit fibré .F = %, X ¢ %5 est une catégorie fibrée (resp. préfibrée) sur & .

Ces Esultats €tendent d'ailleurs au cas du produit &bd’'une famille quelconque de
caggories sur’.

Proposition 6.6 Soient .# une catégorie sur &, de foncteur-projection p, et soit \: &' — & un
foncteur, considérons .%' = ¥ X &' comme une catégorie sur &' par le foncteur-projection
P = p X ide . Soit & un morphisme de .%', pour que ' soit un morphisme cartésien, il faut et
il suffit que son image « dans .% le soit.

La demonstration est imadiate et laisse au lecteur.

Corollaire 6.7 Pour tout foncteur cartésien F': . — < de catégories sur &, le foncteur
F'=Fxs&' de F' =.F xpo& dans 9’ =G x &' est cartésien.

Par suite, le foncteuHom(.#,¥) — Homs (%#',%') consieré dans N 3 induit un
foncteur
Homcart(gvg) - Homcart(fg\/7g/);

en d’autres termes, pow, ¢ fixés,on peut considrer
Homcart(ﬁ X g gl,g X g éa/)

168 comme un foncteur efi’ de la caégorieCat »° dansCat. Si on laisse varieegalement”, ¢,

on trouve, un foncteur de la @gorieCat /»° x (Catjf;t)o X Cad:j?gFt dansCat. Lorsqu’on tient
compte de I'isomorphisme

Homg (F',9") = Home(F %o &',9)

envisa@ au N 4, alors less”-foncteurs caésiens de#’ dans¢’ correspondent aux-foncteurs
F xg & — 4 qui transforment tout morphisme dont la préne projection est un morphisme
carésien de#, en un morphisme cdsien de4. Faisant# = &, on trouve (aps changement
de notation) :
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Corollaire 6.8 Lim(.#'/&”) est isomorphe a la sous-catégorie pleine de Homg, (&',.F)
formée des &-foncteurs &' — % qui transforment morphismes quelconques en morphismes

cartésiens. En particulier, si .% est une catégorie fibrée et si .% est la sous-catégorie de .% dont
les morphismes sont des morphismes cartésiens de .% , alors on a une bijection

ObLim(#'/&") = Homg/_ (&', F).

Cela pécise la fagon dont I'expressidiim(.-# x s &”/&”) doit étre considree comme un

foncteur ens” et en.#, de la cakgorie Cat »° x Cat‘f;;ort dans la cagorie Cat. On verra
ultérieurement unea@pendance fonctorielle plus corap par rappo& &”, lorsque# est astreint
aétre une cagorie fibée.

Corollaire 6.9 Soit.% une catégorie fibrée (resp. préfibrée) sur &, alors ' = .F X ¢ &' est une
catégorie fibrée (resp. préfibrée) sur &'.

Proposition 6.10 Soient .#, ¢ des catégories préfibrées sur &, F' un &-foncteur cartésien de
Z# dans ¢4. Pour que F soit fidéle, resp. pleinement fidéle, (resp. une &-équivalence) il faut et
il suffit que pour tout S € Ob &, le foncteur induit Fs: %g — 95 soit fidéle (resp. pleinement
fidele, resp. une équivalence).

Démonstration imradiatea partir des éfinitions.

Pour finir ce nurdro, nous donnons quelques prétgs des ca&gories fibees, utilisant
'axiome Fiby;.
Proposition 6.11 Soit .% une catégorie préfibrée sur &. Pour que .% soit fibrée, il faut et il suffit
qu’elle satistasse la condition suivante :

Fibyy : Soit a: 7 — & un morphisme cartésien dans .% au-dessus du morphisme f: T — S
de &. Pour tout morphisme g: U — T dans &, et tout ( € Ob .%y;, I’application u — « o :

Hom,(¢,n) — Homyy(¢,§)

est bijective.

En d’autres termes, dans une agdrie fibrée sur &, les diagrammes ca&siens sont ca-
racerises par une propite, plus forte a priori que celle de I&fihition, (qu’on obtient en faisant
g = idy dans [enoné& qui pécede).

Corollaire 6.12 Soient .% une catégorie sur &, o un morphisme dans .%. Pour que « soit un

isomorphisme, il faut que p(«) = f soit un isomorphisme et que « soit cartésien ; la réciproque
est vraie si .% est fibrée sur & .
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En effet, sia est un isomorphisme il en e8videmment de @me def = p(«); pour tout
n € Ob %7, 'applicationu — a o u

Hom(n',n) — Hom(n',§)

est bijective ; comme¢ est un isomorphisme, on voit de suite quealé&ment du premier membre
est unT-morphisme si et seulement si son image dans le second gstmorphisme, donc on
obtient ainsi une bijection

HOmT(nla 77) - HOHlf (77/7 5)

ce qui prouve la premre assertion. &iproquement, supposons gfiesoit un isomorphisme
et quex satisfasse la conditioenon@e dand'iby (ce qui signifie donc, lorsquée’ est fibee
sur &, que« est carésien), alors on voit tout de suite que pour toue Ob .7, I'application
u — « ou deHom((,n) dansHom((, &) est bijective, donev est un isomorphisme.

Corollaire 6.13 Soient o: 7 — & et 3: ( — 1 deux morphismes composables dans la catégorie
F fibrée sur &. Si «v est cartésien alors (3 ’est si et seulement si o3 1’est.

On utilise la @finition des morphismes cédiens sous la forme renfée de 6.11.

7 Categories clivees suré

Définition 7.1 Soit .# une catégorie sur &. On appelle clivage de .% sur & une fonction qui
attache a tout f € F1(&) un foncteur image inverse pour f dans .7, soit f*. Le clivage est dit
normali€ si f = idg implique f* = id#,. On appelle caggorie clivee (resp. caggorie cliee
normali€e) une catégorie .# sur & munie d’un clivage (resp. d’un clivage normalisé).

Il estévident que# admet un clivage si et seulementi est pefibrée suré, et alors.#
admet un clivage normaks L'ensemble des clivages sdgf est en correspondance biunivoque
avec I'ensemble des partiéS de F1(.#) satisfaisant les conditions suivantes :

a) Lesa € K sont des morphismes casiens.

b) Pour tout morphism¢: 7" — S dansé’ et tout¢ € Ob(Fg), il existe unf-morphisme
unique dangy, de buts.

Pour que le clivage&fini par K soit normali€, il faut et il suffit queK satisfasse de plus la
condition

c) Les morhismes identiques da#sappartiennena K.
Les morphismeglements des pourrontétre appeds lesmorphismes de transpoptour le
clivage envisag.

La notion d'isomorphisme de @ajories cliees su# est claire. Plus greralement, on peut
définir les morphismes dé&-caggories clives comme les foncteurs decagégories# — ¢
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qui appliquent morphismes de transport en morphismes de transport. (Ce sont en particulier des
foncteurs caésiens). De cette facon les egories clivves su#’ sont les objets d’une dagorie,

la categorie des catgories clives suré’. Le lecteur explicitera I'existence de produit&diau

fait que si une ca&gorie surs” est produit de cé&gories%; sur& munies chacune d’un clivage,
alors.# est muni d’un clivage naturel correspondant. On lagggdement au lecteur d’expliciter

la notion de changement de base dans lesgeaies clives.

Nous designerons pat (&) le morphisme canonique
ap(§): f1(€) — &
Il est, on I'a dit, fonctoriel erg, i.e. on a un homomorphisme fonctoriel
ay:irft — g,
ou pour toutS € Ob(&), is désigne le foncteur d’inclusion
ig: Fg— F
Consicerons maintenant des morphismes
f:T—S e ¢gU—T
dansé, et soit¢ € Ob(.%g), il existe alors un uniqué&-morphisme
crg(&): g 7(§) = (f9)"(§)

rendant commutatif le diagramme

ag(f*(£))

f(€) =" g"(f(9)
asp© | b erg®
3 — (f9)*(€)
afg(é)

(en vertu de la éfinition de(fg)*(¢)). Pour¢ variable, cet homomorphisme est fonctoriel, i.e. :
on a un homomorphisme

crgt 9 F = (f9)"
de foncteurs#y5 — .%;;. Notons tout de suite :

Proposition 7.2 Pour que la catégorie clivée .# sur & soit fibrée, il faut et il suffit que les ¢y,
soient des isomorphismes.

On en conclut, prenant poyr un isomorphisme, pous son inverse, et en cong&rhnt les
isomorphismes; , etc, s :

Corollaire 7.3 Si .7 est une catégorie fibrée clivée sur &, alors pour tout isomorphisme
f: T — S dans &, f* est une équivalence de catégories %5 — Fr.
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Proposition 7.4 Soit .% une catégorie clivée sur &. On a

criar(§) = i (f7(£))
4 {Cids,f(ﬁ) = [*(auas(§))

B) Cf,gh(&) : Cg,h(f*(€>> = Cfg,h(&) ’ h*(cf,g<£>>

(Dans ces formules, f, g, h désignent des morphismes
V-U—-T-—S

et £ un objet de Fg).

La premere et seconde relation, dans le cas d’un clivage norearennent la forme plus
simple
A) cpiap =idpe Gagp = idye

Quanta la troiseme, elle se visualise par la commutaéwitu diagramme

g D gyt
(D) h*(cr.g(€)) | L epon(®)
B (fg)*(€) “tontd) (fgh)*(€)

Dans le cas des d@agories fibees, (0 lesc;, sont des isomorphismes), cette commutadivit
peut s’exprimer intuitivement par le fait quatilisation successive des isomorphismes de la
formec; , ne conduit pas des “identifications contradictoires’On peutecrireégalement cette
formule sans argumert, par l'utilisation du produit de convolution de homomorphismes de
foncteurs :

Crgn © (D" % cpg) = crgno(con* f7).

La demonstration des deus prames formules 7.4 est triviale, esquissons celle de la
troisieme. Pour ceci, congdons, en plus du ca&( D), le caré d’homomorphismes :
* g (f*(£)) .
9" f*(&) — f(€)
(D) cr.9(©) | Las®
O‘fg(é)

(f9)" (&) — §

qui est commutatif par &finition dec;,(£). Consicrons le diagramme obtenu en joignant les
sommets dé D) aux sommets correspondants(d&) par les homomorphismes de la forme

an(g"f*(€)),  agn(f*(£))
an((f9)"(€)), agen(8)-

Les quatre faces latales du cube ainsi obtenu s@galement commutatives : pour celle de
gauche, cela provient du fait que la colonne gauchgdese ceduit de la colonne gauche @8’)
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par application dé:, et quea;, est un homomorphisme fonctoriel ; pour les trois autres, ce n’est
autre que la dfinition des oprations: des trois s restants dg»). Ainsi les cing faces du cube
autres que la face sapeure sont commutatives. Il edsulte que les deukf gh)-morphismes
h*g* f*(€) — (fgh)*(€) définis par(D) ont un néme compas aveca 4, (€): (fgh)*(€) — &,
donc ils sonégaux par éfinition de(fgh)*.

Bornons-nous pour la suite aux egories clieesnormalisees Une telle catgorie donne
naissance aux objets suivants :

a) Une applicatiort — .#5 deOb(&’) dansCat.

b) Une applicatiorf — f*, associanatoutef € F1(&£’), de sourcd’ et de butS, une foncteur
f*i yg — yT-

c) Une applicatiorif, g) — c; ,, associank tout couple de éicheq f, g) de&’, un homomor-
phisme fonctoriet ,: g*f* — (fg)*.

D’ailleurs ces donees satisfont aux conditions expées dans les formuled’) et B)
donrees plus haut. (N.B. Si on neésait pas bora au cas d’un clivage normatdisil aurait fallu
introduire un objet suppmentaire, savoir une fonctigh— «ag qui associex tout objetS de &
un homomorphisme fonctoriels: (ids)* — id#, ; la conditionA’) se remplacerait alors par la
condition A)).

Nous allons montrer maintenant comment on peut reconstaLisonorphisme unique @s)
la caggorie cliee normalige.# suré& a l'aide des objets gedents.

8 Categorie clivee cefinie par un pseudo-foncteuré&” — Cat,

Appelons, pour aliger,pseudo-foncteude &° dansCat (il faudrait dire, pseudo-foncteur
normali€), un ensemble de doées a),b),c) comme ci-dessus, satisfaisant les conditions
et B). Au nunéro pectdent, nous avons assecd une cagorie clie normaliée suré’, un
pseudo-foncteus® — Cat, ici nous allons indiquer la construction inverse. Nous laisserons au
lecteur la werification de la plupart desethils, ainsi que du fait que ces constructions sont bien
“inverses” I'une de l'autre. De facon @cise, il y aurait lieu de congéder les pseudo-foncteurs
&° — Cat comme les objets d’'une nouvelle egbrie, et de montrer que nos constructions
fournissent degquivalences, quasi-inverses I'une de I'autre, entre cetteaterat la cagorie
des catgories clives au-dessus d& définie au nuréro pecedent.

On pose
F.= ] ObZ(9).

Se0b(&)

ensemble somme des ensemifdés% (S) (N.B. nous noterons ic# (5) et non.%g la valeur en
'objet S de & du pseudo-foncteur doBnpouréviter des confusions de notation par la suite).
On a donc une applicaticgvidente :

Po: Fo — Ob&.
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Soient
£E=(S,¢), nm=(T,n (avec¢ € Ob #(S),n € Ob.Z(T))

deuxélements de7,, et soitf € Hom(7,.S), on posera
Sion a de plus un morphisme U — T dansé’, etun¢ € Ob % (U), on cefinit une application,
notte(u,v) — uow: ~ B o
h‘f(ﬁu 5) X h‘g(gvﬁ) - th(Cv f)?
i.e. une application
Hom gz () (n, f*(§)) x Homz 1) (¢, 9" (n)) — Homz (¢, (fg)"(£)),

par la formule
uov =cpy(§)-g"(u) v,
i.e.u o v estle composde la &quence
u * g*(u) * pLx Cf,g(g) *
(—g"(n) — g (&) = (fg9)" (&)
On posera d’autre part

f€eHomT,S
et les accouplementsgmédents éfinissent des accouplements

h(7@, €) x h(C,7) — h(C,E),
tandis que la éfinition desh(7, £) implique une applicatiogvidente :
Pog: h(7,€) — Hom(T, S).

Ceci dit, on \erifie les points suivants :
1) La composition entrélements deé (7, £) estassociative
2) Pour tout = (¢, S) dans.%,, considrons lelement de

hidg (E: E) = Homtgf"s (ldg (5)7 5) = HOHIng (57 5)7

et son image danis(&, E_). Cet objet est unanité a gauche ea droite pour la composition
entreélements des (7, €).

Cela montre dja quel’on obtient une catgorie.#, en posant

Ob.ZF =F, FLF = [] n®@.9).

(N.B. on ne peut prendre simplement pdlirZ la réuniondes ensembles(7, £), car ces
derniers ne sont pagoessairement disjoints). De plus :
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3) Les applicationg,: Ob.# — Ob& etp, = (p;¢): F1.7 — F1& définissent urfoncteur
p: & — &. De cette faconZ devient une c&gorie sui&’, de plus I'applicatiorevidente
hs (7, &) — Hom(7, £) induit unebijection

hy(7,€) = Homy (7, &).
4) Les applicationgvidentes
Ob #(S) — %, =0b.Z, F1.7(S) — F1.%
ou la deuxeme est dfinie par les applicatiorsvidentes

Home?(S) (E; £/> = hids (57 E/) - Hom(g7 E/)

définissent unisomorphisme
is: F(S) = Fs.

178 5) Pour tout obje = (S, ¢) de.#, ettout morphism¢: T — S de&’, considtrons [element
n = (T,n) deZr, avecy = f*(£), etI'élementa; (&) deHom(7, €), image déd - ¢ par le
morphismeHom gz (f*(£), f*(€)) = hy(77,€) — Hom; (77, €). Cetélement est caelmen
et c'est l'identi€ dans¢ si f = idg, en d’autres termes, I'ensemble des(¢) définit
un clivage normalig¢ de.# sur &. De plus, par construction, on a commutaéwitans le
diagramme de foncteurs

Z(5) L 71
is | Lir

Fs 1z, Fr

ou f% estle foncteur image inverse pArrelatif au clivage consité sur.#. Enfin :

6) les homomorphismes , donrés avec le pseudo-foncteur sont transfesypar les isomor-
phismess, en les homomorphismes fonctoriels, assodes au clivage de”.

Nous nous bornona donner la @rification de 1) (qui est, si possible, mons triviale que les
autres). Il suffit de prouver I'associatigitle la composition entre les objets d’ensembles de la
formeh (7, £). Consicérons donc dang des morphismes

st gty

et des objets

57 T]? C? T
dans#(5),.#(T), #(U),.#(V), enfin deklements
we hy(@,€) = Homgmy(n, f*(E))
vehy(C,7) = Homyw (€. g%(n))

w € hy(7,¢) = Homgzu (1, h*(C)).
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On veut prouver la formule
(uov)ow =wuo (vow),

qui est uneegalié danstHom z ) (7, (fgh)*(£)). En vertu des éfinitions les deux membres de
cetteégalie s’obtiennent par composition suivant le contouresigur et inérieur du diagramme
ci-dessous :
* h*(v) k% h* *(u) * ok Lk h*(c, (5)) * *
wwow: W(Q) == k() ST Wgnf(E) =5 (fg)(€)
w T con(m | L egn((9) L cran(®

S O ) e B O O R S 0 W L ST 1

Or le caré médian est commutatif parce qug;, est un homomorphisme fonctoriel, et le @rr
de droite est commutatif en vertui de la conditiBn pour un pseudo-foncteur. Dide résultat
annoneé.

Bien entendu, il rest@ preciser, lorsque le pseudo-foncteur envéspgpvient @ja d’'une
cakgorie cliee normalige.#’ sur&, comment on obtient un isomorphisme naturel e#reet
Z . Nous en laissons leathil au lecteur.

Nous laissonggalement au lecteur d’integter, en termes de pseudo-foncteurs, la notion
d’'image inverse d’'une cagorie cliee.# suré& par un foncteur changement de b&se— &.

9 Exemple : catgorie clivee definie par un foncteur
&° — Cat ; categories scin@es suré’

Supposons qu’on ait un foncteur
¢: &° — Cat,
il définit alors un pseudo-foncteur en posant

F(S)=d(5), [ =9(f), crg=idgy-

Donc la construction du nueno pécdent nous donne une égbrie.# clivée suré’, dite as-
socie au foncteup. Pour qu’une cadgorie clivee suré soit isomorphe une cagorie cliee
déefinie par un foncteup : &° — Cat, il faut et il suffit manifestement gu’elle satisfasse les
conditions :

(f9)"=g"f", cpg=1id(sg~
En termes de I'ensembl& des morphismes de transport, cela signifie aussi simplement que
le compoé de deux morphismes de transport est un morphisme de transpodivage d’'une
caégorie.# suré& satisfaisant la condition pedente est apped unscindagede .7 sur &, et
une cakgorie.# sur& munie d'un scindage est appelunecategorie scinée suré. C'est donc
un cas particulier de la notion de égbrie cliee. La catgorie des cé&gories scindes suré
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est doncequivalentea Hom(&°, Cat). Noter qu’une cagorie scinée suré est a fortiori une
caggorie cliee surs'.

Si .Z est une catgorie fibEe suré, il nexiste pas toujours de scindage sér. Supposons
par exemple qu®b & et Ob.# soient Eduitsa unélement, et que I'ensemble des endomor-
phismes dudit est un grouge resp.F’, de sorte que le foncteur projectiprest dongé par un
homomorphisme de groupes F' — E, surjectif puisque est fibrant. On &rifie alors aussitt
gue I'ensemble des clivages dé sur& est en correspondence biunivoque avec I'ensemble des
applicationss: £ — I telles queps = idg (i.e. 'ensemble des “sysines de re@sentants”
pour les classes mod le sous-grodpaoyau de ’lhomomorphisme surjecjift ¥ — FE). Un
clivage est un scindage si et seulementesst un homomorphisme de groupes. Dire qu’il existe
un scindage signifie donc que I'extension de groupele £ parG est triviale, ce qui s’exprime,
lorsqueG est commutatif, par la nultd’une certaine classe de cohomologie ddh&”, ) (ou
G est consiéré comme un groupelol opere).

Supposons cependant g€ soit une catgorie fibee suré telle que les%s soient des
caégoriesrigides i.e. le groupe des automorphismes de tout objefdeest €duita 'identité.
Il est facile alors de prouver qu& admet un scindage sudt. En effet, on constate d’abord que
la question d’existence d’'un scindage n’est pas meeli§i on remplace” par une catgories’-
équivalente, ce qui nous rame en l'occurrence au cas s.%s sont des c&gories rigidest
réduiteqi.e.deux objets isomorphes da#s sont identiques). Mais §F est une cagorie rigide
et réduite, tout isomorphisme de deux fonctefifs— G (ou H est une catgorie quelconque)
est une identé. Il s’ensuit que si# est une cagorie fibEe suré, telle que les c&gories-fibres
soient rigides eté&duites, alors il existe un clivagmiquede.# sur&’, qui est ecessairement un
scindage. Don¢Z est isomorpha la cagégorie &finie par un foncteup: £° — Cat, tel que les
»(S) soient des cégories rigides et disetes, et le foncteup est ckfini a isomorphisme @s.

10 Catégories co-fibees, cakgories bi-fibrees

Consicerons une cégorie.# au-dessus dé, avec le foncteur projection
p: F — &,
elle cefinit une catgorie.7° au-dessus dé°, par le foncteur projection
P’ F°— &°.

Un morphismex: n — £ dans.# est ditco-carésiensi c’est un morphisme casien pour%°
sur&*. Explicitant, on voit que cela signifie que pour tout olgfede.#, I'applicationu — uo«

Homg (&, &) — Homg(n, &)

est bijective. On dit alors aussi qU& «) est uneémage directe de par f, dans la cagorie.7
suré’. Si elle existe pour tourf dans.%, on dit que le foncteur image directe paexiste, et on
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182 note ce foncteuy” ou f,, une fois choisi. Il est doncadini par un isomorphisme de bifoncteurs
sSur.Zy x Fg -
Homs(f* (77)7 5) - HOITlf (777 f)

Si donc f, existe, pour qug™ existe, il faut et il suffit quef, admette un foncteur adjoint, i.e.
gu'’il existe un foncteurf*: .%s — % et un isomorphisme de bifoncteurs

Hompg(f.(n),§) = Homp(n, f*(£)).

Soitg: U — T un autre morphisme dai§ et supposons que les images inverses et directes par
f, g et fg existent. Consiérons alors les homomorphismes fonctoriels

ch9: JeGs (fg)*
crgt 9 — (f9)"

On constate que si on consi@ /. g, et ¢* f* comme un couple de foncteurs adjoints, ainsi que
(f9)« et(fg)*, les deux homomorphismesgeedents sont adjoints I'un de l'autre. Donc I'un est
un isomorphisme si et seulement si l'autre I'est. En particulier :

Proposition 10.1 Supposons que la catégorie .% sur & soit préfibrée et co-préfibrée. Pour qu’elle
soit fibrée, il faut et il suffit qu’elle soit co-fibrée.

Bien entendu, on dit que? est co-pefibréee resp. co-filire suré’, si .7° est pefibrée resp.
part 37 fibrée sur€’. Nous dirons queZ est bi-fibée surg, si elle est la fois fibée et co-fibee surs.

11 Exemples divers

a) Catégories des fiches def. Soit& une caggorie. Cesignons paA! la caégorie assoéie
183 a I'ensemble totalement ordoaa deuxélements0, 1]; elle a donc deux objets O et 1, et
en plus des deux morphismes identiques udehi(0, 1) de source 0 et but 1. Soit

F1(&) = Hom(A', &)

on 'appelle lacategorie des #iches def. L'objet 1 de A définit un foncteur canonique,
appeék foncteur-but
FI(&) — &

(le foncteur @fini par I'objet 0 deA® est appet foncteur-sourck Pour tout objetS de &,
la cakgorie-fibreF1(&’) s est canoniqguement isomorpaéda caégoried) s des objets de&
au-dessus ds.
Consicerons un morphismg: T — S dansé’, alors il lui correspond un foncteur cano-
nique

fo: & = Fr — Es = Fg
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et un isomorphisme fonctoriel

Homg(f.(n), &) = Homy(n, §)

qui fait donc def, un foncteur image directe poyirdans.#. On a d'ailleurs ici

(ids)e = idzg,  (f9)e = fegs, 9 =1d(y),

i.e..# est muni d'un co-scindage s4t. A fortiori, .%# est co-fibée suré. Notons main-
tenant que I'ensemble des morphismes déngst en correspondance biunivoque avec
'ensemble des diagrammes @&srcommutatifs dans.

f/

X «— Y
u | lw
s 7

Par cefinition, le morphisme en question est ésien si le ca& est cagsien dang’, i.e.

s'il fait de Y un produit fibé de X etT surS. Le foncteur image inversg* existe donc
si et seulement si pour tout objét sur .S, le produit fibé X xg T existe. Il esulte de
10.1 que si le produit de deux objets sur un temse existe toujours dais, i.e. si.# est
préfibree surs’, alors.# est meme fibEe suré'.

b) Catégorie des pefaisceaux ou faisceaux sur des espaces variables

Soit& = Top la cakgorie des espaces topologiquesl'®ist un espace topologique, nous
noterons? (1) la cagégorie des ouverts d&, ou les morphismes sont les applications
d'inclusion. Si% est une cagorie, un foncteutZ (T')° — ¢ s’appelle unpréfaisceau
surT a valeurs dan%’, et unfaisceaus'il satisfait une condition d’exactitude gauche

que nous negpétons pas ici. Laattgorie Z(T') des péfaisceaux suf” a valeurs dans

%, est par éfinition la caégorieHom(% (T)°, %), et la caégorie.# (1) des faisceaux
sur T a valeurs dan& est la sous-céaporie pleine dont les objets sont les objets de
Hom(% (T')°,%¢’) qui sont des faisceaux. $i: T — S est un morphisme dans, i.e.

une application continue d’espaces topologiques, il lui correspond par I'application crois-
santel/ — f~1(U) un foncteurZ (S) — % (T'), d’ou un foncteur

fo: Hom(% (T)°,¢) — Hom(% (S)°, )

appeé foncteur image directe de pfaisceaux payf. On voit aussibt que I'image directe
d’'un faisceau est un faisceau, donc le fonctgug?(7') — 22(.S) induit un foncteur,
également nétf.: Z(T) — £2(S). On \erifie de plus trivialement (par I'associat®&itle
la composition des foncteurs) qu’on a, pour une deuna application continug: U — T,
l'identité

(9f)s = gofoy  deneme (ids). = idu(s).
De cette fagon, on a obtenu un foncteur

S— Z(S)
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resp.
S— Z(9)

185 de & dansCat. En fait, nous nous igressons au foncteur correspondant
S— Z2(5)°, resp.S — Z(5)°.

Il définit une cakégorie co-fibee, et nlBme co-scinée, sur la cagorie des espaces topo-
logiques qu’on appelle leattgorie co-fibee des pefaisceauxresp.faisceau) a valeurs
dans% (sous-entendu : sur des espaces variables). Explicitant la constructich&\wN
voit qu’'un morphisme d’un @faisceaus surl” dans un pefaisceawd sur.S est un couple
(f,u) formé d’'une application continue dé danssS, et d’'un morphisme:: A — f.(B)
dans la cagorie Z(S). Cette description vaw#galement pour les morphismes de fais-
ceaux,.# étant une sous-aagorie pleine de?.

Dans les cas les plus importants, laézairie & et la caégorie.# au-dessus dé& sont
aussi des cagories fibees, i.e. pour toute application continue, les foncteurs image di-
recte Z(T) — 2(5) et.#(T) — #(S) ont un foncteur adjoint, qui est alors Bot* et
appeé foncteur image inverse degfaisceaux resp. foncteur image inverse de faisceaux,
par I'application continug. Ce foncteur existe par exemplegi= Ens. On peut montrer
que le foncteurf*: 2(S) — Z(T') existe chaque fois que dafSles limites inductives
(relativesa des diagrammes dans I'Univers comisi] existent. La question est moins fa-
cile pour.Z ; on notera en effet que @me dans le ca® = Ens) I'image inverse d’'un
préfaisceau qui est un faisceau n’est @ngral pas un faisceau, en d’autres termes le fonc-
teur image invers de faisceau n’est pas isomorphe au foncteur induit par le foncteur image
inverse de pfaisceaux (mal@rla notation commung*). Ainsi, . est une sous-cagorie
co-fibree de?, mais pas une sous-égprie fibée, i.e.le foncteur d’'inclusion# — &
n’est pas fibrant

La cakgorie co-fibee &2 peut se éduire d’'une catgorie co-fibee (ou plubt fibrée) plus
génerale, obtenue ainsi. Pour touteégairie7” (dans I'Univers fix), on pose

P(U) = Hom(% , %)

186 et on note que” — (%) est de facon naturelle un foncteur contravariantZende
la caégorieCat dansCat. Il définit donc une c&gorie scinée au-desus dé = Cat,
que nous noteron€at, . Les objets de cette @&orie sont les couplgs”, p) d’une
caggorie7 et d'un foncteurp: ZZ — %, et un morphisme dé7 ,p) dans(7,q) est
essentiellement un couplg, v), ou f est un foncteuz — ¥ etu un homomorphisme
de foncteurs:: p — ¢f. Nous laissons au lecteur le soin d’expliciter la composition des
morphismes dan€at . Le foncteur-projection

F = Cat//g,;» — & = Cat

associe au couple?Z, p) 'objet % ; la cakgorie-fibre erv/ est la caégorieHom(% , %)
(a isomorphisme @s). Lorsque dan®” les limites inductives existent, on montre facile-
ment que la cé@gorie fibéeCat,, surCat estégalement co-filire surCat, i.e. on peut
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d)

définir la notion dimage directe d’'un foncteys: 27 — % par un foncteurf: Z — 7.
La cakgorie des mfaisceaux sealuit de la catgorie fibee pecdente par le changement
de base

Top® — Cat

(foncteurS +— % (.S) défini plus haut), ce qui donne une egorie fibee surTop®, et
en passand la caégorie oppose, on obtient la cagorie co-fibee & des péfaisceaux
au-dessus d&op. La notion d’image inverse d’'un foncteur correspandelle d'image
directe de pefaisceau, la notion d'image directe d’'un fonctéucelle d'image inverse
d’un préfaisceau.

Objets a opéerateurs au-dessus d’'un objet opérateurs

Soit.# une categorie suf’, et soitS un objet de£’ ou un groupe’ opere,a gauche pour
fixer les ickes. Cet objet operateurs peut s’interpter comme correspondamtin foncteur
A: & — & de la cakgorie & un seul objet, ayaiit comme groupe d’endomorphismes)
déefinie parG, dans la cagorie&’, et céfinie donc par changement de base unégmie
' au-dessus d€&’, qui est fibEe resp. co-filire lorsque# I'est suré’. Une section d&”
sur.#’ (nécessairement cé&dienne, cag” est un groupiae, et tout isomorphisme dans
' est carésien en vertu de 6.12), peut aussi s'inteter comme u#-foncteuréd” — F
au-dessus dg, ou aussi comme un objatoperateurs dans.# “au-dessus” de I'objeh
opérateurssS.

Couples de foncteurs adjoints quasi-inverses ; autoduakis

Lorsque la cagorie-basé’ est €duitea deux objets, b et, en plus desdkches identiques,
a deux isomorphismes: a — betg: b — a invers I'un de l'autre (i.e5” est un groupime
connexe rigide avec deux objets), uneecatrie cliee normaliée suis est essentiellement
la méme chose que le sgshe forné par deux c&goriesZ, et.%, et uncouple de fonc-
teurs adjointsz: .%, — %, et F': %, — %#,, qui soient degquivalences de aagories
(donc quasi-inverses 'un de l'autre). On prendra p&uret .%, les caégories fibres de
Z, pourF etG les foncteursf* et g*, et les deux isomorphismes

u:FGlidg:a U:GF:>id3/:b

sontc, s etcy,. Les deux conditions usuelles de compatibikintreu et v ne sont autres
que la condition 7.4B) pour les compdss fgf etgfg. Il est facile de montrer que ces
conditions suffisend impliquer qu’on a bien un pseudo-fonctetfr — Cat.

Un cas interessant est celui bon a

Ty = F

a’?

G=F° v=u’.

On appelleautodualiedans une cégorie?’, la donrée d’'un foncteuD : ¥ — €°, etd’'un
isomorphisme:: DD° = idy, tels queu et isomorphismeu®: D°D = idy. fassent de
(D, D°) un couple de foncteurs adjoints égessairement quasi-inverses I'un de l'autre).
Cette condition €crit :

D(u(x)) = u(D(x)) pour toutz € Ob(%).
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e) Catégories au-dessus d’'une cagorie discete&’. On dit ques” est unecategorie discéte

f)

9)

si toute feche y est unedkhe identique, de sorte gdeest cefini a isomorphisme unique
pres par la connaissance de I'ensemble- Ob(¢&’). La donree d’'une catgorie.# au-
dessus d& équivaut donc g isomorphisme unique @) a la done d’'une famille de
catgories.7;(i € I), les caggories fibres. Toute dagorie.# sur & est fibee, touts’-
foncteur.# — ¢ est carésien, on a un isomorphisme canonique

Homy, (Z,9) > | [ Hom(Z;,%)).

En particulier, on obtient

I'(F/&) =Lim.Z /& 5 []é

Supposons ques’ ait exactement deux objetsS et 7', et en plus desorphismes iden-
tiques, un morphisme f: T — S. Alors une catgorie.# au-dessus dé& est cfinie,

a &-isomorphisme unique ps, par la donee de deux céagories.%s et .%; et d'un bi-
foncteur H (n, &) sur #5 x #4, a valeurs dan¥ins. En effet, si.# est une cagorie
au-dessus de&’, on lui associe les deux @&mories-fibresZg et .Zr et le bifoncteur
H(n,&) = Homy(n,£). On laisse au lecteur le soin d’expliciter la construction en sense
inverse. Pour que la @agorie envisage soit fibee (ou pefibrée, cela revient au @me) il

faut et il suffit que le foncteul soi repesentable par rappaat’argument. Pour qu’elle

soit co-fibee, il faut et il suffit que soit repésentable par rapport a I'argument

Soit.#7 = € x &, consicréee comme c&gorie au-dessus de grcea pr. Alors .7 est
fibrée et co-fibee surg’, et est @me munie d’'un scindage et d’'un co-scindage canonique,
correspondant au foncteur constant &uresp. sui’°, a valeurs dan€at, de valeurs'.
Ona

I'(%#/&) ~Hom(&,%)

etLim .# /& correspond la sous-cé&gorie pleine forrée des foncteurg': & — ¢ trans-
formant morphismes quelconques en isomorphismes.

12 Foncteurs sur une caggorie clivee

Soit.# une cakgorie clive normalige suré’. Pour tout objetS de & on désigne par

ig: Fg — F

le foncteur d’inclusion. On a donc un homomorphisme fonctoriel, pour tout morphisme
f: T — Sdans& :

aytirft — s,
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ou f* est le foncteur changement de bage — % pour f défini par le clivage. Soit maintenant
P -%
un foncteur deZ dans une c&gorie%’, posons, pour tout € Ob(&),
Fg=Foig: Fg— €
et pour toutf: T'— S dansé&’,
or=Fxoas: Fpf*— Fg

On a ainsia tout foncteutr': .# — €, asso une famille(Fs) de foncteurs#s — %, et une
famille (¢ ) d’homomorphismes de foncteufs f* — Fs. Ces familles satisfont aux conditions
suivantes :

a) Pidg = idFS .

b) Pour deux morphismes: ' — S etg: U — T dansé, on a commutativé dans le cag
d’homomorphismes fonctoriels :

FU *Cf’g

Fug f*—="Fu(f9)"

Sog*f*l l‘pfg

Frfr—2 o F.

La premere relation est triviale, et la dewxne relation s’obtient en appliquant le fonctéuau
diagramme commutatif

7 € 222 (£g)(¢)

Oég(f*(é))l lafg(f)
. ay(€)
J1(€) ———¢
pour un objet variablé dans.%.

Si G est un deuwd@me foncteur# — %, donnant naissanaedes foncteur§i/s: % — €
et des homomorphismes fonctoriels: Grf — Gg, et siu: ' — G est un homomorphisme
fonctoriel, alors il lui correspond des homomorphismes fonctotielss :

us - FS—>G5

et on constate auséttque pour tout morphismg: T' — S dansé’, on a commutativé dans les
cartes

c)

)
Frf* L+ Fy

ol
Py

Grf*——Gg
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Proposition 12.1 Soit 77 (%, %) la catégorie dont les objets sont les couples de familles (F)
(S € Ob(.#)) de foncteurs F5 — €, et de familles (vy) (f € F1(.#)) d’homomorphismes fonc-
toriels Frr f* — Fg, satisfaisant les conditions a) et b) et ot les morphismes sont les familles (uy)

191 (S € Ob(%)) d’homomorphismes Fs — G, vérifiant la condition de commutativité C) écrite
plus haut, (la composition des morphismes se faisant par la composition des homomorphismes
de foncteurs .5 — € ). Alors les deux lois explicitées plus haut définissent un isomorphismex’
de la catégorie Hom(.% , €¢') avec la catégorie 7 (F,%).

Il est trivial qu’on a bien& unfoncteurde la premére caggorie dans la seconde. Ce foncteur
est pleinement fiele, car pout’, G donrés,Hom(F, G) — Hom(K (F), K(G)) est trivialement
injectif; pour montrer que c’est surjectif, il suffit de noter que la condition de commuéatyit
exprime la fonctorial# des applications(§) = us(&): F(S) = Fs(§) — G(§) = Gs(§) pour
les homomorphismes de la formag(¢) dans.#, d’autre part on a la fonctoriaéitsur chaque
catgorie fibre i.e. pour les morphismes da#squi sont desl’-morphismesT € Ob(&)),
d’ou la fonctorialieé pour tout morphisme dan%, puisque unf-morphisme (a f: T — S
est un morphisme dang’} est de fagon unique) un comg@sd’un morphismex;(¢) et d'un
T-morphisme. Il reste don& prouver que le foncteux” est bijectif pour les objets. L'argument
précdent montre €ja queK est injectif pour les objets, reskeprouver gu'il est surjectif, i.e.
que si on part d'un sy8me (Fs), (¢y), satisfaisant a) et b); et si oréfinit une application
Ob.# — Ob ¥ par

F(&) = Fs(§) pour £ € ObFg C ObF

et une applicatiorl(.7) — FI(¥¢) par

Flay(§)u') = ¢f(§) Fr(u)

pour tout morphism¢: 7' — S dansé&’, tout objet{ de.Z et toutT-morphisme.’ de butf*(),
alors on obtient uioncteur " de.# dans%’. En effet, la relationf’(id;) = idg est triviale, il
restea prouver la multiplicativié F'(uv) = F(u)F(v) lorsqu’on a unf-morphismeu: n — ¢ et
un g-morphismev: ( — v,avecf: T'— Setg: U — T des morphismes d&. Posant = uwv,
on aura

u=apu , v=a,n)v, w=aspEw
192 avec

w' = crg(§)g" (W' (cf. N° 8).

Avec ces notations, il faut prouver la commutatvdu contour exrieur du diagramme ci-

dessous :
F(w')
f " oV
u(v') % Fug*(u') * L% Fy(cr,g(8)) %
Fy(¢) Fyg*(n) ——> Fug" f*(§) ——="> Fy(f9)* (&)
m l%(n) lwg(f*(ﬁ)) l«pfg(ﬁ)
Fr(n) — Frf(€) Fs(€)
u’ 3
N T(u') (&) A
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Vi

Or le triangle gauche est commutatif pa&fidition deF'(v), le caré médian est commutatif car
déduit de 'homomorphisme’: £ — f(n) par 'lhomomorphisme fonctoriet,, enfin le care de
droite est commutatif en vertu de la condition b). La conclusion vouluésuite.

Supposons maintenant géesoitégalement une cagjorie clivee normalige surf’, que nous
appellerons d@navant?, et que nous nous iatessons auX-foncteurs de# dans¥. Si F' est
un tel foncteur, il induit des foncteurs

FS: ﬁgﬁgg

pour les cagories fibres. D’autre part, pour tout morphisfnel’ — S dansé&’, et tout objett
dansZg, le f-morphismeF'(a(&)) se factorise de fagon unique parZirmorphisme

wr(&): Fr(f5(8)) — fo(Fs(S))

(ou le # ou le¥ en indice indique la cagorie clivee pour laquelle on prend le foncteur image
inverse), d'a un homomorphisme fonctoriel de foncteurs@de dans¥; :

pr: Frfz — foFs.
Les deux systmes(Fs) et (y;) satisfont les conditions suivantes :
a’) Pidg = 1dFS

b") Pour deux morphismeg: T — S etg: U — T dansé&, on a commutativé dans le
diagramme d’homomorphismes fonctoriels suivant :

FUg}f;“

l‘»"g* fe

95 fE %59

Fu(fg)w

Fyxcyp g F

lgé *pf

9514’ (f9)4Fs.

crg9xFs

Nous en laissons laévification au lecteur, ainsi queehon& et la &monstration de I'analogue

de la proposition 12.1, impliguant que I'on obtient ainsi une correspondance biunivoque entre
'ensemble deg’-foncteurs deZ dans¥, et 'ensemble des sy&Enhes(Fs),(ys) satisfaisant les
conditions &) et b’) ci-dessus. Bien entendu, dans cette correspondance, les fonctéaimsrsart
sont cara@rises par la propéte que les homomorphismes sont des isomorphismes.

Remarque. Bien entendu, il y a ir@ét le plus souvent raisonner directement sur des
caggories fibees sans utiliser des clivages explicites, ce qui dispense en particulier de faire ap-
pel, pour la notion simple dé&-foncteur ou des’-foncteur casiena une interpgtation pesante
comme ci-dessus. C’est poaviter des lourdeurs insupportables, et pour obteniraemés

plus intringques, que nous avona tenoncer partir comme dans [2] de la notion de&gdrie
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clivée (appdie “catgorie fibee” dans loc. cit.), qui passe au second rang au profit de celle
de caggorie fibee. Il est d’'ailleurs probable que, contrairemaritusage encore ppondrant
maintenant, & a d’anciennes habitudes de peesil finira par s’a@rer plus commode dans les
problemes universels, de ne pas mettre I'accenus@solution suppose choisie une fois pour
toutes, mais de mettre toutes les solutions sur un piegladi€.
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Expose VIII

Descente figélement plate

1 Descente des Modules quasi-cékents

Soit Sch la cakgorie des mrsclemas. Proedant comme dans VI 11.b, on trouve que la
caggorie des couplesX, F') d’'un présclemaX et d’'un ModuleF sur X, (ou les morphismes
sont cefinis comme dans loc.cia I'aide de la notion d'image directe de Module par un mor-
phisme d’espaces angs)) peuttre consiéree comme une cagorie fibee au-dessus dech,
le foncteur de changement de base relativeraaimt morphismef: X — Y dansSch étant le
foncteur image inverse de Modules par(On notera que la cagorie fibre enX € Ob(Sch)
de la caggorie peécdente est la cagorieoppo®ea la caégorie des Modules suf). Comme
'image inverse d’'un Module quasi-cétent est quasi-c@nent, on voit que la sous-é&gorie
pleine de la cagorie des couplesy, F'), formée des couples pour lesquélest quasi-coérent,
est une sous-cagjorie fibee de la cdtgorie fibee pecdente. (Par contre, si on ne fait pas d’hy-
potheses surf, I'image directe d’'un Module quasi-cérent n’est pas enégéral un Module
guasi-cokrent). On appellera simplement cetteecgtrie fibee lacategorie fibée des Modules
guasi-colerents sur les @sctemas

Rappelons d’autre part qu’'un morphisrhe X — Y d’espaces annes est difidelement plat
s'il estplat (i.e. pour toutr € X, Ox, est un module plat sufy ;.,), (SGA 1V)), etsurjectif
On dit quef est un morphismeguasi-compacsi I'image inverse payf de toute partie quasi-
compacte est quasi-compacte ; lorsquest un morphisme de @sclemas, cela signifie aussi
gue l'image inverse paf d’'un ouvert affine d&” est €unionfinie d’ouverts affines deX.

Théoreme 1.1 Soit .# la catégorie fibrée des Modules quasi-cohérents sur les préschémas. Soit
g: S” — S un morphisme de préschémas, fidelement plat et quasi-compact. Alors g est un
morphisme de .% -descente effective.

Rappelonsque cela signifie deux choses :

INous admetterons ici la &orie gerérale de la descente exjgesexpoée en étail dans l'article de J. GIRAUD
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Corollaire 1.2 (Descente d’homomorphismes de Modules). Soient g: S' — S un morphisme
de préschémas, fidelement plat et quasi-compact, F' et G deux Modules quasi-cohérents sur .S,
F' et G' leurs images inverses sur S’, enfin F" et G" leurs images inverses sur S” = S’ xg 5.
Considérons le diagramme d’applications d’ensembles défini par les foncteurs changement de
base par g, p1, p2 (ou p1,pa: S’ xgS'=—= 5’ sont les deux projections) :

HomS(F, G) I HOIHS/(F,, G,) — HOHIS//<FW7 G”).

Ce diagramme est exact, i.e. définit une bijection du premier ensemble sur I’ensemble des coinci-
dences des deux applications écrites du deuxieme dans le troisieme.

En d’autres termes, le foncteur changement de basg,gar— F”, déefinit un foncteuplei-
nement fidlede la cakgorie des Modules quasi-dgatents suiS dans la cagorie des Modules
quasi-colrents sus” munis d’une dona de descente relativemenf. De plus :

Corollaire 1.3 (Descente de Modules). Pour tout Module quasi-cohérent F” sur S’, toute donnée
de descente sur F' relativement a g est effective i.e. F’ est isomorphe avec sa donnée de descente
a I’'image inverse par g d’un Module quasi-cohérent sur S (déterminé a isomorphisme unique pres
en vertu de 1.2).

En d’autres termes, le foncteur pleinemenéf@pecdent est i@me uneequivalencePra-
tiquement, cela signifie qu'il revient auéme de se donner un Module quasi-ent surS, ou
un Module quasi-coérent surS” muni d’'une dongé de descente relativemeny.

197 Démonstration de 1.1. Soit d’abord” un S-présclema qui ests-isomorphea la somme d’une
famille de ouverts induit§; de S qui recouvrentS. Alors il estévident que le morphisme struc-
tural T — S est un morphisme dé& -descente effective (cela signifiegeisement que la dorée
d’'un Module quasi-cobrentF’ sur S équivauta la donee de Modules quasi-cétrentsF; sur
lesS;, et d'isomorphismes de recollement : F;|5;,NS; — F};|S;N.S; satisfaisant la condition de
cochaines bien connue). En vertu de VII, il sS’ensuit que p@uifier queg: S’ — S est un mor-
phisme de% -descente effective, il suffit de l@vifier pour le morphismer: 7/ =T xgS" — T
déduit deg par le changement de bage— S. (Remarquer que I'hypo#ise surl’ — S reste
stable par changement de base quelconque, doné’ que S est en fait un morphisme dé -
descente effectivaniverse). Prenant pouss; des ouverts affines qui recouvresiton est donc
rameré au cas 0 S est affine.

Alors S’ est Eeunion finie d’ouverts affines, et prenantdesclema somme de ces derniers,
on trouve unS-sckema affineS; et un S-morphismeS; — S’ plat et surjectif. DoncS; est
aussi figclement plat suiS. Si donc on prouve qu’un morphisme idment plat et affine est
un morphisme de¥-descente effective, donc un morphisme.#dedescente strict universel,

cité dans la note en bas de page de I'Avertissement, travail que nous citerons [D] par la suite. Cf. aussi [ ] pour un
expo£ succinct.
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('hypotheseétant en effet stable par changement de base), on en conclut en particulier que le
morphisme structurab; — S est un morphisme de”-descente strict universel, et comme |l
existe unS-morphismeS; — 5’, il en résultera bien, par [D], qug: S” — S est un morphisme

de .7 -descente strict.

Cela nous ramne donc au cagigy est un morphisme affine, et comme on a vu on peut alors
de plus suppose¥ affine, donmn peut supposes et .S’ affines Dans ce cas, 1.2quivaut au

Lemme 1.4 Soient A un anneau, A’ une A-algébre fidelement plate, M et N deux A-
modules, M’ et N’ les A'-modules déduits par changement d’anneau A — A’, et M",N"
les A” = A’ ® 4 A’-modules déduits par changement d’anneau A — A”. Alors la suite d’ap-
plications ensemblistes

HOIHA(M, N) I HOHIA/(M/, N’) —— HOIIlA//(MH, N”)

est exacte.

198 Comme I'homomorphismé&’ — N’ est injectif (A’ étant ficelement plat sur) on voit que
la premere feche est injective. Il resgéeprouver que si udl’ homomorphisme’: M’ — N’ est
compatible avec les doées de descente, alors il provient ddshomomorphisme:: M — N.
Or cela signifie aussi simplement quéapplique le sous-ensemblg de M’ dans le sous
ensembleN de N’ ('applicationu: M — N induite sera alors automatiquemed#tlinéaire
puisqueu’ estA’-linéaire, et on voit de Bme queu’ est recessairemerétgalau ®4 A’). Or si
x € M, alorsu/(z) est unélement dans le noyau du couple d’applicatioN$—= N” . On est
donc ramea pour prouver 1.4 au cas particulier suivant (correspondant auices-e A) :

Corollaire 1.5 Soit N un A-module, alors la suite d’applications ensemblistes
N > Nl HN//

est exacte.

Soit en effetA; une A-algebre ficklement plate. Pour montrer que la suite envésagst
exacte, il suffit de prouver que la suite qui s’é&ddit par le changement d’annedu— A, 'est.
Or cette derrére, comme on voit de suite, est celle relative/aemodule N, = N ®4 A; est
alaA-algebreA] = A; ®4 A'. Il suffit donc de trouver urd, fidelement plat sur, tel que
Spec(A}) — Spec(A;) soit un morphisme de#-descente strict. Or il suffit en effet de prendre
A; = A, car alors le morphisme @edent admet un morphisme invegsdroite, donc en vertu
de [D] c’est un morphisme de descente effective pour n'importe quebgode fibee surSch.

Il reste enfina montrer que siV’' est un A’-module muni d’une dorée de descente
pourA — A’,i.e. muni d’'un isomorphisme

p: Ni = N,
entre les deux modulesduits deN par les changements d’anneaux —= A’ @ 4 A’ , alors

199 N’ est isomorphe avec sa daede descenteun moduleV ® 4 A’. On voit facilement, compte
part 40 tenu de 1.5, que cé&non@& équivaut au suivant :
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Lemme 1.6 Soit N’ un A’-module muni d’une donnée de descente pour A — A’ (ou A’ est une
A-algebre). Soit N le sous-A-module de N' formé des x tels que p(z @4 1a/) = 1o Qur x, et
considérons I’homomorphisme canonique

N®AA/—>N, s

(qui est alors compatible avec les données de descente). Si A’ est fidélement plat sur A, cet
homomorphisme est un isomorphisme.

Démontrons ce lemme. Soit encofe une A-algebre ficklement plate, pour montrer que le
morphisme envisagest un isomorphisme, il suffit de prouver qu’il le devientesple change-
ment d’'anneawd; — A. Or, utilisant la platitude del; sur A, on voit que 'lhomomorphisme
ainsi obtenu n’est autre que celui qu’on obtiendrait directement en termes du mddule A,
surA] = A’ ®4 Ay, muni de la donée de descente relativemeéntl;, — A} qui se éduit cano-
niguement par changement d’anneau de cellegtpit donee surN’. Ainsi il suffit de trouver
un A, fidelement plat surl tel queSpec(A}) — Spec(A;) soit un morphisme de#-descente
effective. On prend alors comme ci-desslys= A’. Cela ackve la @monstration de 1.6, et par
la la emonstration de 1.1.

Corollaire 1.7 (Descente de sections de Modules). Soit g: S’ — S un morphisme de
préschémas, fidélement plat et quasi-compact. Pour tout Module quasi-cohérent G' sur S, soient
G’ et G" ses images inverses sur S’ et S” = S’ x ¢ 5, et considérons le diagramme d’homomor-
phismes de Modules sur S :

G —9.G' —= h,G"

(ott h: 8" — S est le morphisme structural). Ce diagramme est exact
200 En effet, cela signifie que pour tout ouvéftdanssS, le diagramme correspondant faem

par les sections sur est exact. On peldvidemment supposer alois = S, et I'exactitude en
guestion est alors un cas particulier de 1.2, obtenu en falsants.

Comme le foncteur image inverse de Modules est exalrbite, on conclut formellemeat
partirde 1.1 :

Corollaire 1.8 (Descente de Modules quotients). Avec les notations de 1.7, soit de plus, pour
tout Module quasi-cohérent F' sur un préschéma, Quot(F') I’ensemble des Modules quasi-
cohérents quotients de F'. Avec cette convention, le diagramme d’applications d’ensembles :

Quot(G) — Quot(G’) == Quot(G”)
est exact.

(On auraitevidemment le iameénoné avec les sous-Modules au lieu de Modules quotients,
puisque les deux se correspondent biunivoquement). Faisant en particuiers, on trouve :
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Corollaire 1.9 (Descente des sous-préschémas fermés). Pour tout préschéma X, soit H(X') I’en-
semble des sous-préschémas fermés de X . Avec cette notation, et sous les conditions de 1.7, le
diagramme d’applications d’ensembles suivant

H(S) — H(S') == H(S")
est exact

Il'y a lieu de compéter le tleoeme 1.1 par le&sultat suivant :

Proposition 1.10 (Descente de propriétés de Modules). Soient g: S’ — S un morphisme
fidélement plat et quasi-compact, F' un module quasi-cohérent sur S. Pour que F' soit de type
fini, resp. de présentation finie, resp. localement libre et de type fini, il faut et il suffit que son
image inverse F’ sur S’ Ie soit.

Il N’y a qu’a prouver le “il suffit”. On peugvidemment supposér affine, et en remplacant
alorsS’ par la somme d’ouverts affines recouvraghton est rame®@au cas 0.5’ estégalement
affine. Alors notreenon& equivaut au suivant :

Corollaire 1.11 Soient A un anneau, A’ une A-algebre fidelement plate, M un A-module, M’
le A’-module M ® 4 A’. Pour que M soit de type fini (resp. de présentation finie, resp. localement
libre et de type fini) il faut et il suffit que M’ Ie soit.

En effet, on aM = h_n}MZ ou les M; sont les sous-modules de type fini 8i& Par suite
M = li_n;MZ.’, etsiM’ est lde type fini)/’ estégala I'un des)M/, donc par fiéle platitudel/ est
égala J\ZL doncM est de type fini. Par suite il existe une suite exacte

0O—R—L—-M-—0 |,
aveclL libre de type fini, d’'@ une suite exacte
0O—-R —-L =M —0 |

aveclL' libre de type fini. Si dond/’ est de pesentation finieR’ est de type fini, donc d’aps ce
qui préczdeR est de type fini, dond/ est de pesentation finie. Enfin, dire qud est localement
libre et de type fini, signifie qu’il est de @sentation finie et plat (cf. IV dans le cas na=tén ;

le cas @reral est laiss au lecteur). Comme chacune de ces pétgsise descend bien, il en est
de méme de leur conjonction, ce qui asole la &monstration.

Remarque 1.12 La conjonction de 1.1 et de 1.10 montre quanbné& 1.1 reste encore valable,
guand on remplace la &gorie fibee.Z par la sous-c&gorie fibee fornee des Modules quasi-
cohérents de type fini, resp. degsentation finie, resp. localement libres de type fini, resp. loca-
lement libres de rang doém.
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2 Descente des @sctemas affines sur un autre
202

Comme le foncteur image inverse de Modules est compatible avec le produit tensoriel et
d’autres oprations tensorielles, le @beme 1.1 implique diverses variantes, obtenues en en-
visageant, au lieu d’'un seul Module quasi-eant, un Module quasi-céhent ou un sysime
de Modules quasi-cd@rents muni de structures suppientaires diverses s’exprimamt’aide
d’opérations tensorielles. Par exemple, la deme trois Modules quasi-cefentst, G, H
sur S et d'un accouplement

FoG—H |

équivauta la don®e de trois Modules quasi-catentsF’, G’, H' sur.S’, munis de donees de
descente relativemeaty: S” — S, et munis d’'un accouplement

FeG —H |

“compatible” avec ces do@es de descente, au seégident du terme. Par exemple, si
F = G = H, on voit que la donge d’un Module quasi-c@rent /' sur .S muni d’'une loi
d’algebre (dont pour I'instant nous ne supposons pas qu’elle satisfeeaseun axiome d’asso-
ciativite, commutativié ou d’existence d’une section ugjféquivauta la meme donie surs’,
munie en plus d’'une do@e de descente. En utilisant leéssultats du nug&ro pecdent, on
constate ausgit que pour qué satisfasse I'un des axiomes habituels auxquels on vient de
faire allusion, il faut et il suffit qu’il en soit ainsi pour’. Par exemple, la do@e d’'une Algbre
quasi-colerentess sur S (par quoi nous sous-entendorissdrmais : associative, commutative,
a section unié) équivauta la don@e d’'une Algbre quasi-codrente/’ sur.S’, munie d'une
donree de descente relativemert:: S’ — S. Si on se rappelle &quivalence entre la cgorie
duale des Algbres quasi-cdrentes sufs, et de la catgorie desS-présclemas affines suf,
(EGA Il par.1), on trouve aussit :

Theoreme 2.1 Soit .%' la catégorie fibrée des morphismes affines de préschémas f: X — S,

203 considérée comme sous-catégorie fibrée de la catégorie fibrée des fleches dans la catégorie des
préschémas Sch (VI 11.a). Soit g: S — S un morphisme de préschémas fidelement plat et
quasi-compact. Alors g est un morphisme de .%'-descente effective.

3 Descente de propietes ensemblistes et de propetes de fini-
tude de morphismes

Proposition 3.1 Soient f: X — Y un S-morphisme, g: S’ — S un morphisme surjectif,
fli X' =X xg8 — Y =Y xg5 le morphisme déduit de f par le changement de base
al’aide de g: S — S. Pour que [ soit surjectif (resp. radiciel), il faut et il suffit que f’ le soit.

2pour d’autresé&sultats comme ceux trai dans les nueros 3 et 4, Cf. EGA IV 2.3, 2.6, 2.7.
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On note quef’ peut aussi s’obtenir par le changement de Bédse- Y, qui estéegalement
surjectif puisque éduit deg: S’ — S qui I'est. D’autre part, pour touj € Y et touty’ € Y’
au-dessus dg, on a un isomorphisme

X;/ = Xy ®k(y) k(y,) ,

ou X, désigne la fibre d& eny, et X, celle deX’ eny/'. Il en résulte queX,, est non vide (resp.
a au plus un point, et ce dernier correspanghe extensiorésiduelle radicielle) si et seulement
si X, ala méme propiete. Cela prouve 3.1.

Corollaire 3.2 Sous les conditions de 3.1, si [’ est injectif (resp. bijectif), alors f 1’est également.

Cela provient du fait que sk, a au plus un point (resp. exactement un point) il en est de
méme deX, ; il en est bien ainsi, puisque le morphisog¢, — X, est surjectif (car éduit de
Spec(k(y')) — Spec(k(y)) qui l'est).

Proposition 3.3 Avec les notations de 3.1. Supposons que g: S’ — S soit surjectif et quasi-
compact (resp. fidéelement plat et quasi-compact). Pour que f soit quasi-compact (resp. de type
fini), il faut et il suffit que f’ le soit.

Il'y a a prouver seulement le “il suffit”. On pe@videmment supposef = Y, puisque
I'hypothese faite suly: S’ — S est conser@e pourY’ — Y. De plus on peut supposeéf
affine. AlorsY” est quasi-compact, don¢’ est quasi-compact (puisquyél’est par hypotise).
Soit (X;);c; une famille d’ouverts affines d& recouvrantX, alors lesX/ sont des ouverts
de X'’ recouvrantX’, donc il y a une sous-famille finie qui recouvi&. CommeX’ — X est
surjectif, il s’ensuit que leX; correspondants recouvreréjd X', doncX est quasi-compact, i.e.
f est quasi-compact. Supposons mainterfade type fini, prouvons qug I'est, en supposant
fidelement plat. Remplacat’ par la somme d’'une famille d’ouverts affines le recouvrant, on
peut supposeY” affine. Enfin, X étant recouvert par un nombre fini d’ouverts affidéspar ce
qui préade, il faut montrer qu’ils sont de type fini sursachant queX; est de type fini suk”.
Cela nous ramne alors au

Corollaire 3.4 Soient B une A-algébre, A’ une A-algebre fidélement plate, B' = B® 4 A’ la A-
algebre déduite de B par changement d’anneau. Pour que B soit de type fini, il faut et il suffit
que B’ le soit.

Il'y a a prouver seulement le “il suffit”. On & = limB;, ol les B; sont les sous-aépres
de type fini deB. On a doncB’ = limB;, et si B’ est de type fini surl’, alors B’ estégala un

desB!, doncB estégala B;, donc est de type fini.

Corollaire 3.5 Supposons encore le morphisme de changement de base g: S’ — S fidelement
plat et quasi-compact. Pour que f soit quasi-fini, il faut et il suffit que f' le soit.
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En effet, la prop@te “quasi-fini” est par éfinition la conjonction de “type fini” et fibres
finies”, dont chacune se descend bien pda premere en vertu de 3.3, la seconde par le raison-
nement de 3.1 (n'utilisant que le fait qyesoit surjectif).

205 Remargues 3.6SoientA un anneauX un A-présctema. On voit facilement que les conditions
suivantes soriquivalentes :

(i) Il existe un anneau noethien A, (qu’on peut si on veut supposer un sous-anneau de
type fini de A), un Ay-présctema de type finiXy;, un homomorphismel — A, et un
A-isomorphismeX = Xy x 4, A.

(i) Le morphisme diagonak — X Xg,ec4) X €st quasi-compact (condition vide Ai
est €paé surA), X est eunion finie d’ouverts affineX; dont les anneau®; sont des
algebres de grsentation finie sun, i.e. quotients d’algbres de polydimesa un nombre
fini d’indétermirees, par des &hux de type fini.

Si X est lui-néme affine, d’'annea, ces conditions signifient simplement gileest une
algebre de pesentation finie suA.

Un morphismef: X — Y est ditmorphisme de @sentation finieet on dit encore qué&’
est de pesentation finie su¥’, si Y est €union d’ouverts affiney;, tel queX|Y; en tant que
Y;-présclema satisfasse aux conditioeguivalentes @edentes. Il en est alors deeme pour
XY’ pourtout ouvert affineY” dansy". C’est b une prop@té stable par changement de base, et
d’ailleurs le compos de deux morphismes degsentation finie est de gsentation finie.

Ces notions pa=es, on voit sur (ii), praadant comme dans 1.10, que eebne reste valable
eny remplacant les mots “de type fini” par “deepentation finie”.

4 Descente de propietes topologiques

Théoreme 4.1 Soient g: Y’ — Y un morphisme, et Z une partie de Y. On suppose que g est
plat, et qu’il existe un morphisme quasi-compact f: X — Y tel que Z = f(X) (N.B. si Y est
noethérien, cette derniere condition est impliquée par Z est constructible). Alors on a

9 (2)=g"1(2)

206 On peut supposer” affine, puisY’ affine. CommeY est affine,X estréunion finie d’ou-
verts affinesX;, et remplacantX par la somme de<;, on peut supposezgalementX affine.
SoientA, A’, B les anneaux d&.Y', X, B’ = B ®, A’ celuideX’ = X xy Y’, I le noyau
de A — B, I' le noyau deA’ — B’, donc les parties ferges deY et Y’ définies par ces
ideaux sont respectivement I'aglience deZ = f(X) et 'adhérence d&Z’ = f/(X') = g~ 1(Z).
On veutétablir que cette dergire estegalea ¢g=!(Z), ce qui esultera del’ = I A’, lui-méme
congquence de la platitude d€ sur A.
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Corollaire 4.2 Soient g: Y’ — Y un morphisme plat et quasi-compact, et Z' une partie
fermée de Y' saturée pour la relation d’équivalence ensembliste définie par g. Alors on a

Z' =g~ (9(2")).

On aen effe’ = g7'(Z), avecZ = g(Z'). On peut alors appliquer 4.1, en notant que la
condition mise su¢Z dans 4.1 est bienérifiee en prenant pouX le presclemaZ’ muni de la
structure eduite induite pat”’. (Le fait queg soit quasi-compact assure alors que le morphisme
induit f: Z' — Y est quasi-compact).

L’ énoné 4.2 signifie aussi qua topologie de;y(Y’) induite parY” est quotient de celle d¢'.
En particulier :

Corollaire 4.3 Soit g: Y/ — Y un morphisme fidelement plat et quasi-compact. Alors g fait
de Y un espace toplogique quotient de Y’, i.e. pour une partie Z de Y, Z est fermée (resp.
ouverte) si et seulement si Z' = g~(Z) I’est.

Rappelons maintenant que deel@ments:, b, deY”’ ont meme image dank si et seulement
si ils sont de la forme (c), po(c) pour unéléement convenable dansY” = Y’ xy Y'. Il en
résulte que sy est surjectif, on a un diagramnegactd’ensembles

2Y)—2Y)=—=2Y") ,

ou pour tout ensemblé’, on cesigne par?(E) I'ensemble de ses parties. Ceci pp4.3 peut
207 aussi s’interpeter ainsi :
Corollaire 4.4 (Descente des parties ouvertes resp. fermées). Soit g: Y/ — Y comme dans
4.3. Pour tout préschéma X, soit Ouv(X) resp. Fer(X) I’ensemble de ses parties ouvertes resp.
fermées. Alors on a des diagrammes eXactsd’applications ensemblistes (déduits de g et des deux
projectionsde Y =Y’ xy Y'):

Ouv(Y) — Ouv(Y’) —= Ouv(Y")
Fer(Y) —— Fer(Y’) —= Fer(Y")
On a le compgtment suivana 4.3 :

Corollaire 4.5 Soit g: Y’ — Y comme dans 4.3, et soit Z une partie de Y telle qu’il existe un
morphisme quasi-compact f: X — Y d’image Z (par exemple Z constructible, Y noethérien).
Pour que Z soit une partie localement fermée de Y, il faut et il suffit que Z' = g~'(Z) soit une
partie localement fermée de Y.

Il suffit de prouver le “il suffit”. SoitY; le sous-pesclema fernge deY’, adlerence d&Z muni
de la structureé&duite induite, et soit/ = Y; xy Y’ le sous-pesclema fer_néz deY’ image
réciproque d&;. Son ensemble sous-jacent est I'image invers¢Y;) = ¢~!(Z), donc eségal
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en vertu de 4.5 Z'. CommeZ’ est localement ferendansY”, il est ouvert dans’ donc ouvert
dansY;. Or ce dernier est felement plat et quasi-compact sdr, donc en vertu de 4.3 on en
conclut queZ est ouvert dang?, i.e. dansZ, ce qui signifie queZ est localement fern

Corollaire 4.6 Soitg: Y’ — Y un morphisme fidelement plat et quasi-compact, f: X — Y un
S-morphisme, f': X' — Y le S’-morphisme qui s’en déduit par changement de base. Supposons
que [’ soit une application ouverte (resp. une application fermée, resp. quasi-compact et un
homéomorphisme dans, resp. un homéomorphisme sur) ; alors f a la méme propriété.

CommeY”’ est ficklement plat et quasi-compact S0y on peut supposér = S. Soit() une
partie deX, on a alors (en&signant pafh le morphisme de projectioX’ — X):

g (f(@) = F(h1(Q))

Si Q est ouvert (resp. fer@), il en est de dme deh~!(Q), donc aussi dg¢’(h~1(Q)) si on
supposg’ une application ouverte (resp. fege), donc il en est de@me def(Q) en vertu de la
formule pécdente et de 4.3. Cela prouve les deux pgzes assertions dans 4.6, il reatexa-
miner le cas @ f’ est un horeomorphisme dans, et prouver alors g¢ugest un horeomorphisme
dans. (Le cas d’un hoaomorphisme su@sultera alors de 3.1). En vertu de 3.&st injectif, il
restea prouver que I'applicatioX’ — f(X) est ouverte. On saifijia quef est quasi-compact en
vertu de 3.3. Il suffit de prouver que pour toute partie feedd de X, onaZ = f~1(f(Z)), ce qui
equivauta la formule analogue pour les images inverses par I'application surjécti¥e — X,
i.e.a

Z'= Y \(F(2)
ol on poseZ’ = h7'(Z). Or en vertu de 4.1 appligua la partie f(Z) de Y, on a
g f(2)) =g (f(Z)), etlaformulea prouverequivauta

z'=f"Nf(2)
qui resulte de I'hypothsef’ est un horeomorphisme dans.

N.B. Dans ce dernier raisonnement, supposéaj duef est quasi-compact, on a pas utlis
que g est quasi-compact, mais seulement guest ficclement plat. Donc c’est sous cette hy-
pothese qu’on peut descendre la pr@t&i“homeomorphisme dans”, ou “ha@omorphisme sur”,
ou encore gice au raisonnementgeedent, la propéte “f’ est quasi-compact et fait gé(X")
un espace topologique quotient §¢’.

Nous dirons qu’'un morphismg¢: X — Y de pgésclemas estuniversellement ouvert
(resp.universellement fer& resp.universellement bicontinwetc...) si pour tout changement
de baseY” — Y, f': X’ — Y’ est un morphisme ouvert (resp. fé&nresp. un hogom. sur
'espace image). On tire alors de 4.6 :

Corollaire 4.7 Sous les conditions de 4.6, pour que | soit universellement ouvert, (resp. univer-
sellement fermé, resp. un homéomorphisme dans universel, resp. un homéomorphisme univer-
sel), il faut et il suffit que f' le soit.
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Corollaire 4.8 Sous les conditions de 4.6, pour que f soit séparé (resp. propre) il faut et il suffit
que [’ le soit.

Dire quef est £pak signifie que le morphisme diagondl — X xy X est ferné ou aussi
universellement fer@ et la pren@re assertion 4.&sulte donc de 4.7. Dire quéest propre
signifie quef satisfait les conditions gj) est de type fini b est £pagé c) f est universellement
fermé. La condition a) se descend bien en vertu de 3.3, b) aussied’aprqu’on vient de voir,
enfin c)également par 4.7.

Remarques 4.9Rappelons que lorsque Y’ — Y est un morphisme plat de type fini, avEc
localement noetrien, alorsy est un morphisme ouvert (VI 6.6) ce qui est ésultat plus pcis
que 4.3. On notera cependant quef @st un morphisme felement plat et quasi-compact de
présclemas noetériens, alorsf n’est pas en gréral un morphisme ouvert. Soit par exemple
Y un sclema iréductible dont le point @eériquey n’est pas ouvert (par exemple une courbe
algébrique), et prenons potf’ le sclema sommeé” 11 Spec(k(y)), alors I'image par le mor-
phisme structural” — Y de la partie ouvert&pec(k(y)) n'est pas une partie ouverte de

Le lecteur remarqueragalement que divegnon@s du pesent expas deviennent faux si on y
abandonne I'hypottse que le morphisme &tement plat envis@gest aussi quasi-compact, le
cas type mettant lesnon&s en é@fautétant celui o on prend pouly” le sctema somme des
spectres des anneaux locaux des point¥ dar exemple, prenant encore pdtuune courbe
algébrique iréductible, et pout la partie deY” réduite au point grérique, son image inverse
dansY”’ est ouverte, sans quesoit ouverte.

4.10 Diversénoné&s du pesent expasrestent valables en y remplacant I'hypgesh quey”’
soit plat surY” par la suivante : il existe un Module de type fifiisurY”’, de support”, plat
par rapporta Y ; 'hypothese de fidle platitude sera alors rempése par la pecedente, plus
I'hypothese qu&”’ — Y est surjectif. Ceci s’applique aux deux prémgs assertions dans 1.10,
a 3.3, 3.5, 4.1 et par suitetous les@sultats du grsent nuraro.

5 Descente de morphismes de psctemas

Proposition 5.1 Soit g: S’ — S un morphisme de préschémas.

a) Supposons que g soit surjectif, et que I’homomorphisme
9" Os — g(Oy)

soit injectif, alors g est un épimorphisme dans la catégorie des préschémas, et méme dans
la catégorie des espaces annelés.

b) Supposons que g soit surjectif et fasse de S un espace topologique quotient de S’.
Soit 8" = §" xg S" etsoit h: S” — S le morphisme structural, considérons le diagramme
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d’homomorphismes canonique :
ﬁgﬁg*(ﬁsl)%h*(ﬁsu) ,

et supposons ce diagramme exact Alors g est un épimorphisme effectif dans la catégorie
des préschémas (et aussi dans la catégorie des espaces annelés), i.e. le diagramme

g < Sl = g
est exact.

Démonstration. a) Il faut montrer qu’'un morphisme d’espaces asifelS — Z est connu
quand on conria fg. Or commeg est surjectif, on connal’application ensemblistg, sous-
jacentea f, restea determiner ’'homomorphisme de faisceaux d’anneayx— s, ou ce qui
revient au reme I’lhomomorphisme de faisceaux d’anneaux

u: fo Y (Oy) — O
défini par f. On conni déja ’'homomorphisme

(f9)0'(Oz) = 95 ([ ' (O2)) — O

défini par f g, ou ce qui revient au dme, on dispose d’un homomorphisme
fo ' (O2) = 90:(Os) = 9.(Os))

On constate ausséit que ce dernier n'est autre que le con®dgg*: 05 — ¢.(0s/) et deu,

et commey* est injectif,u est connu quand on corihg*u. [N.B. on a pas utilie évidemment
queg: S’ — S est un morphisme de @sclemas, Ienon@ vaudrait pour un morphisme quel-
conque d’espaces angsl; la neme remarque vaut pour b), tant dans l&gatie des espaces
anneés, que dans la @jorie des espaces aregken anneaux locaux. Noter aussi que st
un morphisme de @isclemas pas &cessairement surjectif, mais tel gife 05 — g.(0g ) soit
injectif, alors pour deux morphismes, f> de S dans unsctemaZ tel que f1g = f2g, on a
fi = fo; en effet, sil est I'ldéal surS qui définit le sous-pesclema deS des cdncidences
de f1, f> (image inverse du sousgsctema diagonal d& x Z par(fi, f2)), on voit quel est
contenu dan&er(g*)].

b) On doit montrer que pour tout espace aeri&lle diagramme suivant d’applications
Hom(S, Z) — Hom(S’, Z) —= Hom(S5", Z)

est exact, et qu'’il en est deéme lorsqueZ est un espace anigeén anneaux locaux et qu’on
se borne aux homomorphismes d’espaces @sreh anneaux locaux. Comme on sé&jadpar
a) que la prengire application est injective, il reséevoir que sif’: S’ — Z est un homomor-
phisme d’espaces angsltel quef'p; = f'ps, alorsf’ est de la formefg, ou f: S — Z estun
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homomorphisme d’espaces are®lComme; est surjectif, il est alorévident que sif’ est un
morphisme d’espaces anaslen anneaux locaux, il en sera deme pourf.

De I'hypothese surf’ résulte que I'application ensembliste sous-jacgftest constante sur
les fibres de I'application,, donc comme cette degre est surjectivef) se factorise de fagon
unique enf) = fogo, OU fo: S — Z est une application,dtessairement continue puisoe
identifie.S a un espace topologique quotientgle Consictrons maintenant 'homomorphisme

fo ' (Oz) = 9.(Os)

déduit de ’homomorphisméfogy) ' (0z) — Os correspondard f'. Lhypothesef'p; = f'ps
s'interprete alors en disant que les comessle ’'homomorphisme peedent avec les deux ho-
momorphismesy. (0s ) —= h.(0s») sont les emes donc d’'ags I'hypottese b) il se facto-
rise par un morphisme

fo'(Oz2) — Os

Ce dernier éfinit un morphisme d’espaces ane®f: S — Z, qui est le morphisme chereh

Théeoreme 5.2 Soit .% la catégorie fibrée des fleches dans la catégorie Sch des préschémas
(VI 11.a). Alors tout morphisme g: S’ — S fidélement plat et quasi-compact est un morphisme
de .7 -descente (ou encore, comme on dit, un morphisme de descente dans Sch).

Cela signifie donc ceci: soit” = S’ x5, et pour deux @FsclemasX, Y surS, considcrons
leurs images inverses’, Y’ sur S’ et leurs images inverses”, Y” sur S”, d'ou un diagramme
d’applications

HOIHS(X, Y) —_— HOIHS/ (X/, Y/) — HOIHS// (X//, Y”) )

213 ces notations p@es, 5.2 signifie que ce diagramme est exact. On notera qu'il n’est pas vrai en
géréral queg soit un morphisme de descente effective, i.e. que pour t@sciFmaX’ sur.s’,
toute donge de descente siXi’ relativementig: S’ — S soit effective. La question de I'effec-
tiviteé, souvent dlicate, sera examae au N 7.

Onavu [D], (compte tenu que dafish les produits fibes existent) que&noné 5.2équivaut
au suivant :

Corollaire 5.3 Un morphisme fidelement plat et quasi-compact de préschémas est un épimor-
phisme effectif universel.

Comme un morphisme fidement plat et quasi-compact reste tel par toute extension de la
base, on est raméid prouver que c’est ugpimorphisme effectif. On applique alors le eri 5.1
b), qui donne le&sultat voulu, compte tenu de 4.3 et 1.7.

Corollaire 5.4 Soit g: S’ — S un morphisme fidélement plat et quasi-compact, f: X — Y

un S-morphisme, f': X' — Y’ le S’-morphisme qui s’en déduit par le changement de
base S’ — S. Pour que [ soit un isomorphisme, il faut et il suffit que f’ le soit.
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En effet, sif’ est un isomorphisme, c’est aussi un isomorphisme pour les structures de des-
cente naturelles suk’,Y’, et comme le foncteuX —— X' de Sch,s dans la cagorie des
présclemas sus’ munis d’une donée de descente relativement est pleinement fiele par 5.2,
la conclusion voulue appdta

Corollaire 5.5 Sous les conditions de 5.4, pour que f soit une immersion fermée (resp. une
immersion ouverte, resp. une immersion quasi-compacte) il faut et suffit que f' le soit.

On peut supposer comme d’habituble= S, et il y aa prouver seulement le “il suffit”.
Notons que le fait queX’/Y” soit muni d’'une don@e de descente relativemeny: Y/ — Y,
et que le morphisme structurdl: X’ — Y’ soit une immersion donc un monomorphisme,
implique que les deux sous-objetsXdéimages inverses d&’/Y’ par I'une et I'autre projection
de S” dansS’ sont les l@mes. Sif’ est une immersion ferée, il en esulte en vertu de 1.9 qu'il
existe un sous-gsctema ferné X; deY dont I'image inverse pag: Y’/ — Y estX’. Donc par
unicité de la solution d’un probime de descente relativemeéntin morphisme de#-descente,
résulte queX; estY-isomorphea X, doncf: X — Y est une immersion ferge. On proede
de nmeéme pour une immersion ouverte, en utilisant 4.4. Si efifiast une immersion quasi-
compactef est quasi-compact en vertu de 3.3, donc on peut applileepartief (X) deY le
critere 4.5, qui prouve qug(X) est localement ferepuisque son image invergg X’) dansy”
I'est. Remplagant alor¥” par une partie ouverte dans laquefleX) soit fermée, on est rameén
au cas a f’ est une immersion ferae, doncf I'est en vertu de ce qui prede.

Corollaire 5.6 Sous les conditions de 5.4, pour que f soit affine, il faut et il suffit que f’ le soit.

On pro@de comme dans 5.5, en utilisant 2.1 (On peut aussi utiliser &8&dbhomologique
de Serre [EGA 11 5.2], qui @montre 5.6 sans utiliser de technique de descente).

Corollaire 5.7 Sous les conditions de 5.4, pour que f soit entier (resp. fini, resp. fini et locale-
ment libre) il faut et il suffit que f' le soit.

Il'y a a prouver seulement le “il suffit”, et comme d’habitude on peut suppbsef S,
Y affine, etY’ affine. Comme I'hypotase implique qug”’ est affine, il en est de @ame def
d’apres 5.6, doncX et par suiteX’ sont affines. Soienti, A’, B, B’ = B ®4 A’ les anneaux
deY,Y’, X, X'.OnaB = limB;, ou B; parcourt les soust-algebres deB qui sont de type fini

sur4, d'ou B’ = limB;, ol les B; sont des sous-adfpres de type fini de |d’-algebre 3. Si B’

est entier sur, les B; sont des modules de type fini sdf, doncA’ étant ficelement plat su#,
les B; sont des modules de type fini sdri.e. B est entier sudl. On voit de néme que sB’ est
fini sur A’, B I'est surA. Méme conclusion pour “localement libre de type fini”, cf. 1.11.

Corollaire 5.8 Sous les conditions de 5.4, supposons f quasi-compact et soient . un Module
inversible sur X, et £’ son image inverse sur X'. Pour que £ soit ample (resp. trés ample)
relativement a f, il faut et il suffit que f’ soit ample (resp. trés ample) relativement a f.
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Il'y a a prouver seulement le “il suffit”. L'hypotise sutZ implique en tous cas qug est
sepak, doncf est €paké par 4.8, et commg est quasi-compact, gt Y’ — Y est plat, le calcul
des images directes par recouvrements affines montre qu’on a des isomorphismes

g (f (L) = fi(L®)
pour tout entier,, donc on a un isomorphisme
g (L) =7
ou.¥ (resp..”’) designe I'Algebre gradée quasi-coérente sul” (resp. sury’”’) somme directe
desf.(.£®") (resp. desf.(.£'®™)) pourn > 0. Notons que pour tout > 0, le conoyau de
I’'hnomomorphisme canoniqug™ (7)) — £'®" est image inverse pak’ — X du conoyau
de f*(<,) — £®", donc son supporf/, est 'image inverse du suppo#t,. Si f est ample
I'intersection desZ! est vide, donc comm&’ — X est surjectif, I'intersection deg,, est vide,

i.e. on a un morphisme canonique
j: X — Proj(¥)

(EGA Il 3). D’allleurs, le morphisme analogue
j' X' — Proj(<")

n’est autre que celui qui eseduit du pécdent par le changement de baSe— Y (loc.cit.).
Ceci pog, dire queZ”’ est ample relativemerdt f’ signifie que;j’ est une immersion, d’ailleurs
néecessairement quasi-compacte puisgiest quasi-compact. Donc en vertu de 5.8st une
immersion, i.e.Z est ample relativemest f. - On pro@de de facon toute analogue dans le cas
de “tres ample”, en se bornant ci-dessus = 1, et en remplagant la con&htion deProj(.)

par celle du fibe projectif (., ) assock a.7;.

Rappelons (EGA 11 5.1.1) qu’un morphisme quasi-comgaest ditquasi-affinesi pour tout
ouvert affineU dansY, f~'(U) est un péesclema isomorphé un sous-s@ma ouvert d’'un
sckema affine. On montre (loc.cit.) gu’il revient ateme de dire qué&'x est ample (ou aussi :
tres ample) relativemesdt f. Donc 5.8 implique :

Corollaire 5.9 Sous les conditions de 5.4, et supposant f quasi-compact, pour que f soit quasi-
affine, il faut et il suffit que f’ le soit.

Remarques 5.10L'exemple de vagte non projective de Hironaka montre qu’on peut avoir un
morphisme proprg : X — Y de varetes algbriques non singuwres (aved” projective), tel
que Y soit reunion de deux ouverts; tels queX; = X xy Y; soit projectif surY;, mais f
n’étant pas projectif. Donc posaht = Y; I Y5, Y’ est ficklement plat et quasi-compact (et
méme quasi-fini) sul’, f': X’ — Y’ est projectif, maigf n’est pas projectif. Il faut donc faire
attention que pour appliquer 5.8, eétdiiire du fait quef’ est projectif la me conclusion suf,

il faut disposer dja surX’ d’un Module inversible?’ ample pourf’, muni d’une donée de
descente relativemeatX’ — X, (ce qui permet de con®der.Z’ comme l'image inverse d’'un
Module inversibleZ sur X, qui sera alors ample poyrgracea 5.8). Lorsquey: S’ — S est
fini et localement libre, voir cependant 7.7.
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6 Application aux morphismes finis et quasi-finis®

Nous allons dmontrer les deux #o®mes suivants :

Théeoreme 6.1 Soit f: X — Y un morphisme propre a fibres finies avec Y localement
noethérien. Alors f est fini.

Théoreme 6.2Soit f: X — Y un morphisme quasi-fini et sépag, avec Y localement
noethérien. Alors f est quasi-affine, et a fortiori quasi-projectif.

Remarques 6.3Le theoeme 6.1 est bien connu, efid Chevalley dans le cas des s
algébriques; on en trouvera aussi unentbnstration simple dans [EGA Il 4], utilisant le
“theoeme des fonctions holomorphes”. Lérdonstration dorée ici n'utilise pas ce dernier
theome, mais par contre laébrie de la descente ; nous la donnons comme prime au lecteur,
car on I'a “pour rien” en reme temps que celle de 6.2. Rappelons aussi ([EGA Il 4] ou [1]) que
la forme globale du “Main Theorem” de Zariskieduit du “threoeme des fonctions holomor-
phes”, affirme que sf: X — Y est quasi-fini equasi-projectif Y étant noetérien, alorsX est
Y-isomorphea un sous-msclema ouvert d’'uny’ -présclemafini Z. La conjonction du “Main
Theorem” et de 6.2 &nhonce donc ainsi :

Corollaire 6.4 Soit f: X — Y un morphisme quasi-fini et séparé, avec Y noethérien. Alors X
est Y -isomorphe a un sous-préschéma ouvert d’un Y -préschéma fini Z.

Une autre coresquence iréiressante de 6.2 pour la&thrie de la descente sera déeravec 7.9.

Démonstration de 6.1et6.2. Nous admettrons le fait suivant, dont &ntbnstration est facite

Lemme 6.5 Soit X un préschéma de type fini sur Y localement noethérien, et soity € Y. Pour
qu’il existe un voisinage ouvert U de y tel que X|U soit fini (resp. quasi-affine, resp. ...) sur U,
il faut et il suffit que X Xy Spec(0,) soit fini (resp. quasi-affine, resp. ...) sur Spec(0,).

Comme d’autre part la prof@ie pourf: X — Y d'étre fini, resp. quasi-affine, est locale
surY’, on est ramedpour prouver 6.1 et 6.2 au cas ¥ est le spectre d’un anneau local, et est a
fortiori de dimension finie. (N.B. on appeltémension d’un pgsclemaY” le sup des dimensions
de Krull de ses anneaux locaux). Nous g@dons paré&currence sur

n=dim(Y) ,

'assertionétant triviale pourn < 0. Nous pouvons donc supposer > 0, et I'assertion
demontée pour les dimensions < n. On peuta houveau supposer qieest le spectre d’un

3Cf. EGA IV 18.12 pour desé@réralisationsx des pesclemas non écessairement localement ndaikns
4Cf.EGAIV 8
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anneau local noeéitien A, de dimensiom. Notons que les hypoéises faites dans 6.1 et 6.2 sont
stables par changement de base (on s’en&atsirvi dans laaduction du é@but), elles resteront
vraies apes le changement de bageec(A) — Spec(A). Comme ce dernier est Btemeent plat
et quasi-compact, lénon@s 5.7 et 5.9 nous raznent au castoA est de plus complet. Utilisant
alors le fait que tout anneau local noetien B sur A quasi-fini surA est fini surA, et le fait
que X est £pak surY et la fibre dey est fornee de points iséls, on trouve unea@tomposition

X=X'TIXx"

ol X' estfini surY, et ai la fibre deX” eny est vide. SiX est propre sul, il en est de
méme deX”, donc son image dans est fernee, et comme elle ne contient pg<slle est vide,
doncX” = () doncX = X', ce qui montre qu& est fini surY” et demontre 6.1 (N.B. I'hypotbse
de ecurrence estici inutile). ST est quasi-fini sut”, X" I'est aussi, otX” se trouve en fait sur
l'ouvertY — (y) deY, qui est de dimensior n. En vertu de I'hypothse deé&currenceX” est
quasi-affine suk” — (y), donc aussi suY’, il en estevidemment de #gme deX’, donc aussi de
leur sommeX, ce qui prouve 6.2.

Remarque 6.6 Les treoemes 6.1 et 6.2 restent valables si on ne supposeYplegalement
noetlerien,a condition de sgcifier que I'on supposé¢ de pgésentation finie (cf 3.6). En effet,
on peut encore supposkr affine, et alors on @rifie sans dificuét que la situatiorf: X — Y

est ceduit, par un changement de base— Y, d’'une situationf,: X, — Y, satisfaisant les
mémes hypotbses que, avecY, noetterien Donc d’apes le esultat 6.1 resp. 6.2, est fini
resp. quasi-affine, donc il en est deeme def. Ce genre de raisonnement est souvent utile
pour se ébarrasser d’hypoéises noetriennes, (qui finissent toujours &re genantes dans les
applications.

7 Criteres d'effectivité pour une donree de descente

Consicerons comme d’habitude un morphisme deggtémas
g: 8" — S

et unS-présctemaX’. Confornement aux faits @réraux (SGA VII, 9), la donee d’une donee
de descente sux’, relativement g, estéquivalentei la don@e d’'un couple dquivalence [3] :

G,qe: X' —= X'

tel que le morphisme structuraf’ — S’ soit compatible avec ce couple et le couple
d’équivalence
pr,pe: S =8 xg 8 —=—=9
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défini parg, et tel que les deux cas (ou I'un des deux, cela revient a@me par raison de
symetrie) extraits du diagramme correspondant

X/ < X//

|

S/ < S//

(en utilisant soitpy, ¢, SOit py, ¢2), Soit cartésien Une solution du prol@ime de descente pos
par cette don@e de descente, i.e. un objEtsur.S muni d’un isomorphismeX xg S’ & X’
compatible avec les doéers de descentequivauta la don@e d’un care cartésien

X< x

L,

§<I—g
satisfaisantig; = hgs.

Comme I'ensemble des morphismesfi&ment plats et quasi-compacts est stable par change-
ment de base, et qu’un morphismesligiment plat et quasi-compact estapimorphisme effectif
en vertu de 5.3, il&sulte de la teorie gerérale [D] :

Proposition 7.1 Supposons g: S’ — S fideélement plat et quasi-compact. Pour qu’une don-
née de descente sur X' relativement a g soit effective, il faut et il suffit que la relation
d’équivalence R = (q1,q2) qu’elle définit soit effective (i.e. le quotient X'/ R existe et X" de-
vient le carré fibré de X' sur X'/ R), et que le morphisme canonique X' — X'/ R soit fidélement
plat et quasi-compact.

Ainsi la question de I'effectivé d’'une donie de descente est un cas particulier de la question
d’effectivité d’un graphe dquivalence, et divers ceites d’effectivie donreés dans ce nuéamo
peuvent s’obtenir de cette faconédhmoins on dispose dans le contexte de la descente du
théoeme 2.1, qui implique qusi X' est affine surs’, toute donée de descente suf’ rela-
tivementa ¢ est effectiveénon@& qui n’a pas d'analogue pour le passage au quotient par un
graphe déquivalence plat @réral. Tous les créres d’effectivie que nous donnons ici peuvent
aussiétre consiéres comme éduits du pecedent.

Soit U’ un sous-pesclema deX’ (ou plus gréralement un sous-objet d&’ dans la
cagégorieSch) ; on dit quelU’ eststable par la donge de descentsur X', si on peut trouver
surU’ une donge de descente relativemeny, telle que I'immersiorV’ — X'’ soit compatible
avec les donees de descente. Cela signifie aussi que les images inversésldas X" par ¢,
etg, sont les mes (ou aussi, comme on dit, quieeststable par la relation ddquivalencer),
et bien entendu la doee de descente en question slirest alors unique, et ditdonrée de
descente induitpar celle deX’. Ceci pog :

Proposition 7.2 Soit (X]) un recouvrement de X' par des ouverts X| stables par la donnée de

(2
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descente. Pour que la donnée de descente sur X' soit effective, il faut et il suffit qu’il en soit de
méme des données de descente induites dans les X.

C’est la une consquence facile de 7.1 par exemple, eté¢adl de la @monstration est laigs
au lecteur.

Corollaire 7.3 Soit (S;) un recouvrement ouvert de S, et pour tout i soient S; et X! déduits de S’
de X' par le changement de base S; — S. Pour que la donnée de descente sur X' soit effective,
il faut et il suffit que, pour tout i, la donnée de descente sur X/ relativement a g;: S; — S; soit
effective.

Ce critre nous ramne toujours pratiguement au cas.® est affine. Dans le casids’ est
eégalement affine, ce qui est le cas le plé&ifrent dans les applications, on a :

Corollaire 7.4 Supposons S et S’ affines. Pour que la donnée de descente sur X' soit effective,
il faut et il suffit que X' soit réunion d’ouverts X affines et stables par la donnée de descente.

La suffisance provient de 7.2 et du fait queX§i est affine, il est affine sus’ et on peut
appliquer 2.1. Pour lagtessit, on note que sK’ provient deX, et si.X est recouvert par des
ouverts affinesX;, alors lesX! = X; x¢ S’ sont des ouverts affines stables par les éesrde
descente et recouvraft'.

Corollaire 7.5 Soitg: S’ — S un morphisme fidélement plat, quasi-compact et radiciel Alors g
est un morphisme de descente effective i.e. pour tout X' sur S’, toute donnée de descente sur X'
relativement a g: S — S est effective.

En effet, en vertu de 7.3 on peut suppoSeaffine, donc comme’ est radiciel surS donc

sepak, S’ est €pagé. D’ailleurs pour tout’ € X, la fibre R(z') = ¢:(q; ' (2')) de la relation

222 d’équivalence ensembliste&fihie par la relation d@&quivalenceR est €duitea un point, cary
étant radiciel, il en est de @me dep;, p, qui s’en deduisent par changement de b&$e— S,
donc aussi de;, ¢; qui se éduisent des pedents par changement de base— S”. Donc
tout ouvert deX’ est stablepar la donge de descente. Recouvrons alarspar des ouverts
affines X/, ils sont affines suf puisqueS’ est £pag, donc la donée de descente induite est
effective par 2.1. On conclut alors par 7.2.

On notera que 7.5 donne le seul cas connu d’'un morphisme de descente effective dans la
caggorie des f@sclemas, et c’est probablement le seul cas en effétneen se limitant aux
sclemas noetériens, ou aux s@mas de type fini sur un corps.

Lorsqu’on supposé localement noetérien etS’ de type fini surS, I'énon@ 7.5 est aussi
un cas particulier du suivant (quietgralise la descente galoisienne de Weil et la descente
inseparable de Cartier) :

Corollaire 7.6 Soit g: S’ — S un morphisme fini localement libre (i.e. défini par une Algebre
sur S qui est un module localement libre de type fini) et surjectif (donc g est fidélement plat et
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quasi-compact, donc un morphisme de descente). Soit X' un S’-préschéma muni d’une donnée
de descente. Pour que cette donnée soit effective, il faut et il suffit que pour tout ' € X',
la fibre R(x') = qo(q; ' (2")) soit contenue dans un ouvert affine (condition automatiquement
vérifiée si X' est quasi-projectif sur S”).

La remarque entre pareitbes provient du fait que siest le point deS au-dessous d¢/,
alors R(z') est fini et contenu dans la fibré,, d’autre part comme’ est quasi-projectif sus’
et.S’” estfini surS, X’ est quasi-projectif sus, ce qui implique qu’une fibre d& /S est contenue
dans un ouvert affine.

Comme toute partie finie d’'un sema affine admet un syshe fondamental de voisinages
affines, on voit gu'on ne perd pas I'hypete en se restreignant au-dessus d’un ouvert affine
de S, ce qui en vertu de 7.3 nous rame au caswS est affine. En vertu de 7.4, on est rar@en
a montrer queX’ est contenu dans un ouvert affis@blepar la donée de descente. Soit en
effetU un ouvert affine contenamit(z’), alors le satu&

R(X —U) = ga(q; (X = U))

ne rencontre pa#(z’), d’autre part commey, est fini (carg donc p, I'est) donc ferng, le
deuxeme membre est une partie fé&endeX'. SoitU’ son compdmentaire danX”’, c’est donc
un ouvertsatuie et on a

R(")cU cU

avecU affine, maidJ’ pas affinea priori. Comme une partie finiB(z’') dans un schma affine/
a un systme fondamental de voisinages affines de la fotipeon voit, remplagany par sa
restrictiona U’, qu’il existe une sectiorf de &y, telle que :

R(z') C Uy, Uy estaffine

Soit alorsU” = ¢;*(U') = ¢,'(U’), désignons encore pay;,q, les morphismes in-
duitsU"” — U’, et consi@&rons

f"=Ng(ai(f)

ou N,, designe lanormerelativement au morphisme fini localement libyge U” — U’. La
compatibili€ de la formation de la norme avec le chagement de base implique facilemefit que
est une sectiomvariante:

¢ (f) = a(f")
ce qui implique qué/}, est un ouvert satérdeU’. De fagon plus @cise d'ailleurs, @signant
parZ(f") 'ensemble desé&os d’'une sectiorf’, on trouve en vertu des proptes des normes :

Z(f') = @2(Z(ai(f) = e2(a1(Z(f))) = RU' = Uj)
ce quiimplique qué/;, = U’ — Z(f') est satug, contientR(z'), et est contenu daris;. Comme

ce dernier est affine, il s’ensuit qu&, I'est aussi (cagegala (U});, avecf” = f'|U}). C'est
donc un ouvert affine sateiicontenanf?(z’) doncz’, ce qui ackve la @monstration.
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On notera que ce raisonnement s’'applique chaque fois qu’on a une relamunvallence
(ou meme seulement de grquivalence, cf. [3]) dans ungsclemaX’, fini et localement libre
et d’'ailleurs 7.6 est aussi un cas particulier auitat analogue pour lesggquivalences finies
et localement libres, cf. loc.cit. 8ne remarque pour 7.7 ci-dessous.

On peut aussi, une fois obtenue I'existence d’'un ouvert quasi-affineegatwontenant’,
faire appek 7.9 et 7.2 ce quévite le recours aux normes.

Notons d’ailleurs que sous les conditions de 7.6, si la @ertde descente s’ est effective,
X' provenant deX surS, alors le morphism&’ — X est fini, localement libre et surjectif, car
déduit deg par le changement de baie — S. Il s’ensuit (EGA Il 6.6.4) que sX’ est quasi-
projectif surS’ donc surS, alors X est quasi-projectif sus, (un faisceau inversible relativement
ample sutX étant obtenu en prenantdarmed’un faisceau inversible sut’ relativement ample
sur.S, ou surS’, cela revient au @me). On obtient ainsi :

Corollaire 7.7 Un morphisme g: S’ — S fini localement libre et surjectif est un morphisme de
descente effective pour la catégorie fibrée des préschémas quasi-projectits sur d’autres, i.e. pour
tout X' quasi-projectif sur S’, toute donnée de descente sur X' relativement a g est effective, et
le S-préschéma descendu X est quasi-projectif sur S.

Proposition 7.8 Soit g: S’ — S un morphisme fidelement plat et quasi-compact. Alors g est un
morphisme de descente effective pour la catégorie fibrée des préschémas Z quasi-compacts sur
un préschémaI', munis d’un faisceau inversible ample relativement a T'. En particulier, pour tout
préschéma X' sur S’, muni d’une donnée de descente relativement a g: S’ — S, et tout faisceau
inversible £’ sur X' ample relativement a S’, muni également d’une donnée de descente relati-
vement a celle donnée sur X', (i.e. muni d’un isomorphisme de q{(.£") avec ¢ ("), satisfaisant
la condition de transitivité habituelle), la donnée de descente sur X' est effective, et le faisceau

inversible . sur le préschéma descendu X, déduit de .’ par descente, est ample relativement
as.

La demonstration est toute analogaueelle de 5.8, en notant que sur I'&lgre gradae quasi-
coherente.” sur S’ définie par.#’, il y a une donie de descente, permettant de construire
une Algebre gradée quasi-colrente.” sur S gracea 1.1 d'ay un P = Proj(.¥) sur S tel
queP’ = Proj(”’) s'identifie avec sa dorge de descenteP x ¢ .S’. Comme par hypotseX’
s’identifiea un ouvert dé”’, nécessairement stable par la déamle descente sk, la donree de
descente suk’ estégalement effective, et on obtient leegctema descendu comme un ouvert
dansP. Le détail est laisé au lecteur. - En particulier, faisat’ = &'x/, on trouve :

Corollaire 7.9 Soit g: S’ — S un morphisme fidélement plat et quasi-compact, et soit X’ un
préschéma quasi-affineau-dessus de S’, alors toute donnée de descente sur X' relativement a g
est effective, et le préschéma descendu X est quasi-affine sur S.

En vertu de 6.2, cetsultat s’applique en particulier Si est localement noeénien etX’ est
quasi-fini et &paé surs’, plus gereralement sb’ est quelconque et’ est de pesentation finie,
quasi-fini et &paé surs’ (cf. 6.6).
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Remarques 7.10Les ©sultats don@s dans ce nuaroépuisent les critres actuellement connus
d’effectivite, et probablement @me les criéres utiles existantsOn notera les contre-exemples
suivantsa I'appui de cette assertion :

(i) Si S estle spectre d’'un corps, 8t est le spectre d’'une extension quadratique galoisienne,
on peut trouver uX’ sur.S’ propre et lisse sus’, de dimension 3, muni d’'une doeae de
descente qui n’est pas effective (Serre).

(i) On peut trouver unS spectre d’'un anneau locakgulier de dimension 3 (si on veut,
'anneau local d'un saédma al@brique sur un corps de caradstique dongae), unT
revetement principal d& de groupeZ/27Z, tel que, sit désigne 'un des points d&
au-dessus du point feén de S, et S’ = T — s, on puisse trouver uX’ projectif surS’,
regulier, muni d’'une dorge de descente relativemeng: S’ — S, cette donge de des-
cente nétant pas effective.

On utilise pour ces constructions I'exemple de Hironaka deeteginon projectives. Pour (i),
il suffit d’utiliser le fait qu’on peut trouver au-dessus dein scfema propre et liss&, de di-
mension 3, sur lequel’ = Z/27 opere sans inertie, et dans lequel il existe deux paints
rationnels surP, congrus sous~, qui ne sont pas contenus dans un ouvert affine. On pose
alors X’ = X, x;, &/, on fait ogererG sur X’ grace aux oprations de&~ sur les deux facteurs,
ce qui donne une doie de descente si’ relativementig: Spec(k’) — Spec(k). Au-dessus
dea resp.b, il y a exactement un point resp.t/, (a extensionasiduelle quadratique), etetd’
sont congrus sous, puisqueX’ — X, est compatible avec les emtions de. Alors a’ et '
ne peuvenétre contenus dans un ouvert affine, gditcar alorsU = X, — Im(X’ — U’) serait
un ouvert deX, contenanfa, b) et dont I'image inverse dans’ serait contenue darig’, donc
quasi-affine, doné&’ serait quasi-affine, et par suite, ) aurait un voisinage affine dans

Pour (ii), on utilise le fait que dans I'exemple de Hironakg,est obtenu comme psclema
propre au-dessus d’'uh-schema projectifY’, lisse surk (le morphismef: X, — Y étant
d’ailleurs birationnel, mais peu importe), le grougeopérantégalement suf” de facon com-
patible avec ses @pations surX, enfin posants’ = Y — f(b), X' = Xy|9’, X' est pro-
jectif sur S’. Alors X, est muni d'une donge de descente naturelle relative au morphisme
canoniquey” — S = Y/G, grace aux oprations de~ sur X, compatibles avec ses @@ations
surY. Cette donge de descente n’est pas effective, puisqué) n’est pas contenu dans un
ouvert affine. La donm de descente induite s’ relativementa g: S — S n’est alors pas
effective, comme onérifie facilement.
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Expose IX

Descente des morphismestales.
Application au groupe fondamental

1 Rappels sur les morphismegtales

Nous allons ici passer en revue les préfis des morphismesales (évelopges dans SGA 1)
qui vont nous servir, en profitant de cette occasion niner de la tkorie les hypotbses
noetteriennes superflues. Le lecteur notera quiama si on ne s'interesse qu’aux éamas
noetteriens, la technique de descente conduihtroduire des s@mas non noeériens (tels
que Spec(A ®4 A), ou A est un anneau local noéttien), et pour pouvoir appliquer le lan-
gage des cagories fibees, il importe de &finir les notions de morphisntale etc..., sans y
introduire de restriction noegnienne. Le lecteur quepugnerait véerifier oua admettre que les
énonés ci-dessous sont vrais sans hypsts noettriennes, pourra se contenter de les admettre
sous les hypotses noettriennes de SGA la condition d’introduire ces &mes hypotbses
noetteriennes dans lesnoné&s des num@ros suivants, et d’'utiliser laéfinition 1.1 ci-dessous
pour les scmas non noe#riens qui s'introduisent dans les raisonnements.

Définition 1.1 Soient f: X — S un morphisme de préschémas, et x un point de X . On dit que f
est étale enc, ou que X est étale sur S en x, s’il existe un voisinage ouvert affine U de s = f(x),
un voisinage ouvert affine V' de x au-dessus de U, un schéma noetterienaffine Uy, un Uy-schéma
etale(SGA 1) et affine Vj, un morphisme U — Uy, et un U -isomorphisme

V :> ‘/0 XUO U
On notera que lorsqué est localement noednien, cette terminologie @acide avec celle
de loc.cit. On dira de @me quef estétale ou queX estétale surS, si f estétale en tout

pointz de X. Avec ces éfinitions, les propositions ci-dessous se éaent sans difficldtau cas
noettérien, a elles sont @montées dans SGA | N4, 5, 7. Pour desé&tails, le lecteur pourra
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Remarques 1.2Si f estétale enr, alors f est “‘de pésentation finie en” (VI 3.5), 'anneau
local dex dans la fibref ~!(s) est uneextension finie&parablede k(s), enfin f estplat enz.
On peut montrer que la&ciproque est vraie, donc que lafmition 1.1 est la rame que dans le
cas a1 S est localement noeéhnien, sauf qu’il faut remplacer la condition “de type finighpar
“de présentation finie em”. Comme ce ésultat est de@monstration élicate, nous n’avons pas
voulu ici donner cette&finition de la notion de morphisnétale, qui ne se pte pas directement
a la cmonstration des pro@es qui vont suivre.

Notons d’abord qu’on a trivialement :

Proposition 1.3 Si f: X — S est étale, alors tout morphisme f': X' — S’ qui s’en déduit par
changement de base S" — S est également étale.

On peut donc dire que les morphisnales forment unsous-catgorie fibeede la cakgorie
des feches danSch (cf. VI 11 a). L'objet du pesent expdasest Ietude des propgies d’exacti-
tude de cette cagorie fibée surSch.

Proposition 1.4 Soit f: X — S un morphisme de préschémas. Pour que ce soit une immersion
ouverte, il faut et il suffit qu’il soit étale et radiciel.

Cf. (SGA | 5.1). On en conclut que st estétale surS, toute section deX sur .S est une
immersion ouverte, donc, utilisant encore 1.4, on trouve :

Corollaire 1.5 Soit X un S-préschéma étale. Alors il y a une correspondance biunivoque entre
230 I’ensemble des sections de X sur S, et ’ensemble des parties ouvertes I' de X telles que le
morphisme I' — S induit par le morphisme structural soit radicielet surjectit

Si d’ailleurs X est €paé surS, I' sera une partie d& a la fois ouverte et ferge, mais peu
importe. - Faisant un changement de bagdent, on peut mettre 1.5 sous la forme en apparence
plus cerérale :

Corollaire 1.6 Soient X et Y deux S-préschémas, Y étant étale sur S. Alors I’application
f +— T’y qui associe a tout S-morphisme f de X dans Y la partie de X X g Y sous-jacente
au graphe de f, est une bijection de Homg(X,Y') sur I’ensemble des parties ouvertes de I" de
X xgY telles que le morphisme I' — X induit par pr, soit radicielet surjectit

Proposition 1.7 Soit Sy le sous-préschéma de S défini par un Nil-idéal quasi-cohérent, i.e. tel
que S, ait méme ensemble sous-jacent que S. Alors le foncteur X — X Xxg Sy de la catégorie
des préschémas étales sur S dans la catégorie des préschémas étales sur Sy, est une équivalence
de catégories.

De fagon pecise, EGA IV 17, 18.
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Le fait que ce foncteur soit pleinementédid est une cogguence imradiate de 1.6. Le fait
gu’il soit essentiellement surjectif est contenu dans SGA | 8.3. On notera que eamsdllence
précdente X est de type fini i.e. quasi-fini suff, (resp. fini i.e. un redtementtale deS), si et
seulement siX,, satisfaita la condition analogue su, ; méme remarque pour la condition de
separation. Ces faits sont in@diats, et aussi contenus dans 2.4 plus bas.

Corollaire 1.8 Soit A un anneau local noethérien complet de corps résiduel k. Alors le foncteur
B — B ®4 k est une équivalence de la catégorie des algebres finies et étales sur A, avec la
catégorie des algebres finies et étales sur k, (i.e. composées d’un nombre fini d’extensions finies
séparables de k).

Proposition 1.9 Pour que X soit un revetemenetalede S i.e. fini et étale sur S, il faut et il suffit
que X soit S-isomorphe au spectre d’une Algébre o sur S, qui soit un Module localement libre
de type fini, et telle que pour tout s € S, &; ®¢, k(s) soit une algébre séparable sur k(s), donc
en I’occurrence composée directe d’extensions finies séparables de k(s).

Enfin le sultat suivant est de nature mo@lementairegtant la conjonction de SGA | 8.4 et du
théoreme d’existence de faisceaux éogetrie algebrique (EGA 111 5; cf aussi [1] th.3).

Théeoreme 1.10Soient S le spectre d’un anneau local noethérien complet, X un S-schéma
propre, X la fibre de X au point fermé de S, (de sorte que X est un sous-schéma fermé de X ).
Alors le foncteur restriction X' — X' X x X, est une équivalence de la catégorie des revétements
étales de X avec la catégorie des revétements étales de X.

2 Morphismes submersifs et universellement submersifs

Définition 2.1 Un morphisme g: S’ — S de préschémas est dit submersifs’il est surjectif,
et fait de S un espace topologique quotient de S’ (i.e. une partie U de S telle que f~1(U) soit
ouverte, est ouverte). On dit que f est universellement submersif pour tout morphisme " — S,
le morphisme f': T" = S’ x5 T — T déduit de f par changement de base est submersif.

Il est immédiat que le comp@sde deux morphismes submersifs (resp. universellement submer-
sifs) est submersif (resp. universellement submersif), et qu’un changement de base dans un mor-
phisme universellement submersif donne un morphisme universellement submersif (vu qu’on
fait ce qu’il faut pour cela). Sf g est submersif (resp. universellement submergifigest.

Exemples 2.2a) Un morphisme surjectif qui est ouvert, ou fé&nest submersif, donc un mor-
phisme surjectif universellement feenou universellement ouvert est universellement submersif.
Par exemplein morphisme propre surjectif est universellement subm&titre partun mor-
phisme figélement plat et quasi-compact est universellement subn(®iif4.3). Ce seront les
deux cas les plus importants pour nous.
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On peut appliquea un morphisme submersif ou universellement submersff’ — S les rai-
sonnements de VIl 4.3, on trouve en particulier :

Proposition 2.3 Supposons g: S" — S submersif. Alors le diagramme suivant d’applications
est exact :

Ouv(S) — Ouv(S") = Ouv(S"),

ouS" = 5" xg5, et o Ouv(X) désigne I’ensemble des parties ouvertes du préschéma X .

Proposition 2.4 Soient g: S’ — S un morphisme universellement submersif, f: X — Y un
S-morphisme, et f': X' — Y’ le S"-morphisme qui s’en déduit par changement de base. Pour
que f soit ouverte (resp. fermée), il suffit que [’ le soit. Pour que f soit universellement ouverte,
resp. universellement fermée, resp. séparée, il faut et il suffit que [’ le soit. Si de plus g est
quasi-compact, et f localement de type fini, pour que f soit propre, il faut et il suffit que f' le
Soit.

Pour ce dernier point, on note quefsiest propre donc quasi-compact algrest quasi-compact
(VIII 3.3) donc de type fini puisqu’il est localement de type fini. D’autre part il &xta®e et
universellement fermd’apes ce qui peeede, donc il est propre.

Proposition 2.5 Soit S un préschéma de type fini sur le spectre S d’un anneau local noethérien
complet, supposons que la fibre du point fermé s de S soit finie, donc les anneaux locaux dans
S’ des points s’ de cette fibre sont finis sur A = O,. Soit S” le schéma somme des spectres des
Os' ¢ en question, considéré comme S-schéma fini. Pour que g: S" — S soit universellement
submersif, il faut et il suffit que le morphisme structural 5" — S soit surjectif.

Comme il y a unS-morphisme nature$” — S’, et qu’'un morphisme fini surjectif est universel-
lement submersif d’aps 2.2, la conditio@non&e est suffisante. Montrons donc qué’si— S’
n'est pas surjectif, alorg n’est pas universellement submersif. En effet, sam point deS qui
n'est pas dans I'image d&’; il existe alors unS-sckemaT’, spectre d’un anneau de valuation
discrete, dont 'image dans$' est{s,t}. Notons que I'image d&” dansS’ est ouverte, car le
morphismeS” — S’ est un isomorphisme local, et d’autre part cette image configret ne
rencontre pas;. Il s’ensuit que I'image inverse de cette dém& dang” = S’ x ¢ T estouverte

et identiquea I'image inverse du point ferendeT". Cela montre qué” — 7' n’est pas submersif,
doncS” — S n’est pas universellement submersif.

Remarque 2.6 Utilisant le criere IV 6.3 pour gu’une partie constructible d’un espace rareth
soit ouverte, on trouve facilement le énie valuatif suivant pour qu'un morphismpe S’ — S

de type finjavecsS localement noetrien, soit universellement submersif : il faut et il suffit que
pour toutS-schkemaT’, spectre d’un anneau de valuation détet posani” = S’ x¢ T, I'image
inverse dang” du point ferné deT" soit non ouverte.
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3 Descente de morphismes de psclemaseétales

Proposition 3.1 Soient g: S’ — S un morphisme surjectif de préschémas, X et Y deux
préschémas sur S, X', Y leurs images inverses sur S’. Si Y est non ramifié sur S, alors I’appli-

cation canonique
Homg(X,Y) — Homg (X', Y")

est injective.

En effet, en vertu de 1.6, ufi-morphismef: X — Y est connu quand on corihdiensemble
sous-jacend son graphé&', qui est une partie d& = X xg Y. Comme

Z/:ZXSS/:X/XS/Y/HZ

est surjectif, (puisque’ — S I'est), cette partié” est connue quand on cornhson image inverse
part 47 dansX’ x ¢ Y’, qui n’est autre que I'ensemble sous-jacent au graph@.d&ou la conclusion.

Une partiel’ de Z est le graphe d’'ury-morphismef: X — Y si et seulement si elle est
234 ouverte, et si le morphisme induit par, deI" dansY est radiciel et surjectif cf. 1. Lorsque
la premere proprete est erifiee, la deuwéme l'est si et seulement si I'image inverSede I
dansZ’ satisfait la néme condition (SGA VIII 3.1). Si on sait enfin qu8 — Z est submersif,
ce qui sera le cas en particulier$i — S est universellement submersif, aldrsst ouvert si
et seulement di” I'est. Ainsi, 'ensembldlomg (X, Y") est alors en correspondence biunivoque
avec I'ensemble des parties ouvertésie 7’ telles que le morphisme projectipn, : 7' — X’
soit radiciel et surjectif, (i.e. correspondantinS’-morphismef’: X’ — Y”), et qui sont sati@es
pour la relation dequivalence éfinie parZ’ — Z, i.e. dont les deux images inverses dans
7" =7'"xz7'=7 xg 5" (ouS" =5 xg85'), par 'une et l'autre projection, soggales. Or
ces derréres sont les graphes des délixmorphismesX” — Y déduits def’ par changement
de base, par I'une et I'autre projectiétf — S’. On a ainsi obtenu :

Proposition 3.2 Soient g: S’ — S un morphisme universellement submersife préschémas,
S" =8 xgS5, X etY deux S-préschémas, X' et Y’ leurs images inverses sur S’, et X", Y
leurs images inverses sur S”. Si Y est étale sur S le diagramme canonique suivant d’applications
est exact :

Homg(X,Y) — Homg (X', Y") —= Homg~ (X", Y").

PrenantX etY étales suiS, on trouve lenoné& suivant, qui d’'ailleurs redonne 3.2 gme
en se restreignarst X = S, auquel cas on peut en effet toujours se ramener dans 3.2, par le
changement de basé — 5);

Corollaire 3.3 Un morphisme universellement submersif de préschémas est un morphisme de
descente pour la catégorie fibrée des préschémas étales sur d’autres.

Jignore d'ailleurs si c’est @cessairement un morphisme de desceaftective pour la
caiégorie fibee en question, &me en faisant de plus I'hypatke quesS est noetkrien etg de
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type fini, et en se bornant aux Eementgtales. Nous donneronéanmoins au nuéro suivant
des crieres utiles d’effectivé.

Corollaire 3.4 Soit g: S’ — S un morphisme universellement submersif, dont les fibres g~*(s)
sont “géométriquement connexes”, i.e. pour toute extension K /k(s), g~ (s) Qs K est connexe.
Alors S’ est connexe si S ’est. Le foncteur de la catégorie des préschémas étales sur S dans la
catégorie des préschémas étales sur S" défini par g est pleinement fidele.

Une partie de5’ qui esta la fois ouverte et ferge est sat@e pour la relation &quivalence
ensembliste efinie parg, puisque les fibres sont connexes, donc est I'image inverse d’'une partie
de S, qui est iecessairement ouverte et fé&repuisquey est submersif. Si don§ est connexe,
S’ I'est. Cela implique le&sultat suivant : le compég g de deux morphismesfibres universel-
lement connexeg, étant universellement submersif, adtbres universellement connexes S&i
et S} surS ont des fibres universellement connexes, il en esté@mendeS;] xs S5. En particu-
lier, sous les conditions de 3.4 a des fibres universellement connexes.Susoient alorsX
etY étales surs, et soitu’ un.S”-morphisme deX’ dansY”’, prouvons qu’il est compatible avec
les donges de descente (ce qui eimi@la conclusion voulue gcea 3.3). Or soient/] et u)
les deuxS”-morphismesX” — Y” déduits deu’. Le sous-pesclema deS” des cdncidences
deu] etwul est un sous-f@sctema ouvert induit, fer@fibre par fibre, comme image inverse du
présclema diagonal d&” surS”2. C’est donc I'image inverse d’une partie e Comme elle
contient la diagonale dar®’, elle est identique S”, d’ou | = v} cqfd.

4 Descente de pesclemaseétales : criteres d’effectivite

Proposition 4.1 Soit g: S" — S un morphisme fidélement plat et quasi-compact. Alors g est
un morphisme de descente effective pour la catégorie fibrée des préschémas étales, séparés et de
type fini sur d’autres.

C’est en effet un morphisme de descente pour lagmie fibee en question, en vertu de 3.3
ou de (SGA VIII 5.2) au choix. Restemontrer que sk’ estétale, €paé et de type fini suf’,
et muni d’'une donee de descente relativemeny: S’ — S, cette derrére est effective dans
la cakgorie fibEe en question. Or on voit facilement queXsiest un pesclema sursS, alors
il est étale surS si et seulement si il esttale surS’ (en vertu de la dfinition 1.1 et de loc.
cit. 3.6). Donc il esétale, &pak et de type fini sub si et seulement sk’ I'est sur.S’, cf. par
exemple 2.4. Donc il suffit de s’assurer de I'effecivide la donae de descente s pour la
caiégorie fibée des fiches deSch. Or X’ est quasi-affine suf’ en vertu de (SGA VIl 6.2
et 6.6). On peut alors conclure en utilisant (SGA VIII 7.9). Le lecteur notera d’ailleurs que la
demonstration demande moins si on se borne aagghlemaseétales et finis sur d’autres, car on
peut alors invoquer directement (SGA VIl 2.1).

2noter que les fibres d& sur.S sont €paées !
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Corollaire 4.2 Soient g: S’ — S un morphisme universellement submersif, X' un S’'-
préschéma étale séparé et de type fini, muni d’une donnée de descente relativement a g, S — S
un morphisme fidélement plat et quasi-compact, S et X| déduits de S’ et X' par le changement
de base, de sorte que S} — S est universellement submersif, X est étale séparé et de type fini
sur S}, et muni d’une donnée de descente relativement a g,: S7 — 5. Pour que la donnée de
descente sur X' soit effective, il faut et il suffit que la donnée de descente sur X le soit.

Cela esulte de la thorie de la descente dans lesegadries [D], compte tenu de 4.1 et 3.3.

On prouve de fagon analogue :

Corollaire 4.3 Soient g: S’ — S un morphisme universellement submersif, X' un S’-
préschéma étale muni d’une donnée de descente relativement a g, (.S;) un recouvrement de S
par des ouverts. Pour que la donnée de descente soit effective, il faut et il suffit que pour
tout i, la donnée de descente correspondante sur X! = X Xxg S;, relativement au morphisme
gi: Sl =25"xg8; — 5, Ie soit.

Ce dernier esultat conduia degager un crére d’effectivié local :

Proposition 4.4 Soit g: S — S un morphisme de présentation finie (SGA VIII 3.6) et uni-
versellement submersif, X' un préschéma étale et de présentation finie sur S’, muni d’une
donnée de descente relativement a g, enfin a un point de S. Pour qu’il existe un voisinage
ouvert U de a, tel que la donnée de descente correspondante sur X[, = X' xg U relative-
ment au morphisme gy : S;; = S' xg U — Sy = U soit effective, il faut et il suffit que la
donnée de descente correspondante sur X! = X' xg Spec(0,), relativement au morphisme
ga: S, =S" xgSpec(0,) — S, = Spec(0,), soit effective.

La nécessit étant triviale, montrons la suffisance. On dispose donc d'ésghiemaétale de
type fini X, surS,, et d’'un isomorphisme
(*) ; - Xa XSa St,l
compatible avec les doées de descente. Confagmenta un sorite gréral facile sur les
présclemas @finis sur une limite inductive d’anneaux (ici les annealy ou A est I'anneau
d’un voisinage ouvert affine de et ai f parcourt le€léments ded qui ne sont pas dans I'el
premier correspondaita), on peut trouver un voisinage ouvértde a, un pésclemaétale de
type fini Xy surU = Sy, et unS,-isomorphismeX, — Xy xg, S,. De plus, prenant/ assez
petit, on peut alors supposer que I'isomorphisrjgfovient d’'un isomorphisme :

1 !

ce dernier pourrait ne pddre compatible avec les domes de descente, cependarondition
de ietrécir U, il sera compatible avec les dares de descente. Cela agh la &émonstration.
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Corollaire 4.5 Sous les conditions de 4.4, pour que la donnée de descente sur X' soit effective,
il faut et il suffit que pour tout a € S, la donnée de descente corrspondante sur X, relativement
au morphisme S!, = S’ x g Spec(0,) — Spec(0,,), le soit. Lorsque S est localement noethérien,
et X' séparé sur S’, on peut dans le critére précédent remplacer aussi O, par son complété.

La premere assertiorasulte de 4.4 et 4.3, la de@xne est alors coguence de 4.2. Utilisant
encore 4.2 et le fait que pour tout anneau local nextim A, on peut trouver un anneau local
noetlerien completB, et un homomorphisme local — B, tel que B soit plat surA et que
B/mB soit une extension doge du corpsésiduelk = A/m de A, on trouve :

Corollaire 4.6 Sous les conditions de 4.4, supposons de plus X' séparé sur S’ et S localement
noethérien. Pour que la donnée de descente sur X' soit effective, il faut et il suffit que pour tout
préschéma S, sur S, spectre d’un anneau local complet a corps résiduel algébriquement clos, la
donnée de descente correspondante sur X| = X'x g5}, relativement au morphisme g, : S7 — 51,
soit effective.

Théeoreme 4.7 Soit g: S — S un morphisme fini et surjectif, et de présentation finie (cette
derniére hypothése étant conséquence des autres si S est localement noethérien)®. Alors g est un
morphisme de descente effective pour la catégorie fibrée des préschémas étales, séparés, de type
fini sur d’autres.

Il faut montrer que siX’ estétale, &pag, de type fini surS’, et muni d'une donee de
descente relativemeaty, alors cette dore est effective. Utilisant 4.3, on se rane facilement
au cas 0 S est noetbrien. Gacea 4.5, on peut donc supposer gtiest le spectre d’un anneau
local noetlrien, a fortiori que

dimS =n < +o0.

On raisonne alors paéecurrence sutim S = n, I'assertionétant triviale pourn < 0. Supposons

doncn > 0 et le ttfeoreme @monté pour les dimensions < n. En vertu de 4.6 on est ramen

au cas a S est le spectre d'un anneau local complet, dShest une eunion finie de spectres
d’anneaux locaux complets. On a donc

X' =X/ UX)

ou Xj estfini sur S’, et a1 X) na aucun point au-dessus d'un des points fesnieS’.
Consicerons les morphismes
@, X' —= X'

correspondanta la doniee de descente, compatibles aygcp,: S” —= S’ . On voit aussibt
que
X"=q7 (XD Uq ' (Xp) i=1,2
30n peut montrer qu'il suffit en fait que soit un morphismeentier, en se ramenant au cas du texte par un
procccé de passagela limite dans le style EGA IV 8.
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est la &composition canonique analogue &é sur S”, ce qui impliqueg; *(X!) = ¢, (X))
et par suiteX] et X/, sont munis de dorées de descente induites. Or sbit’'ouvert de S
compEmentaire de son point feBndoncT’ = S’ xg T est la partie d&’ compEmentaire
de I'ensemble des points feas, etX?, qui se trouve tout entier au-dessusideest muni d’'une
donree de descente relativement au morphidthe- 7' induit parg. Comme ce dernier est fini
surjectif, et quelim 7" < dim S = n, cette donge de descente est effective par I'hypsth de
récurrence. On voit donc qu'il suffit de prouver que la demide descente suf;| est effective,
donc on peut maintenant supposéer étale effini sur.S’. (N.B. le raisonnement paécurrence
est inutile si on se borne aux &ement$tales dans &noné 4.7). Soit alorsS, le spectre du
corps Esiduel de4, soit S| = S’ xg Sy et cefinissons de @me S/, S|’ a partir des caés et
cubes fibesS” et S de S’ sur S. En vertu de 1.8, les morphismé&g — S, S|, — ', etc.
induisent degquivalences pour les &gories des ré&tement$tales deS et S, d’'une part,S’
et S; d’autre part, etc... D’as les sorites de la&orie de la descente dans leségatries [D],
il s’ensuit que pour que: S’ — S soit un morphisme de descente effective pour |&gatie
fibrée des redtement®tales, il faut et il suffit qu’il en soit ainsi dg : S;, — Sy. Mais c’est bien
le cas, comme cas particulier de 4.1, par exemple. Cekvada émonstration.

Corollaire 4.8 La conclusion de 4.7 subsiste si on suppose seulement que S’ — S est universel-
lement submersif, de type fini et quasi-fini, pourvu qu’on suppose S localement noethérien.

En vertu de 4.6, on peut en effet supposer §uest le spectre d’'un anneau local naetan
complet. Alors en vertu de 2.5, il existe un morphisme fini et surjegtif— S, et un S-
morphismeS; — S’. CommesS; — S est un morphisme de descente strict universel pour la
caggorie fibEe envisage, en vertu de 4.7, et & — S est un morphisme de descente univer-
sel pour ladite, 4.8asulte des soritesgéraux [D].

Corollaire 4.9 Soit g: S’ — S un morphisme de type fini, surjectif et universellement ouvert,
avec S localement noethérien. Alors g est un morphisme de descente effective pour la catégorie
fibrée des préschémas étales, séparés et de type fini sur d’autres.

Pro@dant comme dans 4.7, on est rameu cas 0 S est le spectre d’'un anneau local
noetterien et completd. Soit A; une algbre finie surA, de spectres;, telle quesS; — S
soit fini etsurjectif donc un morphisme de descente effective universel pour égogde fibee
envisage, gacea 4.7. Il esulte alors des &oremes @réraux [D] queg est un morphisme de
descente effective pour la égjorie fibEe envisage, si et seulement si le morphisme correspon-
dantg;: S} = 5’ xg 51 — S; I'est. Comme ce dernier satisfait auxemes hypotéses que,
on est rame@a prouver 4.9 pouf; au lieu deS. Prenant d’abord pou#; le compog direct
desA/p;, pour les idaux premiers minimaup; de A, on est ramed au cas 0 A estintegre
On montre alorsqu’il existe un sous-s@ma inégreS; de S’, quasi-fini surS et dominants,
passant par un point de la fibre 8een le point ferngé y de S (grace au fait ques’” est universel-
lement ouvert de type fini suf local noetlérien inegre, etS; # (). CommeA est completS,

ACf. EGA IV 14.3.13 et 14.5.4.
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est fini surS, et comme il domin&, le morphismes; — S est surjectif. Remplagant encore une
fois S par.S;, on est rame@au cas 0 S’ a une section suf, ou I'énone& est trivial.

Théoreme 4.10Soit g: S’ — S un morphisme fini radiciel surjectif, de présentation finie (cette

241 derniére condition étant superflue si S est localement noethérien®). Alors le foncteur image in-
verse induit une équivalence de la catégorie des préschémas étales sur S avec la catégorie des
préschémas étales sur S’

Comme les morphismes diagonauxd@anss’ x ¢ S’ etS’ x ¢ 5’ x ¢S5’ sont des immersions
surjectives, donc induisent en vertu de 1.9 égsivalences des @&gories des j@sclemasetales
sur S’ xg S'resp.S’ xg 8" xg S" avec la catgorie des prsctemasétales surs’, il résulte
des sorites de la descente [D] que todtétale surS’ est muni d’'une donge de descente et
d’'une seule relativemertyg: S’ — S. Donc 3.3 implique que le foncteur image inverse par
de la cakgorie des msclemasetales sulS' dans la catgorie des gsclemasétales suls’, est
pleinement fidle Restea montrer qu’il est essentiellement surjectif, i.e. que tBUétale surs’
est isomorph& I'image inverse d'unX étale surS. La questiorétantévidemment locale su¥
et sur X', on peut supposef, S’, X’ affines. Mais alors’ est €paé de type fini suts’, et on
peut appliquer le critre d’effectiviée 4.7.

Corollaire 4.11 La conclusion 4.9 subsiste en remplagant I’hypothése sur g par : g est fidélement
plat, quasi-compact et radiciel.

Méme @monstration, en invoquant 4.1 au lieu de 4.7.

On notera que la @monstration de 4.7 esklementaire” en ce qu’elle n'utilise pas les
théoremes de finitude et de comparaison pour les morphismes propres (EGA Il 3, 4, 5). Il n’en
est plus de rame du ésultat suivant :

Théoreme 4.12Soit g: S’ — S un morphisme propre, surjectif, de présentation finie (cette
derniere hypothese étant conséquence de la premicre si S est localement noethérien). Alors g
est un morphisme de descente effective pour la catégorie fibrée des revétements étales de
préschémas.

En vertu de 3.3 et de 2.2, on est rar@@mprouver que pour tout réetemenétale X’ sur.s’,
muni d'une doniée de descente relativemeny: S’ — S, cette donge de descente est effec-
242 tive. Utilisant 4.3, on est ramérfacilement au castoS est noetBrien, et utilisant 4.6, on peut
donc supposer qug est le spectre d’un anneau local naathn completA. IntroduisonsS”
et.S” comme d’habitude, soit, le spectre du corp£siduel de4, et soientS), S;, S’ déduits
de s’, S”, 8" par le changement de baSg — S, i.e. les fibres d&’, S”, S”” au point ferng
de S. D’aprés 1.10, les morphismes — S, S{ — S’, etc. induisent degéquivalences de la
cakgorie des redtement®tales sur le s@&ma-but avec la cagorie des redtementgtales sur le

511 suffit méme quey soit entier, radiciel surjectif, comme on voit par ueluction facile au cas du texte, style
EGA IV 8, cf. SGA4 VIII 1.1.
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schema-source. Par suite; S’ — S est un morphisme de descente strict pour lagatie fibee

des reetement®tales de @sclemas, si et seulementgi: S), — S I'est, ce qui est bien le cas

en vertu de 4.1. Cela aele la @monstration de 4.12. (Dans ce raisonnement, on n’avait besoin
de 1.10 que le fait que le foncteur enviéatpns 1.10 egtleinement fidle, ce qui n'utilisepasle
theome d’existence de faisceaux éobnts en gonetrie algbrique.)

5 Traduction en termes du groupe fondamental

Soit
g: 8" — S

un morphisme de descente effectprur la caggorie fibee desreveétementsttalesde pe-
schemas, par exemple un morphisme propre, surjectif, @sgmtation finie (4.12), ou un mor-
phisme figdlement plat et quasi-compact. Introduisant comme d’habififde&”, et designant
par¢, €', €", €" la cakgorie des redtementstales deS, S’, S”, S respectivement, on a
donc un diagrammg-exact de catgories

p* phps  P21P32:P3
(*) C——C —=€¢"—=%€"

correspondant au diagramme

4 p1,p2  P21,P32,P31
<~ Q=== Qn=—=qm
S<—8==85"=9"

Supposons les psclemass, S/, S”, S sommes disjointes de @sclemas connexes, ce qui
sera le cas en particulier si ce sont degsptemas localement connexes, a fortiori s'ils sont
localement noetriens (par exemple $f est de type fini suf localement noetrien). Alors les
caégories?, ¢ ... dans ) sont des c&gories multigaloisiennes (SGA V 9)drites chacune
par une collection de groupes topologiques compacts totalement disconnexes, savoir les groupes
fondamentaux des composantes connexes dsgliemass, S’, S”, S””. Nous supposons pour
simplifier S connexe, et allons donner alors un gFde de calcul pour son groupe fondamental,
en termes de la cagorie fibEe formee avecs”, €, ¢, convenablement expliéea l'aide des
groupes fondamentaux exprimant cesegaries. Le lecteur notera que le pede esquiss est
valable en fait dans le cadré&ggral des catgories multigaloisiennes (qui n’ont pagrovenir
de pésctemas dones S, S’, S”, S”). C'est dailleurs I'analogue du précé bien connu pour
calculer le groupe fondamental d’'un espace topologi§uecunion localement finie de sous-
espaces fergs S; (ou reunion quelconque de sous-espaces ouvgltsa l'aide des groupes
fondamentaux des composantes dest des composantes dgs1.S;. Bien entendu, la situation
analogue dans le cadre deggtlemas tombe bien dans le cadrengral de la descente, en
introduisant le pesclemas’ somme des; et le morphisme canonique S’ — S.

Posons
B — 7T0(S/>, B — Wo(S//), B — 7T0(S”/),

180



244

245

IX

ou 7, désigne le foncteur “ensemble des composantes connexes”. Comme les prodests fibr
de S’ surS forment un objet simplicial d8ch, il est transforré par le foncteut, en un ensemble
simplicial dontE’, E”, E" sont les composantes de dimendipm, 2. Nous aurons utiliser les
applications simpliciales

q; = 770(]%’)7 (Z = 17 2)etq” - 7T0(p7ﬁj)7 (Zaj) = (27 1)7 (3a 2)7 (37 1)7
mises erevidence dans le diagramme

91,92 421,432,931
(1) E'=—FE'=—FE".

Les objets del’ seront noés avec un accent, commé ceux deE” resp.E” seront noés
avec un’ resp. un’”. Le fait queS soit connexe se traduit pap (/&) = 0, ou K est I'ensemble
simplicial c&fini parg: S’ — S, ou encore par le fait que la relationédjuivalence dang’
engendee par le couple d’applicatioris,, ¢,) est transitive.

Nous choisirons une fois pour toutes @@ments, dansE’, et pour touts’ dansE’, un

élements’ € £ tel qué
Q1(y) = 567 Q2(?) = 5/7

mettant ainsi enévidence la connext de S. Pour touts’ € FE’, choisissons un point
geonetriques’ dans la composante connexele S’ ; ce point interviendra en fait par le foncteur-
fibre F!, correspondant sur la @&jorie multigaloisienn&”. Le group des automorphismes de
ce foncteur, i.e. le groupe fondamental $leen s’, sera nat 7,,. On choisit de r@me deg” et
dess™, donc des foncteurB?;, et F7/,, d’ou des groupes fondamentauy et .. Ainsi

gy =m (S, 8), g = m(S",8"), mgn = m (S, s").

Pour touts” € E”, p;(s”) se trouve dans la @me composante connexe quyés”), donc il existe

un isomorphisme de foncteuf¥, o p; F?, (i.e. une “classe de chemins” dg(s”) aq(s”)). Cette
remarque sepete pourg,, et lesg;;. Choisissons toutes ces classes de chemins :

" * ™ / " * 7 "
s OD; — Fqi(s”)7 F Oplﬂ — iz (")

(pouri = 1,2 et(i,j) = (2,1),(3,2),(3,1)). Il en résulte en particulier des homomorphismes
de groupes :

1 "

s s
(2) qz L Trgr — qu(sll), q” LT —> 71'(1”_(5///)7

(mémes valeurs deet (7, j)). Enfin, rappelons-nous que dans la structure degeate clivee de
fibres®”, €", €' figurent aussi des isomorphismes de foncteurs :

PPy = PuPr¥,  PaPy = PPl PaPy — Paals;
60n fera attention que@&lements’ dont I'existence est admise implicitement, n’existe pas dans tous les cas. Par
suite, le tleoreme 5.1 tel qu’il esenoné& ne s’applique pas dans tous les cas. Il n'est pas difficile cependant, en

s'inspirant du textécrit, de modifier [enoné& de ce thome de telle fagcon qu’il donne unecthode de calcul qui
s'applique dans tous les cas. En patrticulier, les corollaires duhttme sont valables tels quels.
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déduits d’isomorphismes des deux membres respectivement avet (es- 1,2, 3), ou lesw;
sont les trois projections d&” dansS’. Quand on explicite ces doéas, on trouve pour tout’
unélément bien dtermiré

g

(3) CL‘-S & 7Tvi (s/”) ,

(2

(ou leswv;, i = 1,2, 3 sont les trois applications” — E’ définies pam,; = m(u;)), d'ailleurs
soumis aux conditions :

ar s =int(a] )grtes (s = gu(s"), 55 = g (s"),

et les deux conditions analogues, faisant intervenindest a;. Le lecteur notera d’ailleurs que
les dones (1), (2), (3) permettent de reconstit@éeaneéquivalence de cagories fibees pes,

la cakgorie fibee envisage de fibress”, €”, €. Elles doivent donc permettre en principe
de reconstitue# a équivalence grs, donc son groupe fondameradbomorphisme @s. Nous
déeterminerons en fait le groupe fondamental en le pozungtriquep(s,) de S, i.e. le groupe
des automorphismes dg, o p".

On note que la dorée d’'un objetX’ de %’ estéquivalente essentiellementa donee d’en-
sembles finis!, (s’ € E’) ol lesw, opérent contiiment. Une donee de recollement sur un tel
objet revient alors la don®e, pour tout” € E”, d’'une bijection :

X / ~ /
Pt Xty = Xaa(s)

compatible avec les @pations der,., opérant sur I'un et I'autre membre &te aux homomor-
phismesg:”: w1 — m,, . Prenant d’abord les’ de la formes’, on voit qu'une telle donee
définit des bijections

Py : X;() = Fy(X') — X,

ce qui permet d’identifier les{’, au néme ensemblé(X’) = Xgé, sur lesquels tous les
groupesr, vont ces lors ogrer. Cela pds, les bijectionsp,» vont correspondr@ des bijec-
tions

gt Fo(X') = Fy(X),

soumis d’une part aux relations de commutation avec

11

a) 947 (9") = @5 (¢")ger (" € E",g" € man),
d’autre part aux relations
b) 97 = G5y (s € £,

exprimant la fagon dont nous avions ide@i&ntre eux les{,,. Quand on explicite la condi-
tion pour qu’une telle dorge de recollement soit en fait une déende descente, on trouve les
relations :

1" " "t

" "
C) ag gq31(5/”)a’i :gqm(S”’)a; Gao1(s") (S S )

182



IX

247 Cela nous donne urguivalence entre la dajorie des objets dé’ munis d’une donee de
descente, et la cagorie des ensembles finig tes groupesr,, operent contiiment, munis de
plus de bijectiong,, satisfaisant les relations a), b), c). Soit alérge groupe engenérpar les
groupesr, et les nouveauxéarerateursy,,, soumis aux relations a), b), c), et seite groupe
limite projective des quotients d& par les sous-groupes d’indice fini dont les images inverses
dans les groupes, soient des sous-groupes ouverts. On dit aussingest legroupe de type
galoisien engendr par lesr, et lesg,,, soumis aux relations a), b),.cPn constate aussit
gue la catégorie envisage est aus®quivalentea la caégorie des ensembles finis & groupe
topologiquer opere contiiment. Celatablit 'énon& suivant :

Théoreme 5.1 Soit g: S’ — S un morphisme de préschémas qui soit un morphisme de descente
effective pour la catégorie fibrée de revétements étales de préschémas (cf. 4.9 et 4.12). Suppo-
sons S connexe, et S’, son carré fibré S” et son cube fibré S", sommes de préschémas connexes
(ce qui est le cas par exemple si S’ est de type fini sur S localement noethérien et connexe). Choi-
sissons comme dessus : un point géométrique dans toute composante connexe de S’, S”, 5",
certaines classes de chemins, un s, € FE', et pour tout s € E' un s" € E" dont les deux
images dans E' soient s, et s'. (E', E”, E" désignent respectivement I’ensemble des compo-
santes connexes de S’, S”, S""). Alors le groupe fondamental de S en le point géométrique image
de s{, est canoniquement isomorphe au groupe de type galoisien engendré par les my = 1 (S’, 8')
(s' € E') et des générateurs gy (s" € E"), soumis aux relations a), b), ¢) ci-dessus faisant in-
tervenir les éléments des groupes my = (S, s"), et les éléments a3" (i = 1,2,3, s € E")
introduits plus haut.

Corollaire 5.2 Supposons que S’ et S” n’aient qu’un nombre fini de composantes connexes,
et que les groupes fondamentaux des composantes connexes de S’ soient topologiquement de
génération finie. Alors le groupe fondamental de S est topologiquement de génération finie.

248 Ainsi, nous prouverons plus tard que le groupe fondamental d’uansatprojectif normal
sur un corps algbriquement clos est topologiquement @eéagation finie. Utilisant le lemme de
Chow et la normalisation des gminas al@briques, il s’ensuivra que le@me Esultat est vrai
pour tout scema propre sur un corps &lgriquement clos.

Corollaire 5.3 Supposons que S’, S”, S" n’aient qu’un nombre fini de composantes connexes,
que les groupes fondamentaux des composantes connexes de S’ soient topologiquement de
présentation finiget les groupes fondamentaux des composantes connexes de S” topologique-
ment de gérération finie Alors le groupe fondamental de S est topologiquement de présentation
finie.

On notera qu’on peut exprimer 4.9 (restreint aa¥etementstales) en disant quh mor-
phisme fini radiciel surjectif de pisclemas noetiriens induit un isomorphisme des groupes
fondamentauxde fagcon image, on peut donc dire que le groupe fondamental egtvariant
topologiquepour les pesclemas. On peut expliciter pluggeralementa I'aide de 5.1, I'effet sur
le groupe fondamental d’@pations sur les psclemas, telles que le “pincement” duggctema
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suivant un ensemble fini de points, ayant une signification topologique simple. On trouve par
exemple :

On notera qu’on peut exprimer 4.9 (restreint ae¥etementtales) en disant quh mor-
phisme fini radiciel surjectif de gisclemas noetbriens induit un isomorphisme des groupes
fondamentauxde fagcon image, on peut donc dire que le groupe fondamental egtvariant
topologiquepour les pesclemas. On peut expliciter pluggeralementa I'aide de 5.1, I'effet sur
le groupe fondamental d’@pations sur les psclemas, telles que le “pincement” dugsctema
suivant un ensemble fini de points, ayant une signification topologique simple. On trouve par
exemple :

Corollaire 5.4 Soient g: S’ — S un morphisme fini de présentation finie, T" une partie discréte
de S. Pour tout s € S, soit n(s) le “nombre géométrique de points” dans la fibre g~'(s) (qui
s’explicite aussi comme le degré séparable de g~'(s) sur k(s), somme des degrés séparables de
ses extensions résiduelles). On suppose que pour s € S — T , on an(s) = 1. Pour tout s € T,
soit K une extension algébriquement close de k(s), I; I’ensemble des points géométriques de S’
a valeurs dans K (c’est un ensemble a n(s) éléments), I le complémentaire d’un point choisi
de I, etenfin I’ I’ensemble réunion des I'.. On suppose S’ connexe. Alors le groupe fondamental
de S est isomorphe au groupe de type galoisien engendré par le groupe fondamental de S’, et des
générateurs g; (i € I'), soumis a aucune condition supplémentaire.

Le deétail de la @monstration est laiésau lecteur ; Enon& obtenu n’est que la traduction,
en langage de la #@orie des groupes, du fait qu'on a uaquivalence de la cagorieC' des
revetementstales deS, et de la catgorie des redtementstalesX’ de S’, munispour tout
s € T d'un syseme transitif de bijections entre legs) fibres deX’ aux points dey~!(s) a
valeurs dangy<,. (Sous cette forme intriggjue bien entendu, il n’est plugcessaire de supposer
S’ connexe).

Exemple 5.5 On prouve facilement que la courbe rationnétlesur un corps algbriquement
closk est simplement connekeDonc le groupe fondamental d’une courbe rationnelle cétepl
ayant exactement un point doubkeyn branches analytiques, est le groupe de type galoisien
libre engende parn — 1 gérérateurs. Par exemple, dans le cas d’un point double ordinaire, on
trouve le groupe fondamentdl, comme annorie dans (1.11 a)). Par contre, I'existence d’un
point de rebroussement (qui est un poink6getriquement unibranche”) n’a pas d’influence sur
le groupe fondamental.

Corollaire 5.6 Soit g: S’ — S un morphisme de préschémas universellement submersif, a
fibres géométriquement connexes, S étant connexe. Alors S’ est connexe, et choisissant un point
géométrique s’ dans S’ et désignant par s son image dans S, I’homomorphisme

(S, s") — m(9,s)

'Cf. Exp. XI.1.1.
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est surjectif Si g est un morphisme de descente effective pour la catégorie fibrée des revétements
étales de préschémas (cf. 4.12), introduisant le point géométrique s” = diag(s’) de 8" = S'x 55,
et les deux homomorphismes

P1x, P2x - 71'1(5”’ S”) - ﬂ-l(S/7 8/)

induits par les deux projections, m1(S, s) est isomorphe au conoyau de ce couple de morphismes
dans la catégorie des groupes de type galoisien, i.e. au quotient de 71(S’, s') par le sous-groupe
250 invariant fermé engendré par les éléments de la forme py.(g")p2.(g") 7", avec g € m(S”,s").

On sait en effet par 3.4 que le fonctelir — X xg S’ des re@étementstales suiS dans
les reetementsétales surS’ est pleinement figle, ce quiéquivaut au fait que I'homomor-
phisme sur les groupes fondamentaux esepimorphisme (V.6.9). La demie assertion est
une congéquence imradiate de la description 5.1.

Remarque 5.7 Il n’est pas conn@ I'heure actuelle si le groupe fondamental d’unésola propre

sur un corps algbriquement clos est topologiquement degsentation finig Utilisant 5.3, une
technique bien connue de sections hyperplanes, édimgularisation des surfaces normales, on

est rameé au cas d'unsurface lisse suk. Cela permet du moins de montrer, par voie trans-
cendante, que l&ponse est affirmative en car@gstique0 (et ceci sangtre oblige d’admettre

la triangulabilie de vargtes algbriques singudires). En caraetistiquep > 0, la difficulté prin-

cipale semble dans le cas des courbes, dont on sait seulement que le groupe fondamental est un
guotient de celui qui se psente dans le cas classique (cf. elmsvant), le noyau par lequel on

divise étant cependant fort mal connu.

Remarqgue 5.8 On pourrait expliciter d’autres cas particuliers que 5.4 et b.6.4 prend une
forme particulerement simple. Un cas &ressant est celuitoS est le quotient de5’” par un
groupe fini d’automorphismés. Alors la caggorie des redtementgtalesS’ estéquivalentea
la categorie des redtement®talesX’ de.S’, ou le groupel” opere de fagcon compatible avec ses
opérations surS’, de telle fagon que pour tout € S’ et toutg € I'y (ou Iy désignele groupe
d'inertie de s’ dansI’), g opere trivialement dans la fibr&”,. Si S’ est connexe ceénoné@
s'interpete de la fagon suivante. Sa@if, la caégorie des redtementstales deS” ou I' opére
de fagcon compatible avec seséogtions suts’ (mais sans satisfaireenessairement la condition
ci-dessus sur les groupes d’inertie des point$9eOn voit facilement que c’est une égporie
251 galoisienne (V.5), et que pour tout poiré@retriquea’ de .S’, le foncteur fibreX’ — X!, surC?
est un foncteur fondamental. Seit(S’, I'; ') = G le groupe des automorphismes de ce foncteur,
muni de sa topologie habituelle. On a alors une suite exacte canonique

e—m(S,d)—-G—-T—e

8Cela semble &s improbable dans le cas des courbes lisses de genre, en caradristiquep > 0. Quand
on remplacer; par son plus grand quotient premigp, par contre, il semble que les techniques bien connues
permettent de donner unéponse affirmative, Bme sans hypoéise de proprét Cf. un travail en gparation de
J.P Murre.
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(cas particulier de (V.6.13),loon prend poufs le revetement trivialS” x I" de S” défini parT,
ou on fait ogererl” de fagonévidente). D’ailleurs pour tout poinegmnétriqued’ de S’, on a un
isomorphismer; (S’,I'; V) — G = w1 (S', I'; ') définia automorphisme igtieur pes provenant
dem (S, d’), et commd’, s’applique de fagcoividente dans le premier membre, on obtient un
homomorphisme

Uy - Fb’ — G y

définia automorphisme igtieur pes (provenant de, (S’, «’), dont le compos avec 'homomor-
phisme canoniqué& — I est d’ailleurs I'immersion canonigue, — I'. Ceci pog, le groupe
fondamentalr, (S, a) estcanoniqguement isomorphe au groupe quotientde= 7 (S’,T";d’)
par le sous-groupe invariant ferengende par les images des homomorphismgs— G. En
particulier, 'image der, (5’ a’) dansr; (.S, a) est un sous-groupe invariant, et le quotient corres-
pondant est isomorpheun quotient dé'. On peut d’ailleurs&duire le nombre des “relations”
introduites en introduisant, pour toyte T', g # ¢, le sous-pesclemas; des cancidences des
automorphismesls et g de S, en choisissant un pointegnetriquet, ; dans chaque compo-
sante connexe dg, puis un des homomorphismes correspondants’,I'; b, ;) — G, d’ou des
relevementg; deg dansG. |l suffit alors de prendre le quotient dépar le sous-groupe invariant
fermé deG engende par lesj;.

Lorsqued’ est invariant paf’, on voit aiment qud” opéere de fagcon naturelle suf(S’, a’),
et G s’identifie au produit semi-direct correspondant. Identifiant dl@sin sous-groupe d&,
on voit que dans les relations introduites plus haut, faisaata’, on trouve 4 = e” pour g € 1.
Doncsi S’ a un point gonetriquea’ fixe par/ (i.e. un points’ dont le groupe d’inertie egt),
alors 71 (.S, a) est un groupe quotient du groupe quotient de type galoisien, (¢, «’) obtenu
en‘“rendant triviales”les ogerations del’ surm(5’, ') ; et il est néme isomorphé ce dernier
groupe si on suppose que pour tgut G, 'ensemble d'inerties; est connexe, donc passe par la
localité ded’. Cette derrére assertion est en effet contenue dans la éewxidescription dorae
plus haut pour les relatiorgsintroduire dans:.

Ce dernieresultat s’applique en particulier si I'on prend pdiita puissance casienneX™
d’un présclema connexe sur un corps algiquement clos, polrle groupe syratriquel’ = &,,,
opérant de la fagon habituelle, digpour S la puissance syétrique neme deS. Prenant alors
poura’ un point geonetrique localig en la diagonale, on est sous les conditio@sguientes, les
ensembles d'inerti®; contenant en effet tous la diagonale. Utilisant le fait, peodans I'expos
suivant, que sX est propre connexe skr le groupe fondamental d€” s’identifiea; (X)™, on
trouve le sultat amusant suivan®i X est propre connexe suéralgébriquement clos, le groupe
fondamental de sa puissance §triquen.eme n > 2, est isomorphe au groupe fondamental
de X rendu alglien (J'ignore si le fait analogue en Topologie @lgique est connu; il devrait
pouvoir sétablir par la @me néthode de descente). Prenons par exemple foune courbe
rationnelleX = P}, on trouve une Neme émonstration du fait quB;, est simplement connexe,
utilisant le fait queP}, I'est. Prenons maintenant padirune courbe simple sus, etn > 2g—1, de
sorte quesymm" (X ) est fibe sur la jacobienné, de fibres des espaces projectifs, donc (comme
on verraa l'aide des @sultats des deux exgEssuivants) a Bme groupe fondamental queOn
retrouve alors sansdissage le fait bien connu gleegroupe fondamental de la jacobienne de
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X estisomorphe au groupe fondamentalXieendu al&lien

6 Une suite exacte fondamentale. Descente par morphismas
fibres relativement connexes

Théoréme 6.1 Soient S le spectre d’un anneau artinien A de corps résiduel k, k une cloture
algébrique de k, X un S préschéma, Xo = X @4 k, Xo = X ®4 k, @ un point géométrique
de X, a son image dans X, b son image dans S. On suppose que X, est quasi-compact et
géometriquement connexeur k (N.B. si X est propre sur S, cela signifie que H°(X,, Ox,)
est un anneau artinien local de corps résiduel radiciel sur k). Alors la suite d’homomorphismes
canoniques

e m(Xo,a) — m(X,a) — 71(S,b) — e

est exacte, et on a

71(S,b) < w1 (k, k) = groupe de Galois de k sur k.

Comme les groupes fondamentaux ne changent paséaranhpar le€lements nilpotents,
on peut supposed = k, ce qui rend dja évident le dernier isomorphisme. Séitla cloture
separable dé& dansk, et consiéronsX’ = X ®;, k/, et limaged’ dea dansX’. On a une suite
d’homomaorphismes canoniques

e m(Xg,a) = m(X',ad) — 1 (S,V) —e

(ou S" = Spec(k)). Enfin, on a un homomorphisme canonique de cette suite dans celle relative
a X/k, grace au diagramme

S X X,

]

X=X, .

On voit d’autre part que cet homomorphisme de suites de groupes est un isomorphisme, comme
il résulte de 4.11. On est donc rargéenprouver que la deu&me suite est exacte, i.e. on peut
supposer qué estparfait. Soient alorsk; les sous-extensions galoisiennes finies:d#ansk,
posonsX; = X ®; k;, et soita; I'image dea dansX;. On laisse au lecteur deexifier que
’lhomomorphisme naturel

7T1(Y0, CL) = liinm(Xi, ai)

est un isomorphisme, ce qui signifie simplement qu’uretementétale deX provient d’'un
revetemengétale d'unX;, et que ce dernier est essentiellement unique, modulo passagg ;,

j > i. D'autre part, soitr; le groupe de Galois d&; surk, i.e. le groupe opp&au groupe
desS-automorphismes dg; = Spec(k;). Comme le foncteus” — X xg S’ des reétements
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étales deS dans les redtementstales deX est pleinement fiele (3.4), il s’ensuit quer; est
aussi isomorphe au groupe oppa@ix groupes dek -automorphismes du rétement principal
connexeX; deS. Il résulte donc de (V 6.13) que I'on a une suite exacte

e (X, a,) > m(X,a) > m —e

Passana la limite projective sui dans ces suites exactes, on trouve une suite exacte (puisqu’on
est dans la cagorie des groupes de type galoisien), qui n'est autre que la suite édwidags
6.1. Cela aclve la @monstration.

La traduction de I'exactituda droite dans 6.1 en langageayétrique est la suivante :

. . . . . ~ L ..~
Corollaire 6.2 Avec les notations précédentes, soit X' un revétement étale de X, et soit X, le
revétement étale correspondant de X (. Les conditions suivantes sont équivalentes :

(i) 1l existe un S’ étale sur S, et un X -isomorphisme X' = X xg S’, (S’ est alors déterminé
a isomorphisme unique pres en vertu de 3.4).

(ii) YE) est completement décomposé sur Xo.
Si X' est connexe, ces conditions équivalent aussi a :
(iibis) X, a une section sur X .
(N.B. Ce dernier complément est essentiel ; I’équivalence de (i) et (ii) signifie seulement
255 que (S, b) est le groupe quotient de 7 (X, a) par le sous-groupe invariant fermé engendré par

I’'image de 7, (X1, @), et non par cette image elle-méme). Sous les conditions précédentes, nous
dirons que X' est un revétement geonetriquement triviade X.

Remarque 6.30n ne peut dans&non@ 6.1 remplacek par une extension adpriquement
close quelconque de méme sik est tkja suppoé alggbriguement clos. En d’autres termes, il
n’est pas vrai engréral que siX est un scema al@brique connexe sur un corps a@tgiqguement
closk, son groupe fondamental ne change pas en remplagartune extension adpriquement
close; c’est éja faux par exemple en caradstiquep > 0 pour la droite affine suk, a cause
des plenonenes de “ramification s@pieure” au poing I'infini, impliquant une structure “conti-
nue” pour le groupe fondamental. Nous verrons cependant dans l&xubsmnt que de tels
phénonenes ne peuvent se produireXsSiestpropresurk. Nous montrerons aussi par voie trans-
cendante qu’il en est deéme sik est de caraéristique nulle.

Corollaire 6.4 Supposons que a soit localisé en un x € X qui est rationnel sur k (ou plus
généralement, ayant un corps résiduel radiciel sur k). Alors la suite exacte 6.1 est scindée.

On peut suppose¥ = Spec(k). Siz est rationnel suk, il corresponca une sectiory — X
de X surS, transformanb ena, et cefinissant un homomorphisme(S, b) — (X, a) quiestle
scindage cheréh Sik(x) est radiciel suk, on se rarane au cas piedent en faisant I'extension
de la bas&pec(k(x)) — Spec(k).

Théeoreme 6.5 Soient f: X — S un morphisme propre et surjectif de présentation finie, a fibres
géométriquement connexes, X' un préschéma de présentation finie et propre sur X, s un point
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de S, F = X la fibre de X en s, et F| une composante connexe de la fibre F' = X! de X’
en s. Pour qu’il existe un voisinage ouvert X| de F| dans X', un S-schéma étale S} et un X -
isomorphisme X| = S| x g X, il faut et il suffit que X' soit étale sur X aux points de F}, et que
FY soit un revétement géométriquement trivial de F'.

La nécessié de la conditiorétant triviale, il restea prouver la suffisance. On se rane
facilement au castoS est noetkrien. Consiérons la factorisation de Stelh — 7' — S de f, ou
T est le spectre de 'Algbref.(Ox) surS. Comme les fibres d& sur.S sont geormétriquement
connexes, ef est surjectif, le morphism& — S est fini surjectif et radiciel, donc (4.10) tout
T’ étale surl” provient par image inverse d'usf étale surS. Cela nous ragnea prouver 6.5.
en y remplacant parT7, i.e. dans le castoon suppose.(0x) = Os. Consicrons alors la
factorisation de SteiX’ — S’ — S du morphisme propré: X’ — S, ou S’ est le spectre de
I'Alg ebreh.(Ox ). Les morphismeX’ — X et X’ — S’ définissent un morphisme canonique

X - X Xg Sl,
et notre assertion est contenue dans la suivante :

Corollaire 6.6 Soit f: X — S un morphisme propre de préschémas localement noethériens, tel
que f.(Ox) = Os, et soit X' un préschéma propre sur X. Considérons la factorisation de Stein
X' — 8§ — S pour X' — S, et le morphisme canonique X' — X xg S’. Soient s un point
de S, s’ un point de S" au-dessus de s, correspondant a une composante connexe F} de la fibre
X! de X' en s. Pour que le morphisme X' — X xg S’ soit un isomorphisme au-dessus d’un
voisinage ouvert U’ de s’ étale sur S, il faut et il suffit que X' soit étale sur X en les points de
FY, et que FY soit un revétement géométriquement trivial de la fibre I’ = X.

La necessit étant encore triviale, il res&prouver la suffisance. La conclusion signifie aussi
que a) le morphismeé&tiuit de X’ — X xg S’ par le changement de baSeec(0y) — 5’
est un isomorphisme, lfj’ estétale surS ens, i.e. ﬁ’:/ estétale suArﬁAs. Sous cette forme, on
voit que la conclusion est invariante par changement de ®asd o) — S. Les hypotleses
étantégalement stables par ce changement de base, on peut donc suppdsestlespectre
d’un anneau local noeinien complet. On peut de plésidemment supposeéf’ connexe, ce qui
implique ici queS” = Spec(0y ), F' = F.

Comme I'ensemble des points d€ ou X’ estétale surX est ouvert et contient la fibre
X!, = F', X’ étant propre suf, il s’ensuit queX’ estétale sutX. Comme il induit sur’ = X
un reetemenetale isomorpha unF’ @y L, ou L estétale surk(s), il résulte de 1.10 qu'il est
isomorphea un re@tement de la form& x g T, avecT étale surS. (N.B. ici encore, il suffit
d’utiliser que le foncteur de 1.10 est pleinemengfd qui Esulte du fait qu’'un isomorphisme
formel de faisceaux ca@ents sutX provient d’'un isomorphisme de ces faisceaux). Doné; si
est cefini par I'algebreB finie surA, X’ s’identifie au spectre de I'Algpred’y ® 4 B sur X, d’'ou
résulte aussit, puisquef.(Cx) = Os, queh,(Cx/) est ckfini par B, donc I'homomorphisme
canoniqueX’ — X xS’ n'est autre que I'isomorphisme envigay’ — X x¢ 7. Cela ackve
la demonstration.
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Corollaire 6.7 Sous les conditions de 6.5, pour qu’il existe un préschéma S’ étale sur S et un
X -isomorphisme X' = X x ¢S’, il faut et il suffit que X' soit étale sur X et que pour tout s € S,
X!, soit un revétement géométriquement trivial de X.

En effet, s'il en est ainsiX’ est Eunion d’ouvertsX; qui sont isomorphea des images
inverses de5; étales suiS. On voit alors facilement que cés se recollent en uly’ étale surs,
et qu’on obtient un isomorphismé’ = X x ¢5’. On peut dire par exemple que [&$sont munis
de donmees de descente relativemank — S, qui se recollent @acessairement en une déen
de descente sux”’ tout entier relativemerda X — S. Et comme cette der@ie est effective sur
les X/, il s’ensuit facilement (gicea un sorite oubé au nunéro 4) qu’elle est effective. On peut
aussiénoncer 6.7 sous la forme suivante :

Corollaire 6.8 Soit f: X — S un morphisme propre surjectif de présentation finie, a fibres
géométriquement connexes. Alors [ est un morphisme de descente effective pour la catégorie
fibrée des préschémas étales finis sur d’autres. Le foncteur S" — X x .S’ induit une équivalence
de la catégorie des préschémas étales et finis sur .S avec la catégorie des préschémas étales et
finis sur X qui induisent sur chaque fibre X, un revétement géométriquement trivial.

Remarque 6.9 Soit f: X — S un morphisme propre et surjectif, avEdocalement noe#rien,
alors f se factorise en un morphismé — S’ satisfaisant I’hypotése de 6.8, et un morphisme
fini surjectif S’ — S justiciable de 4.7, donc en produit de deux morphismes qui sonhdes
phismes de descente effective univensels la caggorie fibEe des gFsclemasetales et finis sur
d’autres. On peut en conclure ggidui-méme est un morphisme de descente effective universel
pour la cakgorie fibEe envisage. On retrouve ainsi 4.12 par unétimode diferente.

Remarque 6.10La conclusion de 6.7 ne reste pas valable si on remplace I'hgpetuef est
propre par X est de type fini suf et admet une section sdr(donc f est universellement sub-
mersif et un morphisme de descente spour lagatie fibee des gesclemasetales sur d’'autres),
méme lorsques est le spectre d’'un anneau de valuation diteet lorsqueX’ est un reétement
étale deX. Pour le voir, on part d’'ut propre surtS, dont la fibre @rérale est une courbe ration-
nelle non singuBre, et la fibre sgciale Z, consiste en deux droites concourantes. Par exemple,
si t est une uniformisante de I'anneau de valuatigron prend le sous-séma ferné Z de P2
défini par I'equation homognez? + y? + t2% = 0 (coordones homognesz, y, z). On prend
pour X le compEmentaire du point singulierde Z, dans la eunionZ UP%. Les fibres deX sont

P, etP? — a, donc sont gonetriguement connexes (i.e. tout &ementtale d'une telle fibre
est geonetriguement trivial). Cependant on construit facilement, engaant comme dans le
N° 4, des regtement®tales deX qui ne proviennent pas de &ement®tales de5, par recol-
lement de re&tements triviaux d& — a et deP? — a. Il est possible par ontre que la conclusion
de 6.7 subsiste si on y remplace I'hypese de proprétpar celle queX soit universellement
ouvertde pesentation finie sus®. C’est vrai du moins si on suppose que les fibreskdsur

S sont geonetriquement irgductibles, et non seulemergapetriguement connexes. Signalons

9C’est maintenant prow g étant seulement universellement ouvert et surjectif ; cf. SGA 4 XV 1.15.
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seulement qu’on peut dans cette question se ramener aul ¢asgi le spectre d’'un anneau de
valuation disceéte complet corps ésiduel al@briguement clos.

Linterprétation de 6.7 en termes du groupe fondamental est la suivante :

Corollaire 6.11 Soit f: X — S un morphisme propre surjectif de présentation finie, a fibres
géométriquement connexes. On suppose X donc S connexe. Soient a un point géométrique de X,
b son image dans S, et pour tout s € S, choisissons une cloture algébrique k(s) de k(s), un point
géométrique as de S, a valeurs dans cette extension, et une classe de chemins de a4 dans a, d’ou
un homomorphisme 7, (X, a;) — 71 (X, a), ot X, = X, Pk (s) @ Alors I’homomorphisme
pi1(X,a) — (9, b) est surjectif, et son noyau est le sous-groupe invariant fermé de m (X, a)

engendré par les images des 71 (X s, as).

Remarque 6.12 Sous les conditions de 6.7, supposanhoetterien, on voit facilement que
I'ensemble des points € S tels queS’, soit geonetriquement trivial sutX; est un ensemble
constructible ; siX’ est propre suX, il est meme ouvert, comme on le voit sur 6.6. Cela permet
260 donc, siS et un pésclema de Jacobson (par exemple de type fini sur un corpsy, est propre
sur X, de se borner pourérifier les conditions de 6.7 aux poirdde S qui sontfermés De
méme, dans 6.11 il suffit alors de prendre4géX ,, a,) pour les points dé& qui sont fernés.
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Expos X

Theorie de la sggecialisation du groupe
fondamental

Dans le pesent expds, nous nous bornons I'étude du groupe fondamental des fibres
géeonetriques dans un morphisnpeopre, i.e. du groupe fondamental d’'un s€rha al@brique
propre variable. Dans un expésultérieur, nous greraliserons la technique empéw aux
revetementsetalesmocderement ramis “a 'infini”. Cela nous donnera par exemple une so-
lution du “ProbEme des trois points” dans le cas destements galoisiens d’ordre preméer
la caracéristique (i.e. une &ermination des ré&emenrs galoisiens de la droig, ramifies au
plus en trois points dor@es et modrement ramifs en ces points), et de ses varia@édentes.

1 La suite exacte d’homotopie pour un morphisme propre et
separable

Définition 1.1 Un préschéma X sur un corps k est dit separable ou separable suk, si pour
toute extension K de k, X ®,; K est réduit. Si f: X — Y est un morphisme de préschémas, on
dit que f est separableou que X est €parable su¥’, si X est plat surY et si pour touty € Y,
la fibre X ®y k(y) est séparable sur k(y).

Si X est un pesclema sur un corph, dire qu’il est €parable signifie aussi qu'il egtduit,
et que les corpk(z) pour z point gerérique d’'une composante &uductible deX, sont des
extensions @parables dé. Si k est parfait, il revient donc au @me de dire queX est éduit.
Notons que sK est £parable suY’, alors pour tout changement de bage— Y, X' = X xy Y’
est €parable suF”’. On peut prouver aussi, moyennant des hypséls de finitude convenables,
qgue le compos de deux morphismeggarables est un morphismeparable. Nous en aurons
besoin seulement sous la forme suivanse X est €parable surY’, et X’ étale surX, X’ est
separable sury’. C’est en effet une coigiuence imradiate des é&finitions et (SGA 1 9.2). Par
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ailleurs, I'hypotlese “morphismeé&parable” nous servira par I'integdiaire de la proposition
suivante :

Proposition 1.2 Soit f: X — Y un morphisme propre et séparable, avec Y localement

noethérien, et considérons sa factorisation de Stein X % V' — Y (ou fI(Ox) = Oy, Y’
étant fini sur 'Y et isomorphe au spectre de ’algébre f,(Ox)). Alors Y’ est un revetemeneétale
deY.

Cette proposition figurera dans (EGA III*7)ndiquons le principe de lagonstration. On se
ramene facilement au casid” est le spectre d’un anneau local complett faisant encore une
extension finie plate convenable de ce dernier (corresporRdan¢ extensionésiduelle conve-
nable), on peut supposer que les composantes connexes de la fibre du pant $emhuniver-
sellement connexes, ce qui signifie aussi HiieX,, Ox,) se cecompose en un produit de corps
identiquesak = k(y). Supposant alor&” connexe, ce qui est loisible, on alfa(X,, O, ) = k,
donc 'homomorphismed — H°(X,, Ox,) estsurjectif On en conclut par une proposition
gérérale (du type Kinneth) quef.(0x) est cfini par un moduleB sur A qui est libre surA,
et queB/mB — H°(X,, Ox,) = k est bijectif. Donc en I'occurrenc8 est une algbreétale
sur A, ce qui ackve la @monstration.

Théoreme 1.3Soit f: X — Y un morphisme propre et séparable, avec Y localement
noethérien et connexe, et supposons f.(Ox) = Oy (ce qui implique que les fibres de X sur

Y sont universellement connexes, et réciproquement grace a 1.2). Soient y un point de Y, k(y)
une cloture algébrique de k(y), X, = X, ®x) k(y). Soient enfin X' un revétement étale

connexede X, et Y; = X, ®xy) k(y). Pour qu’il existe un revétement étale Y' de Y et un
263 X-isomorphisme X' = X xy Y, il faut et il suffit que 7; admette une section sur X .

Posanty” = Spec(h.(Ox:) (0U h: X’ — Y estle morphisme compes{’ — X — Y), il
suffit de prouver que I1& -morphisme canonique

X' — X xy Y’

est unisomorphismeet queY”’ estétale sury”. Or nous savonsajg par 1.2 qué’’ estétale sury’,
doncX xy Y’ estétale surX, donc le morphism&’ — X xy Y’ estégalemenétale (SGA |
4.8). D’ailleurs,Y”’ est connexe comme image é qui I'est, doncX xy Y’ est connexe puisque

X esta fibres connexes st (SGA 1X 3.4 etV 6.9(iii)). Donc pour prouver qu&’ — X xy Y’

est un isomorphisme, il suffit de voir que son dede projection emin point de X xy Y’ est
egala 1. Or ceci esulte facilement de I'hypodse queY; admet une section su¥,,, soit par
utilisation de (SGA IX 6.6), soit plus simplement en notant qu’il suffit de prouver I'existence
d’'un tel point dansX xy Y’ apes changement de baSgec(k) — Y, ol cela esévident. Cela
acheve la @monstration de 1.3.

Tenant compte de (SGA 1X 3.4) et du dictionnaire (SGA V 6.9 et 6.11), on peut mettre 1.3
sous la forme

1Cf. EGA 111 7.8.10 (i)
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Corollaire 1.4 Avec les notations précédentes pour f: X — Y et X,, soit @ un point
géométrique de X, , a son image dans X et b son image dans Y. Alors la suite suivante d’homo-
morphismes est exacte :

(X, a) — m(X,a) = m(Y,b) — 0.
part 53

Remarqgues 1.50n notera que la&@monstration de 1.3 fait intervenir de facon essentielle 1.2
et par b le “premier tleoeme de comparaison” eregretrie algbrico-formelle. Par contre, la
264 théorie de la descente de I'ex@olX n’est intervenue que par l'inte@diaire de 1X.3.4, dont une
démonstration directe dans le cas d’un morphigmopre f: X — Y tel quef.(Ox) = Oy est
facile. Soit en effefy” étale surY” et supposons qu&’ = X xy Y’ soit somme disjointe de
deux ouverts non vides, prouvons qu'’il en est dime deY”’. En effet, on aurd” = Spec(/),
donc X’ = Spec(#) avec# = o Rg, Ox , €t la decomposition deX’ en somme directe
corresponc une @composition dez en produit de deux aébres non nullesg, et %,. Comme
f«(Ox) = Oy on conclut facilemenf.(#) = </, donc«/ sera somme de deux &lgres (non
nulleségalement, car leurs sections @wsont non nullesy, (%) et f.(%.), cqfd.

1.6  Supposons encore qyesoit propre et 8parable, mais ne faisons plus d’hypegh sur
f«(Ox), qui correspondra un reetementétaleY’ bien cetermiré deY’, d'ailleurs poncté
au-dessus depar I'imaged’ de a. Appliquant alors 1.4 au morphisme canoniglie— Y’, et
supposanf surjectif, la suite exacte 1.4 est rempagar la suivante, analogue de la suite exacte
d’homotopie des espaces fisren topologies addpriques :

(X, a) — m(X,a) — (Y, b) — 7(X,,a) — mo(X,a) — m(Y,b) — e
Bien entendu, dans 1.4 on ne peut pas&megal affirmer que I’'homomorphisme
(X, a) — m(X,a)

soit injectif; en topologie algbrique, son noyau est I'image dg(Y,b), et il y aurait lieu en
géonetrie algebriqgueégalement d’'introduire des groupes d’homotopie en toutes dimensions, et
la suite exacte d’homotopie congpé pour un morphisme propre satisfaisant des hyseth
convenables (par exempleédi'e un morphisme lisse). On ne disp@skheure actuelle d’aucun
résultat dans ce send,l'exception d’'une éfinition raisonnable (sinoné&finitive) des groupes
d’homotopie suprieure.

Corollaire 1.7 Soient k un corps algébriquement clos, X et Y deux préschémas connexes

265 sur k ; on suppose X propre sur k et Y localement noethérien. Soient a un point géométrique
de X, b un point géométrique de Y a valeurs dans la méme extension algébriquement close
K de k. Considérons le point géométrique ¢ = (a,b) de X Xx; Y, et I’homomorphisme
T (X XY, ¢) = m (X, a) xm (Y, b) déduit des homomorphismes sur les groupes fondamentaux
associés aux deux projections X X, Y — X et X X Y — Y. L’homomorphisme précédent est
un isomorphisme
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Supposons d’'aborfl’ = k. PosonsZ = X x, Y, consicrons la projectiorf: 7 — Y etla
localité y du point geonretriqueb de Y, appliquonsa la situation le &sultat 1.4. On notera pour
ceci que, quitté passea X,¢q , (ce qui ne change pas les groupes fondamentaux eagsam
peut supposeréja X réduit donc éparable suk, doncZ est €parable suk, et évidemment
a fibres universellement connexes (puisdiest connexe). La fibreépnetrique deZ enb est
canoniquement isomorpleX ®, K = X. D’autre part, comme le comp@sies morphismes
X — Z — X estl'identig, on trouve quer; (X, a) — m(Z, c) est injectif et 1.4 nous donne
une suite exacte :

e —m(X,a) = m(Z,¢c) = m(Y,b) —e.

D’autre part, on a la suite exacte canonique :
e —m(X,a) = m(X,a) xm(Y,b) — m(Y,b) — e,

ou les deux homomorphismeésrits sont I'injection canonique et la projection canonique. On a
enfin un homomorphisme de la prere suite exacte dans la deeéxie,a I'aide des morphismes
identiques sur les termes extnes, et ’lhomomorphisme canonique

m(Z,¢) — m(X,a) x m(Y,b)

pour les termes édians. La commutatidtdu diagramme ainsi obtenu seriie trivialement.
Comme les homomorphismes sur les termegexéis sont des isomorphismes, il en est éenm
pour les termes adians, ce qui prouve 1.7 dans ce cas.

Lorsqu’on ne suppose plus = k, on trouve seulement un isomorphisme
m(Z,¢) = m(X @ K,a) x m(Y,b),
266 et 1.7équivaut alors au cas particulier suivant :

Corollaire 1.8 Soient X un schéma propre et connexe sur un corps algébriquement clos k, k'
une extension algébriquement close de k, a’ un point géométrique de X ®;, k' et a son image
dans X . Alors I’homomorphisme canonique 71 (X ®y, k', a’) — m (X, a) est un isomorphisme.

Le fait que cet homomorphisme soit surjedtjuivauta dire que siX’ est un regtement
étale connexe dé&, alors X’ ®, k' estégalement connexe, détsulte ausditt du fait quek est
algébriqguement clos ; c’est aussi un cas particulier de (SGA 1X.3.4). L'hysatlde proprétsur
X n’a pas encore servi. Ceci dit, dire que I’'homomorphisme engigsg injectif signifie aussi
ceci : tout re\etemenétale deX ®; k' est isomorph& I'image inverse d’'un redtementétale
de X. Il est essentiellement sorital qu’on peut trouver une Soatgebre A de K, de type fini
sur k, et un reetementéetale deX ®; A dont I'image inverse suX ®, k' est isomorphe au
revétement don@. Soit doncY” = Spec(A), qui est unk-sctéma inégre de type fini, donc a
des points rationnels sét Appliquons alors 1.7 au groupe fondamentaldex Y en un point
(a,b) rationnel surk : on trouve que tout rédtemengétale connexe d& x Y estisomorphé un
quotient d’'un reetementX’ x Y’, ol X’ etY”’ sont des redtements galoisieretales deX etY
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de groupegr et G’ par un sous-groupf de G x G'. Cela implique que I'image inverse de ce
revetement deX x Y surX x Y’ estisomorph@ un retement de la form&’] x Y’, ou X est

un re\etemengtale deX. Si doncL est le corps des fonctions &g €gal au corps des fractions
de A dansk’, le re\vetementétale deX ®, L induit par le reeétement don@ de X x, Y est

tel qu'il existe une extension finieeparablel’ de L, telle que I'image inverse dudit rétement
sur X ®; L' est isomorphé X ®; L’. Or k' étant al@briguement clos, on peut supposer que
'extensionl’ de L est contenue daris. Cela prouve que le réfementgtale dong deX ®; £’

est isomorphé X; ®, £/, cqfd.

267 La forme explicite sign&e en passant pour les &tgmentsetales d’'un produitX’ x; Y
implique aussilt le resultat suivant :

Corollaire 1.9 Soient k un corps algébriquement clos, X et Y deux préschémas localement
noethériens sur k, Z = X x Y leur produit, Z' un revétement étale de Z. Pour tout pointy € Y
rationnel sur k, soit i,,: Spec(k) — Y le morphisme canoniquement associé, j, = idx Xy i, le
morphisme X — Z correspondant. Soit enfin X le revétement étale de X image inverse de Z'
par j, . On suppose Y connexe, et X ouY propre sur k. Alors les revétements X, de X sont tous
isomorphes.

De facon image, on peut dire quhe famille de reétement&tales deX, paranetrée par un
présclema connex&’, est constante sX ou le pesclema de paramtresY est propre suk.

Remarques 1.10Les corollaires 1.4 1.9 sont @isa Lang-Serre [2] dans le cas des @&atas
algebriques normaux (leur travaildé la motivation initiale pour la #orie du groupe fondamen-
tal developge dans ce &ninaire). Comme I'ont remar@uces auteurs, cegsultats deviennent
inexacts lorsqu’on y abandonne I'hypéese de proprét du moins en caraatistiquep > 0. Pre-
nant par exemple pouX la droite affineX = Spec(klt]), il n’est pas difficile de voir que les
revétements de& paranetrés par la droite affin® = Spec(k[s]), définis par le€quations

P —x = st

sontétales et deuat deux non isomorphes. Cela met &fiadit 1.9 et a fortiori 1.7, et on voitéme
que sis est consiéré comme urelément transcendant skiidans une extension @griquement
closeK dek, on trouve un regtemenetale X’ de X qui ne provient pas d’'un réemengétale
de X.

2 Application du theoreme d’existence de faisceaux : #p-
reme de semi-continuié pour les groupes fondamentaux des

fibres d’'un morphisme propre et $£parable
268

Théeoreme 2.1 Soient Y le spectre d’un anneau local noethérien complet de corps résiduel k,
X unY -schéma propre, Xg = X ®4k, ag un point géométrique de X et a le point géométrique
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correspondant de X . Alors I’homomorphisme canonique (X, ap) — 7 (X, a) est un isomor-
phisme.

Ce n’est qu’une traduction, dans le langage du groupe fondament&saditat rappé dans
(SGA 1X.1.10). C’est ici que le toreme d’existence des faisceaux ekogetrie algbrico-
formelle s’introduit de facon essentielle dans ladtie du groupe fondamental.

__ Introduisons maintenant unedtlire al@briquek du corps ésiduelk, et la fibre gongtrique
Xo = Xo®; k. On a donc la suite exacte (SGA 1X.6.1)

e — m(Xo,a) — m(Xo,a0) — m(k, k) — e.
D’autre part on a 'isomorphisme 2.1 et I'isomorphisme analogue,glereentaire,
mi(k, k) — m(Y,0),
ou b est I'image de: dansY'. On trouve ainsi :

Corollaire 2.2 Avec les notations précédentes, supposons X, connexe, et soient G, un point
géométrique de Xy = Xy ®i k, ag son image dans X, by son image dans Y. Alors la suite
d’homomorphismes canoniques suivante

€ — 7Tl<70760) - 7T1(X7 G’O) - ﬂ-l(Ya bO) — €

est exacte.

On comparera cette suitela suite exacte 1.4, mais on notera que a) on n’a pasfaire
d’hypotrese de platitude, ou dégarabilie sur les fibres, pouk — Y'; b) on a le com@ment
important qude morphismer; (X, a) — m (X, ag) est injectif.

Ce dernier fait nous permettra de comparer le groupe fondamental des autres fibres
géonetriques deX surY a celui deX . Soit en effety; un point quelconque dg, X; sa fibre
et X, sa fibre gonetrique, relativemend une extension aédpriquement close de(y;), @; un
point geonetrique deX |, , a; son image dan¥ etb, son image dan¥. Choisissons une “classe
de chemins” dei; aaq, d’ou une classe de chemins blea b,, d’'ou un diagramme commutatif
d’homomorphismes :

mXna) — mX,a) — mY,bh) — e
! !

e — 7T1(70760) — m(X,a0) — m(Y,by) — e,

ou les deux ®ches verticalegcrites sont des isomorphismes. Comme la d&ugi ligne est
exacte, on trouve donc un homomorphisme canonique, que nous appelleoomsmorphisme

de spcialisation pour le groupe fondameniale cependant que de la classe de chemins choisis
dea; aay, doncdéfini modulo automorphisme &rieur der; (X, ao)) :

m(X1,@) — m(Xo,ao) -
Lorsque la premdre ligne ci-dessus eégalement exacte, il s’ensuit audsijue ’'homomor-
phisme de sgcialisation est surjectif. On trouve donc, compte tenu de 1.4 :
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Corollaire 2.3 Sous les conditions de 2.1, supposons de plus que le morphisme f: X — Y
soit séparable (1.1)) et Xy connexe (donc en vertu de 1.2 on a f«(Ox) = Oy ). Alors pour toute
fibre géométrique X, de X sur Y, munie d’un point géométrique @, , I’homomorphisme de
spécialisation défini ci-dessus est un homomorphisme surjectif.

C’est la un Esultat de semi-contin@tpour le groupe fondamental, qui ne semble pas encore
avoir d’analogue en topologie d@brique. On peut d’ailleursénoncer sous des conditions plus

270 gérérales :

Corollaire 2.4 Soient f: X — Y un morphisme propre a fibres universellement connexes, avec
Y localement noethérien, y, et y, deux points de Y tels que yo € {v1} , X, et X, les fibres
géométrique de X correspondant a des extensions algébriquement closes données de k(yo) et
k(y1) , @y resp. @, un point géométrique de X resp. X . Alors on peut définir de fagon naturelle
un homomorphisme de spécialisation :

(X1, @) — m(Xo,ao)

défini a automorphisme intérieur prés, et c’est Ia un homomorphisme surjectifsi f est un mor-
phisme séparable.

En effet, il 'esulte d’abord de 1.8 que 2.4 est essentiellemerépaddant de extensions
algébriquement closes choisies pour les cosiduelsk(y,) et k(y;). Cela nous permet de
remplacery” par un scemaY’ surY ayant un pointy, (resp.y;) au-dessus dg, (resp.y;). On
prendra alors pour” le spectre du compte de I'anneau local dg, dansY’, et on applique 2.3.

Remarques 2.5La conclusion finale de 2.4 sur la surjectivile 'homomorphisme de épiali-

sation, et a fortiori leséasultats 1.3 et 1.4 dont elle est une émsence, devient inexacte si on ne

suppose plus qug: X — Y est un morphismesparable, rame pour des sémas projectifs sur

un corps algbriquement clos de carécistique0. Nous en verrons plus loin des exemples, tant

dans le casw f est plat mais 0 f admet une fibre noreparable X etY étant cependant lisss

surk), que dans le casides fibres d¢g sont bien éparables maistof n’est pas plat (par exemple

f: X — Y étant un morphisme birationnel de géohas inégres normaux), cf. XI 3. Dans ces

exemples, il peut arriver que le groupe fondamental de la fibogrgtrique grérique soit nul,

mais non celui d’'une fibrea@pmnetrique sgciale convenable. D’autre parteme sif: X — Y

est un morphisme propre&egarable comme dans 2.4, il arrive couramment que le morphisme
271 de spgcialisation ne soit pas un isomorphisme. Ainsi, il est facile de donner des exemples o

X, est une courbe elliptique non singerde (donc son groupe fondamental est commutatif, et sa

composanté-primaire pour un nombre premiérpremiera la caradristique est isomorph&

7%, cf. XI), tandis queX , est forng, soit de deux courbes rationnelles non sirigel se coupant

en deux points, soit de deux courbes rationnelles tangentes en un point, soit enfin d’'une courbe

rationnelle ayant un point singulier qui est un point de rebroussement (pour la classification

compkte des courbes elliptiqueggktrerées, voir les travauxécents de Kodaira [1] eté&ton).

On voit alors que dans ces cas, le groupe fondamental dest respectivemert, e, ¢, donc

“strictement plus petit” que celui d&,. Nous verrons cependant plus loin, lorsgti@st un
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morphisme lisse, une majoration du noyau de ’'homomorphisme@&tgadisation, qui implique
en particulier que sk(y,) est decaracéristique0, 'homomorphisme de geialisation est un
isomorphisme. Mais Bme pour un morphisme lisse, si la cagaistique dek(y,) est ¢,0, il peut
arriver que ’lhomomorphisme de&gialisation ne soit pas un isomorphisme, comme on voit par
exemple dans le casioX est un scema aklien surY (de dimension relative 1, si on veut),
cf. XI 2. Une treorie satisfaisante de la&palisation du groupe fondamental doit tenir compte
de la “composante continue” du “vrai” groupe fondamental, corresporaéamtclassification
des reetements principaux de groupe structural des groupes adimaux ; moyennant quoi on
serait en droita s’attendre que les “vrais” groupes fondamentaux des fil@es®&griques d’'un
morphisme lisse et propré: X — Y forment un joli systme local surX, limite projective

de scleémas en groupes finis et plats sXif. Nous reviendrons wtieurement sur ce point de
vue, notre objet @sentétant au contraire de pousser aussi loin que possible Esopknes
communsa la tleorie topologique et la #@orie scikkmatique du groupe fondamental.

Soit maintenantX, une courbe propre, lisse et connexe de genseir un corps algori-
guement clog:. Sik est de caraéristique £ro, son groupe fondamental peut €tedminer par
voie transcendante de la fagon suivante. On saitXjuprovient par extension de la base d’'une

272 courbe @finie sur une extension agriquement close de dégde transcendance fini du corps
premierQ, et compte tenu de 1.8, on peut supposerigest lui-méme de dedgr de transcendance
fini sur@Q. On peut donc supposer gaest un sous-corps du corfisdes nombres complexes, et
une nouvelle application de 1.8 nous permet de supposet gu€. Il n’est pas difficile alors de
vérifier que le groupe fondamental de est isomorphe au compacéfdu groupe fondamental
de I'espace topologique asseck (surface compacte orie¥g de genrg), pour la topologie
définie par les sous-groupes d’indice firll est d’autre part classique que le groupe fondamental
topologique est engenglpar2g géerérateurss;, t; (1 < i < g), soumisa une seule relation :

(sitysy'trh) .. (sgtgs, 't ") = 1.

Donc le groupe fondamental d€ admet2g géererateurgopologiquess;, t; (1 < @ < g), liés
par la seule relation peedente. Si maintenant la caradstique dek estp > 0, désignons par
A l'anneau des vecteurs de Witt construit ake@ar K une extension a&priquement close de
son corps des fractions. On a vu dans (SGA 111.7.4) qu'il existe uareaX surY = Spec(A),
propre et lisse sul¥’, se eduisant suivan, . Appliquons-lui 2.3, on trouve un morphisme
surjectif

m(X1) — m(Xo),

ol X; = X ®; K. Il estimmédiat que X, est lisse sur<, connexe (1.2), de dimension 1, et
son genre estgala g (d’apres l'invariance de la caraatistique d’Euler-Poincér, cf. EGA Il 7).
CommeK est de caraéristique0, on peut lui appliquer leasultat pecedent. On a ainsi pro@v
parvoie transcendante

2Cette conjecture eX@mement&duisante est malheureusement mise&faut par un exemple @it de M. Artin
déja lorsque les fibres dg sont des courbes a@griques de genre doag > 2.

3Cette @ductionétait explicite dans un des expgEsoraux qui n'ont paste rediges

4cf. EGA IV 12.2
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273 Théeoreme 2.6 Soit X une courbe algébrique lisse, propre et connexe sur un corps algébri-
quement clos k, et soit g son genre. Alors 71(X() admet un systéme de 2g générateurs topolo-
giques liés par la relation écrite plus haut. Lorsque la caractéristique de k est 0, m1(X) est méme
le groupe de type galoisien libre pour les générateurs et la relation qui précedent.

Remarques 2.71l n’existe pasa I'heure actuellea la connaissance déadacteur, de@mnonstra-
tion par voie purement adprique du esultat pecedent (sauf pour les genrésl). Pour com-
mencer, on ne voit gire comment distinguer dansg(X,) 2¢ élements, dont on pourrait attendre
ensuite qu'ils forment un sysine de grérateurs topologiques cet égard, la situation de la
droite rationnelle prige den points, et letude des redtements d’icelle maaement ramites
en ces points, est plus sympathique, puisque la ceredidn des groupes de ramification en
cesn points fournitn éléements du groupe fondamental, comme nous verrogsieliremerst
Mais méme dans ce cas particdlement concret, il ne semble pas exister éemdnstration
purement algbrique. Une telle @monstration seragévidemment exémement iréressante. Le
seul fait concernant le groupe fondamental d’une courbe qu’on saherdrer par voie pure-
ment algbrique (exception faite duéoreme de finitude faible 2.12 ci-dessous, preyar voie
algébrique par Lang-Serre [2]), semble latérmination du groupe fondamental rend@lan
via la jacobienne (signaé dans SGA 1X.5.8 deraie ligne).

2.8 Ladernere assertion 2.6 n’est plus valable en caastiquep > 0, comme on voit dja
dans le cas des courbes elliptiques. Comme nous l'avesstgnak, nous ne savons pas si le
part 55 groupe fondamental d&, est topologiguement de gsentation finie.

Théoreme 2.9 Soient k un corps algébriquement clos, et X un schéma propre et connexe sur k.
Alors le groupe fondamental de X est topologiquement de génération finie.

274 Nous proéderons paracurrence sur = dim X, 'assertionétant triviale pour < 0. Sup-
posons dona > 0, et le tltoreme é&monté pour les dimensions’ < n. D’apres le lemme de
Chow (EGA 11 5.6.2) il existe un s@ma projectifX’ surk et un morphisme surjectX’ — X.
On peutevidemment supposeéx’ reduit, et en passant au normélisormal. Gacea la treorie
de la descente, il suffit de prouver que les groupes fondamentaux des composantes connexes de
X'’ sont topologiquement deégération finie (SGA 1X.5.2). Cela nous rame donc au casioX’
estprojectif etnormal Si alorsn = 1, il suffit d’appliquer 2.6. Sih > 2, on consi@&re une im-
mersion projectiveX — P}, et une section hyperplané= X - H (muni de la structureaduite
induite), telle qué” # X i.e. H  X.Onauraalordim Y < n, et tenant compte de I'hypatke
de ecurrence, il suffit de prouver que(Y') — m (X) estsurjectif.Or plus geréralement :

Lemme 2.10 Soient X un préschéma propre sur un corps algébriquement clos k, g: X — P} un
morphisme. On suppose X irréductible et normal et dim g(X) > 2. Soient H un hyperplan de
Pj etY = X xpr H. Alors Y est connexe, et I"'homomorphisme 7, (Y") — 71 (X) est surjectif.

5Cf. Exp. XIl. Encore ce€lements ne sont-ilsadermires vraiment que modulo conjugaison, et il convient de
faire un choixsimultareé judicieux de ce€lements dans leurs classes

200



Ces assertiongsultent en effet de la suivante :

Corollaire 2.11 Sous les conditions précédentes, soient X' un revétement étale connexe de X,
etY =X'xxY =X xpr H le revétement induit sur'Y'. Alors Y’ est connexe.

CommeX est normal,X’ est normal, donétant connexeX’ est ireéductible ; de plus son
image dan®;, est de dimensioix 2. Un lemme bien connuith Zariski (et app@ “theoreme de
Bertini”) implique donc que sH; est I'hyperplan grérique dan#j, , défini sur une extension
K dek, alors X’ xp- H, est universellement ieductible donc universellement connexe &ur
Le theoeme de connexion de Zariski (EGA Il 4) implique alors que ptmut hyperplanid
(défini sur une extension quelconque/geX’ xp- H est universellement connexe. Cela @b

275 la démonstration de 2.11, donc de 2.9.

Corollaire 2.12 (Lang-Serre)Sous les conditions de 2.9, pour tout groupe fini G, I’ensemble
des classes, a isomorphisme pres, de revétements principaux de X de groupe G, est fini.

Remarque 2.13 Sous les conditions de 2.10 nous prouverons lorsiguey(X) > 3 (du moins
lorsqueg est une immersion d& régulier), un ésultat plus gcis, connu en@pyetrie algbrique

sous le nom dethéoreme de Lefschetz 7, (Y) — 7, (X) est un isomorphisnfell y a dans les

cas classigues démoné&s analogues pour les groupes d’homologie et les groupes d’homotopie
sugerieure, qui dt ou tard devronétre englobs dans la gonetrie algebrique abstraite. Bime

pour la cohomologie de Hodd® (X, Q29), il ne semble pas que la question ait ence®tudée ;

il n'est d’ailleurs gere probable que pour cette demd, les teoemes de Lefschetz subsistent
tels quels en caragtistiquep > 0.

3 Application du theoreme de puret : theoreme de continuié
pour les groupes fondamentaux des fibres d’'un morphisme
propre et lisse

Rappelons sansdhonstration le

Théoreme 3.1 (de purek) (Zariski-Nagata)’ Soit f: X — Y un morphisme quasi-fini et do-
minant de préschémas integres, avec X normal, Y régulier localement noethérien, et soit Z
I’ensemble des points de X ou f n’est pas étale, i.e. ou f est ramifié (cela revient au méme,
SGA 1.9.5 (ii)). Si Z # X, Z est de codimension 1 dans X en tous ses points, i.e. pour toute
composante irréductible Z' de Z de point générique z, la dimension de Krull de Ox ., est égale
al.

6Cf. le £minaire SGA 2 (1962) faisant suiecelui-ci.

’Pour une @monstration, cf. SGA 2 X 3.4.
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Rappelons qu’un @sctema est dinormalresp.réguliersi ses anneaux locaux sont normaux
resp. eguliers, et que la relatiod # X signifie aussi que I'extension finie(Z)/R(X) (ou R
désigne le corps des fonctions rationnelles) ségtarable Se placant en le pointégérique z
d’'une composant&’ de Z, et localisant en le point deY en-dessous deg on trouve [Enon@&
équivalent :

Corollaire 3.2 Soient A un anneau local noethérien régulier, A — B un homomorphisme local
injectif tel que B soit normal, localisé d’une algebre de type fini sur A, et quasi-finisur A ; on
suppose de plus que dim A(= dim B) > 2, et que pour tout idéal premier p de B distinct de
I’idéal maximal, B est étale sur A en p, i.e. B, est étale sur A, (ou q = ANp). Alors B est étale
sur A.

Dailleurs, il n’est pas difficile de&duire ce dernieenon@ au cas 0 A est un anneau local
complet donc a1 B estfini sur A. Zariski [5] donne une @monstration simple de césultat,
valable dans le cas @3ales caraétistiques ; le casareral est d a Nagata [3], qui S’appuie sur
un résultat @licat de Chow ; ce dernier n&te \erifié par aucun des participants derinaire, et
devrait faire I'objet d'un expds ultérieur. Signalons seulement ici l&@monstration &s simple
dans le cas particulieiodim A = 2, qui est suffisant pour I'application la plus importante que
nous en ferons dans leggent nuraro. Comme?3 est normal, il est u-module de profondeur
(ancienne terminologie : codimension cohomologigue), donc c’est unA-module de profon-
deur (ancienne terminologie : codimension cohomologigue), et commeA est €gulier de
dimensior?, il en résulte queB est unmodule libresur A8. Il résulte alors de (SGA 1.4.10) que
'ensemble des idlaux premierg de A en lesqueld3 est ramifé surA est la partie d&pec(A)
définie par un i@al principal (engenérpar le discriminant d’'une base @esur A), donc est vide
si elle est contenue dans le point fé&heSpec(A), ce qui prouve 3.2 lorsquém A = 2.

Nous utiliserons surtout 3.1 sous la foreguivalente :

Corollaire 3.3 Soient X un préschéma localement noethérien, U une partie ouverte de X com-
plémentaire d’une partie fermée Z de X de codimension > 2. Alors le foncteur X' — X' xx U
de la catégorie des revétements étales de X dans la catégorie des revétements étales de U est une
équivalence de catégories ; en particulier, si a est un point géométrique de U, I’homomorphisme
canonique 71 (U, a) — 7 (X, a) est un isomorphisme.

La dernere assertion egvidemment corexjuence de la presrie, et pour celle-ci on peut
evidemment supposer queest connexe donc iductible. De la normaktdeX résulte @ja que
le foncteurX’ — X' x x U de la cakgorie des redtements localement libres (pacessairement
étales) deX’ dans la cagorie des redtements d€/ est pleinement fiele, car le foncteur
& — &|U de la cakgorie des Modules localement libres sardans la cagorie des Modules
localement libres sul/ I'est. Il reste don@ prouver que pour tout retementgtaleU’ de U, |l
existe un regtementetale X’ de X (nécessairement unique d'&grce qui pecede), tel qud/’
soitisomorph& X’ x y U. On peug&videmment supposélr’ connexe, donc igductible puisque

8Cf. EGA0;y 17.3.4
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X

(U etant normal)/’ est normal. Soif" le corps des fonctions rationnelles sty ou surU (c’est
pareil), K’ celui deU’; alorsU’ s’identifie au normalis deU dansK’ (SGA 1.10.3). SoitX’ le
normali€ deX dansK’ (EGA 11 6.3), alorsX’ = X xx U = U’, d’autre partX’ est normal,
integre, le morphisme structurit X’ — X estfini et dominant (caX est normal e’ / K est
une extension finieéparable). Il esttale dang/’ = f~1(U) = X’ = f~1(Z), et commeZ est
de codimension> 2 dansX, f~!(Z) est de codimensiol 2 dansX’. On conclut alors de 3.1
gue X’ estétale surX, ce qui ackve la @monstration.

Soit maintenantf: X — Y une application rationnelle d’'un @sclema localement
noetlerien et egulier X dans un pesctemayY’, et supposons qug soit cefini dans un ouvert
U compEmentaire d’'une partie fei@e de codimensior 2. Alors on ceduit de 3.3 un fonc-
teur, cfini a isomorphisme @, de la cdgorie des reédtementsetales d&” dans la catgorie
des reetements£tales deX, d’ou pour tout point gonetriquea de U, d’imageb dansY’, un
homomorphisme canonique

T (X, a) — m (Y, b)

(déduit de 'homomorphisme canonique(U, a) — m (Y, b) gracea I'ilsomorphisme
(U, a) = 7 (X, a).

Lorsque f est un morphisme dominank’ etY étant inegres de corp#’ et L, de sorte que
K est une extension dg, et queY est normal, ces correspondances igent en termes
d’extensions de corps en notant que pour toute extension finde L, non ramifee surY,
lalgebreK’ = L' ®; K sur K est non ramife surX.

En particulier, ceséflexions montrent que le groupe fondamental désgiemas locale-
ment noetBriens connexesguliers, ponctés par des pointsagnetriques localigs en codi-
mension< 1, est unfoncteurlorsque I'on prend comme morphismes dans cettegmate les
applications rationnelles dominantesfidies dans des comgghentaires de parties feems de
codimension> 2. Se rappelant par exemple qu’une application rationnelle d’uersamormal
sur un corpst dans un schma propre suk est cefinie dans le compgimentaire d’'un ensemble
de codimensior» 2, on trouve :

Corollaire 3.4 (Invariance birationnelle du groupe fondamental) Soient k un corps, X etY deux
schémas propres sur k et réguliers, f: X — Y une application birationnelle de X dans Y, )
une extension algébriquement close du corps des fonctions K de X, permettant de définir le
groupe fondamental de X et le groupe fondamental de Y. Ces derniers sont alors canoniquement
isomorphes.

Cela signifie aussi que pour une extension fiRiede K, si elle est non ramifie sur un
“modele” propre non singulieX de K, elle I'est sur tout autre made propre non singulier.

Remarque 3.5 Pour d’'autre applications duébreme de purét, voir les travaux de Abhyankar
expogs dans [4], inspés par les@sultats de Zariski [6 chap. VIII],&amontés par voie topo-

logique. Ces derniers sont loin d’avd@té assimiés par la gonetrie algebrique “abstraite” et

meéritent de nouveaux efforts.
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Nous aurons besoin de quelques fé&iksmentaires de la #orie de la ramification. Soient
V' un anneau de valuation diste de corps des fractiors, corps Esiduelk, L une extension
galoisienne dd< de groupe’, V' le normali€ deV dansL, qui est un module libre de rang
n = [L: K] surV, m’ un ideal maximal del’”’, G, le sous-groupe dé& formé desélements
laissantm’ invariant, de sorte qué&’; opéere dans I'extensiorésiduellet’ = V' /m’ dek, etG;
le sous-groupe deslements de~,; opérant trivialement (rappelons que; et G; sont appeis
respectivement sous-groupesdéEompositioret d'inertie de G). On dit queL estmocderément
ramifie surV sin; = [G;: €] est d’ordrep premiera la caradristique det (condition toujours
vérifiee sik est de caraéristique 0). Il est bien connu qu&; se plonge alors canoniquement
dans le groupé’”, donc est isomorphe au groupe des racinésmes de I'unié danst’”, ce qui
implique en particulier qué&;; est cycliquelLe cas type de cette situation est celuian pose
L = K|[t]/(t" — u), u étant une uniformisante dé etn un entier premieép : si K contient les
racinesn-iemes de 'uni¢, L est une extension galoisienne totalement ramitle/’, de groupe
de GaloisG = G; isomorpheaZ/nZ.

Lemme 3.6 (Lemme de Abhyankar). Soit V' un anneau de valuation discréte de corps des frac-
tions K, L et K' deux extensions galoisiennes de K moderement ramigessur V, n et m les
ordres des groupes d’inertie correspondants, I’ une extension composée de L et K' sur K. Si
m est un multiple de n, alors L' est non ramifiée sur les localisés de la cléture normale V' de V/
dans K.

Soient en effetV’ le normali€ deV’ dansL’, m’ un idéal maximal dé’/, n’ un idéal maximal
deV’ au-dessus de, n I'id @al maximal qu'il induit sur le normalesiV deV dansL, G, H, M
les groupes de Galois de K’, L' sur K, etG;, H;, L, les groupes d’inertie correspondant
aux ideaux maximaux choisis. Alord/ se plonge dans le produit x H et M; dans le produit
G; x H; , de sorte que les projectiond — G etM — H, M; — G,; et M; — H; soient
surjectives (sorite du corps inteediaire). Il en ésulte @&ja, puisques; et H; sont par hypotbse
cycliques d’ordresn etn premiersap, queM; est d’ordre premiea p, donc cyclique, et comme
m est multiple dex donc leslements dé&-; x H; sont de puissance-ieme nulle M; est d’ordre
divisantm, donc d’ordreegala m puisquelMl; — H; est surjectif. Ce dernier homomorphisme
est doncegalement injectif. Or son noyau est le groupe d’inertievdau-dessus dev’, ce qui
prouve quel’ est non ramif surK’ enn’. D’'ou le lemme.

Placons-nous maintenant sous les conditions de 2i4pro a un homomorphisme de
spécialisation o B
71 (X1, A1) — m1(Xo, @)

qui estsurjectif relativementa un morphisme propre eégarablef: X — Y. Nous voulons
préciser le noyau de cet homomorphisme. Bdant comme dans la&thonstration de 2.4, on
Voit que dans cette question, on peut toujours supposergest le spectre d’uanneau de
valuation discete V, complet eta corps €siduel algbriquement clogcar on peut toujours
trouver un tel anneau et un morphisme de son spéct@ansY dont I'image soit{yo, 1 }).
Alors on aX, = X, , k(yo) = k = corps ésiduel d&/, k(y;) = K = corps des fractions dg.
Soit K la cloture €parable dd¢, K sa cbture alg@brique, et pour tout sous-annedude K
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contenant’/, posonsXy, = X ®y W. En particulier on a

Xy =V, Xx=Xi, Xg=Xi

D'ailleurs le morphisme canoniqu&’, = X% — Xk, induit un isomorphisme sur les
groupes fondamentaux (SGA IX 4.11) de sorte que, compte tenu de lisomorphisme 2.1
m1(Xo) — m(X), on est rameda étudier 'homomorphisme surjectif

m(Xk,) — m(X)

assocd au morphisme canoniquéx, — X. La détermination du noyau de ce dernier reviant
la solution du prol#me suivanton a un re@étement principal connexgyx, de X , de groupes
(donc assoé&a un homomorphisme de (X, ) dansG), déterminer sous quelles conditions il
est isomorphéa 'image réciproque d’un regtement principall de X de groupeG.

Notons d’abord qués, est eunion filtrante croissante de ses sous-extensions de type fini
K' sur K, et que par suiteZx, est isomorphé I'image inverse d’'un reétement principakl k-
de Xk pour un K’ convenable (on fera attention cependant que goufixe, Zx. n'est pas
determire de facon unique). Dire quBy, est isomorphe I'image inverse d’'un redtement
principal Z de X signifie qu’il existe une sous-extension fini€” O K’ de K, telle que
Zn = L Qo K" estisomorph@ Z ®y, K. Désignons maintenant pour une sous-extension
finie K’ de K, , parV’ le normali€ deV dansK’, qui est un anneau de valuation dister, com-
plet, de corpsésiduelLk. Donc le morphisme canoniqu€,, — Xy induit un isomorphisme
pour les fibres au-dessus des points fesmeY = Spec(V) etY’ = Spec(V’) et il résulte
alors de 2.1 appliceia Xy et Xy que ’'homomorphisme induit pour les groupes fondamentaux
m(Xy) — m(Xy) est un isomorphisme, ou encore que touétement principal d&y, est
I'image inverse d’'un redtement principal d&;, détermire a isomorphisme @s. Cela implique
donc le

Lemme 3.7 Soit Z: un revétement principal connexe de Xg de groupe GG, Zx son image
inverse sur X g, . Pour que ce dernier soit isomorphe a I’'image inverse d un revétement principal
7 de X, il taut et il suffit qu’il existe une extension finie K" O K’ de K dans K, telle que le
revétement principal Z i de X i soit induit par un revétement principal de Xy .

Supposons en particulier que 1&5,» soient normaux (il suffit par exemple pour cela que
Xy soit normal, et a fortiori queX,, soit simple, cf. SGA 1.9.1). Comme ils sont connexes, ils
sont iréductibles. Soient, le corps des fonctions rationnelles pakiret X, , L' celui pour
Xy et Xy, L” celui pour Xy et X . Alors sous les conditions de 3.Zy définit une
extension finie @8parableR’ de L/, et Zx définit 'extensionR” = R' ®;, L”" = R' @k K".

La condition envisage dans 3.7 signifie donc aussi qu’il existe une extension faparablei”
de K’ telle queR” = R’ ®x K" soitnon ramiEeau-dessus du séma normalX» de corps
L" = L' K", et non seulement au-dessus de la partie ouvégtede Xy .

Nous supposons denavant que: X — Y est un morphismésse,donc les morphismes
Xy — Spec(V’) sont lisses, donc les seimasXy sontréguliers.Noter que la fibre du point
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X

fermé deSpec(V’) dansXy. est iréductible et de codimensian Soito’ son anneau local, qui
est donc un anneau de valuation déterde corpd.’ , de corps ésiduel isomorphe au corps des
fonctions rationnelles d&, , donc ayant rame caradristique quet. Définissons de @meo”
dansL” , qui estevidemment le normaksdeo’ dansL”. Il résulte alors du #oreme de purét
3.1 ou 3.3 que pour quR” soit non ramife surXy , il faut et il suffit queR” soit non ramife
suro”, normali€ deo’ dansL”.

Notons maintenant que &i est une uniformisante dé’, c’est aussi une uniformisante de
Si alorsn est un entier premiex la caradristiquep de k, et si on prendk” = K'[t]/(t" — u),
alors K" est une extension galoisienne finie/déet " est isomorphé L'[t]/(t" — u'), donc est
mocderement rami suro’ et de groupe d’inertie d’ordre. Supposons alor§ d’ordre premier
ap, ce qui implique que?’ est mo@rement ramif suro’, et prenons pout un multiple premier
ap de I'ordre du groupe d’inertie d&’ suro’ (par exemple: = [G': e]). Appliquant le lemme
de Abhyankar 3.6, on voit que la condition enviéaglans 3.7 esgvifiee.

Cela prouve le thoreme suivant :

Theoreme 3.8 Soient f: X — Y un morphisme propre et lisse, a fibres géométriquement
connexes, avec Y localement noethérien, 1, et y; deux points de Y tels que yo € Y1, Xo et
X, les fibres géométriques correspondantes ; considérons I’homomorphisme de spécialisation
2.4 7 (X1) — m(Xo). Cet homomorphisme est surjectif, et tout homomorphisme continu de
71(X 1) dans un groupe fini G d’ordre premier a la caractéristique p de k(y,) provient d’un ho-
momorphisme de 7, (X,) dans G.

En d’autres termes :

Corollaire 3.9 Sik(yo) est de caractéristique nulle, alors I’homomorphisme de spécialisation est
un isomorphisme. Si p > 0, alors le noyau de I’homomorphisme de spécialisation est contenu
dans I’intersection des noyaux des homomorphismes continus de 7, (X ) dans des groupes finis
d’ordre premier a p (ou encore, le sous-groupe invariant fermé engendré par un p-sous-groupe
de Sylow du groupe de type galoisien m1(X)) ; si donc (X)) désigne le groupe quotient de
71(X 1) par le sous-groupe fermé précédent, et si on définit de méme (X )®, alors I’homo-
morphisme de spécialisation induit un isomorphisme

71(71)(”) N 7T1(Xo)(p)

On notera que la@monstration de 3.8 est purementéidgque. Proedant comme dans 2.6,
on en conclupar voie transcendante :

Corollaire 3.10 Soit X, une courbe propre, lisse et connexe de genre g sur un corps algébri-
quement clos de caractéristique p. Avec la notation introduite dans 3.9, le groupe 71 (Xg)®
est isomorphe 4 P, ou I est le groupe de type galoisien engendré par des générateurs s;, t;
(1 <1 < g) liés par la relation

(sitisy'erh) ... (Sgtgsg;ltg_l) =1

206



part 57

284 Remarques 3.11Dans le cas 0k(y,) est de caraéristique nulle, le@sultat 3.9 est bien connu
par voie transcendante. On notera quedmdnstration de 3.10 fait appel a@teme de purét
dans le cas d’iagales caraétistiques, mais dans le cas d’anneaux de dimension 2 seulement, o
la démonstration dudit #oreme est facile et até rappete dans le texte.
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Expos Xl

Exemples et compéments

1 Espaces projectifs, varetes unirationnelles

Proposition 1.1 Soient k un corps algébriquement clos, X = P}, I’espace prectif de dimension
r sur k. Alors X est simplement connexé.e. (X ) = 0.

Pourr = 0, c’est trivial. Sir = 1, il faut montrer que sX’ est un regtemengtale connexe
non vide deX = P}, alorsX’ = X. La formule du genre nos donne ici,gsétg’ sont les genres
deX etX’:

]-_g/:d(]'_g)v

oud estle dege deX’ surX. Commeg = 0, on auradond — ¢ = d, ce qui exigel = 1 puisque

g = 0, ce qui prouveX’ = X. Lorsquef > 2, on pro@&de par &currence sur, en supposant
queP” est simplement connexe potlr< r. Appliquant cecia un hyperplan d&" et utilisant
(SGA X.2.10), il en esulte bien qu@®” est simplement connexe. Autrémonstration : on aura

T (Pt x - x P! = 7 (PY) x -+ x m;(P!) en vertu de (SGA X.1.7), don@')" est simplement
connexe puisquB! I'est, doncP” est simplement connexe en vertu de I'invariance birationnelle
du groupe fondamental (SGA X.3.4). Cettengonstration montre pluegéralement :

Corollaire 1.2 Soit X un schéma propre et normal sur un corps algébriquement clos k ; si X
est une variété rationnelle, i.e. intégre et son corps des fonctions est une extension transcendante
pure de k, alors X est simplement connexe.

Ce esultat s’appligue en particuler aux \&@s grassmanniennes et pliengralement aux
varietesGG/H, ou G est un groupe ligaire connexe suret H un sous-groupe adprique conte-
nant un sous-groupe de Borel de

Rappelons qu’on appelle vate unirationnelle surk un scléma propre et iggre surk dont
le corps des fonction&™ est contenu dans une extension transcendantefpule k, finie sur ik’
(i.e. ayant neme dege de transcendance sugueK), i.e. s'il existe une application rationnelle
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dominantef: P, — X, avecr = dim X. Si X est normale, on voit donc par legfiexions
preccdant (SGA X.3.4) que pour tout @emenétale connex&’ de X, de corps./ K, I'algébre
L ®x K'sur K’ est non ramige sur le moéleP", donc compdtement @compoge en vertu de
1.1 ce qui montre qué. est K-isomorphea une sous-extension d€’/K. Cela prouve donc,
compte tenu de (SGA V.8.2) :

Corollaire 1.3 Le group fondamental d’une variété unirationnelle normale sur un corps algébri-
quement clos, est fini.

(N.B. On notera que dans l&finition de “unirationnelle”, on n'avait pas besoin gié¢/ K
soit finie).

Remarques 1.4Bien entendu, lesésultats de ce nueno sont bien connus. D’autre part,
J.P. Serre a mor@{10] que lorsqueX est une vaéte projective unirationnelle lisse sur un corps
algébriguement clos dearacéristique nulle, X est simplement connexe. Sardonstration est
transcendante en ce qu’'elle utilise leetieme de syratrie de Hodge, et qu’on ignore si ce
résultat setenda la caradristiquep > 0. Il semble d’ailleurs gu’on ne connaisse pas d’exemple
de varete unirationnelle lisse sur qui ne soit &ja rationnelle.

2 Variétes aleliennes

Soientk un corps algbriguement closA une varéte alelienne surk, i.e. un sckma en
groupes suk, propre sulk, lisse surk, et connexe, enfiy un sclema en groupes commutatifs
de type fini suik. Désignons pakxt(A, G) le groupe des classes d’extensions commutatives de
A parG, parH!(A, G) le groupe des classes de #brprincipaux surl de groupes (comparer
N° 4 plus bas), et cons&lons ’lhomomorphisme canonique

Ext(4,G) — HY(A,G) .

287 Un raisonnement de Serre [5, chap. VII, th. 5] montre que c’est un homomorphisme injectif, qui
a pour image I'ensemble desléments primitifs” deH' (A, G), i.e. destlementst pour lesquels
ona:

T (&) = pri(§) + pry(8) ,

ou pr,; sont les deux projections dé x A sur A, etm: A x A — A la loi de composition
de A (N.B. Serre nénonce son #neme que pouts linéaire et connexe, et bien entendu lisse
sur k, mais en simplifiant la prerare partie de son raisonnement, on voit que ces restrictions
sont inutiles : il suffit de noter que tout morphisme dlelans un scema en groupeg’ de type

fini sur k, qui transforme uné en unié, est un homomorphisme de groupes, et d’apopliquer ceci
aux section au-dessus ded’'une extensiorty de A parG).

Nous allons appliquer cé&sultat au castoG est un groupe finie&parable suk, i.e. un groupe
fini ordinaire, suppas commutatif. Utilisant alors, (A x A) = m1(A) x m(A) (SGA X.1.7)
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etinterpétantt! (X, G) commeHom(m; (X ), G) pour tout sckma al@briqueX, en particulier
pourX = AouX = A x A, on voit que toute classe d& (A, G) est primitive, donc on a un
isomorphisme

Ext(A,G) = HY(A, Q) ,

en d’autres termetout re\etement principal del de groupe structural commutatif, poncte
au-dessus de l'origine dd, est muni de facon unique d’une structure de groupelaligue
admettant le point margucomme origine, et tel qu& — A soit un homomorphisme de groupes
algébriquesEn particulier, siA’ est connexe, c’egigalement une vaé atelienne, isognea A.

D’autre part, comme le fonctedf — (X ) des sckmas algbriques ponctes X dans les
groupes commute au produit (SGA 1X.1.7), il transforme un groupe dans lagneeoakgorie en
un groupe dans la aagorie des groupes, i.e. en un grogpenmutatif Doncsi A est une vagite

288 abélienne,r; (A) est un groupe commutat@onc pour conridre 7 (A), il suffit de connére le
foncteurG — H'(A, G) = Hom(m(A), G) pour G variant dans les groupes fimitsmmutatifs
Enfin, rappelons que pour tout entter- 0, ’homomorph lisme de multiplication pardansA :

AL A

est surjectif, don@& noyau fini, i.e. c’est une iségie, et qu'il en esulte que toute is@mie
A’ — A est quotient d’'une isdnie du type gdent. De ceci, et de raisonnements standards
part 58 (cf. par exemple [6]) on tire :

Théoreme 2.1 (Serre-Lang). Soit A une variété abélienne sur un corps algébriquement clos k,
et pour tout entier n. > 0 considérons le groupe fini ordinaire K, sous-jacent au noyau , A de la
multiplication par n dans A, enfins posons pour tout nombre premier { :

r

et
7(4) = [[7(4) = lim K,
Y4 n
(ot pour m multiple de n, m = ns, on envoie K,, dans K,, par la multiplication par s). Alors
le groupe m(A) est canoniquement isomorphe a T (A), donc pour tout nombre premier (, la
composante (-primaire de 71 (A) est canoniquement isomorphe a T;(A).

On notera que ces isomorphismes sont fonctoriels pbuariable. Le modulél,(A) est
appe€ le module/-adique de Tatale la varéte alkelienne A. C’est un foncteur additif em,
en particuier il donne lied une repesentation de I'anneadom(A, A) des endormorphismes
de A dansT,(A), appeéereprésentatior/-adique de Wejlet qui joue un dle important dans
la theorie des vaétes aleliennes (cf par exemple [4, chap VII]). Le&tveme 2.1 en donne une
interpétation en termes de la r&gsentation naturelle dansgeoupe d’homologié-adiquede A,

289 Hi(A,Zy) = m1(A),, ce qui esevidemment plus satisfaisant a priori, du point de vue notamment
de la formule de Lefschetz, [4, Chap V]. Rappelons ici Esuttats de Weil sur la structure de
Tg(A) .
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a) Sin est premiea car(k), alorsK,, est un module libre de rar&gala 2 dim A surZ/nZ,
donc si/ est un nombre premief car(k), T;(A) est un module libre de ranggala
2dim A sur 'annealZ, des entierg-adiques;

b) Sin est une puissance der(k) = p, alorsK,, est un module libre de rang < dim A
surZ/nZ, v indépendant de:, doncT,(A) est un module libre de rang < dim A sur
'anneauz, des entierg-adiques.

Cela montre que dans lag&brie du groupe fondamentadeelopee ici, le groupe fondamen-
tal d’une varété atelienne variable ne varie pas de facéguliere avec le paraetre, sa compo-
santep-primaire pouvant diminuer brusquement pour des valeurs du garatrcorrespondant
a une caraétristique esiduellep; le cas le mieux connu de ce @honene est celui des courbes
elliptiques. On notera cependant que, quel quersfpremier ou nora la caradristique) le vrai
noyau, A dansA pour la multiplication par. est un scema en groupe fini surde degén?9, ol
g = dim A, qui sera non&parable suk sin est un multiple de@ = car(k). D’allleurs, lorsqued
varie dans une famille de vétes aleliennes, i.e. si on a un seima aklien A sur un scema de
baseS, on montre plus greralement qugA est un scema en groupes fini et plat sty de dege
n? surS, c’esta-direa condition de tenir compte des parties infisimales des noyaux, ils
se comportent de facoBguliere quel que soit. Cela suggre que le “vrai” groupe fondamental
d’'une varéte atelienneA est le pro-groupe aébrique (limite projective formelle de groupes finis
surk) lim , A, ou par “vrai groupe fondamental” d’'un sema al@briqueX, il faut entendre : le

pro-groﬁpe qui classifie les retements principaux d€ de groupe structural un groupe fini quel-
conqueG surk (pas recessairemengparable suk). De cette fagon par exemple, oecugere
par les repesentations deom(A, A) dans la composangeprimaire du vrai groupe fondamen-
tal de A, le polyrbme caradristique de Weil dfini par ce derniea l'aide des/ # p, de fagon
plus naturelle que la construction de Serre [8].

3 Cones projetants, exemple de Zariski

Soit toujoursk un corps algbriquement clos pour simplifier, et séitun k-schema projectif
connexe, sous-séma ferng delP},, qu’on pourra si on veut supposer non singulier. Soiert C
le cdne projetant projectif d&’, y, son sommetX = Cy la fermeture projective habituelle du
fibré vectorielCy, = V(0 (1)) assoada 0y (1), enfin

f: X—=Y

le morphisme canonique, contractant la section nkijjele Cy, sur X en un point (EGA 11 8.6.4).
CommeX est un fibé localement trivial suv’, de fibresP! donc de fibres simplement connexes,
le morphismep: X — V induit en vertu de (X1 4.) un isomorphisme :

T (X) = m (V)

Commep induit un isomorphismeX, — V/, on en conclut quin re\etementtale deX est
compktement compos si et seulement si sa restricti@nX, I'est. Or pour tout reétement
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étaleY”’ deY, Iimage inverseX’ = X xy Y’ est un regetementétale deX compktement
décompoé sur la fibreX, donc trivial. Comme 'homomorphismg (X) — 7 (Y") est surjectif
(SGA 1, 1X 3.4), on en conclut que

m(Y) = (e)

en d’autres termetout dne projetant projectif est simplement conneg®¢.B. en caradris-
tique0, le méme Esultat sera valable en prenant pbule cone projetant affine).

Supposons maintenaft réguliere i.e. lisse suk ; alors X est eguliere, et pour une im-
mersion projective convenable d& on trouve alors un@ne projetant” normal Si V' n’est
pas simplement connexe, doAcnon simplement connexe, sadit un re\etemengtale connexe
non trivial de X. Comme les fibres d& en les pointg, € Y distincts dey, sont €duitesa
un point, on voit que la restriction d&’ a ses fibres (en particuliér la fibre grérique) est
triviale ; cependanfX ne provient pas par image inverse d'un@émmentétale deY’, puisque
Y est simplement connexe et gi& serait compttement @compoé. Cela montre que (X 1.3
et 1.4) deviennent faux si on remplace I'hypesle quef est €parable par celle plus faible que
ses fibres sont des smias algbriques 8parables (ou Bme lisses) sur lels(s). On notera de
méme que les groupes fondamentaux des fibeesrgtriquesX , desy # y, sontévidemment
réduitsa (e) puisque ces fibres soréduitesa un point, alors que;(X,) # e, donc le tieoeme
de semi-continué (X 2.4) esiegalement en&faut pourf.

Indiquons enfin 'exemple, sigrapar Zariski, mettant eréfaut ces rames teoemes, lors-
gu’'on y remplace I'hypotlse quef est £parable par celle qug est plate. Soitf: X — Y
un morphisme d’une surface non singué projective dans la droite rationnelle= P*, tel que
K = k(x) soit une entension &guliere” i.e. primaire et&parable dé( f), (i.e. lafibre @rérique
géonetrique est connexe eggarable), et telle que le diviseUf) = X, — X, soit un multiple
n.eme d’un diviseur (0 n est un entier premiex la caradristique). Il est possible de construire
de tels exemples en toute cakatstique. SoitX’ le normali€ deX dansk (f/"), o K = k(X)
est le corps des fonctions dé. Il résulte de I'hypothse sul f) que X’ estétale surX. SoitY”’
le normali® deY dansk(¢)(t*/™), il est ramifé surY” en les points = 0 ett = co exactement,
et la restrictionX’| f~!(U) est isomorpha@ I'image inverse d&”'|U. En particulier, la restriction
de X’ a la fibre gréeriqguegéongtriquede X surY se cecompose congiement. Cependant,’
n’est pas isomorpha I'image inverse d’'un re&@&tementtale deY’, car on voit tout de suite que
ce dernier seraitécessairement’, ce qui est absurde puisqé est ramife sury*.

Voici (d’apres Serre) une facon simple dmtiser les conditions de cet exemple, en s’inspirant
de [5, N’ 20] : on prend pourn un nombre premiep 5, distinct de la caraétistique, et on fait
opérerG = Z/nZ dansk* en multipliant les coordorées par quatre caraces distincts dé' (ce
qui est possible puisque > 5). Alors G opére sur I'espace projectif’, et les seuls points fixes
sousG sont les quatre points correspondants aux axes de coddsnma surfac&” d’équation
ot + gyt + 24 + t1 = 0 est lisse suk (critere jacobien), et ne contient aucun des points fixes,
doncG étant d’ordre premier, @gge surX “sans points fixes” i.eX est un regtement principal

10n peut remarquer, du point de vue de la “topoldgie” (SGA 4 VII), que dans cet exem@eé (fs; ). (Z/nZ)
est “non €pak” surS.
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de X = X'/G de groupe’s. Soitg = z/y dansk(X’) = K’, c’est un @rérateur kumrérien
de K’ sur K = k(X) si les caradres choisi®taienty’, i = 0,1,2,3, avecy un caragkre
primitif, soit f sa puissance.eme, qui est uglement de. On voit tout de suite qu&™ est une
extension eguliere dek(g), ce qui ésulte du fait que la courbe planeéduation homogne en
UT,Z:T"+ Z"+ (1 + g™)U™ = 0 est lisse suk(g) (critere jacobien), et qu’on sait que toute
courbe plane est connexe. D’autre part oh(#) = K N k(g), puisque le deueme membre
est une extension dg f) contenue dans I'extensidtig) de degé premier, et distincts de(g)
(puisqueg ¢ K). Cela implique quek est une extensioreguliere dek(f). Enfin le diviseur
de f sur X est un multiplen.eme d’un diviseur, car son image inverse silfrest le diviseur
de g™, donc un multiplen.eme, et on peut redescendre parce Juestétale surX. On aurait
fini si 'application rationnellef : X — P! était un morphisme, c’est-dire si les diviseurs des
zéros et des@es def ne se rencontraient point. En fait, o@rifie aiment (en regardant encore
sur X’) que les deux diviseurs en question sont les produits: i deux courbes lisses stir
se coupant transversalement en un pairRemplacant maintenat¥ par le sceéma obtenu en
faisantéclatera, les conditions @rcadentesdiv( f) divisible parn, etk(X;) = k(X) extension
réguliere dek (X)) restent erifiees, mais de plug est unmorphismeX; — P!, donc on est sous
les conditions voulues.

4 La suite exacte de cohomologie

Soit S un pescleéma, de sorte que la éaforieSch 4 des pésctemas surX est cetermiree,
donc aussi la notion de groupe dans icelle, qu’on appellera ptssilema en groupes Suf,
ou simplementS-groupe Pour simplifier 'exposition et fixer les &ks, nous nous bornerons le
plus souvent par la suit& des groupes qui soaffineset plats sur 52, ce qui suffira pour les
applications que nous avons en vue. (Bien entendu, on rencontre de nombrewncBsre ni
l'autre hypotlese n’est @rifiée). Soitz un tel S-groupe, et soif’ un presclema surS sur lequel
G operea droite, ce qui implique en particulier un morphisme

m:PxgG— P

dans la cdtgorieSch g, satisfaisant les axiomes bien connus. On dit guestformellement
principal homogne sous- si le morphisme

PXSG—>P><SP

de composantegr; et = est un isomorphisme; il revient auéme de dire que pour tout ob-
jet S’ de Sch,s, P(S’) = Homg(S', P) consiceré comme ensembla groupes d’oprateurs
G(S") = Homg(S’, G), est vide ou principal homame (i.e. vide ou isomorpleeG(S’) sur le-
quel le groupe=(S’) opere par translations droite). On dit queP esttrivial si P est isomorphe
a G, sur lequelG opere par translationa droite, ou ce qui revient auame, si chacun des en-
semblesa operateursP(S’) sousG/(S’) est trivial. On \erifie, par exemple par le prede breveg

2En fait, pour ce qui va suivre, 'hypolise quasi-affine au lieu d’affine suffirait, cf. note de bas de page 5.
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de passage au cas ensembliste, Buest trivial si et seulement si il est formellement principal
homogme, et admet une section stir(ce dernier fait £nongant en termes égoriques en
disant queP’ a une section sur l'objet final = S de Sch/g, i.e. qu'il existe un morphisme de
e dansP). Pour cfinir la notion de fibe principal homogne P sousG, plus forte que celle
de fibe formellement principal homame, il faut péciser d’abord danSch,s un ensemble de
morphismes qui seront utiks pour la “descente”, et joueront e de “morphismes de locali-
sation” pour “trivialiser” des fibes. Le choix le plus ahuat varie suivant le contexte, aucun ne
contenant tous les autfesci, il sera commode d’adopter l&finition suivante :

Définition 4.1 Soit G un S-groupe. On appelle fibré principal homogne(a droite) sous G, un
S-préschéma P a S-groupe a droite G, tel qu’il existe un recouvrement de S par des ouverts U,
et pour tout i un morphisme de changement de base S, — U, fideélement plat et quasi-compact,
tel que P! = P x g S! soit un préschéma a opérateurs trivial sous G' = G xg 5'.

294 (On notera que le foncteur changement de base> X' = X x4 S’ étant exach gauche,
transforme groupes en groupes, obgetgroupe d’oprateurs en obje®s groupes d’oprateurs).
Notons que 4.1 esttable par changement de badétons aussi :

Proposition 4.2 Soient G un S-groupe, plat et quasi-compact sur S, P un S-préschéma ou G
opere a droite. Conditions équivalentes :

(i) P est un fibré principal homogéne sous G.

(ii) P est formellement principal homogéne sous GG, et le morphisme structural P — S est
fidelement plat et quasi-compact.

Si P est principal homogne sous>, alors avec les notations de 4F1 est ficklement plat
et quasi-compact sus’ (puisqueG’ I'est, et P’ lui est S’-isomorphe), dond® a les némes
proprietes au-dessus d& (pour “surjectif” et “quasi-compact”, cf. VIII 3.1, pour “plat” c’est un
oubli dans les sorites de I'expp¥IIl). Inversement, si (ii) estérifie, prenons le changement de
baseS’ = P, qui est bien fidlement plat et quasi-compact stir alors P’ sera formellement
principal homogne surS’ puisqueP I'est surS et que le foncteur changement de base est exact
a gauche, d’autre paft’ a une section su$’, savoir la section diagonale, donc c’est unéibr
principal trivial, ce qui achve la &monstration.

Corollaire 4.3 Si G est affine et plat sur S, tout fibré principal homogéne P sous G est affine et
plat sur S.

En effet, il le devient par extension &&ment plate et quasi-compacte de la base, et on
applique (VI 5.6).

L'utilit & de la @finition 4.1 pour des$-groupeplatsetaffinessur S tienta (VIII 2.1), i.e. au
fait que les morphismeS’ — S envisa@s dans 4.1 sont des morphismes de descente effective
pour la cakgorie des msclemas affines sur d’autres. &ea ce fait, la erification des faits

3\oir & ce sujet SGA 3 IV, notammefitd.
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esquisés ci-dessous se fait de facon essentiellemengfoaique*. Soit £ un S-préscieéma sur
lequel le S-groupeG operea gauche, et soiP un fibré principal homogne @ droite) sous~,
nous voulons éfinir un fibe asso@ £, “localement” isomorpha E. Pour ceci, faisons @ver
a droiteG dansP x 5 E suivant la loi(x, y) — (xg, g"'y), qui decrit de telles oprations dans le
contexte ensembliste, eteténd aux ca@gories par le prae breveé. On posera, sougserve
d’existence :

EY) = (P x4 E)/G

moyennant quoi on constate giex s £ sera un pesclema au-dessus de= E"), a groupes
d’opérateursa droiteGr = G x5 T'; pourétrea I'aise, on aimerait que de plu3 x g E soit un

fibré principal homogne surl’ de groupeG. Pour \erifier I'existence deiZ”) et la propréte
précedente, reprenons I¢ de la cefinition 4.1 et regardons la situation image inverse Sur

de la situation initiale. Du fait qué” est trivial i.e. isomorph& G’;, on voit tout de suite que
E''P) existe, etala propeie voulue d’exactitude. En faify’ x ¢« P’ estG’-isomorphe au produit

E' xg G, doncE'") est isomorph& E’. De plus, la formation du “fil asso@” dans le cas
d’'un espace ogerateurs trivial commuta toute extension de la base, et prenant en occurrence
les diverses extensions de labase—= 5 5”7 —= 5’, ou S” et.S”” sont les produits fil&s

double et triple d&’ sur.S, on constate quE’(P') est muni d’'une dorée de descente relative-
ment au morphism&’ — S, et queE(") existe avec les propies requises si et seulement si
cette donie de descente est effectiven entendu(”) n’est autre alors que I'objet descendu.
(Utiliser le fait queS’ — S est un morphisme de descente dans lagatie desS-présctemas,
cf. VIII 5.2). 1l s’ensuit quele fibré asso@ existe s est affine suts. Nous appliquerons cette
construction au castoon a un homomorphisme dégroupes — H, et qu’'on prend pou¥

le S-présclemaH muni des oprations de’z sur H a gauche &sultant du morphisme do@én
commeH operea droite sur lui-néme de faco@ commuter aux ggrations de~ sur H, et que
(sous eserve d’existence au-dessusjda formation du fibe asso@ commutex I'extension de
la base, on constate @iment que va operera droite surP), qui est @s lors un fibé princi-
pal homog@ne soud? au sens de 4.1, et de facorépise est trivialige par le Bme morphisme
S’ — S que P. En particulier,a tout fibe principal homogne P sousG et tout homomor-
phisme deS-groupesG — H, avecH affine surS, est asso@& un fibé principal homogne
de groupeH, de facon fonctorielle efG — H), et compatible avec les changements de base
guelconqued” — S.

Définition 4.4 Soit G un S-préschéma. On note H°(S, G) I’ensemble des sections de G sur S,
qu’on considérera comme un groupe lorsque G est un S-groupe. Dans ce cas, on note H! (S, G)
I’ensemble des classes, a isomorphisme pres, de fibrés principaux homogenes sur S de groupe S,

en considérant H' (S, G) comme muni du “point marqué” qui correspondant aux fibrés triviaux®.

4Cf. loc. cit. dans note de bas de page 3

SCette notation n’est cdirente visa vis des notations cohomologiquesngrales (SGA 4 V) que lorsqu’on
dispose de critres d’effectivie de descente, qui ne sontge assuas que sz est affine (ou seulement quasi-affine,
cf. (VII1 7.9).
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Ainsi, H°(S, G) est un foncteur en I€-présclemad, a valeurs dans la dagorie des en-
sembles. Ce foncteur est exacyauche, a fortiori commute aux produits finis, ce qui implique
en effet qu’il transforme groupes en groupes, groupes commutatifs en groupes commutatifs. De
facon analogudj! (S, G) est un foncteur en I§-groupeaffineG, a valeurs dans la dagorie des
ensembles gicea la formation des filés assoéis ; on constate facilement que ce foncteur com-
mute aux produits finis. En particulier il transforme les groupes danségaa¢ desS-groupes
affines, i.e. lesS-groupesaffines commutatifeen des groupes de la seconde, &me en des
groupes commutatifs (puisque les groupes de la prentakgorie sont commutatifs). Ainssj
G est unS-groupe affine commutatifi* (.S, G) est un groupe commutatét un homomorphisme
G — H de S-groupes affines commutatifs donne naissamegm homomorphisme de groupes
HY(S,G) — H'(S, H).

Pour simplifier, nous nous bornons pour la sdita consiération deS-groupesaffines et
commutatifsSoit

0 G ——G—=G" 0
une suite de morphismes de tels groupesys dirons que cette suite est exactewsi= 0, (ce
qui permet de conseterG comme un pgsctema suiG”, a groupes d’oprateursa droiteGG.,),
et siG est un fibé principal homogne surG” de groupeGy,, = G’ xg G". Cela implique en
particulier queu: G’ — G est un noyau de, et a fortiori cela implique I'exactitude de la suite
0 — H(X,G") — H°(X,G) — H°(X,G"). Cela implique de plus la possibéitde é&finir une
application

0: H°(X,G") — HY(X,G")

en associara toute section d&” sur.S, i.e.a toutS-morphismef: S — G”, le fibré principal
homogne P; de groupe’ ~ f*(Gy,,) surS, image inverse du filér principal homogneG

surG”. Du point de vueS-présclemas, ce n’est donc autre que I'image inversepar — G”

du sous-pesctema image de& par 'immersionf, et les orations de&&’ sur Py sont induites
par les ogrationsa droite deiZ’ sur ). Nous laissonggalement au lecteur la&xification de la
proposition suivante, qui ne @sente pas de diffic@s autres que dédaction :

Proposition 4.5 L’application 0: H*(X,G") — HY(X, G’) est un homomorphisme de groupes.
La suite d’homomorphismes suivante est exacte :

0 n 40 170 W0 110 n 9 111 m ol vl e 1"
0—-H'(X,¢)—-H(X,G)—H(X,G)—H(X,G)—H(X,G) - H(X,G")
(ot les homomorphismes autres que O proviennent de la loi fonctorielle de HY resp H').

Remarques 4.6Le point de vue expdasici pour I'étude des filirs principaux homaenes est
visiblement inspieé de Serre [7], que le lecteur aura tou€idt a consutlter. Lorsqu’on veut un
formalisme qui s’appliquégalemené desS-groupes structuraux qui sont quasi-projectifsSur
(de fagora englober les s@mas abliens projectifs en particulier), on a@éta modifier4.1 eny
demandant qué’ soit somme de @sclemass,; qui sont finis et localement libres sur des ouverts
S; de S recouvrantS. Les developpements prédents sont alors valables, y inclus notamment
4.5, en remplacant partout I'hypatbe affine par 'hypotise quasi-projective, et en integpant
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de facon correspondante l&fahition donrée plus faut d’'une suite exacte 8egroupes. Il suffit
298 en effet de remplacer I&ferencex (VIII 2.1) par (VIII 7.7) : les morphisme utilssS” — S sont

des morphismes de descente effective pour lagmate fibee des grsclemas quasi-projectifs

sur d’autres. On fera attention cependant que cette dmexnotion de fil# principal homogne

est plus restrictive que la preéeme 4.1.
part 60

4.7  On obtient une notion encore plus restrictive deéiprincipal homogne en demandant
ques soit recouvert par des ouverfstels que pour tout, P|S; soit un fibé & ogerateurs trivial
sousz|S; : on dira alors qué” est un fibé principal homogmelocalement trivial Les classes de
ces fibés, poulG donrg, forment une partie dé' (X, G), qui est en correspondance biunivoque
avecH! (X, Ox(@)), ou Ox (G) estle faisceau (au sens ordinaire) des sectionssle S, cf. [2].

Pour que ce$l! donnent encore liea une suite exacte de cohomologie 4.5, il fautdemment
supposer que la suite— ' — G — G” — 0 soit exacte au sens raisonnable pour ce nouveau
contexte, i.e. qué& soit fibré localement trivial su6:”, de groupe’y,, ; cela signifie aussi que

u: G' — G estunnoyau de: G — G”, et queG admet localement une section skif.

4.8 Il est évidemment s cesirable de continuer la suite exacte 4.5 en introduisant les
groupes de cohomologie seneursH!(X, G). Cela est possible en se plagant dans le cadre
de la “Cohomologie de Weil” : on consde la caégorie # des pesclemas quasi-compacts
sur.S, muni de 'ensemble# des morphismes fedlement plats et quasi-compacts, qu’'on ap-
pellera morphismes localisants. Un “faisceau de WeiBlem surS (ou mieux, sur %, .#))

est alors un foncteur contravaria#t de % dans la catgorie des groupes aliens, transformant

. . pri,pr2 .
sommes en produits, et une suit® = 7" x T’:;T’L>T, avecf € ., en un dia-

grammeexactd’ensembles.# (T') —— % (T") —= .% (T") . Les faisceaux de Weil forment
une cakégorie akliennea limites inductives exactes admettant wemgyateur, donc admettant
suffisamment d’objets injectifs [1]. Les foncteusrivés droits du foncteur(.%#) = % (.S) sont
alors noésH'(S,.7). D’'autre part, toutS-groupe commutatif efinit évidemment un faisceau
de Weil (VI 5.2), dont leH® et H! ne sont autres qud®(S, G) etH'(S, G), ce qui permet de

299 définir les autred’(S, G) de fagon raisonnable. On montre d’ailleurs qu’'une suite exactée de
groupes éfinit une suite exacte de faisceaux de Weil, ce qui permet de retrouver et de prolonger
la suite exacte 4%

4.9 |l serait indiqe de @velopper les variantes non commutatives de 4.5 comme dans [2].
Pour un @veloppement sysimatique, dans le cadre qui convient, des diverses notions coho-
mologiques esquiges dans le @sent nuraro, nous renvoyond un travail en gEparation de

J. GIRAUD'.

5Pour unectude sysimatique de ce point de vue, cf. SGA & IX.
Cf. J. GIRAUD, Algebre homologique non &lienne a paraitre dans Springer-Verlag 1971.
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5 Cas particuliers de fibrés principaux

Supposons maintenant que soit connexe, et muni d'un pointégnetrique a, d'ou un
groupe fondamentat; (S, a) permettant de classifier les BEtement<tales deS : la caégorie
des reetementsétales deS est équivalentea la caégorie des ensembles finisl a; opere
contimiment. Il s’ensuit qu'un s@ma en groupes fini étaleG sur S est cetermireé essen-
tiellement par un groupe fini ordinaifé, sur lequelr; opere contiiment par automorphismes
de groupe. Un reédtementgtaleP de S ou GG operea droite est dtermire essentiellement par un
ensemble finiZ ou m; opére contiiment & gauche), et sur lequél operea droite de fagon
compatible avec les @pations der; :

s(p.g) = (sp).(sg) poursem ,pe X, ge9.

On \érifie que P est un fibé principal homogne au sens de 4.1 si et seulemen¥siest un
ensemble principal homege souss (utiliser par exemple le cére 4.2). En d’autres termes,
la categorie des fibgs principaux homagnes suiS de grouped estéquivalentea la cagégorie
des fibes principaux homagnes de groupé&’ dans la caggorie des ensembles finig ®; opere
contimiment.On en aduit en particulier une bijection canonique, fonctorielle&n

(*) Hl(Sv G) = Hl (71'17{4) )

300 ou le deuxeme membre &signe I'ensemble des classassomorphisme @s, des fikgs prin-
cipaux homognes sou¥ dans la cagorie des ensembles finis @; opere (inutile d'ailleurs
de pEciser : contiiment), ensemble qui s’explicite de facon bien connue comme ensemble
quotient de I'ensembleZ!(r;,G) des1-cocyclesy : m — ¢ (satisfaisantp(l) = 1,
w(st) = p(s)(s.p(t))) par le groupes qui y opere de fagon naturelle).

Un cas important est celutiar; opere trivialement dan¥, i.e. lorsque’ est un regétement
compktement @compogé deS, isomorphea la somme d&/ exemplaires de'; on écrit alors
aussiH' (S, %) au lieu deH' (S, ), et cet ensemble est en correspondance biunivoque (*) avec
H'(7,%4) = Hom(m,¥)/automorphismes idtieurs de/. On notera d'ailleurs que dans ce
cas, un fibe principal homogne suiS de groupd= n’est autre chose qu’wevétement principal
de .S de groupe? (V 2.7), et la correspondance biunivoquégadente est celle qui s&duit de
la correspondance entre egements principaux d€ de groupe?, ponctlesau-dessus de, et
les homomorphismes continus @S, a) dans¥ (V fin du N° 5).

L'intérét de relier la teorie des restementgtales avec celle des fés principaux (éja im-
plicite dans A. Weil, @reralisation des Fonctions &bennes, et explioite par S. Lang dans sa
théorie geonetrique du corps de classes, cf. Serre [5]), vient du fait queStagrbupe qui est fini
et étale surS peut se plonger dans uftgroupeH, affine et lisse suf, a fibres connexes, com-
mutatif lorsqueG I'est de sorte que par la suite exacte 4.5&@tntuellement ses variantes non
commutatives), la classification “digte” des re&tements principaux de groupgpeut setudier
a l'aide de la classification “continue” des fés principaux de group#, et reciproquement
d’ailleurs. Pour l'ice de la constructionégérale de I'immersion dé& dansH (assez peu uti-
lisee en pratique semble-t-il), se reporéef5, VI 2.8]. Nous nous contentons déwetlopper
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au N’ suivant deux cas particuliers importants, d’ailleurs classiques. Nous y aurons besoin d’'un
résultat auxiliaire :

Proposition 5.1 Soit S un préschéma, G un S-groupe isomorphe a Gl(n)s (par exemple G, s)
ou G, g, alors tout fibré principal homogene sous GG est localement trivial.

Précisons quésl(n)s (n entier> 0) désigne leS-groupe qui repesente le foncteur contra-
variantT — Gl(n,I'(T, 07)) en le S-présclemaT’, en particulierG,, s (“groupe multiplicatif
sur.S”) représente le foncteur contravaridht— I'(T, 07.), donc comme @schema surS est
isomorphea Spec Ost,t!], ol t est une indtermiree. De néemeG, 5 repesente le foncteur
contravariantl’ — I'(T', Or), il est donc isomorphe comme-présctemaa Spec(0slt]), ou ¢
est une indtermirée. Notons que parédissage, 5.1 redonne lésultat de locale trivial de
Rosenlicht, relatif au castioG admet une “suite de composition” dont les facteurs éontfs
sont des groupes du type envigagi. (Pour uneetude plus fine des questions de locale trivéalit
des fibes principaux homagnes, cf. [7] et [3]).

La premere assertion seéthontre en remarquant qu&7") = Aut(07%), et que les mor-
phismesS’” — S intervenant dans 4.1 (i.e. qui sontdldment plats et quasi-compacts) sont des
morphismes de descente effective pour l&gatie fibee des Modules localement isomorphes
a0y, i.e. localement libres de rang(VIIl 1.12). La deuxeme se @montre de facon analogue,
en notant que dans ce cas oél") = Aut(&r), ou & est 'extensiortriviale de &y par O
(et ai les automorphismes bien entendu doivent respecter la structure d’extension), et que les
morphismesS’ — S intervenant dans 4.1 sont des morphismes de descente effective pour la
cagégorie fibee des extensions d&, par & (comme il Esulte facilement de VIII 1.1), et que
de telles extensions sont automatiquement localement triviales.

Remarque 5.2 On notera que le Bme type de @monstration s’applique au groupe symplec-
tique Sp(2n)s, compte tenu qu’une forme alté&e sur un module localement isomorghé?”,

qui est “non @gereréee” i.e. ckfinit un isomorphisme de ce Module sur son dual, est localement
isomorphea la forme standard. Leesultat pour le groupe orthogonal est par contre faéja d

si S est le spectre d’'un corps, car il peut y avoir des formes quadratiques sur un corps qui ne
sont pas isomorphesla forme standard. D’ailleurs on montre essentiellement dans [3] que les
groupesGl, Sp, G, et ceux qui se @vissent en tels groupes, s@npeu de choses s les seuls

pour lesquels on ait urésultat de trivialié locale du type consgé ici.

Corollaire 5.3 On a des bijections canoniques
H'(S,Gl(n)s) < H'Y(S,Gl(n, Os))

en particulier

H'Y(S,G,,s) < H'(S,0%)
et

H'(S,G,5) < H'(S, O5)

ot les deuxiemes membres désignent des cohomologies de I’espace topologique S a coefficients
dans des faisceaux ordinaires.
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En particulier,H*(S, Gl(n)s) s'identifie a 'ensemble des classasjsomorphisme s, de
Modules localement libres de ramgsur S, etH'(S, G, s) s'identifie a 'ensemble des classes
d’extensions du Modul@'’s par lui-meme.

6 Application aux revetements principaux : theories de Kum-
mer et d’Artin—Schreier

Proposition 6.1 Soient S un préschéma, n un entier > 0, soit u,: G,,s — G,,s I’homomor-
phisme de puissance n.eme, et ji,, s son noyau. Alors i, s est fini et localement libre de rang n
sur S, et il est étale sur S si et seulement si pour tout s € S, la caractéristique de s est premicre
an. La suite d’homomorphismes

OHMnS_)GmSu_n)GmS%O

est exacte au sens du N° 4. (On I’appellera la suite exacte de Kummeur S, relativement a
I’entier n).

Ona
G,, = Spec ﬁs[t,t’l],

etu,, correspond I’homomorphisme,, sur lesd’s-algebres affines, do@npar
un(t) =t",

d’autre part la section urdtdeG,, s corresponca I’homomorphisme d’augmentation de;-
algebres, dona par
e(t) =1,

dont le noyau est donc I'Ehl principal(t — 1). L'image de ce dernier par, est donc I'lceal
principal (1 — ¢"), et on trouve :

tns = Spec Os[t] /(1 —t"),

ce qui montre en particulier qug, s est fini surS, et cefini par une Al@bre suiS qui est libre de
rangn, ayant la base forére deg’ (0 < i < n—1). Pour qu'il soitetale ers € S, il faut et il suffit
que I'Algebre eduitek[t]/(1 — t™), ou k = k(s), obtenue par adjonction formelle des racines
n.emes de l'unié¢ a k, soit £parable suk, i.e. les racines de—¢" dans une dture algbrique de
k sont toutes distinctes, ce gehuivaut au fait que soit premiera la caradristique. Enfin, pour
montrer que la suite d’homomorphismes dans 6.1 est exacte, on estrameertu du crére
4.2a prouver que est filklement plat. On pe@videmment supposéraffine d’anneaw, donc
G s affine d'anneawB = A[t,t!], et il suffit de \erifier queu,, fait de B un module libre de
rangn sur B, ou ce qui revient au Bme, que, est injectif, et qued[t, ¢t~!] est un module libre
de rangn sur A[t", t~"]. En effet, on rifie facilement que leg (0 < i < n — 1) forment une
base de I'un sur l'autre, ce qui aae la &monstration.
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Définition 6.2 On appelle 1., s le groupe de Kummer de rangsur S, et on appelle revétement
principal Kumnerien de rang: S tout fibré principal homogéne sur S de groupe le groupe de
Kummer de rang n.

L'ensemble de ces rétements est un groupe, 8&t* (.5, 1, 5) ou simplementi! (S, y,,). On
notera que la formation du groupe de Kummer de rarsgir S est compatible avec I'extension
de la base, donc que, s provient par extension de la basegloupe de Kummer absojuy, sur

Spec(Z).

Désignons paftZ/nZ)s le S-groupe @fini par le groupe fini ordinair&/nZ. Si G est un
S-groupe quelconque, les homomorphismesegoupes: de (Z/nZ)s dansG correspondent
biunivoquement, et de facon compatible avec le changement de base, aux sectibearde
dont la puissance.eme est la section ugit en faisant correspondeeu I'image paru de la
section dgZ/nZ)s sur.S défini par le grérateurl mod nZ deZ/nZ. Ceci pog :

Corollaire 6.3 Si y,, 5 est étale sur S, on obtient ainsi une correspondance biunivoque entre
les isomorphismes de S-groupes (Z/nZ)s — jin s, €t les sections de Os qui sont d’ordre n
exactement sur chaque composante connexe de S (une telle section s’appellera “racine primitive
n.eéme de I’unité sur S”). Donc pour que [, s Soit isomorphe en tant que S-groupe a (Z/nZ)s, il
faut et il suffit qu’il soit étale sur S i.e. que les caractéristiques résiduelles de S soient premiéres
an, et qu’il éxiste une racine primitive n.eme de I’unité sur S.

Cela explique le @le jowe dans la thorie kumné&rienne classique par I'hypatke que le
corps de base (jouant léle deS) soit de caradristique prenmérean et contienne les racines
n.emes de I'unig, et par le choix d’une racine primitiveeme de I'unié. Une fois qu’on dispose
du langage des sémas, il n'y a plus lieu de s’embarraser de ces hygsdh, et il convient de
raisonner directement spy, au lieu deZ/nZ. Ainsi, la conjonction de 6.1, 4.5 et 5.3 nous donne
la relation grérale suivante entre la&brie des redtements principaux kumeniens et celle des
groupes de Picard :
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Proposition 6.4 Soient S un préschéma, on a une suite exacte canonique
0 — H(S, 1) — HO(S, 62) — H(S, 05) — H'(S, ) — H'(S, 05) — H'(S, 65),

d’ou, en posant H' (S, Og) = Pic(S), et en désignant pour tout groupe dbelien A, par , A et A,
les noyau et conoyau de la multiplication par n dans A, la suite exacte :

0 — HY(S, O5): — H'(S, ptn) — ,»Pic(S) — 0.

Nous allons expliciter deux cas importants, laun ou l'autre terme exéme de cette suite
exacte sont nuls :

221



306

Xl

Corollaire 6.5 Supposons ,,Pic(S) = 0, (par example que S soit le spectre d’un anneau local,
ou d’un anneau factoriel), et soit A I'anneau H°(S, Os). Alors on a un isomorphisme canonique

HY(S, 1) = A*JA™.

C’est essentiellementdhon@ classique de la &orie de Kummer, lorsqué est le spectre
d’un corps.

Corollaire 6.6 Supposons que tout élément de HY(S, Os) soit une puissance n.éme, par exemple
que H(S, Os) soit un composé de corps algébriquement clos ou que S soit réduit et propre sur
un corps algébriquement clos k. Alors on a un isomorphisme canonique

H'(S, p1n) = ,Pic(S).

En particulier, lorsqués' est propre et connexe sur un corpsadigquement clog, cela met
en relation le groupe fondamental 8eavec les points d’ordre fini du sema de Picard de S
surk ; ainsi on aura un isomorphisme

Hom(my(S),Z/nZ) ~ ,,P(k)

pour n premiera la caradristique, qui est souvent utiésen gonetrie algbrigue. Comme
application, lorsque la composante connéXede P est un scema en groupes complet, de di-
mensiong, on voit en utilisant lesé&sultats rappék dans le R2, et la finitude du groupe de
torsion de Neron-%Veri, que pour tout nombre premiémpremiera la caradristique, la com-
posante/.primaire du groupe fondamenta{(.S) rendu aklien est un module de type fini et de
rang2g sur 'anneal?, des entierg-adiques (et d’ailleurs libre sauf pour un nombre fini au plus
de valeurs de). Comme I'a remarq@ Serre, cela permet de prouver sous certaines conditions
que lorsqueX est un schma plat et projectif suf connexe, alors les semas de Picard des
fibres deX ont toutes la rame dimension, en appliquant le&etheme de semicontin@t(SGA

X 2.3); 'argument de Serre s’appliqu&sique le sddma de Picard d& sur S existe, et que
les Picards connexes des fibresXlesur .S sont des sadmas en groupes propres, par exemple
lorsque les fibres@pnetriques deX surS sont normalesX étant toujours plat et projectif sur
S), en particulier siX est lisse et projectif sus.

Soit maintenantp un nombre premier, et supposons gtiesoit un pesclema de ca-
raceéristiquep, i.e. tel quep - &5 = 0. Alors 'homomorphisme de puissanpe&me dans’s
est additif, et le morphisme correspondant, obtenu en rempl&gaaut un7 variable sursS :

F: GaSHGaS

est donc un homomorphisme degroupes, qu’on appelleHomomorphisme de Frobeni(¥.B.

Un tel morphisme estéfini pour toutS-présclemaG qui provient par extension de la base d'un
présclemad, sur le corps premieZ/pZ, et ce morphisme est un homomorphisme de groupes
si Gy est un pesclema en groupes). Nous poserons :

p=1id—F: G,5 — G,5.
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Consicerons d’autre part l&-groupe(Z/pZ)s défini par le groupe fini ordinairé /pZ, nous
avons dit que pour tous-groupe, les homomorphismes de-groupe de(Z/pZ)s dansG
correspondent biunivoguement aux sections-deur .S dont la puissancg.eme est la section
unité. Lorsque= = G, g, elles correspondent donc aux sections quelconquéssiesS. Prenant
en particulier la section d&,, s sur.S correspondard la section uné du faisceau d’anneauXs,
on trouve un homomorphisme degroupes

i: (Z)pZ) — Ggs
Proposition 6.7 La suite d’homomorphismes de S-groupes
0— (Z/pZ)s — Goas — Gas — 0

est exacte (au sens du N° 4). (On I’appelle la suite exacte d’Artin-Schreiersur S).

Il suffit de le prouver sur le corps premiker= Z/pZ. Il suffit de remarquer que 'homomor-
phismep*: k[t] — k[t] défini parp*(t) = t — t? fait de k[t] un module libre de rang surk[t],
de facon pecise quék:|t] est un module libre suk[s], ou s = t — 7, ayant la base forée des
tO0<i<p-—1).

On en conclut, utilisant 4.5 et 5.3 :

Proposition 6.8 On a une suite exacte canonique :
0 — HY(S,Z/pZ) — H°(S, O5) — H'(S, O5) — H'(S,Z/pZ) — H'(S, Os) — H'(S, Os),
d’ou une suite exacte :
0 — H(S, O5)/pH"(S, O5) — H'(S, Z/pZ) — H'(S, O5)" — 0,
(ot I’exposant F' dans le dernier terme signifie le sous-groupe des invariants par I’endomor-

phisme F', égal au noyau de o = id — F).

Explicitons encore deux cas e&nes :

Corollaire 6.9 Supposons que H!(S, 05)"' = 0, par exemple que S soit un schéma affine. Alors,
posant A = H°(S, Os), on a un isomorphisme canonique

HY(S,Z/pZ) = A/pA.

C’est lathéorie d’Artin-Schreierdans la forme classique, du moins lorsquest le spectre
d’un corps.

Corollaire 6.10 Supposons que pH®(S, O5) = H°(S, Os), par exemple que H(S, O5) soit un
composé de corps algébriquement clos, ou que S soit propre sur un corps algébriquement clos.
Alors on a un isomorphisme canonique :

Hl(Sa Z/pZ) = Hl(Sa ﬁS)F
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Remarques 6.11Le dernierénon@& est d a J.P. Serre [9]. Il est possiblegalement de
développer une #orie analogue pour le groupe structi#p™Z pourn quelcongue, en utilisant
au lieu deiz,, le sclema en groupes de Wi, cf. loc cit. On notera qu’en caragistiquep > 0,

la théorie de Kummer ne donne plus de renseignement sur léteraents principaux d’ordyg
puisquey, est alors un groupe “infirésimal” i.e. radiciel sur la base, donc sans rapport direct
avecZ/pZ; aussia premere vue, la teorie de ces ré@tements n’est plus justiciable (lorsque
S est un schma propre sur un corps &lgriquement clos pour fixer leséds), de la thorie du
sclema de Picard comme dans 6.@addamoins, si on se rappelle que I'espace tangent de Zariski
a l'origine dansPics/K8 s'identifiea H (S, 05), on constate quka connaisance du séma en
groupes,Picg/;, noyau de la multiplication pap dansPicg/,, implique celle dei* (S, Z/pZ)
aussi bien que celle d&' (5, 1,,) ; on notera qu’elle implique aussi celle d&'(S, a,), ou a,
déesigne le schma en groupes infir@simal sur le corps premier, noyau fle G, — G, (qui
peut se écrire aussi comme le spectre de l&lhge enveloppante restreinte dedalgebre de Lie
triviale de dimension 1) : en effet la suite exacte 4.5 donne ici :

H'(S, a,,) =~ Ker(F: H'(S, O5) — H'(S, O5)),
et plus @réralement, ésignant paw,,» le noyau dangs, dun.eme iéré deF, on aura

H'(S, apn) =~ Ker(F™: H'(S, 05) — H'(S, O5)).

En fait, la connaisance d@ics,, équivauta celle det' (S, G) pour tout groupe alkgprique
commutatif fini annud parp, plus geréralement, la connaisance gePicg,, équivauta celle
deH!(S, G) pour tout groupe algbrique commutatif fini: annué parp™, en vertu du thoeme
suivant qui englobe dans le cas envisadp fois la tleorie de Kummer et celle de Artin-Schreier :

Soit G un groupe algbrique fini sutk, D(G) = Homy,_goupes (G, G,,) SOndual de Cartier
(dont I'algebre affine est pagke par I'espace vectoriel dual de I'alge affine de&, i.e. par
I'hyparalgebre de au sens de DieudoBrCartier), alors on a un isomorphisme canonique :

(%) H'(S, G) ~ Homy_groupes(D(G), Picg)).

(NB. S est un schma propre suk algébriquement clos, tel qué®(S, s) = k). Cette formule
peut encore s’exprimer en disant que le “vrai groupe fondamenta$’ dequel ilétait fait al-
lusion au N 2, rendu ablien, est isomorpha la limite projective de®)(P;), ou P; parcourt les
sous-groupes aépriquesfinis de Picg/;,, qu’'on noteral™(Picx ;). LorsquesS est une vagte
akelienne, on a vu dans 2.1 que ce groupeégstiement isomorphe au “vrai” module de Tate
T.(S) = lim, S, et 'isomorphismex) s’écrit alors de fagon plus frappante

Ext'(A, Q) ~ Hom(D(G), B),

A étant une vaété alelienne,B sa duale(= un groupe algbrique fini surk. Les €sultats qu’on
vient d’'indiquer peuvent seégeraliser d’ailleurs au casuc: est remplaé par un pesclema de
base quelconque, atd’autres groupes de coefficierdtsque des groupes finis.

8Pour la dfinition dePicg, i, cf. A. Grothendieck, 8m. Bourbaki N 232, (Fevrier 1962).
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Expos XII

Geonetrie algebrique et geometrie
analytique

Mme. M. RAYNAUD 1!

Pro@dant comme dans [10], on asso&itout sckmaX localement de type fini sur le corps
des nombres complexésun espace analytiquE®" dont I'ensemble sous-jacent €s{C).

Dans les N 2 et 3 de cet exp@&s nous donnons un “dictionnaire” entre les préf@s usuelles
de X et de X®" et entre les propeies d’un morphismeg': X — Y et du morphisme ass@ci
fan: Xan — Yan.

Nous montrons ensuite que leg€t®emes de comparaison entre faisceauécehts surX et
Xa établis dans [10 N12] pour une va@éte projective, sont encore valables lorsqlieest un
schema propre.

Enfin nous prouvons au™ I'équivalence de la cagorie des redtementstales finis de
X et de la catgorie des redtementstales finis deX®". En prime au lecteur, nous donnons
une nouvelle @monstration du #oreme de Grauert-Remmert [6], utilisant lesolution des
singulariés [8].

1 Espace analytique assoeia un sclema

Soit X un sclema localement de type fini sGr Soit® le foncteur de la c&gorie des espaces
analytiques [4 R9] dans la ca&gorie des ensembles, gaeun espace analytiqu® associe
'ensemble des morphismes d’espaces &ésehC-algebresHome(X, X). On a le tieoeme
Suivant :

1D’aprés des notes édites de A. Grothendieck.
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Théeoreme 1.1 (et @finition) Le foncteur ® est représentable par un espace analytique X" et
un morphisme ¢: X*" — X. On dit que X" est I’espace analytique associé a X .

Si | X?"| est ’ensemble sous-jacent a X*", ¢ induit une bijection de | X®"| sur I’ensemble
X (C) des points de X a valeurs dans C. De plus, pour chaque point x de X", le morphisme

P ﬁX,Lp(z) - ﬁXa“,xa

qui est nécessairement local, donne par passage aux complétés un isomorphisme

Pz ﬁX,Lp(z) - ﬁXa“,xa

En particulier le morphisme  est plat.

Notons que le fait que> induise une bijection d&*" sur X (C) résulte de la propéitt uni-
verselle deX®". D’autre part on a les assertions suivantes :

a) Si le tteoreme est vrai pour un sémay, il en est de rBme pour tout sous-sema X

b)

deY. Supposons d’abord qu€ soit un sous-s@&ma ouvert d&” ; si¢y: Y** — Y estle
morphisme canonique,~ (X') est un ouvert d&*" que I'on muni de la structure d’espace
analytique induite par celle dé**. Comme tout morphisme d’un espace analytigldans
X se factorisea traversy " d’apres la prop@te universelle de ce dernier, doadravers
X qui est le produit fibe Y** xy X, X" est I'espace analytique assed X. Enfin
I'assertion concernant les, estévidente.
Il suffit maintenant de conséder le cas 0 X est un sous-s@ma ferné deY. Soit /
le Oy-ldéal colerent @&finissantX ; alors/ - 0y-n est un faisceau c@hnent d’iceaux sur
Oy-n qui définit un sous-espace analytique f&ri®* deY®* ; on voit comme dans le cas
d’un sous-scéma ouvert queX " est I'espace analytique asseai X . Soitp: X** — X
le morphisme canonique. Pour tout pointle X", le morphismep, n’est autre que le
morphisme

Oy Tyw) = Ovon o/ Iym) - Ovena

induit par, ; son compdte
Dot Oy /L) - Ovape) = Oyon g/ Lp(z) - Oyan g

est un isomorphisme puisquj}; en est un, ce qui@montre a).

Si I'on a deuxC-sctemasX;, X,, tels queXi" et X" existent, alors il en est deéme
de (X; x X5)?*". Soient en effety; : X — Xy, po: X3" — X, les morphismes cano-
niques,p;, p2 les deux projections d& " x X3". On céduit formellement de EGA11.8.1
que X; x X, est le produit deX; et X, dans la ca&gorie des espaces aneelen an-
neaux locaux ; il engsulte que les morphismes - p; ety, - po définissent un morphisme
e X x Xam — X; x X, et que le coupld X x X3" o) repesente le foncteur
X — Home(X, X7 x X5).
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c) Si ¢! désigne I'espace affine de dimension 1, i.e. 'espace topolodijo®ini du fais-
ceau des fonctions holomorphes, le fonct&ur— Homc(X, E}) est epresentable par
¢!, le morphisme canonique: ¢' — E{ étant le morphismeévident. En effet se don-
ner un morphisme d’un espace analytigi€lansE}. équivauta se donner uglement de
['(X, O%), ce qui revient aussi se donner un morphisme gedans¢!. On aévidemment
une bijection|¢!| ~ E'(C), et, pour chaque point € ¢!, le morphismep, n’est autre
gue le morphisme identique d'un anneau éees formelles une variable sut.

On déduit de b) et c) que le #oeme est vrai pour I'espace affidg, n > 0. Utilisant a), on
voit qu’il en est de rBme pour tout s@ma affineX, localement de type fini sut. Si I'on ne
suppose plus affine et si(X;) est un recouvrement d€ par des ouverts affines, isulte de
la propriéte universelle et de a) que 18§ se recollent et &finissent ainsi 'espace analytique
X assocda X.

1.2 Soitf: X — Y un morphisme d€—sctemas localement de type fini. $t X*" — X
ety: Y* — Y sont les morphismes canoniques,&sulte de la propeie universelle dg "
gu’il existe un unigue morphismg™: X** — Y?" tel que le diagrame

X s X

fanl fl
Yo — Y

soit commutatif. On a doncédfini un foncteurd de la cakégorie desC—sctemas localement de
type fini dans la cé&gorie des espaces analytiques.

Le foncteurd commute aux limites projectives finies. Il suffit en effet de voir gusommute
aux produits fibes. Or, siX, Y, Z, sont des s@mas localement de type fini str il résulte du
fait que X x, Y est le produit fibe de X etY au—dessus d& dans la cagorie des espaces
anneés en anneaux locaux qU&™ x za.n Y?" satisfaita la propréte universelle qui caragtise
(X Xz Y)an.

1.3 Soient X un C—sctema localement de type finiX®* I'espace analytique asségi
p: X* — X le morphisme canonique. %i est undx—Module, 'image inverse*F = "
est un faisceau de modules s@k... On cEfinit ainsi un foncteur de la dajorie desO'x—
modules dans la cagorie des Modules suk®". Ce foncteur commute aux limites induc-
tives (EGA 0 4.3.2). Le faisceatix.n €tant colerent [4 R 18 §2 th.2], il transforme faisceaux
cohérents en faisceaux cetrents (EGA 0 5.3.11). Onade plus :

Proposition 1.3.1 Le foncteur qui a un O'x-n—Module F' associe son image inverse F*** sur X"
est exact, fidéle, conservatif.

L'exactitude esulte du fait que le morphisme: X** — X est plat (1.1). Prouvons que le
foncteurF’ — F" est fickle. Compte tenu de I'exactitude, il suffit de montrer qué;*iest nul,
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il en est de @me deF. Or, pour tout point: de X*", on a alorsF,,, Db e Oxan, = 0. Le
morphismefx ) — Oxen, €tant ficklement plat, on &,,) = 0 pour tout point ferrg (z)
de X, et, commeX est de Jacobson (EGA IV 10.4.8), ceci implique duest nul.

316 Le fait que le foncteu” — F?" soit conservatif est formel partir de I'exactitude et de la
fidelite.

2 Comparaison des proprétés d'un sclema et de I'espace
analytique assoae

Proposition 2.1 Soient X un C—schéma localement de type fini, X*" I’espace analytique as-
socié, n un entier. Considérons la propriété P d’étre

(i) non vide

(i’) discret

(ii) de Cohen-Macaulay

(iii) (S,)

(iv) régulier

v) (Rn)

(vi) normal

(vii) réduit

(viii) de dimension n.
Alors, pour que x possede la propriété P, il faut et il suffit qu’il en soit ainsi de X *".

Soityp: X* — X le morphisme canonique. (igsulte du fait que I'on &x**| = X(C) (I.1)
et du fait queX est de Jacobson (EGA IV 10.4.8). Dire gife(resp.X ") est discregquivaut
a dire que I'on alim X = 0 (resp.dim X®* = 0 d’apres [4 ¥ 19 §4 cor.6]); (i’) résulte donc
de (viii).

Soit P I'une des propetes (ii) a (vii). Pour queX pos®de la propite P, il faut et il suffit
que P soit verifiee en chaque point fegde X ; en effet, X étant excellent (EGA 1V 7.8.6 (iii)),

317 'ensemble des pointstioX veérifie P est un ouvert (loc.cit.) et, si cet ouvert contient tous les
points ferngs, il estegala X tout entier. Dire queX (resp.X?") a la propréte P équivaut donc
a dire que, pour tout point de X**, 'anneau local0’x ;) (resp.0x,) a la propréete P.
Comme le fait qu’un anneau local excellent ait la préfari® se voit apes passage au congfa,
la proposition ésulte des isomorphismes .,y — Oxs , dans les cas (iiy (vii). Il en est de
méme dans le cas (viii), compte tenu des relations

dim X = sup dim O () dim X*" = sup dim Oxan ,,

ou z € X?". Ceci acleve la @monstration.
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Proposition 2.2 Soient X un C—schéma localement de type fini, p: X* — X le morphisme
canonique, 'I' une partie localement constructible de X . Alors on a la relation

pH(T) = o~ 1(D).

On peut suposser qui est un ouvert dense dg. Soit H le sous—scdma ferng reduit de
X d’espace sous—jacetf — 7T'; I'espace assoeiH*" est un sous—space analytique férade
X2 d’espace sous—jaceAt™ — o~1(T). On doit montrer que tout point de H** appartient
a~Y(T). Or, en un tel pointz, le germe d’espace analytiqu& ", =) contient le sous—germe
(H*, z), et celui-ci est @fini par un Iéal non nilpotent d&x.» ,. Il résulte alors du Null-
stellensatz [4 119 §4 cor.3] que tout voisinage ouvert decontient des points d&®" qui
part 64 n’appartiennent pas H*", ce qui prouve bien que l'onac p=1(T).
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Corollaire 2.3 Soient X un C-schéma localement de type fini, p: X** — X le morphisme
canonique, T' une partie localement constructible de X . Pour que T' soit une partie ouverte (resp.
une partie fermée, resp. une partie dense), il faut et il suffit qu’il en soit ainsi de o~ (T).

Le corollaire esulte de 2.2 et du fait qué étant un scema de Jacobson (EGA IV 10.4.8),
deux parties localement constructiblesXigui ont néme trace sur I'ensemblees denseX (C)
sontégales.

Proposition 2.4 Soit X un C-schéma localement de type fini. Pour que X soit connexe (resp.
irréductible), il faut et il suffit qu’il en soit ainsi de X*".

Supposons(®* connexe (resp. ieductible). LimageX (C) de X*" dansX est alors connexe
(resp. iréductible). Il en ésulte queX est connexe (resp. &ductible) car les parties fegas de
X et X(C) se correspondent bijectivement (EGA IV 10.1.2).

Inversement supposons connexe (resp. ieductible), et montrons qu'il en est dééme de
X, On peut se borner au cag & est ireductible. Supposons en eff§tconnexe. Etant dorn
un pointz de X, 'ensemble des pointg € X tels qu’il existe une suite finie de sous-éatas
fermés iréductiblesX, ..., X, deX,avecr € X;,y € X,,, X;NX,; 1 # O pourl <i<n-—1,
est un ensembla la fois ouvert et feri, doncégala X tout entier. Pour une suit&,, ..., X,
telle que pecddemment, on a aus&i?™ N X, # 0 pourl < i < n — 1; sil'on suppose
demonté que lesX?" sont connexes, il en est alors déme deX™".

319 On suppose&sormaisX irréductible. On peut supposer de pXisaffine. En effet, S(U;);cr
est un recouvrement d€ par des ouverts affines, deux de ces couverts ont une intersection non
vide, et la n@me prop@té est donc vraie pour le recouvremébif™);.; de X" ; siI'on suppose
demonté que led/?" sont iréductibles, il en est alors deéme deX®".

On peut supposer de plus gieest normal. Soit en effeX le normali€ deX ; comme le
morphismeX — X est surjectif, il est de Bme deX** — X" ce qui prouve que, st*" est
irréductible, il est de @me deX®".
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On suppose @ormaisX affine normal. Comme les anneaux locauxXi& sont inegres,
il revient au néme de dire qu&™ est iréductible ou gu’il est connexe. En effet, &i est une
partie analytique fer@e deX*", 'ensemble des pointsde X*" ou I'on acodim, (.%, X*") = 0
est un sous-ensemble analytique ferde X" [4 n° 20 A Cor. 1] qui est aussi ouvert; "
est connexe, ceci prouve que, siloa# X", .7 est rare, donc qu& " est ireductible. On
est ainsi rame®a montrer queX®* est connexe.

Soit
i: X > P
une compactification d&’, ou P est unC-schkema projectif normal et une immersion ouverte
dominante. Il esulte alors de [10°n12 th. 1] queP?*" est connexe. Comm&?" est obtenu en

enlevanta P** une partie analytique feree rare, il resulte de 2.5 ci-dessous d{@ est aussi
connexe.

Lemme 2.5 Soient &7 un espace analytique normal connexe, % une partie analytique fermée
rare, alors " = & — % est connexe.

Lorsque?/ est de codimensior 2, la proposition esulte de [11 %1 3 prop. 4]. Dans le cas
géréral on peut supposer, quitieenlevea & une partie analytique ferae de codimensior 2,
que & et % (consiceré comme sous-espace analytigaduit de4?) sont Eguliers. D’apes le
théoeme des fonctions implicites, tout poinde % posde un voisinagé” isomorphea une
boule d'un espace affin€", de sorte qués N# soit cefini par 'annulation d’un certain nombre
de fonctions coordorées. Ceci prouve qu&’ — % N % est connexe, et il en est donc démme
de 2.

Corollaire 2.6 Soit X un C-schéma localement de type fini ; le morphisme
o (X™") — mo(X)

induit par le morphisme canonique X*" — X est bijectif.

3 Comparaison des propréetés des morphismes

Proposition 3.1 Soient f: X — Y un morphisme de C-schémas localement de type fini,
far: X* — Y® le morphisme déduit de f sur les espaces analytiques associés. Soit P la
propriété d’étre
(i) plat
(ii) net (i.e. non ramifié)
(iii) étale
(iv) lisse

(v) normal
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321
(vi) réduit
(vii) injectif
(viii) séparé
(ix) un isomorphisme
(x) un monomorphisme
(xi) une immersion ouverte.

Alors, pour que f possede la propriété P, il faut et il suffit qu’il en soit ainsi de f*".

Notonsp: X*" — X ety: Y*" — Y les morphismes canoniques. Soienin point deX®",

y = f*(x). Les morphisme®ya , — Oxan , €10y ) — Ox () d€duits def et 2 donnent
le méme morphisme par passage aux cagsl(1.1). D’apes [2 ch. 3 5 prop.4] (resp. EGA IV
17.4.4) il revient donc au éme de dire qug®" vérifie la propréet (i) (resp.(ii)) ou de dire que
f verifie (i) (resp.(ii)) en chaque point fegrde X. Comme I'ensemble des points deou (i)
(resp. (ii)) est erifie est un ouvert (EGA IV 11.1.1 et | 3.3), ce@mdontre (i) et (ii), donc aussi
(iii).

Soit P la propréte (iv) (resp.(v), resp.(vi)). Compte tenu de 2.1 ((v), (vi),(vii)), il revient au
méme de dire que les fibreggnetriques def*" aux differents pointg de Y*" sont egulieres
(resp. normales, respeduites) ou qu’il en est ainsi des fibresogretriques def aux differents
points fernés«(y) deY. Les cas (iv) (resp.(v), resp.(vi)gsultent alors de (i) et du fait que
'ensemble des points dé ou les fibres gonetriques de sont Egulieres est un ouvert (EGA IV
12.1.7).

(vii). Si f estinjectif, il en est de Bme def*". Inversement supposorfs” injectif et mon-
322 trons qu'il en est de @me def. On peut supposefde type fini. Le morphismé** étant injectif,
les fibres def aux points ferras deY” son radicielles ; comme I'ensemble des points’‘ddont
la fibre est radicielle est localement constructible (EGA IV 9.6.1) et corirest un scema de
Jacobsonf a toutes ses fibres radicielles donc est injectif.

(viii). SoientA: X — X xy X et A*™: X*" — X2 Xy X?" les immersions diagonales,
O: X Xyan X?" — X xy X le morphisme canonique. En vertu de 2.3 il revient @&nma de
dire queA(X) est ferneé dansX xy X ou queA* (X?") est ferng dansX®" xyan X",

Comme une immersion ouverte n’est autre qu’'un morphiétake injectif (EGA IV 17.9.1
et[4 P 13§ 1]), (xi) résulte de (iii) et de (vii). Un isomorphisnétant la néme chose qu’une
immersion ouverte surjective, (ix¢sulte de (xi) et de (3.2) ci-dessous. Dire uest un mono-
morphismegquivauta dire que la morphisme diagonal X — X xy X est un isomorphisme,

part 65 donc (x) esulte de (ix).

Proposition 3.2 Soient X et Y deux C-schémas localement de type fini, f: X — Y un mor-
phisme de type fini, f*": X*" — Y?®" le morphisme déduit de f sur les espaces analytiques
associés. Soir P la propriété d’étre
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(i) surjectift
(ii) dominant
(iii) une immersion fermée
(iv) une immersion
(v) propre ?
(vi) fini.

Alors, pour que f possede la propriété P, il faut et il suffit qu’il en soit ainsi de f*".

Soientp: X* — X ety : Y* — Y les morphismes canoniques.

(i). Si f est surjectif, pour tout poing de Y, f~1(¢)(y)) est une partie ferée non vide
de X ; elle contient donc au moins un point fegnte qui prouve qué*” est surjectif. Inverse-
ment, sif*" est surjectif ;f(X) est une partie localement constructibleYdéEGA 1V 1.8.4) qui
contient tous les points fer@s deY ; on a doncf(X) =Y.

(ii) résulte de 2.2.

(iii). Si f est une immersion ferae, il en est de @me def** d’'apres 1.1 a). Inversement, si
2 est une immersion fereg, il en est de @me def d’apres 3.1 (x) et 3.2 (v), car cela revient
a dire quef est un monomorphisme propre (EGA IV 8.11.5).

(iv). Il est clair que, sif est une immersion, il en est deeme def*". Inversement supposons
gue f2* soit une immersion, et soiefitl'image deX dansY’, T' 'adhérence schmatique def.

On a une factorisation dg
X5TL g,
ou j est une immersion ferae,i le morphisme canonique, et on eediit la factorisation sui-
vante def®»
xan ﬁ Tan i yan
CommeT" = f(X) est une partie localement constructibleYd¢EGA IV 1.8.4), on a, d’apgs
2.2, T" = fan(Xan), |l en résulte que™ (X*") est un ouvert dd", donc quei(X) est un

ouvert deT’. On consi@re la factorisation canonique de

X LX) ST
Le morphisme3™ est un monomorphisme propre, donc il en est @ de; d’'apres 3.2 (v) et
3.1 (x); ceci prouve qué donc aussy est une immersion.

(v). Supposons qué¢ soit propre et montrons qu'il en est déme def*". Le fait que f**
soit propreétant local sut’®*, on peut supposeér affine. D’apes le lemme de Chow (EGA I
5.6.1), on peut trouver ur-schema projectifX’ et un morphisme projectif surjectif

g: X' — X.

2Nous dirons qu’un morphisme d’espaces analytiques est propre s'il I'est au sens de{10c 1] et s'il est
sepae.
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Le morphismg fg)*" = f*"¢*" est projectif donc propre" est surjectif, et il esulte de [1 ch.
1§10] quef* est propre.

Inversement supposorfs® propre et montrons qu’il en est deéme def. D’apres 3.1 (viii)
f est £pak. Il restea prouver quef est universellement fere et il suffit teme de montrer que
f estferng; en effet, pour tout"-scremaY”’ localement de type fini, le morphisme

f(y/) =h:X Xy Y -V’

sera aussi fernpuisqueh®” est propre. Soif” une partie ferrae deX ; f(7') est un ensemble
localement constructible, et 'on a

F e HT)) = o7 (F(T).

Commefa est propreg)—!(f(T)) est une partie ferée deY ", et il résulte donc de 2.2 que
'on a

VTHA(T)) = ¢~ (A(T))
Cela entrine que I'on af(T) = f(T), i.e. quef est fernge donc que est propre.

(vi). Il revient au néme de dire qu’un morphisme est fini ou qu’il est proaribres finies
(EGA Il 4.4.2 et[4 ® 19§ 5]). Comme I'ensemble des points tes fibres dgf sont finies est
localement constructible (EGA 1V 9.7.9), les fibres flsont finies si et seulement si il en est
ainsi des fibres dé¢=" ; (vi) résulte donc de (V).

Remarque 3.3

a) soitf: X — Y un morphisme de&C-schemas localement de type fini. Le fait qye”
soit un isomorphisme local n’eniree pas qu'’il en soit de éme def. En effet, sif est
etale, /" estétale donc est un isomorphisme local [4 H3 § 1], mais il n’en est pas
néecessairement ainsi ge

b) 'enon 3.2 n’est pas vrai si I'on ne suppose gade type fini. Montrons par exemple que
2" peutétre une immersion feree sans gqu'il en soit de @me def. Il suffit en effet de
prendre poutX la somme deZ copies deSpec C, et pourY” la droite affine, et pouy le
morphisme obtenu en envoyant les pointsXsur des points distincts dé formant une
partie discete.

4 Theoremes de comparaison cohomologique et éoremes
d’existence

L'objet de ce nuraro est de reemontrer lesé@sultats de [3t 2 th. 5 et th. 6] ; ces derniers
géréralisent au cas d’un sema propre les #pemesetablis dans [10%1 12] lorsqueX est pro-
jectif, et lesétendent au cas relatif. Dessultats plus @réraux, concernant les semas relatifs
propres sur un espace analytique, sont peswlans [7 ch. VIII A 3].
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Rappelons que la cohomologie@ech utilie dans [10h 12] cdincide avec la cohomologie
usuelle dans le cas a@grique comme dans le cas analytique (EGA Il 1.4.1. et [5 11 5.10]).

4.1 Soientf: X — Y un morphisme d€-sctemas localement de type fini et corésidns le
diagramme commutatif

xan Py

|

ys ——y
Si.# estundx-Module, on a, pour tout entigr> 0, des morphismes
RP [ 7 5 RP [ (0.F™) L RI([0). 7™ 5 g, (RP f22 )

ou ¢ se ceduit du morphisme canoniqué — ¢,.7 ", etj, k sont des “edge-homomorphismes”
de suites spectrales de Leray. Au con®bg.i; est asso@ un morphisme canonique

(4.1.1) 0,: (RP f,.F)™ — RP fo(F™)

Théoreme 4.2 Soient f: X — Y un morphisme propre de C-schémas localement de type fini,
% un Ox-module cohérent. Alors, pour tout entier p > 0 le morphisme (4.1.1)

b: (R? 7)™ — R f20(F™)
est un isomorphisme.
1) Cas aI f est projectif La demonstration est analogaecelle de [10 f 13]. Rappelons-la

brievement. On se radme au casw X est un espace projectif tyfg®, au dessus d&. Soit
% =Y, & =P}, ;onprouve d'abord que I'on a

[0 =0y RP ff*(0»)=0  pourp>0

Pour \erifier les relations @edentes, on peut en effet se ramener au 0a® @st une boule?
d’'un espace affing”. On consiére le “recouvrement standar¢’;} de &2 parr + 1 ouverts
isomorphes &4 x &". Comme ces ouverts sont de Stein, on a, pour tout eptier 0, des
isomorphismes

B ({%},05) 5 WP (2, 0.5)

On peut alors exprimer les sections du faisceau structtizalsur les ouverts; et sur leurs
intersections en termes derges de Laurent; un calcul facile preuve que I'on a

HO({@’ ﬁy) = HO<@’ ﬁy) ) Hp(gza ﬁ«@) =0 pourp > 0

La démonstration s’adkve alors en recopiant [10 rl2 lemme 5], les groupes de cohomologie
étant remplags par les faisceaux de cohomologie.
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328 2) Cas au f est propre On utilise EGA 111 3.1.2 pour se ramener au cas projectif. Séila
cakgorie deg/'x-Modules colerents tels qué, soit un isomorphisme pour tout> 0. Il suffit
de prouver que, pour toute suite exagter .’ — .% — %" — 0 dont deux termes sont dans
A, il en est de reme du troigme, qu’un facteur direct d’'un objet d¢ est dans’’, et que,
pour tout pointr de X, on peut trouver un obje¥ de._#" tel que I'on aitF,, # 0.

Le premere condition @sulte par application du lemme des cinq du diagramme commutatif
suivant dont les lignes sont exactes :

. (Rp f*y/)an . (Rp f*g)an . (Rp f*g/l)an o (Rp+1 f*g?/>an -

| | l l

RP ffn y/an RP ffn yan RP ffn y!/an Rp—i—l ffn Jrlan 5 ,

et on \érifie de facon analogue la deerie condition.

Pour \erifier la troseme condition, on peut se borner au cas¥oest un scema iréductible
de point ggreriquez. On pouvait supposéf noetrerien s le &but. D’apes le lemme de Chow
(EGA 11 5.6.1), on peut trouver ul-sckema projectifX’ et un morphisme projectif surjectif
g: X' — X. Dautre part il existe un entier tel que I'on aitR? ¢.(0'x.(n)) = 0 pour toutp > 0
et que le morphisme canoniqyéy.(Ox:(n)) — Ox/(n) soit surjectif (EGA Il 2.2.1). Si I'on
poseZ = g.(Ox:/(n)) le faisceau# réponda la question. En effet on&, # 0; de plus la suite
spectrale de Leray

R? f.(R? g.(Ox(n))) = R"™(f.9).(Ox(n))

etant &egeréree, on a un isomorphisme
R? £ 7 = RP(f.9):(Ox:(n))
329 Comme dans le cas a@grique on a un isomorphisme canonique

RP f2RF = RP(f.9)3(Ox/(n)™),

et le diagramme
(R? .7 )" —— (RP(f.9)+(Ox:(n)))™

‘| N
RP fir 7 ——=R?(f.9)2"(Ox (n)™)

est commutatif. D’ags 1), est un isomorphisme ; il en est donc deme d&,, ce qui ackve
part 66 la demonstration.

Corollaire 4.3 Soient X un C-schéma propre, F' un 'y -module cohérent. Alors, pour tout entier
p > 0, le morphisme canonique

HP(X, F) N Hp(Xan,Fan>

est un isomorphisme.
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Théeoreme 4.4 Soit X un C-schéma propre. Le foncteur qui, a tout &'x-module cohérent F,
associe son image inverse F'*" sur X®" est une équivalence de catégories.

1) Le foncteur est pleinement &l Soient en effef” et G deuxd'x-Modules cokrents. Le
morphisme canonique
Homg, (F,G) — Homg,., (F*", G*™)

s’identifie au morphisme canonique
H°(X,Homy, (F,G)) — H(X*™ Homy, (F,G))

330 (EGA 0y 6.7.6). CommeéHomy, (F, G) est colerent, il esulte de 4.3 que ce morphisme est

bijectif.
2) Le foncteur est essentiellement surjedtibrsque X est projectif I'assertionésulte de

[10 n° 12 th.3]. Le cas @réral se rarane au pecedent en utilisant le lemme de Chow
(EGA 11 5.6.1). Soient en effeX’ un C-schema projectif,f : X’ — X un morphisme projectif
surjectif, U un ouvert dense d& tel quef induise un isomorphismg&=1(U) ~ U. On raisonne
par recurrence noeéirienne surX ; on peut donc supposer que, pour tout faisceagE@ity
sur X?" tel que I'on puisse trouver une partie fegey” de X distincte deX, satisfaisant la
relationY®® O Supp ¢, il existe un faisceau c@nentG sur X tel que I'on ait un isomorphisme
G ~ 9,

Soit.Z un faisceau de modules catent surdyan, % et ¥ les faisceaux cddrents @finis
par la condition que la suite

0> H —F — ff"Fy - £ —0

soit exacte. CommeX’ est projectif, il existe ure’y,-Module colerent £’ tel que I'on ait

Fan ~ fan* 2. on déduit alors de 4.2 que 'on a un isomorphisiyfg F”)** ~ fan fan* 7z

CommeJz |U et Z|U sont nuls, il existe de&’x-Modules colerentsk et L tel que I'on ait

des isomorphisme&™® ~ ¢, [** ~ %. D'apres 1) le morphismg?" f**.7% — & provient

d’'un unique morphismé, F’ — L; soit] = Ker(f.F’ — L). Le faisceauZ est alors extension
331 de /" par K, et il suffit de voir que cette extension provient par image inverse d’une extension

de par K. Il suffit donc de prouver que le morphisme canonique

(%) Exty, (1, K)™ = Extqﬁx,cm (I, K*™) q#1

est bijectif. Or on a des isomorphismBsty, (I, K)** = Extj, _ (I*", K*") pour tout entier
q > 0 (EGA 0r; 12.3.5), et un morphisme de suites spectrales

HP (X, Ext}, (I, K)) —  Ext} (I, K)
| l
HP (X Extf ([ K™)) = Ext}? (I K™).

an

Ce morphisme est un isomorphisme car, dep4.3, il en est ainsi sur les terme§’, et ceci
démontre la bijectivié de(x).
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Corollaire 4.5 Le foncteur qui a tout C-schéma propre X associe X" est pleinement fidele.

On doit montrer que, sk etY sont deuxC-schkemas propres, I'application canonique
Hom¢(X,Y) — Hom(X*", Y*")

est bijective. Or se donner un morphismeXiedansY (resp. deX®"* dansY®") équivauta se
donner son graphe, i.e. un souséstia ferngé Z de X x Y (resp. un sous-espace analytique
fermé 3 de X" x Y2"), tel que la restriction de la prepre projectionX x Y — X aZ (resp.
de X** x Y* — X2 g 3) soit un isomorphisme. Comme la dé@ed’un sous-s@ma ferne
de X x Y (resp. d’'un sous-espace analytique feme. X" x Y?") équivauta celle d’un faisceau
cohérent d'ickaux suyx .y (resp. Suyan«yan), le corollaire esulte de 4.4.

Corollaire 4.6 Soit X un C-schéma propre. Le foncteur qui, a tout schéma fini (resp. étale fini)
X' au-dessus de X, associe X'* est une équivalence de la catégorie des schémas finis (resp.
étales finis) au-dessus de X dans la catégorie des espaces analytiques finis (resp. étales finis)
au-dessus de X*".

En effet se donner un morphisme fiki — X (resp.X’** — X?2") équivauta se donner
un faisceau carent d’algbres sur'y (resp. sul@xa») [4 n° 19§ 5 th.2]. Le corollaire ésulte
donc de 4.4 dans le cas non respt le cas regps’en éduit compte tenu de 3.1 (iii).

5 Théoremes de comparaison des ré&ementsétales

5.0 Précisons la notion de rétement fini d’'un espace analytique.3Sest un espace analy-
tique, on dit qu'un espace analytigdé fini au-dessus d& est un regtement fini deX si toute
composante igductible dexX’ domine une composanteéductible dex.

Théoreme 5.1 (“Théoreme d’existence de Riemann”.)Soient X un C-schéma localement de
type fini, X" I’espace analytique associé a X . Le foncteur ¥ qui, a tout revétement étale fini X'
de X, associe X'*" est une équivalence de la catégorie des revétements étales finis de X dans la
catégorie des revétements étales finis de X *".

1) Le foncteurd est pleinement figle. SoientX’ at X” deux re@étementstales finis deX,
et prouvons que I'application canonique

(+) Homy (X', X") —> Homan (X", X"™")

est bijective. On peut suppos&r connexe. Se donner uxi-morphisme deX’ dansX” équivaut
a se donner une composante connExde X’ x x X" telle que le morphismé&’; — X' induit par
la premere projection soit un isomorphisme. Comme les composantes connexésde X"
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correspondent bijectivement aux composantes connex&s"de< x.» X”*" (2.6) et qu'un mor-
phismeX,; — X’ est un isomorphisme si et seulement si il en est ainskgle — X'*", ceci
démontre la bijectivié de ).

2) Le foncteur¥ est essentiellement surjectBoit X’ un re\etementétale fini deX*" et
prouvons qu'il existe un ré&temengétale X’ de X tel que I'on ait un isomorphism&’*" = ¥’
Compte tenu de 1) la question est locale Syret on peut donc supposar affine.

a) Reduction au casw X est normal. On peut supposa&r reduit. Supposons en effet le
théoeme @monteé pourX 4. Le foncteur quia un re@tementetale fini X’ de X fait corres-
pondre le regtementetale fini X', de X est alors uné&quivalence. Comme il s’obtient en
composant[f avec le foncteu® qui, a un re@temeneétale fini deX*" associe son image inverse
sur X, et que© est pleinement fiele, ceci montre qu#& est uneequivalence de cagories.

334 On peut supposeX normal. Soit en effet le normali® de X, p: X — X le mor-
phisme canonique. Commeest fini,p est un morphisme de descente effective pour lagmie
des reetementsetales (1X.4.7). Le thoeme étant suppas cemonte pourX _si I'on pose
X =% X xan Xan il existe un regétementétale X’ de X et un |somorph|smé(’an ~ X'
résulte alors de 1) que la dadmde descente naturelle que I'on a Xuse reéve en une dorée
de descente suk’ relativementa X — X ; ceci prouve I'existence d’'un rétementétale X'
de X tel que I'on ait un isomorphisme X"”‘n X xan X ~ X', dont les i images inverses par les
deux projections d&™™ X yan X0 sOjENt les rémes. D’apes 1X.3.2, dont la @monstration est
valable dans le cas analytique, le morphisk®@ — X?2" est un morphisme de descente pour la
caiégorie des redtementgtales, et par suiteprovient d’un isomorphism&’*" ~ X',

b) Réduction au casloX est egulier. Soient/ I'ouvert des pointséguliers deX,i: U — X,
i*: U™ — X*" les morphismes canoniques ; comiest normal, on aodim(X —U, X) > 2.
Supposons gu'il existe un retemengétaleU’ de U tel que I'on aitU’*" ~ X'|U*" et montrons
gu'alorsU’ se prolonge en un rétementtale X’ de X tel que I'on aitX’™" ~ X’. Il suffit de
voir queU’ se prolonge en un rétemengétale X’ de X ; en effet on aura alors un isomorphisme
XU ~ X'|U ; mais, si¥ et¥ sont les faisceaux cé@nents d’alg@bres surx.. définissant
respectivemerit’ et X’*", le fait queX soit normal et que I'on aitodim(X —U, X') > 2 entrdne
gue les morphismes canoniques

F— (FUM) G — GU)

335 sont des isomorphismes [12 18 prop.4]. Il en ésulte queZ et¥ donc aussiX’*" et X’ sont
isomorphes.

Soit p: X* — X le morphisme canonique. Comme le praie de prolonget/’ a X
est local surX, il suffit de prouver que, pour tout poigtde X" — U, le re\etementétale
Ugyy = U’ Xx Spec Ox () @ Uy () = U X x Spec Ox () S€ prolongéSpec O (). SOitH
la 0y;-Algebre colrente @finissant/’. Le morphisme canonique

a: (i, Y™ — @ (H™) = &
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définit un morphisme de faisceaux de modulesSufc Oxan ,
oy (LH) — 7,

dont la restrictiprfa Uy = Up(y) Xspec 0x. () Spec‘ﬁxan,y est un isomorphisme. Mais ceci prouve
queH|U, est trivial, donc qué//, ,, se prolong&Spec O o (y).

c) Cas a1 X est affine egulier. Soit
j: X — P

une compactification dé&, ou P est unC-sctéma projectif ety une immersion ouverte domi-
nante. Gace au teoeme de esolution des singulaés [8], on peut trouver un se€ma égulier
R, un morphisme projectif: R — P, tel quer induise un isomorphisme™!(X) ~ X et que
r~1(X) soit le compémentaire dan& d’un diviseura croisements normaux. Soit

k: X — R

'immersion canonique. On va montrer qu’il existe unég@ment fini normal (5.0GR’ de R*" qui
prolonge le regtementetale X'*". D’apres la proposition 5.3 ci-dessous, un tel&@@ment est
unique ; le prok@me de prolongek’*" est donc locale suR*" au voisinage dé** — X", Or
chaque point dé?** — X2 a un voisinage ouvefl isomorphea une boule d’'un espace affine
¢, tel queW — U N X soit cefini par I'annulation dep premeres fonctions coordoges
Z1,. .., 2y, avec) < p < n. Le groupe fondamental dé= U N X*" est isomorph@&Z”, et tout
revetemeneétale dell est quotient d’'un redtement de la forme

L[" :L[[Tl, ce ,TA/(T{H — 21, ,T;p — Zp) s
ou lesn; sont des entiers 0, par un sous-group du groupe de Galoi&/nZ x - - - X Z/n,Z
dedl”. Oril” se prolonge en le ré&ement ggulier

V' =V[Ty,..., T/ (T —z,..., T — z,),

p
deU sur lequelH opere, et le quotient d&” par H est le prolongement chergh

La demonstration s’ackve alors giicea 4.6. Le regtementR’ provient d’un re@étement fini
R’ de R; la restriction deR’ a X est un regtementX’ de X tel que l'on aitX’*" ~ X/, et
d’apres 3.1(iii) X’ est un reetemengétale deX.

Corollaire 5.2 Soient X un C-schéma localement de type fini connexe, p: X* — X le mor-
phisme canonique, x un point de X*". Soit w1 (X", x) le groupe fondamental de 1’espace topo-
logique X" au point x, m1(X, ¢(x)) le groupe fondamental du schéma X au point ¢(x) (V.7).
Alors (X, p(x)) est canoniquement isomorphe au complété de m (X", x), pour la topologie
des sous-groupes d’indice fini.
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Soit en effet? la caggorie des redtementstales finis deX®", F' le foncteur des” dans
Ens qui, a tout reétementétale finiX’ de X*" associe 'ensemble des pointsXeau-dessus de
x, et soitw; (X?", ) le groupe profini assoeia ¢ et ' comme il est dit dans V.4. Comme tout
revetementétale fini deX®" est quotient du rédtement universel par un sous-groupe d’indice
fini, 7, (X, z) n'est autre que le compe der, (X", z) pour la topologie des sous-groupes
d’indice fini. Le corollaire ésulte donc de 5.1 et V.6.10.

Proposition 5.3 Soient X un espace analytique normal, %) un sous-ensemble analytique fermé
tel que Y1 = X — 9 soit dense dans X. Alors le foncteur qui, a tout revétement normal fini (5.0)
X' de X associe sa restriction a {1 est pleinement fidéle.

SoientX’ and X" deux reetements finis normaux d&. On doit montrer que I'application
canonique
Homy (X', X") — Homy (X'|U, X"|4)

est bijective. Soient;, v deux X-morphismes de&’ dansX” dont les restrictions 4 sont les

338 mémes et prouvons que = v. Les morphismes et v coincident sur 'ouvert densg x ¢ X,
donc sur les espaces topologiques sous-jacents. &adpn? 19 §4 cor.5] ceci prouve que I'on
au =v.

Soit maintenant un ti-morphisme dé&’ |4 dansX”|4l et montrons qu’il se prolongeX’ tout
entier. On peut suppos&r régulier. En effetX’ étant normal, on peut trouver un ouv&rde X
dont le compdmentaire soit une partie analytique de codimensiony tel queX’ xx U = U’
soit regulier. Soitd” = X” x x U et supposons la propositiohontée pourl. On consiére
le diagramme commutatif

5’ x!
g/ \;1]// i// | %II
f/j /
g// ) f//
Dy ! X

A u est asso@ un morphisme déy-Algebresy” Oy — ¢, Oy, d’oli I'on déduit un morphisme
ixGy Or — 1.9, Oy .

Compte tenu des isomorphismé®yy ~ Oy, i Ogr ~ Ox» [11 i® 3 prop.4] on en dduit un
morphisme de&x-Algebres
flOx — fOx

d’ou le morphismex’ — X" chercle.
339 On suppose @ormaisX’ regulier. Soientl’ = U x5 X', 9" = X' — Y. On consi@re
%)’ comme sous-espace analytiqueuit de X’; si ) est le ferné singulier deQ)’, on a
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dim9)) < dim¥®'’ [4 n°® 20 D. Th.3]. On voit donc parécurrence sur la dimension &g
que I'on peut supposé&)’ lisse. Comme il suffit de prolongera un voisinage ouvert de chaque
point de?)’, on peut supposer par leébeme des fonctions implicites qd& est une boule d’'un
espace affin€&™ et9)’ le fermé defini par I'annulation deg premeres fonctions coordoees
21,...,%p,avec) < p < n.

On associ@u une section dep: X' x x X" — X’ au-dessus d¢ ; quittea restreindrex’, on
peut supposep, (Ox «,x+) engende par delementsry, ..., z, de (X', p.Ox«,x); soient
uy,...,uy € I(W, Oy ) les images pas dex; |Y', . .., z,|4l'. Dire ques se prolong& X' revient
a dire que lesu, ..., u, se prolongent en des sectionsIdg’, Ox/). Mais, puisquef est fini,
chaquey; est une érie de Laurenten,, ... ., z,, a ceefficients des&ries engres er, 1, . . ., 2,
qui satisfonta des relations desegendence iggrale. Il en esulte que:; est bor@ donc est une
serie entere enzy, . . ., z,, €t par suite se prolongeX’.

On peut se demander si le foncteur introduit dans 5.3 estegn@alence de cagories.
On a une eponsea cette question gce au tkoeme de GRAUERT-REMMERT [6] dont nous
donnons une @monstration ci-dessous utilisant ksolution des singulaés. On aurait aussi
pu utiliser le ttitoeme de GRAUERT-REMMERT pourétnontrer 5.1 ; c’est ce que I'on faisait
part 68 avant de disposer de [8].

340
Théoreme 5.4 (Théoeme de GRAUERT-REMMERT¥oient X un espace analytique normal,

) un sous-ensemble analytique fermé tel que 4 = X—%) soit dense dans X. Soit 1" un revétement
normal fini de Y1 ; on suppose qu’il existe une partie analytique fermée rare G de X telle que la
restriction de " a 4 — I N & soit étale. Alors il existe un revétement fini normal X' de X qui
prolonge L', et X' est unique a isomorphisme prés.

L'unicité resulte de 5.3. Le probime de prolonget’ est donc local suk. On peut supposer
i régulier etll’ etale suil. En effet 'ensemble des pointéguliers deil est un ouverfs dense
dansX dont le comptmentaire est une partie analytique [420 D th.2] et il suffit de remplacer
i par 'ouvertl — BN G.

Soity un point deX — 4 et montrons que I'on peut prolonggt a un voisinage dg. Quittea
restreindreX a un voisinage ouvert dg il résulte du tBoeme de esolution des singulaés [8]
que 'on peut trouver un espace analytigégulierX;, un morphisme projectif : X; — X in-
duisant par restrictioatl un isomorphismeél; = f~1(4) ~ 4, tel queil; soitle compémentaire
dansX; d’'un diviseura croisements normaux. Montrons dufese prolonge en un rétement
fini normal deX;. Comme la question est locale sXif, on peut supposer qu&, est une boule
d’un espace affin€” et queX; — 4, est cefini par 'annulation deg premires fonctions coor-
donreesz, ..., z,, avecO < p < n. Le revetementtalell’ deil; est quotient d’un redtement
de la forme

112 :ill[Tl, “on ,Tp]/ (Tlnl — Ry - ,T;lp — Zp>

341 par un sous-groupH du groupe de Galois d#,. Le re\etementl, se prolonge en le réement

X=X, ..., )/ (T7" — z1,..., T — 2)

p
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de X, sur lequelH opere, etX,/H prolongeil’ a%;.

Notons X’ le revetement fini normal dé&; qui prolongeil, §, la O, -Algebre cokrente
définie parg,. D’apres le tlieoeme de finitude de GRAUERT-REMMERT [2 &5 th.1.1],f.3:
est unef’x-Algebre colerente. Il lui correspond donc un Etement finiX’ deX qui est d’ailleurs
normal puisquex| I'est, etX’ est le prolongement d¢ chercle.

Remarque 5.5 Dans I'énon& 5.4, on ne peut supprimer I'hyp@te sur le lieu des pointside
morphismell’ — I n'est pasetale. Soit par exempl& le disque uni du plan complexef le
compkementaire de I'origine darig, &' = {[T']/(T* — sin 1/z), ol z est la fonction coordorére
surX. Alors 4’ est un regtement fini normal d&l qui ne se prolonge pasX. Supposons en
effet quell’ se prolonge en un rétement finiX’ de X ; le lieu des points d& ou le morphisme
X' — X n'est pasttale est alors un fernanalytique qui contient tous les pointsels que I'on
aitsin1/z = 0, ce qui est absurde.

On peut cependant supprimer I'hypésie sur le lieu singulier du morphisitie— 4 lorsque
'on a codim(X — 4, %) > 2. On peut en effet supposgrrégulier. Le lieu des points d¢ ou
" — U n'est pasetale est un diviseur dg, et il résulte du teoeme de REMMERT-STEIN
342 [9 th.3] qu’il est la trace sutl d’'un diviseur deX. Or, dans ce cas, 8l est unedy-Algebre
cohéerente telle quel’ = Specan(2l), sii : 4 — X est le morphisme canonique, il suffit de
prendreX’ = Spec an(i,2l) ; on sait en effet que.2l est colerents [11 A 1 th.1].
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Proprete cohomologique des faisceaux
d’ensembles et des faisceaux de groupes
non commutatifs

344
par Mme. M. RAYNAUD'?

Cet expoé se propose d'utiliser la cohomologale pour @réraliser certainsésultats de
IX et X. [l montre aussi comment on pegttendre aux faisceaux en groupes nénassairement
commutatifs les&sultats de SGA 5 Il qui ont encore un sens pour de tels faisceaux. On suppose
connues les notions de cohomologtale exposes dans SGA 4.

Le résultat principal (2.4) donne un exemple important de morphisme non pfodre— S,
qui soit “cohomologiquement propre en dimensionl”, c’est-a-dire tel que, pour certains fais-
ceaux en groupeB surU (au sens de la topologiale), la formation d¢. F etR' f,F com-
mutea tout changement de baSé — S. Cette prop@te est en effet satisfaite par I'ouvért
d’'un sctemaX propre surS, compementaire d’un diviseub a croisements normaux relative-
menta .S, du moins si 'on imposa F' d’étre constant fini, d’ordre premier aux caé&dtiques
résiduelles d&. Sil'on ne suppose pluB d’ordre premier aux caragtistiques eésiduelles de,
on a un ésultat analogue en remplac&itf, I’ par le sous-faiscea; f,F obtenu en se bornant
a consi@rer les torseurs sous “modérement ramifes surX relativementa S”. En particulier
cela permet de montrer que le groupe fondamentalé®odent rami d’une courbe akgprique
propre et lisse sur un corpgEarablement clos, pée d’un nombre fini de points fegs, est
topologiquement de type fini (2.12).

345 Le n° 4 est consaéra la suite exacte d’homotopie &fa formule de Kinneth.

part 69 Enfin un appendice donne des variantes utiles du lemme d’Abhyagkasrté dans X.3.6.

ID’apres des notes @tites de A. Grothendieck.
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0 Rappels sur la theorie des champs

Nous utiliserons dans ce qui suit leetirie des champs expes dans [1] et [2]. Nous nous
bornons au cas du sidale d'un scBma. Etant dorfmun sclemalX, notonsX; le siteétale de
X. Rappelons qu’'un champ sW¥ est une catgorie fibEe au-dessus d&; telle que, pour
tout sclema X’ étale surX et pour tout couple d’'objet, vy de la fibre F'x,, le prefaisceau
Hom/ (x,y) soit un faisceau, et telle que, pour tout morphisetede surjectifX” — X', tout
objet deF'y» muni d’une donée de descente relativemeénk” — X’ soit image inverse d’'un
objet deFy..

On noteF'(X’) la catgorie des sections cagiennes dé'/ X'. Plus gréralement, sBch
est la catgorie des s@dmas au-dessus d€ munie de la topologietale, le champf” peut
s’étendre en un chamg sur Schy et, pour tout morphismg: X’ — X, on note encore
F(X’) la cakégorie des sections cadiennes de ce chan# au-dessus d&’’.

Une gerbe est un champ tel que, pour touessh.X’ étale surX et pour tout couple d’objets
x, y de Fy/, tout morphisme de dansy soit un isomorphisme, queety soient localement iso-
morphes, et tel que 'ensemble des objEtsle X, tels queF'x soit non vide est un raffinement
de X¢. Par exemple le champ des torseurs sous un faisceau en groupes est une gerbe qui, de plus,
a une section casienne. Rciproguement une gerbe qui a une section, i.e. telle qu’il existe un
346 objetz de F'x, estéquivalente au champ des torseurs sous le faisceau en graupgsz).

On a une notiorevidente de sous-gerbe et de sous-gerbe maximale d’'un chargpant
donré une section casienner de F'(X), il existe une unique sous-gerbe maximéle de F
telle quex se factorisea traversG,. On appelleGG, la sous-gerbe engerélr parx ; c’est par
définition une gerbe triviale. Le pfaisceals F' défini par

SF(X') = {sous-gerbes maximales deXx'}
est un faisceau appglfaisceau des sous-gerbes maximales dgoitO le préfaisceau dfini par
O(X") = {classes d’'objets d&x: mod. isomorphismg

En associan tout objetr de F'y, la sous-gerbe maximale d€ X', engendee parz, on obtient
un morphisme
O — SF;

d’apres [2, 11l 2.1.4], ce morphisme fait d&F" un faisceau assaza O.

Un champF est ditconstructiblg(resp. indL-fini, . étant un ensemble de nombres premiers)
si, pour tout scema X’ étale surX et pour tout objetr de F'x/, il en est ainsi du faisceau
Auty (z) [2, VIl 2.2.1]. On dit qu’'un champ edtconstructible s’il est constructible et si le
faisceau des sous-gerbes maximales est constructible.

1 Propreté cohomologique
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1.0 SoientS unsclema,f: X — Y un morphisme dé-sctémas. Si5” est unS-sckema, on
consicere le diagramme suivant, dont tous les eaigsont cadsiens :

(1.0.1) X<y
fl f’l
y <2—y’

-

S<~——9

SiY; est un scemaétale au-dessus dé, on poseX; = X xy Y}, Y/ =Y’ Xy Y}, eton
consicere le care carésien

Définition 1.1 Soit F' un champ sur X. On dit que (F, f) est cohomologiquement propre rela-
tivementa S en dimension< —1 (resp. en dimension < 0, resp. en dimension < 1) si, pour
tout S-schéma S’, le foncteur canonique (défini de fagon évidente par la propriété universelle de
I’image inverse de champs) :

g f.F — fihk'F (cf.1.0.1)

est fidele (resp. pleinement fidele, resp. une équivalence de catégories).

S’iln’y a pas de confusion possible stiren particulier s& = Y, on dit cohomologiquement
propre au lieu de cohomologiquement propre relativeraeht

1.2  Soit F' un faisceau d’ensembles siir; soit ® le champ en cégories dis@tes assoéia

F, i.e. le champ dont la fibre au-dessus de toutawdX; etale surX est la cakgorie discete
ayant pour ensemble d’objef¥ X ;). On dit que(F, f) est cohomologiquement propre relative-
menta .S en dimensior< —1 (resp. en dimensiof 0) si (P, f) est cohomologiqguement propre
relativement S en dimensior< 0 (resp. en dimensiog 1).

Le morphisme canonique
(1.2.1) G f.F — f'h*F
donne par passage aux champs eagaties dis@tes assoéies le morphisme canonique
g [ @ — fih" .

Par suite dire quéF’, f) est cohomologiquement propre relativemart en dimension< —1
(resp. en dimensior 0) équivauta dire que, pour touf-sctemas’, le morphisme (1.2.1) est
injectif (resp. bijectif).
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1.3  Soit F' un faisceau en groupes siret ® le champ des torseurs sir de groupeF’ [1,

11 2.3.2]. On dit que(F, f) est cohomologiquement propre relativem&isten dimension< —1
(resp.< 0, resp.< 1) si (@, f) est cohomologiqguement propre relativemarit en dimension
< —1 (resp.< 0, resp.< 1). La condition de proprétcohomologique peut s’expliciter comme
suit.

Proposition 1.3.1 Les notations sont celles de (1.0.1) et (1.0.2). Soit F' un faisceau en groupes
sur X. On désigne par F' (resp. F}, resp. I, etc.), I'image inverse de F' sur X' (resp. sur X1,
resp. sur X1, etc.). Alors les conditions suivantes sont équivalentes :

(i) (F, f) est cohomologiquement propre relativement a S en dimension < —1 (resp. < 0,
resp. < 1).

(ii) Pour tout morphisme S’ — S, pour tout schéma Y; étale au-dessus de Y, et pour tout
torseur P sur X, de groupe Fi, si ' F désigne le groupe tordu de F; par P [1, IT 4.1.2.3],
le morphisme canonique

ao: g (fr.(" 1)) — fL.(7 FY)
est injectif (resp. aq est bijectif et le morphisme canonique
ar: g5 (R f.F) — R fLF'

349 est injectif, resp. ay et a; sont bijectifs).

(ii bis) Pour tout morphisme S’ — S, pour tout schéma Y, étale au-dessus de Y, pour tout torseur
P sur X, de groupe F}, et pour tout torseur R sous © Fy, le morphisme canonique

ao: g; (fiR) — fl.R
est injectif (resp. av est bijectif, resp. les morphismes o et
ar: gi(R' fi.("F)) = R fL("'F))

sont bijectifs).

Démonstration (i) = (ii bis). D’aprés [1, Il 4.2.5] tout torseuR de group€ F; est de la forme
F Fl
R=Q A P°, ol (Q est un torseur de groupg et P° I'oppos deP. On a alorsk’ ~ @)’ A P
Soit ® le champ des torseurs sofiset soientz, y (resp.z’, 3') les objets de la cagorie fibre
(9" f<®)y; (resp.(fi®')y;) assoddsa P, Q (resp.F”’, '). On ala relation
Py

Q N P° ~Homgpg, (P,Q),

et il en resulte que I'on a des isomorphismes canoniques
* LN, oo / /Fll /0
HOmy{($,y>’:g1f1*(Q/\P )’ HomY{(xvy)2f1*<Q NP )
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Par suite le morphisme, s’identifie au morphisme
HomYl’ (Ilﬁ', y) - HOHIY{(‘%Ja y/)’

d'ou il résulte que, 9iF, f) est cohomologiquement propre relativem@&ften dimensior< —1,
ap est injectif et que, SiF, f) est conomologiquement propre en dimension, o, est bijectif.

Supposons maintenant qU£, f) soit cohomologiquement propre relativemen$ en di-
mension< 1, i.e. que le morphisme canonique

©: g f.® — f1O

soit uneéquivalence. Sofif? le faisceau des sous-gerbes maximales du champl, I11 2.1.8] ;

on a alors un isomorphisnieé ~ R' f, F. Commey*G est le faisceau des sous-gerbes maximales
deg* f.® [2, Il 2.1.5.5], le morphismey; est obtenwa partir dep|Y] en prenant les faisceaux
des sous-gerbes maximales, donc est un isomorphisme.

(ii bis) = (ii). Il suffit de montrer que, si les morphismeg sont bijectifs, alors les mor-
phismesa; sont injectifs. Soient’] un sclemaétale au-dessus d¢/, s ett deuxélements de
g*(R' f.F)(Y]) ayant néme image danB' f/F'(Y/) et montrons que I'on @ = t. L'asser-
tion est locale pour la topologietale deY] et, compte tenu de laédinition de I'image inverse
g*(R' f,F), on peut supposer qu€ est image inverse d’un sémay; étale au-dessus déet
ques ett proviennent de torseuid et Q sur.X;. L'hypothése faite sus et¢ signifie alors que les
images inverse$” et )’ de P et @ sur X sont isomorphes localement pour la topologiale
deY/. Sil'on poseR = Homp, (P, Q), le fait que le morphisme

gikfl*R - f{*R/

soit bijectif prouve queP et () sont isomorphes localement pour la topologiale deY;, donc
que l'onas = t.

(ii) = (i). Pour prouver que» est fickle (resp. pleinement fde), il suffit de montrer que, si
Y est un schmaétale sury’, si P, Q sont deux torseurs su¥; de grouper}, siz, y (resp.z’,
y') sont les objets d&y* f. @)y (resp.(f.®')y,) assodésa P, ) (resp.F’, "), le morphisme

a: Hom(z,y) — Hom(2',y)

est injectif (resp. bijectif). Ou s’identifie au morphisme canonique
0/v ! % B 0/’ ¢ / B /0
H(Y), 91/ (Q@ A P%)) — H (Y], f1.(Q" A P7)).

Silon aHom(z,y) # 0, alors@ A P° est un torseur SousF; localement trivial suit; ; il en

F; F;
résulte quefy, (Q A P°) est un torseur soug, (" F), et quey; f1.(Q A P°) est un torseur trivial.
Le morphisme: s’identifie alors au morphisme canonique

H (Y1, 01 f1-("F1)) — HOYY, S (7 FY)).
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!

F
Il en est de r@Bme si l'on aHom(z', y') # () et sia; est injectif car alors)’ A P'° esttrivial, et il
résulte de l'injectivie dea; que P et () sont localement isomorphes sur. On en conclut que,
Si aqg est injectif (resp. siy est bijectif eta; injectif), ¢ est fickle (resp. pleinement fde).

Il restea montrer que, sig et a; sont bijectifs, le foncteup est essentiellement surjectif.
SoientY” un sclemaétale au-dessus d€¢/, X" = X’ xy+ Y et soit P” un torseur sutX” de
groupeF” = F’|X". On va montrer gu’il existe ugléementz de (¢* . ®)y~» dont 'image dans
(fLd")y~ estisomorph@ P”. Soitp” la classe dé””. Du fait quea; est surjectif esulte que I'on
peut trouver un morphisniale surjectify!” — Y”, un morphismeétaleY; — Y tel que 'on ait
un morphism&’” — Y/ et un torseur”; sur X; de groupeF; dont I'image inverse’’ sur X7
soit isomorphe I'image inverse dé””. Utilisant le fait quep est pleinement fiele, on voit que
I'objet 2, de (g* f.®)y» qui correspona P} est muni d’une donge de descente relativement
Y/ — Y”, donc provient d’'urelementz de (¢* f.®)y~». Comme I'image de dans(f;®')y est
P", ceci prouve que est essentiellement surjectif et @vle la &monstration.

Exemple 1.4 Soit f: X — Y un morphisme propre. lésulte de [2, VII 2.2.2] que, pour tout
champ ind-finiF" sur X, le couple(F, f) est cohomologiquement propre (relativemant) en
dimension< 1. En particulier, pour tout faisceau d’ensembles (resp. tout faisceau de groupes,
resp. tout faisceau en groupes ind-fidl)sur X, (F, f) est cohomologiquement propre en di-
mension< 0 (resp. en dimensiog 0, resp. en dimensioq 1).

Remarques 1.5 a) SoitF' un faisceau en groupes siirtel que(F, f) soit cohomologique-
ment propre relativemeiatS en dimension< —1 (resp.< 0). Si I'on considre /' comme
faisceau d’ensemblesF’, f) est cohomologiquement propre relativemartt en dimen-
sion< —1 (resp.< 0), mais la Eciproque est fausse.

Soit par exempl@” le spectre d’'un anneau de valuation diterstrictement local de point
fermét, de point @rériques, f: X — Y un scléma non vide su¥” dont la fibre fernee
est vide,F" un faisceau en groupes constant non trivial’swet P un torseur sous’ tel que
l'on ait H(X,, " F|X,) = 1. Alors (" F, f) est cohomologiquement propre relativement
aY en dimension< —1 lorsque I'on considre” F comme faisceau d’ensembles. Si I'on

conside” F comme faisceau en groupes, on a un isomorphllgor('l‘éF) ~ F'; comme le
morphisme canonique
H (X, F) — H(X,, F|X;) = 1

n'est pas injectif, ceci prouve quéF, f) n'est pas cohomologiquement propre relative-
mentaY en dimension< —1.

b) Supposong coferent (i.e. quasi-compact et quaepae) SoitF un champ surX. Pour
tout point geonetriquey deY”, on noteY’ (resp Y ) le localis strict deY (resp.Y’) eny,
et on poseX = X xy Y, X =X Xy/? etc. Pour quéF, f) soit cohomologiquement
propre relativemera S en dimension< —1 (resp.< 0, resp.< 1), il faut et il suffit que,
pour toutS-sckemas’ et pour tout point gonetriquey deY”, le foncteur canonique

F(X) - F((X)
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d)

)

2)

soit fidele (resp. pleinement fide, resp. unéquivalence).
En effet, siS’ est unS-schema, pour que le foncteur

g fF — [LF

soit fidele (resp. pleinement &de, resp. un@équivalence), il faut et il suffit qu’il en soit
ainsi du foncteur induit sur les fibres aux éifénts points gonetriquesy’ de Y [2, I
2.1.5.9]. L'assertiongsulte donc du calcul des fibresgrétriques de I'image directe d’'un
champ par un morphisme catent [2, VII 2.1.5].

Soit F' un champ suX. Le fait que(F, f) soit cohomologiquement propre relativemant
S en dimension< —1 (resp.< 0, resp.< 1) est local sui” pour la topologietale.

Soit S’ un S-sctéma,F’ I'image inverse d& sur X'’ (cf. (1.0.1)). Si(F, f) est cohomolo-
giguement propre relativemeats en dimensiorg 1, il en est de rame degF”, f). Mais,
si (F, f) est cohomologiquement propre relativema&isten dimension< —1 (resp.< 0),
il N’en est pas acessairement dedme de £, f/).

Soit par exemples” un anneau de valuation diste, f': Es» — S’ I'espace affine au-
dessus dé&’, x un point ferné deFs au-dessus du poinégérique deS’ et F” le faisceau
d’ensembles suEs: dont la restrictiord Es: — {x} est le faisceau constaatunélement et
dont la fibre en un point&pmnétrique au-dessus dea deuxélements. Alorg F’, f') n'est
pas cohomologiquement propre relativem&it en dimension< —1. SoientS = S’[Z],
f: Es — S I'espace affine suf et T une partie ferrae deX = FEg qui ne rencontre
par le ferne Z = 0 et telle quef(T") contienne le point grérique deS. SoientG 'image
inverse deF” sur X et F' le faisceau suX obtenu en prolongeaiit| X — 7T par le vide.
Alors (F, f) est cohomologiqguement propre relativemasten dimension< —1, mais il
n'en est plus de Bme apeés le changement de baSe— S défini parZ = 0.
Soit £ un champ suiX tel que(F, f) soit conomologiquement propre relativemerit’
en dimension< —1 (resp.< 0, resp.< 1). Alors, pour tout point gonetriquey deY, le
foncteur canonique

(feF)y — F(Xy)

est fickle (resp. pleinement fdie, resp. unéquivalence de cagories).

Proposition 1.6 Soient f: X — Y etg: Y — Z deux S-morphismes, ® un champ sur X .

Supposons que (P, f) et (f.P, g) soient cohomologiquement propres relativement a S en
dimension < —1 (resp. < 0, resp. < 1). Alors il en est de méme de (P, gf).

Supposons que (P, gf) soit cohomologiquement propre relativement a S en dimension
< —1 (resp. que (P, gf) soit cohomologiquement propre relativement a S en dimension
< 0 et (P, f) cohomologiquement propre relativement a S en dimension < —1, resp.
que (®, gf) soit cohomologiquement propre relativement a S en dimension < 1 et (®, f)
cohomologiquement propre relativement a S en dimension < 0). Alors (f.®,g) est co-
homologiquement propre relativement a S en dimension < —1 (resp. en dimension < 0,
resp. en dimension < 1).
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Pour tout S-sctema S’, on consiére le diagramme suivant, dont tous les earsont
carésiens :

(1.6.1) X' Y’

>

<=
~

Eod
Dl

3
<5

nN<—-=U

le morphisme canonique
m*(g*f*q)) - gif;(h*q))
s’identifie au compdsdes morphismes canoniques

m* (g fo®) — g (k* £.8) — = g_ ! (h* D).

1) L'hypothese entrme que: et j sont fickles (resp. pleinement fites, resp. deéquiva-
lences); il en est donc deagme deyji.

2) L'hypothese entrime queji est fickle (resp. qugi est pleinement fiele et; fidele, resp.
gue ji est uneéquivalence ef pleinement figle); il en esulte quei est fickle (resp.
pleinement figle, resp. unéquivalence).

Corollaire 1.7 Soient f: X — Y et g: Y — Z deux S-morphismes, et soit F' un faisceau
en groupes sur X . Supposons que (F, gf) soit cohomologiquement propre relativement a S en
dimension < —1 (resp. que (F, gf) soit cohomologiquement propre relativement a S en dimen-
sion < 0 et que (F, f) soit cohomologiquement propre relativement & S en dimension < —1).
Alors (f.F,g) est cohomologiquement propre relativement 4 S en dimension < —1 (resp. en
dimension < 0).

Reprenons les notations de (1.6.1) et, pour touéstwl’; étale au-dessus dé, notonsf;,
Fi les images inverses respectivesfje' par le morphismé&; — Y. Soient® le champ des
torseurs soug’ et U le champ des torseurs sofig”’. On a un foncteur canonique

p: U — f,P,

obtenu en associaattout scemay; étale surY” eta tout torseur” surY; de groupefi.F; le
torseurP surX; deduit def; P par I'extension du groupe structurfl f,.Fy — Fi. Le foncteur
o est pleinement fidle. En effet, siP et () sont deux torseurs si¥f; de groupef;, F;, on a un
morphisme canonique o

Isomfl*Fl (P7 Q) - fl*(IsomFl (P7 Q))

qui est un isomorphisme car il en est ainsi localement. Oréenitique le morphisme canonique
Isomy, m (P, Q) — Isomp, (P,Q)

est un isomorphisme, donc queest pleinement fiele.
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On a un diagramme commutatif

gk m*(g. V)
gik*(wl lm*g* ()
g;k*(f*q)> > m* (g*f*q))

ou i et j sont les morphismes de changement de baseslilte de 1.6 2) qugest fickle (resp.
pleinement figle). Commey,k*(¢) etm*g. () sont pleinement fieles, on éduit du diagramme
ci-dessus quéest fickle (resp. pleinement fide).

Corollaire 1.8 Soient f: X — Y un S-morphisme cohérent, g: Y — Z un S-morphisme
propre, ® un champ ind-fini sur X [2, VII 2.2.1]. Supposons que (P, f) soit cohomologiquement
propre relativement a S en dimension < —1 (resp. < 0, resp. < 1), alors il en est de méme de

(®,9f).

Commef est colerent, f,® est un champ ind-fini (SGA 4 1X 1.6 (ii)). Le corollairésulte
doncde 1l.61)etl.4.

Corollaire 1.9 Soient f: X — Y un S-morphisme entier, g: Y — Z un S-morphisme. Si F' est
un faisceau d’ensembles sur X, pour que (f.F, g) soit cohomologiquement propre relativement
a S en dimension < —1 (resp. < 0), il faut et il suffit qu’il en soit ainsi de (F, gf). Si F' est un
faisceau en groupes sur X, pour que (f.F, g) soit cohomologiquement propre relativement a S
en dimension < —1 (resp. < 0, resp. < 1), il faut et il suffit qu’il en soit ainsi de (F’, g f).

L'assertion relative au cas d’un faisceau d’ensemliéssite de 1.6 et du fait que", f) est
cohomologiquement propre relativemerff en dimensionr< 0. SoientF' un faisceau en groupes
sur X et ® le champ des torseurs soiis D’apres SGA 4 VIl 5.8, tout torseur sous est
localement trivial suy”. Il en résulte que le chamjf,® estéquivalent au champ des torseurs
sousf, F', I'équivalenceetant obtenue en associantout sckmay; étale surt” eta tout torseur
P surX; = X xy Y; de groupeF'|X; le torseurf.P de groupef.F|Y;. Comme(F, f) est
cohomologiquement propre relativemerff en dimensiorg 1, le corollaire Esulte donc de 1.6.

Définitions 1.10

1.10.1 Soit £ une caégorie et consigrons un diagramme

p1
p >
d——D, —Z Py,
p2

ou ¢, ¢,, &, sont des cagories fibees au-dessus dé et les feches des morphismes de
cagégories fibees, et soit
a: p1p — P2p
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un isomorphisme de foncteurs.
On dit que le diagramme ci-dessus est exact si la condition suivante est satisfaite

a) Pour tout couple d'objets, y de ® et tout morphisme’: p(z) — p(y) tel que I'on ait
p1(f) = p2(f) (p1p etpop etant identifes ghceaa), il existe un unique morphisme = — y tel

que l'on aitp(g) = f.

1.10.2 Consicerons le diagramme

p23

P _n_ P31
¢—>@1T>@2p:§@3,
2 12

358 oud, d;, 1 < i < 3, sontdes c&gories fibees sulr et les feches des morphismes deamtries
fibrees. Supposons doesdes isomorphismes de foncteurs

a: pip = D2p
a1 P31P2 = P12P1, A2 P12P2 = P23P1, A3 P23P2 = P31pP1

tels que le diagramme suivant soit commutatif :

P23p1p da_ P23p2p le> ba1p1p .

ag.idT lid.a

P12DP2P <—— P12P1P <—— P31P2p
id.a aq.id

On Identlfleplp etpap, p31p2 €tprapy, ete.

On dit que le diagramme ci-dessus est exact si les conditions suivantes sont satisfaites :
a) Analoguea la condition a) de 1.10.1.
b) Pour tout objet:; de ®, et pour tout isomorphisme: p;(z;) — p»(z;) tel que I'on ait

(1.10.2.1) pos(u)ps1(u) = pra(u)~,

il existe un objet: de ® tel que I'on ait un isomorphisme p(z) = z; rendant commutatif
le diagramme

(1.10.2.2) pip(x) p2p(x)

p1(4) l lpz (4)

pi(x1) —=>p2(21)

1.10.3 On cfinit de faconévidente la notion de morphisme de diagrammes exacts de
cakgories fibees au-dessus d’'une egorieF.
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1.10.4 Nous utiliserons en particulier la notion de diagramme exact dans lelcAsest un
site et®, ¢;, 1 <7 < 3, des champs sur.

Soientf: £ — E’ un morphisme de sites et

P23

P1 s
(1.10.4.1) o= 0y T2 By 2 Dy
p2 P12

un diagramme exact de champs &urOn obtient par image directe un diagramme
f*CI’ - f*‘I)l - f*q)z E;) f*(I’?)
qui estévidemment exact.
Sih: E" — E estun morphisme de sites, on a deme un diagramme exact

P Py %

W ——h"® —Zh* 0y —x h™ 3
D2 P12

Veérifions d’abord la condition a) de 1.10.2. Soidfit un objet deE”, =" ety” deux objets
de (h*®)rn, Y ety leurs images respectives daiisb, etz], v, leurs images dans'®,. Soit
uf: ] — y{ un morphisme tel que I'on ajt/ (u) = pf(u!) et prouvons que! provient d'un
unigue morphisme”: = — y”. La questiorétant locale suf™, on peut supposer qu’on a un
objet F} de E/, un morphisme dé” dans I'image inverséy’ de F parh, des objets;, y de ®p,
dont les images inverses skif sontz” ety”. Soientxy, y; (resp.xs, y2) les images de, y dans
¥, (resp.®,). On peut supposer qué provient d’'un morphisme, : z; — v, tel que I'on ait
p1(u1) = pa(uqp). Vu I'exactitude de (1.10.4.1), on obtient un uniqgue morphisme — y dont
'image inverse pah est le morphisme” chercte.

La condition b) de 1.10.2 seévifie de fagcon analogue. Soienf un objet de(h*®,) g,

u”: pl(2]) — ph(«]) un morphisme satisfaisaatia relation
P (u")ps; (u”) = pla(u”) 7,

et prouvons qu’il existe un objet’ de (h*®)r~» et un isomorphisme’: p”(z") ~ x7 rendant
commutatif un diagramme analogag1.10.2.2). Comme la question est locale Bly on peut
supposer qu’on a un objdf;, un morphismeF” — F' comme ci-dessus, et un objet de
(®1)r, dont 'image inverse dang*®,)» estz]. De méme on peut supposer qué provient
d'un morphismeu: p;(x;) — po(x;) satisfaisant (1.10.2.2). L'existence d’'un objetde ¢,
dont I'image inverse pdr soit unélément:” repondané la question,@sulte alors de I'exactitude
de (1.10.4.1).

Exemples 1.11 1) Soit f: X; — X unmorphisme de descenpeur la caégorie des fais-
ceauxétales sur des sémas variables (par exemple un morphisme universellement sub-
mersif (SGA 4 VIII 9.3)). SoienfX; = X; xx X1, g: Xy — X la projection canonique et

254



361

part 72

362

X1

2)

F un faisceau d’ensembles skir. Il résulte alors de loc. cit. que I'on a une suite exacte de
faisceaux d’ensembles

(1.11.1) F——>f.f*F—= g.¢*F .

Si ¢ est le champ en cagiories dis@tes assoéia F' et &5 le champ final surX, i.e. le
champ dont toutes les fibres soaduitesa un seuklement ayant pour seul morphisme le
morphisme identique, dire que la suite (1.11.1) est exacte rexidime qu’il en est ainsi
du diagramme de champs

@Hf*f*@ﬁg*g*@:;q):;.

Soit f: X; — X un morphisme de descente effectppeur la cakgorie des faisceaux
étales sur des sémas variables (par exemple un morphisme propre surjectif, ou un mor-
phisme entier surjectif, ou un morphismediedment plat localement degsentation fi-

nie (SGA 4 VIl 9.4)). SoientX, = X; xx X1, g: Xo — X la projection canonique,

X3 = X7 xx X7 xx X1, h: X3 — X le morphisme canonique. Soiebtun champ sur

X, 0, = f,f*D, Py = g,g" D, P3 = h,~h*P. On a alors un diagramme exact

S —— 0 TPy —— P,

ou les feches sont les morphismes canoniques aSs@eix projections.

Consicerons en effetb comme un champ sur la é@gorieSchy des scemas au-dessus
de X, munie de la topologi&tale. Alors, d’apgs [2, VII 2.2.8],® est aussi un champ
pour la topologie la plus fine sifichx pour laquelle les morphismes couvrants sont les
morphismes de descente effective pour l&gatie des faisceawdtales. L'exactitude du
diagramme ci-dessus e@sulte aussit.

Proposition 1.12 Soient S un schéma, f: X — Y un S-morphisme.

1

2)

Soit
O ——P —Z Py

un diagramme exact de champs sur X. Supposons que (1, f) soit cohomologiquement
propre relativement a S en dimension < 0 et que (®,, f) soit cohomologiquement propre
relativement a S en dimension < —1. Alors (®, f) est cohomologiquement propre relati-
vement a S en dimension < 0.
Soit

O—P T Dy E o3
un diagramme exact de champs sur X. Supposons que (P, f) soit cohomologiquement
propre relativement a S en dimension < 1, que (®, f) soit cohomologiquement propre
relativement a S en dimension < 0 et que (3, ) soit cohomologiquement propre a S
en dimension < —1. Alors (®, f) est cohomologiquement propre relativement 4 S en
dimension < 1.
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Pour toutS-scltemas’, on consi@re le diagramme commutatif suivant dont tous lesésarr
sont carésiens :
X/ f, S Y/ S S/

R

X—Y——5

Démontrons 2), la @monstration de 1&tant analogue. Comme les foncteurs image directe
et image inverse transforment diagramme exact de champs en diagramme exact (1.10.4), on a le
morphisme de diagrammes exacts de champs suivant :

™ * —>7r1 * > %
G f®——g" [, &1 —Z g [i P —= 9" [ Ps3 .

‘| ol : | |

fih*® —— fIh*®) ——Z fIh*®y ——= fIh* Dy

Par hypotlesep; est uneequivalence de cagoriesp, est pleinement fiele ety; fidele. 1l resulte
donc du diagramme predent quer est uneequivalence.

Proposition 1.13 Soit f: X — Y un S-morphisme.
1) Soit
un diagramme exact de faisceaux d’ensembles sur X . Supposons que (G, f) soit cohomo-
logiquement propre relativement a S en dimension < 0 et que (H, f) soit cohomologique-
ment propre relativement a S en dimension < —1. Alors (F, f) est cohomologiquement
363 propre relativement a .S en dimension < 0.

2) Soit F — G un monomorphisme de faisceaux en groupes sur X. Si Y; est un schéma
étale sur Y, on pose X; = Y; Xy X, et on note f, (resp. Fi, resp. G1) I’image inverse
de f (resp. F, resp. G) sur'Y; (cf. 1.0.2). Supposons que (G, f) soit cohomologiquement
propre relativement a S en dimension < 0 (resp. en dimension < 1) et que, pour tout
schéma Y étale sur'Y et pour tout torseur () sous G, (Q)/Fy, f1) soit cohomologiquement
propre relativement a S en dimension < —1 (resp. en dimension < 0). Alors (F) f) est
cohomologiquement propre relativement a S en dimension < 0 (resp. en dimension < 1).

3) Soit F — G un monomorphisme de faisceaux en groupes sur X . Supposons que (F )
soit cohomologiquement propre relativement a S en dimension < 1 et que (G, f) soit
cohomologiquement propre relativement a S en dimension < 0. Alors, pour tout torseur ()
sous G, (Q/F, f) est cohomologiquement propre relativement a S en dimension < 0.

Démonstration.
1) Soitd (resp.®,, resp.®,) le champ en cégories dis@tes assoéia F' (resp.G, resp.H)
et soitd; le champ final suX'. On a alors un diagramme exact

q>—>®1*>(1)2—>q>3.
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Par hypotese(®,, f) est cohomologiquement propre relativemarst en dimensiorg 1
et(®d,, f) estcohomologiquement propre relativemgften dimensior< 0 (1.2). Comme
(®3, f) estevidemment cohomologiquement propre relativengefien dimensior< —1,
il résulte de 1.12 quib, f) est cohomologiquement propre relativem&sten dimension
< 1, 1.e. que(F, f) est cohomologiquement propre relativemaisten dimensiong 0.

Montrons d’abord que, i, f) est cohomologiquement propre relativemartt en di-
mension< 0 et si les(Q/Fi, fi1) sont cohomologiquement propres relativemait en
dimension< —1, alors(F, f) est cohomologiquement propre relativemaist en dimen-
sion< 0. D’apres 1.3.1 il suffit de prouver que, pour tout éoeY; étale au-dessus dé

et pour tout torseuP sur X, de groupeFy, (Y Fy, f,) est cohomologiquement propre rela-
tivementa S en dimensior< 0 quand on consigre” F; comme un faisceau d’ensembles,
et que le morphisme canonique

d: ¢*(R' f,F) — R' fLF’

est injectif. La premére assertionésulte ausditt de 1) car, si()Q désigne le torseur
déduit de P par l'extensionf; — (5 du groupe structural, on a un isomorphisme
G /PR S Q.

Montrons qued est injectif. Il suffit de prouver que, &i; est un scemaétale au-dessus
deY, si P et P sont deux torseurs soug dont les images inversds et P’ sur X sont
isomorphes, alors, quitt faire une extensioatale surjective d&;, P et P deviennent
isomorphes. Choisissons un isomorphisphe?’ = P’. SoientQ (resp.(Q) le torseur
deduit deP (resp.P) par I'extension du groupe structurj — G,. Les images inverses
Q' (resp.Q’) de (resp.Q) sur X} se ceduisent de”’ (resp.P’) par extension du groupe
structuralF! — G ; soit¢’: @ = Q' lisomorphisme que I'on obtient de &mea partir
dep’. Comme(G, f) est cohomologiquement propre relativemaist en dimensiorng 0,
on peut supposer, qwtfaefalre une extensiogtale surjective d&}, queq’ est I'image d’'un
isomorphisme;: Q = Q. Au torseurP (resp. P) est assoée une section de )/ Fy
(resp. une section deQ/Fl) et, pour queP et P soient isomorphes, il faut et il suffit que
I'on ait un isomorphisme) = Q tel que I'isomorphisme

e: H'(X1,Q/Fy) — H(X,, Q/F)

qu’on en eéduit, transforme: enz. On prend I'isomorphisme. Les sectiong(z) etz de
H°(X,,Q/F,) ont meme image danH(X!,Q'/F}). Comme(Q/F}, f1) est cohomolo-
giguement propre relativemeatS en dimension< —1, quittea faire une extensioétale
surjective déev;, on a biere(z) = Z, ce qui montre I'injectivie ded.

Pour achever la@monstration, il resta prouver que, siG, f) est cohomologiquement
propre relativemera S en dimensiork 1, et si, pour tout sodmay; étale au-dessus dé

et tout torseury sur X, de groupef, (Q/Fi, f1) est cohomologiqguement propre relative-
menta .S en dimensior< 0, alors le morphismé est surjectif. SoienP’ un torseur suX’

de groupéely, @' le torseur sousr; obtenua partir deP’ par extension du groupe structu-
ral. La donrée deP’ estéquivalente celle deR’ et d’'une section’ de H (X, Q'/F)). Il
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résulte alors de la surjecti@tdu morphisme
g’ (R £.G) = R fIG'

que, quittea faire une extensiogtale surjective d&7, il existe un torseu€) sousG,, dont
I'image inverse sutX; est isomorphe ()'. Utilisant le fait que(Q/F}, f1) est cohomo-
logiquement propre relativemeatS en dimension< 0, on peut de rdme supposer qu'il
existe unelementr deH°( X, Q/F;) dont I'image dansi®( X}, Q'/F}) est2’. La donrée
de @ et dex détermine un torseuP sousty, dont I'image inverse suk’; estisomorph&
P’, ce qui &montre la surjectivit ded.

Montrons que(@Q/F, f) est cohomologiquement propre relativemant en dimension
< —1, i.e. que, pour toutS-sckema.s’, pour tout sckmay; étale au-dessus dg, si
x, T sont deuxélements de1’( Xy, Q,/F;) dont les images’, ¥’ dansH° (X, Q}/F})
sontégales, alors, aps extension surjective dg, on ax = 7. A x (resp.z) est assoé
un torseurP (resp.P) sousF}, tel queQ; se deduise deP (resp.P) par I'extension
Fy — G du groupe structural. De la relatiah = &’ résulte que I'on a un isomorphisme
u': P' 5 P tel que lisomorphisme induit sup, par«’ soit lidentite. Comme(F, f) est
cohomologiquement propre relativemeén$ en dimension< 0, on en @duit que, aps
extensiorétale surjective d&;, on a un isomorphisme: P — P relevantu’; le fait que
(G, f) soit cohnomologiquement propre relativemarst en dimension< —1 entrdne alors
que 'on ax = 7.

Montrons que(Q/F, f) est cohomologiquement propre relativemant en dimension
< 0. SoientY” un sctemaétale suiv” etz” un élement deH’(X”, Q" /F"). A z” est as-
sock un torseurP” sur X" de groupeF”. Comme(F, f) est cohomologiquement propre
relativementa S en dimension< 1, on peut trouver des morphismégales surjectifs
Y/ — Y"etY, — Y, tels que 'on ait un morphismg&” — Y/, et un torseurP sur
X, de groupeF; dont 'image inverse suX; soit isomorphex I'image inverse de””. Il
résulte alors du fait qu&~, f) est cohomologiquement propre relativem&isten dimen-
sion< 0 que I'on peut nBme choisify}” etY; tels que le torseuré&tiuit deP par extension
du groupe structural; — G, soit isomorphea (), ; il corresponda P un élémentx de
H°(X1, Q/F), dont 'image dans$l®( X7, QY/F}') estisomorpha I'image inverse de”,
ce qui ackeve la &monstration.

Proposition 1.14 Soient f: X — S un S-schéma, F' un faisceau d’ensembles ou de groupes
sur X (resp. un faisceau de ind-IL-groupes, ou L est un ensemble de nombres premiers). Sup-
posons F' localement constant, (F, f) cohomologiquement propre en dimension < 0 (resp. en
dimension < 1) et f localement 0-acyclique (resp. localement 1-asphérique pour L) (SGA 4 XV
1.11). Alors, pour toute spécialisation 5, — S, de points géométriques de S, le morphisme de
spécialisation (SGA 4 VIII 7.1)

ao: (feF)s, — (ful)s,

est un isomorphisme, et, si F' est un faisceau en groupes, le morphisme

ap: (Rl foF)s, — (Rl feF)s,
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est injectif (resp. les morphismes ag et a; sont des isomorphismes).

La demonstration s’obtient en recopiant natmot celle de SGA 4 XVI 2.3, mais en y
remplacant I'expression “propre” par I'expression “cohomologiquement propre”.

Corollaire 1.15 Soient f: X — S un morphisme, ® un champ sur X, L un ensemble de
nombres premiers. Supposons que, pour tout schéma X, étale sur X et pour tout couple d’objets
x,y de Oy, , le faisceau Homy, (z,y) soit localement constant, que le faisceau Auty, (z) soit
un ind-L-groupe localement constant, et que le faisceau des sous-gerbes maximales S® de ®
[1 III 2.1.7] soit localement constant. Supposons que (P, f) soit cohomologiquement propre en
dimension < 1 et que f soit localement 1-asphérique pour IL. Alors, pour toute spécialisation
51 — 59 de points géométriques de S, le morphisme de spécialisation

a: (f*(I))gg - (f*q))?1

est une équivalence de catégories.

SoientS; (resp.Ss) le localig strict deS ens; (resp. le localig strict deS en’s,), X5, @,
(resp.X,, ®,) les images inverses d€,, ®, surS; (resp. deX;, ®; sur.S;) et consi@rons le
carié carésien

On doit montrer que le foncteur
(2n 62(72) - 61(71)

est unetquivalence. Le foncteus est pleinement fiele ; soient en en effet, y deux objets de
(®2)%, ; le morphisme canonique

Homy, (z,y) — Homg, (¢(), ¢(y))
s’identifie au morphisme canonique
H’(X,, Homy, (z,y)) — H°(X 1, h*(Homy, (z,y)).
Ce morphisme est un isomorphisme degpd.14.

Montrons_quego est uneéquivalence. Soient; un objet de@l(yl) et G; la sous-gerbe
maximale deP; engendee parr;. Le morphisme

H(Xy, S®y) — HY (X, h*(S®,)) = HY(X 1, SP1)

est bijectif, et il existe donc une sous-gerbe maxintalele ®, telle queh* G, soit isomorpheé
G . Il suffit alors de prouver que le foncteur

G2 — h*h*GQ
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est unezquivalence. Mais, sous cette forme, la question est locale pour la topétatgiesury .
On peut donc supposer qag est une gerbe de torseurs sous le groupe des automorphismes d’un
objet de(3,, cas ai I'assertion esulte de 1.14.

Corollaire 1.16 Les hypotheses sont celles de 1.14. Sil’on suppose de plus que F' est un faisceau
d’ensembles (resp. de ind-L-groupes) et que f,F (resp. R' f,F) est constructible, alors f,F
(resp. R' f,F) est localement constant.

Le corollaire Esulte de 1.14 gicea SGA 41X 2.11.

Remarque 1.17 Rappelons que la conditiohlocalemenb-acyclique est satisfaite giest plat

a fibres géparablesX etY localement noettriens (SGA 4 XV 4.1), et que la conditighloca-
369 lementl-asplerique pouil est satisfaite sf est lisse]L étant I'ensemble des nombres premiers

distincts des caragtistiques esiduelles d&5 (SGA 4 XV 2.1).

2 Un cas particulier de propreté cohomologique : diviseursa
croisements normaux relatifs

2.0 SoientR un anneau de valuation digte de corps des fractioris et L une K-algebre
etale ;L est alors produit direct d’'un nombre fini de cofps ou L; est une extensiogtale dek .
Si L, désigne I'extension galoisienne engeeelparl; dans une dture alg@brique del;, on dit
queL estmocerément ramikesur R silesL sont des extensions me@@ment ramiees au sens
de X 3, i.e. siun groupe d'inertig de L| K est d’ordre premiea la caracristique esiduellep
deR.

On sait quel; est en tous cas extension d’un groupe cyclique d’ordre pregmigrar unp-
groupe. (Celagsulte de [5 ch.lV prop.7 cor.4] lorsque I'extensi@siduelle deR est €parable.
La déemonstration dorge dans loc. cit. &tend au caséyéral de la facon suivante. Reprenons
les hypotlgses et les notations de loc. cit. mais sans supposer I'extergsimuelle éparable.
Soit H; le sous-groupe du groupe d’inertig, ensemble deslémentss de G, tels que I'on ait
sm/m € U' pour toute uniformisante de A;. On \érifie alors que&,/H; est un groupe d’'ordre
premiera p et que, pouri > 1, les H'/H"*! sont desp-groupes, d'a 'on déduit le esultat
annone.)

2.0.1 Dans le cas b R est strictement local, on a la caragsation simple suivante : & -
algebre L est mo@rément ramife surR si et seulement si led; : K| sont premiers p. De
plus, siL est mo@ément ramige surR, les L; sont des extensions cycliques #e En effet,
370 lorsqueR est strictement local]; estégal au groupe de Galois de sur K. Comme on vient
de le rappeler; est extension d’'un groupe cyclique d’ordre prengigerpar unp-groupe. Sil'on
suppose.; mocerement rami®e surR, I; est alors un groupe cyclique d’ordre prenaer. Il en
résulte queL; : K| est premie@ap et que I'on aL; = L.. Inversement, siL; : K| est premier
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ap, I; ne peut contenir de-sous-groupe distingunon trivial ; I; est donc un groupe cyclique
d’ordre premie’ p, ce qui prouve qué,; est mo@rement ramige surk.

2.0.2 SoientR un anneau de valuation digte de corps des fractiors, L une K-algebre
étale, et soienR? un locali€ strict deR, K son corps de fractiond, = L @ K. Alors, pour
que L soit mocerément ramifee surR, il faut et il suffit queL soit moderément ramifee surR.
On se ramne en effet au casid. est un corps. Soient alofs= [, L;, ol lesL; sont des corps
extensions dé ; si L’ est I'extension galoisienne engeadrmarl, et, siL’ = L' ®x K, on a de
méme une dcomposition dd’ en produit de corpd,’ = Hj f;. et chaque’; est sous-extension
d’au moins I'un desf;. Commel’ est une extension galoisienneﬁelesf; sont des extensions
galoisiennes dé¢. Supposond. moderement ramifee surRk ; comme le groupe de Galois de
f;\K estisomorphe au groupe d'inertie 88K, les L, sont aussi mogfément ramifées surr,
et il en est donc de éme ded.;. Inversement, supposordsmocderement ramifee surk. Pour
chaquej, soitv; la valuation disagte def;. qui prolonge la valuation dé& et notons encore
v; la valuation induite sut,’. Quand; varie, v; parcourt 'ensemble des valuations fequi
prolongent la valuation d&". SoientG = Gal(L'|K), H = Gal(L'|L), I; le groupe d'inertie de
L'|K enw;, J; le groupe d'inertie dé.’|L env;. Le groupel; est extension d’un groupe cyclique
d’ordre premiep par unp-groupeP;. Comme le<.; sont mo@rément ramiies surz, 1;/J;
est d’ordre premieg p, donc on aP; C J;. Par suite le groupé! contient tous les?; donc
aussi le groupe” engende par lesP; pour j variable. Mais le groupé est invariant dans:
car un automorphisme iatieur deG transforme led; entre eux donc aussi l&3; entre eux.
Il en résulte queP est un sous-groupe dé distingle dans, donc, puisqud.’ est I'extension
galoisienne engenée parL, que I'on aP = 1, ce qui prouve qué est mo@rement ramifee
surR.

Soient plus gréralement? — R’ un morphisme d’anneaux de valuation dedertel que
'image d’une uniformisante de R soit une uniformisante’ de iR’ et que I'extensionésiduelle
k(R') soit une extensionégparable deé:(R). SoientK le corps des fractions dB, K’ le corps
des fractions d€?’, L une K -algebreétale,l’ = L ®x K'. Alors, pour quel. soit mocerément
ramifiee surR, il faut et il suffit queL’ soit moderement ramie surk’. On peut en effet supposer
R et R’ strictement locaux. D’ags 2.0.1 il suffit de prouver que, lorsqtieest un corps, il en est
de méme del’. SoientR le normali€ deR dansL, 7 une uniformisante d&, R’ = R ®x R/.
Lextensionk(R)|k(R) étant radicielle et I'extensioh(R')|k(R) étale,k(R) ®xr) k(R') estun
corps [EGA IV 4.3.2 et 4.3.5]. Ceci prouve gikéest un anneau local, et, commea pour image
7’ dansR’, on ak(R') = R'/(#); par suiteR’ est un anneau de valuation distz [5, ch.I§2
prop. 2] doncl’ est un corps.

2.0.3 Par Eduction au cas strictement local, on voit qu'une soustalg d’'une algbre
moderement ramie est modement ramie, que le produit tensoriel de deux ebges
moderement ramifees est maglément rami®, qu’'une al@bre moérement ramige le reste
apres extension de I'anneau de valuation déer qu’une algbre qui devient magément ra-
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part 74 mifiée apeés une extension méement ramifee est modrement ramite.
372

2.1 SoientX un S-sckema,D un diviseur> 0 sur X. Rappelons (SGA 5 Il 4.2) qu’on dit
queD est strictemeni croisements normaux relativemens s'il existe une famille fini€ f;);cr
d’éléments dd’(X, Ox), telle que l'on aitD = . _, div(f;) et que la condition suivante soit
realige :

2.1.0 Pour tout point: deSupp D, X est lisse suf enz, et, si 'on notel (x) 'ensemble des
i € I tels quef;(z) = 0, le sous-sc@maV/ (( fi):cr(»)) st lisse sus de codimensiorard./(x)
dansX.

Le diviseurD est dita croisements normaux relativementS si, localement suX pour la
topologieétale, il est strictemerit croisements normaux.

Soit D un diviseura croisements normaux relativementS. On poseY = Supp D,
U= X-Y,etonnotei: U — X l'immersion canonique. Pour tout poinégnetriques
de S et pour tout point maxima} de la fibre @oneétriqueYs, 'anneauRk = Ox_,, est un anneau
de valuation diséte.

Dans la suite de ce nuwro, nous utiliserons la&dinition technique suivante :

Définition 2.1.1 Soit F' un faisceau d’ensembles sur U. On dit que F' est moderement ramif sur
X (lelong deD) relativement S si, pour tout point géométrique s de S, la condition suivante
est satisfaite :

Pour tout point maximal y de Y5, la restriction de F' au corps des fractions K de Ox._ est
représentable par le spectre d’une K -algebre étale L, modérément ramifiée sur Ox_ .

Le plus souvent, quand il ne pourra dsulter de confusion, nous omettrons la mention de
373 D dans la terminologie.

Définition 2.1.2 Si F' est un faisceau en groupes sur U, modérément ramifié sur X relativement
a S, on désigne par
Hy (U, F)

le sous-ensemble de H (U, F) formé des classes de torseurs sour F' qui sont modérément ramifiés
sur X relativement a S.

Soit U*l>X

|7

T

un diagramme commutatif de S-schémas, avec i comme dans 2.1 ; on désigne par

R,} g F
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le faisceau sur T associé au préfaisceau T' — H}(U', F), ou T’ parcourt les schémas étales
au-dessusde T etou U’ = U xp 1" ; Rt1 g+ F' est un sous-faisceau de R! g.F.

Notons que, si g est cohérent, si t est un point géométrique de T', T le localisé strict de T en
t,U = U x7 T, on a un isomorphisme

(2.1.2.1) (R} ¢.F); ~H\(U,F)

2.1.3 Soit C((U, X)/S) ou simplementC; la cagégorie des redtementsétales del/ qui
sont mo@rement ramifes surX relativementa S. Supposond/ connexe et soit. un point
geonetrique del/. SoitT'; le foncteur qui,a un retementetaleU’ de U moderement ramif
sur X relativementa S fait correspondre I'ensemble des poinogetriques ddJ’ au-dessus
dea. De 2.0 Esulte que le coupl@”;, I';) satisfait aux axiomesd;) a (G¢) de V.4. Par suité’,
374 est repeésentable par un pro-objet qu’'on appeledé€tement universel mékement ramié de
(U, X) relativementa S ponctie ena. Le groupe oppdsau groupe de§-automorphismes du
revetement universel m@&mkement ramif est appé le groupe fondamental méement rami
et noé
I} ((U, X) /S, a) ou simplementT} (U, a) ou memell} (U).

C’estévidemment un quotient du groupe fondamehtglU, a) (V.6.9).

2.1.4  SoientF un faisceau en groupes duir P un torseu droite de groupé’, (Q un torseur
a gauche de group€, et supposong et() mocerément ramifes surX relativement.S. Alors il

F .
en est de rame deP A (). On se rarane en effed montrer que, sk est un anneau de valuation
discrete de corps des fractiors et si ' est un schma en groupestale fini surk’, et, siP et

. . - F
@ sont deux torseurs sous moderement ramifes surR, alors il en est de Bme deP A Q.

F
OrT = P A @ estun quotient dé x x Q. Si L, M, N désignent led{-algebres repsentant
respectivement’, P, (), alorsL est une sous-adtpre deM @ N, etil résulte de 2.0.3 qué est
moderément ramige surk.

On céduit de ce qui reede que, sk est un faisceau en groupes slet s'il existe un torseur
de groupeF’, moderement ramife surX relativement S, alorsF est mo@ément ramig surX
relativement S. En effet le torseuP° oppo® deP est mo@&rément rami® surX relativement
a s, puisqu'il est isomorpha P en tant que faisceau d’ensembles? i est le groupe tordu de
F par P, on a un isomorphisme

PR
F~P° AP
et par suiteF’ est mo@rement ramif surX relativementa S.

On voit comme pecddemment que, i — F’ est un morphisme de faisceaux en groupes sur
U, mocerement ramifes surX relativement S, et siP est un torseur sous mocerement ramife
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sur X relativementa S, alors le torseur”’ déduit de P par I'extension du groupe structural
F — F’ est mo@rément ramif surX relativemeng S.

En particulier le morphisme canonique
HY(U, F) — H'(U, F)
donne par restrictioa H; (U, F') un morphisme canonique

HN(U,F) — H\(U, F)

2.1.5 SoientS” — S un morphisme et notons’ (resp.X’, etc.) I'image inverse d& (resp.
X, etc.) surs’. Si F' est un faisceau d’ensembles sumoderément rami surX relativemeng
S, il résulte de la dfinition 2.1.1 et de 2.0.3 quE’ est mo@rément ramif surX’ relativement
as’.

Si maintenantt’ est un faisceau en groupes gurl'image inverse sus’ d’un torseur sous
F moderement rami® surX relativementi S est un torseur sous’ moderement ramii surX’
relativement S’. En particulier on a un foncteur canonique

(2.1.5.1) C,((U,X)/S) — C((U', X")/S").

Supposong/ et U’ connexes et soiemtun point geonétrique del/, o’ un point geonetrique de
U’ au-dessus de; on ceduit de ce qui @ade un morphisme canonique

(2.1.5.2) It (U, d') — (U, a).
SiS" — S est un morphisme ét: 7" — T la projection canonique, le morphisme
h*(R' g, F) — R gL F
donne par restriction un morphisme canonique

*

(2.1.5.3) h* (R} g.F) — R} . F'

2.1.6  Soit F' un faisceau en groupes durf moderement rami surX relativement S. Les
notationsétant celles de 2.1.2, on a des suites exactes canoniques :

1 — HYX,i,F) — HN{U,F) — H(X,R}i.F)
(2.1.6.1)
1 — RYV(>.F) — Rig.F —  f.R}i,F).
La premere s'obtient partir de la suite exacte (SGA 4 111 3.2) :
1 — HY(X,i,F) — H'(U, F) — H°(X,R'i,F).
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Il suffit en effet de montrer que I'image dé'(X,i,F) dansH!(U, F') est en fait contenue
dansH} (U, F) et que limage deH! (U, F) dansH’(X,R'i.F) est en fait contenue dans
H°(X,R;4,F). Or I'image inverse sul/ d’un torseur sous,F est un torseur sougi,F
qui estévidemment moerement rami® sur X relativementa S, donc il en est de gme
apres l'extension du groupe structurdh,/® — F, ce qui prouve l'existence de laefthe
H'(X,i,F) — H}(U, F). Le fait que limage ddl}(U, F) dansH°(X,R'4,F) soit contenue
dansH°(X, R; i, F) résulte aussit de la éfinition deR; i,F. Ceci prouve I'existence de la
premere suite exacte, et la deéxne s’en @duit par localisation.

2.2  On conserve les notations de 2.1. Nous allogfénit une notion d’objet magtfement ra-
mifié d’'un champpb surU lorsque celui-ci est dor@ localemensur X et surS pour la topologie
étale, commémage inverse d’un champ sur S.

Soit d'abordG une gerbe sul/ et supposons doénun morphismeétale surjectifS; — S,
un morphismeetale surjectifXs — X x4 .51, une gerbe triviald sur.S; et un isomorphisme

G|U2 — HlUQ,

oulU; = U x x X1, Uy = U xx X,. Quand on choisit une trivialisation dé| X, 'isomorphisme
ci-dessus identifig€7|U, au champ des torseurs sous un faisceau en gralip€n dit qu’un

elementr de Gy est mo@rement rami surX relativement S, si la restriction der a U, est

un torseur modrément rami surX relativement S. D’apres 2.1.4 cette notion n&édend pas
de la fagcon dont on a triviaksH | Xs.

Soit maintenant® un champ surU et supposons do@s un morphismeetale surjectif
S1 — S, un morphismeetale surjectifX, — X x g S;, un champ? surS; et un isomorphisme

1 (I)’UQ — \I”UQ

Soit z un élément ded;, G, la sous-gerbe maximale de engendee parzx [lll 2.1.7], S® le
faisceau des sous-gerbes maximale®deisomorphisme; induit un isomorphisme

S¢|Uz — SY|Us.

Il résulte de 5.7 que, quitte remplacelS; par une extensiogtale surjective, on a une unique
sous-gerbe maximal& de ¥, que I'on peut supposer triviale, telle queéfinisse un isomor-
phisme

G$|U2 — HlUQ

On dit que lelementr est mo@rement rami surX relativemeng S s'il I'est en tant quélement
de G, munie de I'isomorphisme ci-dessus.

2.2.1  Soit® un champ sut/ donrg, localement suk etS, comme image inverse d’un champ
surS, etsoit ;; i, y

(v

T
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un diagramme comme dans 2.1.2. Pour touestdl” étale surl’, siU’ = U x4, T’, on
consicere le sous-ensemblg’®); de (¢.P)r = Py formé desélements deb;, qui sont
moderement ramifes surX relativement .S. On appelle image directe me@ment ramiee de
® parg, et on note
9. P
la sous-catgorie pleine de,® dont les objets au-dessus d’'un éofa7” étale surl’ sont les
élements dég @), . Il est clair quey’ ® est un sous-champ ded.

2.2.2  Par Eduction au cas d’'un champ de torseurs, on voit qué,est un champ suv qui
est localement pour la topologitale deS et X image inverse d’'un champ st le morphisme
canonique

W (g:®) — g2’

donne par restriction un morphisme canonique
W (gl®) — g.'d’

Remarques 2.3a) Si F' est un faisceau d’ensembles localement constant constructiblé, sur
pour quef’ soit moderément ramiie surX relativement S, il suffit que la condition de 2.1.1 soit
satisfaite pour les pointegnetriques de5 au-dessus des points maximauxddd?our le voir on
peut supposer le divised? strictement croisements normaux. Le faisce&est repesentable
par un re@étemenetaleV deU. Sis est un point @onétrique deS, y un point maximal dé%, on
noteS le localis strict deS ens, X le locali€ strictdeX eny, U = U xx X,V =V xx X. Si

la condition de 2.1.1 est satisfaite aux poing®getriques au-dessus des points maximaus de
il résulte de 5.5 plus bas qlieest un regtement dé/ moderément ramife surX relativement
aS ; par suitel est un reétemenetale de/ moderément rami surX relativementa S.

b) Soit F' un faisceau en groupes sUrmoderement ramife sur X relativementa S. Sis
est un point gonetrique deS, y un point maximal dé&%, on noteK le corps des fractions de
Ox.,. Supposons que, pour tout poiiiet pour tout point, la K-algebre L dont le spectre
representel’| K soit de rang premiex la caradristique esiduellep de 0'x_. On dira parfois, par
abus de langage, que est premier aux caraatistiques esiduelles de5. Lorsqu’il en est ainsi,
tout torseurP soust’ est mo@rement ramife surX relativement S.

Soient en effef? le locali< strict ded’x_,, eny, K son corps des fractions; l'image inverse
de F sur K. Montrons que I'on peut supposér constant. Commé’ est mo@rement ramie
sur X relativement S, F est repésentable par le spectre d’'uhgalgebrel = [] L;, ol lesL;
sont des extensions dé de degé premiera p. On peut donc trouver une extensiail de K de
dege premierp telle queF| K’ soit un faisceau constant. D’ar 2.0.3, pour prouver que K
est mo@&rément ramife surR, il suffit de voir queP|K’ est mo@ement rami sur la cbture
intégrale deR dansK’, d’oll la réduction au castoF est constant. SupposonésibrmaisE’
constant. La -algebreH qui repésenteP|K est alors produit d’extensiori$; de K isomorphes

entre elles. Comme le rang d¢ est premieg p, il en est de rdBme de[H; : K|, ce qui prouve
que H est mo@rement ramife surX relativementa S.
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c¢) SoientX un sctema Egulier,D un diviseura croisements normaux dé (SGA 51 3.1.5),
U = X — Supp D, F un faisceau d’ensembles sl Siy est un point maximal d€upp D,
on désigne paty le corps des fractions d€x ,. On dit queF’ estmocerément ramif relative-
menta D, si, pour tout point maxima} de Supp D, F|K est repesentable par un&-algebre

m ement rami [ .
380 ockrement ramite surdx ,

Théoreme 2.4 Soient f: X — S un S-schéma, D un diviseur sur X a croisements normaux
relativement a S (2.1),Y = Supp D, U = X —Y,i: U — X I'immersion canonique. Soit F' un
faisceau d’ensembles (resp. de groupes) sur U, satistaisant a I’'une des conditions suivantes :

a) F' est localement pour la topologie étale sur X et sur S I'image inverse d’un faisceau
d’ensembles (resp. d’un faisceau en groupes constructible) sur S.

b) F' est localement constant constructible sur U et modérément ramifié sur X relativement
as.
Alors on a les conclusions suivantes :

1) (F,i) est cohomologiquement propre relativement 4 S en dimension < 0 (resp. pour tout
morphisme h: S" — S, sii': U' — X' est 'image inverse de i sur S’, si I’ = F|U' et si
k = h(x), le morphisme canonique

U: k*(R)i.F) — Ry 0L F

est un isomorphisme).

Si F' est un faisceau en groupes premier aux caractéristiques résiduelles de S (2.3.b))
(modérément ramifié sur X relativement a S), alors (F, i) est cohomologiquement propre
relativement a S en dimension < 1.

2) Si F est un faisceau d’ensembles (resp. de groupes) constructible, i, F (resp. Ry i, F') est
constructible.

Démonstration. Pour toutS-sckemas’, on consi@re le diagramme suivant dont tous les earr
sont carésiens :

U \ U’
g X
s\
S § s s’
381 Comme la question est locale siir pour la topologieétale, on peut supposer quie est un

diviseur strictemen& croisements normaux relativement (2.1) ; de plus, quitté restreindre
X aun voisinage d&, on peut supposex lisse surs.

Démonstration de 2.4 1).
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2.4.1 Casd'un faisceau d’ensembles satisfaisaa). On peut supposer que l'orfa= ¢*G,
ou G est un faisceau suff. Il résulte alors de (SGA 4 XVI 3.2) que le morphisme canonique

(2.4.1.1) G — i F

est un isomorphisme. Pour togtsckemah: S — S, on a de rdme un isomorphisme
f*G" — i’ F"; par suite le morphisme canonique

o: k*(i.F) — i, F'
s’identifiea I'isomorphisme naturel

k*f*G ~ fl*G/

2.4.2 Cas d'un faisceau d’ensembles satisfaisab). On doit montrer que est un isomor-
phisme et il suffit pour cela de voir qu’il en est ainsi en chaque pdot@triquez’ de X'. Soit

S (resp.X, resp.S , resp.X ') le localis strict deS (resp.X, respS’, resp.X’) enz’ et posons
U= Uz U = U(Y/), etc. Le morphisme; s’identifie au morphisme canonique

?: H'(U,F) — H (U, F)

On peut trouver un réétement principal’ deU, du type figurant dans 5.4, tel que l'image inverse
de I" surV soit un faisceau constant de valéur Si Il est le groupe de Galois dé surU, II
opere surF’'|V, etl'on a

(2.4.2.1) HY(U, F)) ~ H(V, Cy)"

ou le deuxeme membre &igne I'ensemble deslements deH®(V, Cy) invariants soudl.
CommeV’ = V x;; U est une reétement principal d&' de groupe de Galoifl’ ~ II, on
voit que le morphisme s’obtient, en prenant les invariants sdlisa partir du morphisme cano-
nigque

HY(V, Cy) — HY(V', Cy).

CommeV etV’ sont connexes (5.4), ce morphisme, donc agssist un isomorphisme.

_Notons que si de plug’ est un faisceau en groupes etrsiest un torseur suv de groupe
F, mocerément ramif relativemena D, il résulte de la @monstration gcedente et de 2.2 que

(PF, 1) est cohomologiquement propre relativem&isten dimensiork 0.
2.4.3 Cas d'un faisceau en groupeBour montrer quel est un isomorphisme, il suffit de
prouver que, pour tout poinegnetriquey’ deY”’, le morphisme

Uyt (K*(RELF))y — (RULF )y
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est un isomorphisme. Or, d'a&s 2.1.2 ¥, s'identifie au morphisme canonique

U: H(U,F) — H/(U,F).
SoieNntI?' le revetement universel mékement ramie deU (2.1.3) etk limage inverse deF
surU. Il résulte de 5.7 dans le cas a) et de 5.5 dans le cas b)Hpué F') s'identifie au
sous-ensemblH! (U, F) formé des classes de-torseurs dont 'image inverse sUrest triviale.
D'autre part un raisonnement classique montre que I'ensembléeleleents déi*(U, F) dont
I'image inverse sut/ est triviale s'identifiea H! (7t (U), H°(U, F')). On obtient ainsi un isomor-
phisme canonique

(2.4.3.1) HY(U,F) = H'(z4(U),H(U, F)).

Par suite le morphismé s’identifie au morphisme canonique
H' (r}(T), H(U, F)) — H'(x}(T), H(U", F")).

Montrons que ce morphisme est un isomorphisme. Le morphiqm_é') — m (U) est un iso-
morphisme d’ap#s 5.6, et il en est de@me du morphlsmHO(U F) — HY(U', F'). En effet,
cela estvident dans le cas b) cdt est constant &t/ et U’ sont connexes. Dans le cas a), soit
G un faisceau en groupes constructible Suel que I'on aitF = g*G; comme les morphismes
U — SetU’ — S sont0- -acycliques (5.7), on a

HO(U, F) ~H°(S,G) ~ H°(S, @) ~ HY(U', F),

ce qui entrine queV est un isomorphisme. La deéne assertion de 2.4 1g¢sulte de ce qui
précede, compte tenu de 2.3 b).

Déemonstration de 2.4 2).

Le cas d'un faisceau d’ensembles constructible satisfaisaht€sulte ausgit de (2.4.1.1).
Soit ' = ¢*G un faisceau en groupes satisfaisard), @1 G est un faisceau constructible ; on
peut supposef affine ; soient(S;);c, une famille finie de sous-sémas ferrés eduits deS
dont la Eunion recouvres, tels que I'image inverse d@ sur S; soit un faisceau localement
constant. Compte tenu de 2.4 1), il suffit, p@établir queR}i.F est constructible, de voir qu'il
en est ainsi a@rs le changement de baSe— S, pour chaqug € J. On est donc raménau cas
b) ol £ est localement constant.

On suppose @ormais qué’ est un faisceau d’ensembles ou de groupes satisfasht
Comme la question est locale pour la topologfiale surX, on peut supposeX de pésentation
finie surS, et, par passagela limite, on peut supposéf et.S noetteriens.

SoitD =}, ., divf;, ou, pour chaque point de Supp D, sil(z) est'ensemble destels
que f;(x) = 0, le sous-scbmaV ((f;)ic1(x)) est lisse suts de codimensiomard I(z) dansX.
Soit # I'ensemble des parties dé& r| et, pour chaqué € &, posons

Xr = (MiesV(fi)) N (Nigr X,)-
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384 Soit z un point deX;. Quittea se restreindre d’aboilun voisinageétale dez, on peut trouver
un ouverti de X contenant et un retement principal’ deU N W, mocerément ramife sur
W relativementa S, du type considré dans 5.6.1, tel que I'imagéciproque de sur V' soit
un faisceau constant de valedir Soit 7 le groupe de Galois du revtemevit Pour tout point
géeonetriquer de X, on a alors d’apes (2.4.2.1)

HY(U, F) ~ HY(V,Cy)".
Il en résulte que,. F|X; N TV est localement constant (SGA 4 IX 2.13) et par sujté est
constructible.
Montrons enfin que s¥ est un faisceau en groupes localement const@ht, /|y, est
constructible. Sk est un point @onetrique deX, on a obtenu dans (2.4.3.1) I'expression
H|(U,F) = H'(«}(U),H(U, F)).
Sip estla caraéristique ésiduelle deX, on a, d'apes 5.6} (U) = [],.., Z(1)*™ . Désignons

par L 'ensemble des nombres premiers qui divisent I'ordre du groupeHﬁ(lﬁ, 15) et soit
K = HleL_{p}mL Zy(1)eard I [l résulte de [4, 5 ex.2] que I'on a

HN(U,F) ~ H'(K,H(U, F)).

CommeK est topologiquement de type fini HP((7, }7) fini, on en cduit tout d’abord que les

fibres du faisceal! i, F'|x, sont finies. D’autre part, I'ensemblene cepend pas du poinat Pour

toutq € L, soit.X; , le fermé deX; d’équationgy = 0 et soitX I'ouvert de.X; compkmentaire

de la union desX; ,. Alors R{i.F|x, et Rli.F|x, sont localement constants; en effet une

fleche de spcialisation de points@netriques deX; , (resp. deX, ) induit un isomorphisme

sur les groupe# (5.6.1) donc aussi sur les ensemtiE$U, F), et I'on peut appliquer SGA 4
385 IX 2.13.

Corollaire 2.5 Soient f: X — S un morphisme, D un diviseur sur X a croisements normaux
relativement a S (2.1), Y = Supp D,U = X —Y,i: U — X I'immersion canonique. Soit ® un
champ sur U et supposons donnés des morphismes étales surjectits S; — S et Xo — X Xg 51,
un champ WV sur Sy et un isomorphisme ®|Us ~ V|U; (cf.2.2).

Alors, pour tout morphisme h: S — S, si k = h(xy), le foncteur canonique
o: kY, ® — i, @
est pleinement fidele. Si W est constructible, le foncteur canonique
v ki — it
est une équivalence de catégories.

De plus, si le champ ¥ est construible (resp. si ¥ est I-constructible (0) et S localement
noethérien), i, est constructible (resp. i’ ® est 1-constructible).
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Montrons quep est pleinement figle. Il suffit de voir que, pour tout poinggnetriquez’ de
X', il en est ainsi du foncteur B _
7 9(0) — (T
(on a repris les notations de 2.4.2). Soient deuxélements deb(U), o/, V' leurs images par
. Comme le morphism& — S est localement-acyclique (5.7), on a un isomorphisme
HY(U,S®) & HO(S, SU).

Par suitea et b proviennent par image inverseéBments del, et il en est donc 9(;:' éme de
F = Homyg(a,b). Comme le faisceali” = Homg (a’,b’) est I'image inverse sur de F, il
résulte de 2.4.1 que le morphisme canonique
H(U,F) — H(U, F')
est un isomorphisme, ce qui prouve geiest pleinement fiele.
386 Montrons que, pour tout poineégnetriquez’ de X', le foncteur
i e(X) — L'(X)

est uneéquivalence. D’agirs ce qui peade, est pleinement fidle. Montrons que> est essen-
tiellement surjectif. Soit’ un élement ded®’(U') moderement ramife surX’ relativementa S’
(2.2) et montrons qu'il est 'image d’u@lément moérement rami@ de®(U). Il résulte de 2.4
1) que le morphisme canonique

HO(U,S®) — H(U', S%)

est un isomorphisme. Sait’ la sous-gerbe maximale de engendee pard’; il existe alors une
sous-gerbe maximal€ de ®, image inverse d’'une gerbe stirtelle que I'on ait

NeRyes
oll m est le morphism& — U. Le foncteur canonique
(+) G —7.6

est uneéquivalence, carr s’identifie & une gerbe de torseurs sous un faisceau en groupes
constructible provenant dg, et 'on peut appliquer 2.4 1). llésulte alors dex) qu'’il existe

un élementa de G(U), mocerément ramife surX relativement S, dont l'image inverse suy’

esta’, ce qui prouve que est uneequivalence.

Si ¥ est constructible, il en est deéme dei, P ; en effet un objetr dei,® est, localement
pour la topologiettale deS, image inverse d'un objej de V; il résulte donc de 2.4.1.1 que
Aut(z) est'image inverse dAut(y), donc est constructible. Enfin, §iest 1-constructible, il
part 77 en est de rame de® d'apres 6.3 ci-dessous.
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Corollaire 2.6 Les notations son celles de 2.4. Supposons que S soit de caracteristique nulle en
tout point s tel que I’on ait Y, # (). Alors, si .7 est un faisceau en groupes localement constant
construible sur U (resp. un champ constructible sur U qui est localement sur X et S image
inverse d’un champ constructible sur S), (%, i) est cohomologiquement propre relativement a S
en dimension < 1.

Comme tout faisceau d’ensembles constructiblelsest mo@rement ramife surX relati-
vementa S, le corollaire esulte de 2.4 (resp. 2.5).

Corollaire 2.7 Les notations sont celles de 2.4, mais on se donne de plus un S-schéma T', un
morphisme propre p: X — T, et on suppose X et'I' de présentation finie sur S ; soit ¢ = pi. Soit
% un faisceau d’ensembles constructible sur U satistaisant a I’'une des conditions a) ou b) de 2.4
(resp. un faisceau en groupes satistaisant a I’une des condition a), b) de 2.4, resp. un champ sur
U qui est localment sur X et S image inverse d’un champ constructible G sur S). Alors on a les
conclusions suivantes :

1. (Z,q) est cohomologiquement propre relativement a S en dimension < 0 (resp. pour tout
morphisme h: S' — S, sim = h(r), le morphisme canonique :

0: m*(R{ ¢..7) — R} ¢,.F
est un isomorphisme, resp. pour tout morphisme S° — S, le morphisme canonique

S m (. F) — ¢ F

*

est une equivalence).

2. le faiseau q,.% (resp. le faisceau R} q..7, resp. le champ ¢'.% ) est constructible. Dans le
dernier cas, si I’on suppose S localement noethérien et G 1-constructible, il en est de méme
de ¢! 7.

La premere partie esulte ausditt de 2.4, 2.5 et de laainonstration de 1.8. &nostrons 2).
Si.# est un faisceau d’ensembles constructiblel$satisfaisank 2.4 a) ou 2.4 b), ilasulte de
2.4 2) quei,.# est constructible ; il en est donc déme dey..% = p.(i..%) (SGA 4 XIV 1.1).

Soit.Z un faisceau en groupes constructible Busatisfaisana 2.4 a) ou 2.4 b) et prouvons
queR/! ¢..7 est constructible. Par passagk limite (EGA IV 8.10.5 et 17.7.8) et en utilisant 1),
on peut supposed noetterien. Soit alor® le champ suX dont la fibre en tout sémax’ étale
sur X est fornee des torseurs sif = U x x X', de groupeZ |U, qui son moérement ramifes
sur X relativemen& S ; on a donc

S(it®) ~ R} i,.7

et ce faisceau est constructible d'apr2.4 2). Il ésulte donc de 6.3 ci-dessous dftig..¢) est
constructible, i.e. quR; ¢,.Z est constructible.
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Enfin, si.# est un champ su/ qui es localement suk et S image inverse d’'un champ
constructible suss, it.% est constructible, et il en est donc démme de;t.7# = p.(i'.%). Si de
plusS est localement noedhian etSG constructibleS(it.%#) est constructible d’ags 6.3 ; il en
est donc de @me deS(q¢.it.%#), i.e. deS(¢t.7) 6.2.

Corollaire 2.8 Soit '
U——=X

|7

S

389 un diagramme commutatif de schémas, dans lequel U est I’ouvert complémentaire dans X d’un
diviseur a croisements normaux relativement a S, f un morphisme proprede présentation finie.
Soit . un ensemble de nombres premiers. On suppose g localement O-acyclique (resp. locale-
ment 1-asphérique pour ). Alors, si % est un faiseau d’ensembles sur U (resp. un faisceau de
LL-groupes) sur U, localement constant constructible, modérément ramifié sur X relativement a
S, f.Z (resp. R} f,.F) est localement constant constructible et (.7, f) est cohomologiquement
propre relativement 4 S en dimension < 0 (resp. la formation de R} f,.# commute a tout chan-
gement de base S — S). Dans le cas non respé, si .7 est un faisceau en groupes, pour toute
spécialisation s; — 59 de points géométriques de S, le morphisme de spécialisation

(Rtl f*ﬁ)é - (R% f*ﬁ)%
est injectif.

Le corollaire Esulte aussitt de 2.6 et de 1.14 (resp. de I'analogue de 1.14 poR} I&.7, lequel
se cemontre comme loc.cit.).

Corollaire 2.9 Soit

un diagramme commutatif de schémas, dans lequel U es I’ouvert complémentaire dans X d’un

diviseur a croisements normaux relativement a S, f un morphisme propre lisse de présentation

finie. Soit I. I’ensemble des nombres premiers distincts des caractéristique résiduelles de S.

Soit .# un faisceau de LL-groupes localement constant constructible sur U, modérément ramifié

sur X relativement a S. Alors R' f,.% es localement constant constructible et (F, f) est coho-
390 mologiquement propre relativement a S en dimension < 1.

Le corollaire ésulte de 2.8 et du fait que I'onRY f..# = R' f..Z (2.3 b)).
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2.10 Si U est un scBma connexe, a un poinégnetrique del/, I. un ensemble de nombre
premiers, on note

(2.10.0) (U, a)

la limite projective des quotients finis de(U, a) dont les ordres ont touts leurs facteurs premiers
dansL.

Nous allons éfinir des morphismes de &gialisation pour le groupe fondamentaéngrali-
sant X.2.

Soitg: U — S un morphisme cadérenta fibres @onetriquement connexes (resp. un mor-
phisme de la formg = fi, ou f: X — S est un morphisme propre degsentation finie etuw
i: U — X est une immerision ouverte telle qliesoit le compémentaire dan¥ d’un diviseur
a croisements normaux relativemen$ (cf. 2.8)). Soitl. un ensemble de nombres premiers et
supposons, dans le cas non &sgue, pour touL.-groupe constant fini’, (Cy, g) soit coho-
mologiquement propre relativemeatS en dimension< 1. Soients; — s, un morphisme de
specialisation de pointsapnétriques deS, S le localis strict deS ens,, U = U x5.S. Onaun

diagramme commutatif

h1 — ho
Uy, s 7 <2 U,

R
§] ——=§<~— 352
Si a; est un point gonetrique del/;,, as un point gonetrique del;, les morphismes; et h,
déefinissent des morphismes canoniques
w7 (Usy,a1) — 70(U, ay) my: 77 (Usy, ag) — 70 (U, az)
391 ) )
(resp.my: w5 (Us,, a1) — 73 (U, ay) my: mi(Usy, a) — w3 (U, ag))

(V.7 et 2.1.5.2). Les hypo#ises de propretcohomologique (resp. 2.8) prouvent gteest un
isomorphisme. Si I'on choisit une classe de cheming,ckea,, on obtient un isomorphisme

~

T (U, a1) = 70 (U, ay)  (respumy: m(U,ay) = 78 (U, ay))
d’oll un morphismer = 7, ‘7o
T Tr]%(Ugl,al) — W%(ng,a2> (resp.r: 7 (Us,, a1) — 75 (Us,, az)).

Changer la classe de cheminsdea a, revienta modifierm par un automorphisme @tieur
de 71 (Xs,, az) (resp. dert(Xs,, as)). On appellemorphisme de zialisation pour le groupe
fondamentahssod@ au morphisma&; — s, et on note simplement

. W]{J(Xgl) - W%(X@) (resp.w: W%(Xﬁ) - WE(X@))

I'un des morphismeséfini ci-dessus.
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Lemme 2.11 Soient f: X — S un morphisme propre de présentation finie, D un diviseur sur X
a croisements normaux relativement a S, Y = Supp D, U = X =Y, i: U — X le morphisme
canonique, 5 — S, un morphisme de spécialisation de points géométriques de S, y; un point
géometrique de Y5, , y» un point géométrique de Ys,, tel que la projection z, de y; sur X soit une
générisation de la projection z, de y,. Soit I, un sous-groupe d’inertie de 7t (Us, ) en ;. Alors
I’image de Iy, par le morphisme de spécialisation

m: m(Us,) = mi(Us,)

392 est un sous-groupe d’inertie de 7} (Us,) en ys.

Soient enNeffeﬂ_( (resp.)?) le localis strict deX enys, (resp. ery,), U =U xx X (resp.

U=Uxy X). On a un morphisme canoniqéie — U, et il réesulte de 1.10 que I'on a un
diagramme commutatif

m (U,) ==t (T)

| |

7'('% (Ugl) — ﬂ-% (U§2>

ou 7' est compos du morphisme canonique}(Us,) — 7i(Us,) est du morphisme de

specialisation. Comme (Us, ) (resp.7i(Us, ) est un groupe d'inertie dej(Us, ) eny, et (resp.

7t (Us,) enys), il suffit de prouver que’ est surjectif. Mais celaésulte de I'expression obtenue
part 78 dans 5.6.

Corollaire 2.12 Soit X une courbe propre et lisse connexe de genre g sur un corps sépara-
blement clos k de caractéristique p > 0. Soit U I’ouvert obtenu en enlevant a X n points fermés
distincts ay, . .., a,. Alors le groupe fondamental modérément ramifié % (U) (2.1.3) peut étre
engendré par 2g +n éléments x;,y;, 05, avec 1 < i < g, 1 < j < n, tel que o; soit un générateur
d’un groupe d’inertie correspondant a a;, et que I’on ait la relation

() H (ziyi; y; ) - H o; =1

1<i<g 1<j<n

Pour tout groupe fini G d’ordre premiefa p, engendré par des éléments T;,7;, ¢ ; satisfaisant a la
relation (x), il existe un revétement étale de U, de groupe GG, correspondant a un homomorphisme

393 7 (U) — G qui envoie x;,y;, 0; sur T;,,;, 0, respectivement. En d’autres termes, si p’ désigne
I’ensemble des nombres premiers distincts de p, 7T]1)/<U ) est le pro-p’-groupe engendré par les
générateurs x;,y;, 0; liés par la seule relation (x).

Démonstration. On peut supposek algébriguement clos. Supposons d’abdrdde carac-
teristique 2ro. Il existe alors une sous-extensioné&idgquement closé’ de k, de dege de
transcendance fini s\, telle queX provienne par extension des scalaires d’'une courbe propre
et lisse X’ définie surk’, et 'on peut supposer que les points ..., a, proviennent de points
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rationnelsa), ..., a/, de X’. Commek’ est de deg¥ de transcendance fini SQx on peut trouver
un plongement dé’ dans le corps des nombres comple@ssoitﬁ = U’ xp C. Soitk” une
extension algbriquement close dé telle que I'on ait de¢’-morphismes dé et deC dansk”.
Sig'": U — k' estle morphisme structural, et.i est un faisceau en groupes constant fini sur
U”, il résulte de 2.9 que les morphismes decalisation

R'¢.F)c — R o F ) — R gL.F")s,

sont des isomorphismes. En termes de groupes fondamentaux, cela montre que I'on a un isomor-
phisme, @fini a automorphisme igtieur pes

m(U) — m(U),

et il est clair que cet isomorphisme transforme un groupe d’inertie ralaitif point deX’ — U’

en un groupe d’inertie relatif au@me point. On peut donc supposer que I'an-a C. Dans ce
dernier cas il esulte du teoreme d’existence de Riemann (XI11.5.2) que le groupe fondamental
m1(U) n'est autre que le compie pour la topologie des sous-groupes d’indice fini du groupe fon-
damental de I'espace analytique asgéadi’. Or ce dernier peut se calculer par voie transcendante
[3, ch.7847]; il peutétre engendr par2g + n élémentse;, y;, o, tels ques; soit 'image d’'un
gérerateur du groupe fondamental loea(D;) d’un petit disque cenérena;, i.e. un grérateur
d’'un groupe d’inertie correspondant au painf ceselements satisfaisaatla seule relations).

Si maintenant: est de caraéristiquep > 0, on peut trouver un anneau de valuation diser
completA, de corps @siduelk, de corps des fractions” de caradristique £ro, et un schma
connexeX, prope et lisse suf = Spec A, tel que I'on aitX; xg Speck ~ X (Ill.7.4). Les
pointsa; se rekvent alors en des sectiossde X; au-dessus d¢'; soit Y3, le sous-scama
fermé reduit d’espace sous-jacesi(.S), Y, la reunion desy;, Uy = X; — Y1, g1: Uy — S'le
morphisme structural. Soiehf une extension akpriqguement close d&, U = U; xg K. SiC

est un groupe constant fini, g#sulte de 2.8 que le morphisme dé&sialisation

(R' 91:.Cu, ) — (R 91.C1, )%

est injectif et néme bijectif siC est d’ordre premiea p. Or cela signifie, en termes de groupes
fondamentaux, que le morphisme désijalisation (1.10)

m: m(U) — 7t (U)

est sujectif, et que le morphisme deesgalisation

/= /

my (U) — @1 (U)
est bijectif. Enfin, siv;, y;, o; son des grérateurs der, (U)_tels queo; soit un gerérateur d’un
groupe d’inertie correspondant au poipt= Y7;(K) de X, alors, d'apés 1.11,7(c;) est un
gérerateur d'un groupe d’inertie correspondat;, ce qui ackve la @monstration.

276



395
part 79

396

X1

3 Proprete cohomologique et locale acyclici generique

Théoreme 3.1 Soient S un schéma irréductible de point générique s, X et Y deux S-schémas
de présentation finie, f: X — Y un S-morphisme. Pour tout S-schéma S’, on note Y', X', etc.
I’'image inverse de Y, X, etc. par le morphisme S’ — S. On a les propiétés suivantes :

1 a On peut trouver un ouvert non vide S’ de S tel que, pour tout faisceau d’ensembles
constant fini F' sur X', fF’ soit constructible, et que (F’, f') soit cohomologique-
ment propre relativement a S” en dimension < 0.

b Soit F' un faisceau d’ensembles constructible sur X . Alors on peut trouver un ouvert
non vide S’ de S (dépendant de F) tel que f.F’ soit constructible et que (F’, f’) soit
cohomologiquement propre relativement a S” en dimension < 0.

2 Supposons que les schémas de type fini de dimension < dim X sur une cloture algébrique
k de k(s) soient fortement désingularizables (SGA 5 I 3.1.5). Alors on a de plus les
propiétés suivantes :

a On peut trouver un ouvert non vide S’ de S tel que, pour tout faisceau en groupes
constant fini F' sur X', d’ordre premier aux caractéristiques résiduelles de S, si ®’
est le champ des torseurs sous F’, f/®' soit 1-constructible, et que (F”, f") soit coho-
mologiquement propre relativement a S" en dimension < 1.

b Soient . I’ensemble des nombres premiers distincts des caractéristiques résiduelles
de S et ® un ind-LL-champ 1-constructible sur X (0) , tel que, pour tout schéma X,
étale sur X et pour tout couple d’objets z, x1 de P, , le faisceau Hom, (z, 1) soit
constructible. On suppose de plus S localement noethérien. Alors on peut trouver
un ouvert non vide S’ de S tel que f.®’ soit 1-constructible, que, pour tout couple
d’objets y, y, d’une fibre (f.®')y,, Homy, (y,y;) soit constructible, et que (P’, f’)
soit cohomologiquement propre relativement a S’ en dimension < 1.

Déemonstration. On peut supposg affine ; d’apes SGA 4 VIII 1.1, on peut supposgiintegre ;
enfin, par passagela limite, on peut supposer q¥eest le spectre d’'une atpre de type fini sur
7 ; en particulierS est alors noettrien. Comme la question est locale 3Uron peut supposer
Y affine. De plus il suffit, pour @montrer le teoeme, de le faire aps extension fini&” — S,
ou S” est un schma inégre et @ S’ — S est compos de morphismestales et de morphismes
finis radiciels surjectifs.

1) Cas des faisceaux d’ensembles constants

1) 1. Reduction au castoX est normal suS. Soit X5 le normaili® de(X5).«q ; quitte a
restreindreS a un ouvert non vide & faire une extension radicielle d& on peut supposer
que X5 provient d’'un scemaX; normal surS, et que le morphismé&(;; — X5 provient d’'un
morphisme fini surjectip: X; — X (EGA IV 8.8.2 et 9.6.1). Supposons lestiieme &monté
pour fp. Quittea restreindreS’ a un ouvert, on peut supposer que, pour tout faisceau d’ensembles
constantF’ sur X, (p*F, fp) est cohomologiquement propre relativem&st en dimensior< 0
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et quef.p.(p*F') est constructible. D'ags 1.9,(p.p*F, f) est alors cohomologiquement propre
relativement S en dimensior< 0. Le morphisme

F—pp'F =G

est un monomorphisme. Il eresulte @ja, f.F étant un sous-faisceau deG, que f.F' est
constructible (SGA 4 IX 2.9 (ii)) et quéF, f) est cohomologiquement propre relativemant
S en dimensior< —1.

SoientX; = X; xx X1, ¢: X3 — X le morphisme canonique. D’ags 1.11 1), on a une
suite exacte
F—G—=qq'F.

D’apres ce que l'on vient deé&montrer, appligé a f¢ au lieu def, on peut supposer,
quitte a restreindreS a un ouvert non vide, que, pour tout faisceau d’ensembles conktant
surX, (¢*F, fq) est cohomologiquement propre relativem&isten dimensior< —1, donc que
(¢.q* F, f) est cohomologiqguement propre relativemarst en dimension< —1. Il résulte alors
de 1.13 1) quéF, f) est cohomologiqguement propre relativema&sten dimensior< 0.

1) 2. Reduction au castoX est normal affine sus.

SoitU, un ouvert affine d&X,; dense dang,. Quittea restreindreS a un ouvert non vide, on
peut supposer qué, — X, se reéve en une immersion ouverteUU — X, sclematiquement
dominante relativemerit S (EGA IV 8.9.1). Comme le morphism& — S est normal, on a
d'apres SGA 2 XIV 1.18:

prof étg_y(X) > 2;

par suite, pour tout faisceau const@hsur X, le morphisme canonique
F— ' F

est un isomorphisme. Il ergsulte que, si I'on suppose leéiheme &monté por fi eti, alors,
apees restriction d& a un ouvert non vid€;*F, ) et (i* F, fi) sont cohomologiquement propres
relativement& S en dimensiorg 0. Il en est donc de gme de(F, f) (1.6 2)). Comme de plus
f«F = (fi).(i*F) est constructible, ceci aélie la duction.

1) 3. Fin de la @monstration.

On peut suppose&¥ normal (EGA 1V 7.8.3). On peut trouver une compactification’de

XSLPS

ap

Yy

ou j, est une immersion ouverte dominantegetin morphisme propre ; quitt faire une ex-
tension radicielle de:(s) et a remplacerP, par son normalis, ce qui ne change pas,, on
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peut supposeP, geonetriqguement normal. Quitt& restreindresS a un ouvert non vide &t faire
une extension radicielle surjective, on peut supposer que le diagramme ci-dessus provient d'un
diagramme

x-1-p

1

Y

ou P est un schma normal surS, j une immersion ouverte sematiquement dominante re-
lativementa S et ¢ un morphisme propre (EGA IV 6.9.1, 9.9.4 et 9.6.1). Pour tout faisceau
d’ensembles constant fid sur X de valeurC, j, F est le faisceau constant de val€u(SGA

4 2.14.1), et il en est de @me apes tout changement de baSe— S'; il en résulte que £ j)

est cohomologiquement propre relativemartt en dimensiorg 0. Il en est donc de gme de

(F, f), puisqueg est propre (1.8). Comme est propref.F' = ¢.Cp est constructible, ce qui
acheve la @monstration de 1) a).

2) Cas d’'un faisceau d’ensembles constructible

Soit F' un faisceau d’ensembles constructible aurD’apres SGA 4 1X 2.14 (ii), on peut
trouver une famille finie de morphismgs Z; — X, et, sur chaqu¢;, un faisceau d’ensembles
constant finiC;, de sorte que I'on ait un monomorphisme

j:F—>Hpi*C'Z-:G.

399 D’apres 1) a), on peut supposer, quittgestreindreS a un ouvert non vide, que |€€’;, fp;)
sont cohomologiquement propres relativemaist en dimensior< 0, et que lesf,.p;.C; sont
constructibles. On en conclué@ que(G, f) est conomologiquement propre relativemartt
en dimension< 0 (1.9), donc qudg £, f) est cohomologiquement propre relativemarti en
dimension< —1, et quef,F est constructible. Soii la somme amalgage X' = G ][, G;
commeF et G sont constructibles, il en est deme dek’. On conclut donc de ce qui@®de
que, quittea restreindreS' a un ouvert non vide, on peut supposer gie f) est cohomologi-
qguement propre relativemeatS en dimensior< —1. Il résulte alors de 1.13 1) qyé’, f) est
cohomologiquement propre relativemant en dimensior< 0.

3) Cas des faisceaux en groupes constants
Si F' est un faisceau en groupes constant’suon noted le champ des torseurs soHs

3) 1. Montrons d’abord que, quiterestreindresS a un ouvert non vide, pour tout faisceau
en groupes constarit sur X, d’'ordre premier aux caraatistiques esiduelles de5, (F, f) est
cohomologiquement propre relativemeartt en dimensiork 0, et quef,® est constructible.

On se rargne pour cela au casidX est lisse suf. Quittea faire une extension finie des),
ce qui est loisible car on peut la considr comme compeée d’'une extensioptale et d'une
extension radicielle, on peut trouver un morphisme propre surjectik’;, — X, ou X, estun
schema lisse suf de méme dimension qug’,, et, quittea restreindreS a un ouvert non vide,
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on peut supposer que provient d’'un morphisme propre surjectif X; — X, ou X; est un
400 sclema lisse suf (EGA IV 9.6.1 et 12.1.6). Soienty = X; xx X1, ¢: X5 — X le morphisme
canonique. On a un diagramme exact de champssur

O ——pp P —=¢q.q"P

(1.11 2)). Le tlkoemeétant suppds demonté dans le cas lisse, on voit tout d’abord que I'on
peut suppoself.p.p*® constructible; il en est donc deéme def,® (3.1.1 ci-dessous). De
plus, d’apes 1.6 2), on peut suppos@r.p*®, f) cohomologiqguement propre relativemeénst

en dimensior< 0; il en résulte qug®, f) est conomologiquement propre relativemarst en
dimension< —1. On peut donc supposer que.q*®, f) est cohomologiquement propre rela-
tivementa S en dimension< —1, et cela entrfime que(®, f) est cohomologiquement propre
relativement S en dimensior< 0 (1.12 1)).

On se rarBne ensuite comme dans 1) 2 au casXoest lisse et affine suf. Soit alors

X—-p

i

Y

une compactification d&’, ol 7 est une immersion ouverte dominante enh morphisme propre.
Comme on alim P, = dim X, on peut appliquer I'hnypotise de&solution des singulaésa Ps.
Quittea faire une extensiogétale et une extension radicielle 8gon peut trouver un morphisme
proprer: Z — P,ou Z estlisse suf, r~!(X) ~ X, etair~!(X) est le compg¢mentaire dang
d’un diviseura croisements normaux relativemarti. Tout torseur sous’ est alors modrément
ramifié surZ relativementa S (2.3 b)). Il résulte donc de 2.7 qué, f) est cohomologiquement
propre relativemerd S en dimensior< 0, ce qui g&montre notre assertion.

401 3) 2. Réduction au cas 0 X est lisse surS

Quitte & faire une extension finie dg(s), on peut trouver un morphisme propre surjectif
ps: X1s — X, ou X, est un schma lisse sugk, et on peut supposer que provient d’'un
morphisme propre surjectif: X; — X, ou X; est lisse suf. Supposons le #ftoeme émonté
pour fp et montrons-le pouf. Soit F' un faisceau en groupes constant fini &yrd’ordre premier
aux caradristiques esiduelles d& et ® le champ des torseurs solisSoientX, = X; x y X1,

X3 = X1 xx X1 xx X1, q: Xo — X, r: X3 — X les morphismes canoniques. D’'aprl.11
2), on a un diagramme exact de champs

O ——ppd —=q.q¢" O == r, "0 .
Pour prouver qué®, f) est cohomologiquement propre relativemartt en dimensior< 1, il
suffit de montrer gu’il en est de &me de(p.p*®, f), que(q.¢*®, f) est cohomologiquement
propre relativemenrd S en dimensior< 0 et que(r.r*®, f) est cohomologiquement propre re-
lativementa S en dimensiork —1 (1.12 2)). D’apes 3) 1 ci-dessus on peut supposer que, pour
tout faisceau en groupes constant fini(¢*®, fq), (¢*®, q), (r*®, fr), (r*®,r) sont cohomolo-
giguement propres relativemesiS en dimensiorg 0. |l résulte alors de 1.6 2) que.q*®, f)
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et(r.r*®, f) sont conomologiquement propres relativenifiten dimensior< 0. Le theoeme
étant suppasdemonté dans le cas liss&y*®, fp) et(p*®, p) donc aussip.p*®, f) (1.6 2)) sont
cohomologiquement propres relativemant en dimension< 1. Ceci montre bien quéd, f)
est cohomologiquement propre relativemasten dimensiorg 1.

De plusf,p.p*® est 1-constructible par hypatke ; d’apés 3.1 on peut supposer qfig.q* P
est constructible ; il@sulte donc de 3.1.1 ci-dessous ¢ue est 1-constructible.

3) 3. Reduction au casloX est lisse affine sus.

D’apres 3)2, on peut supposeéf lisse surS. Soit (U;);c; un recouvrement fini d& par
des ouverts affines, et soif; la somme directe des;, p: X; — X le morphisme canonique.
Commep est un morphisme de descente effective pour lagmie des faiscealbtales de type
fini sur des scmas variables, on voit comme dans 3)2 que, si'on supposedethe ¢emonté
pour lesU;, i.e. pourXy, il est aussi vrai poukX .

3) 4. Cas 0 X est lisse affine sus.

On voit comme dans 3)1 que, quitieestreindres a un ouvert non vide €t faire une exten-
sionétale et une extension radicielle surjectivessden peut trouver un diagramme commutatif

X—>p

i

Y

ou P est un schma lisse suf, X le compEmentaire dan® d’'un diviseura croisements nor-
maux relativemena S et g un morphisme propre. Si est un faisceau constant d’ordre premier
aux caracdristiques esiduelles de5, tout torseur soug’ est mo@rement ramife sur P rela-
tivementa S (2.3 b)). Le fait que(F, f) soit cohomologiqguement propre relativement en
dimension< 1 et quef,® soit constructible&sulte alors de 2.7.

4) Démonstration de 2) b)
4) 1. Cas a ¢ est une gerbe.

On peut trouver un morphismale surjectif de type finh: X; — X, tel quep*® soit un
gerbe triviale. Par descente, comme dans 3)2, on voit qu’il suffit de prouvérdethe pourX,
X1 xx XjetX; xy X; xx X;. On estdonc ramé&nau cas 0 $ est le gerbe des torseurs sous
un faisceau en groupes constructibledont les fibres sont d’ordre premier aux cagaistiques
residuelles de.

D’apres SGA 4 1X 2.14, on peut trouver une famille finie de morphismes finis/; — X,
et, pour chaque, un faisceau en groupes constant fifj d’ordre premier aux cara@tistiques
résiduelles d&, de sorte que I'on ait un morphisme

j:FHHPi*Cz‘ =G
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Soit ®; le champ de torseurs sou$ et ¥ le champ des torseurs soGs |l résulte de 2)a)
que, quittea restreindreS a un ouvert non vide, on peut supposer que(tés fp;) sont co-
homologiquement propres relativemen$ en dimensior< 1, et que les champ§.p;.®; sont
1-constructibles. ll@sulte alors de 1.9 que I€s,.C;, f) sont cohomologiquement propres rela-
tivementa S en dimensior< 1; il en est donc de @me de(G, f). De plus, comme,.®; est
équivalent au champ des torseurs sous le groyge (SGA 4 VIII 5.8), on voit quef, ¥ est
1-constructible.

CommeR' f.G est constructible, on peut trouver un faisceau&sgntable par ur-screma
étale de type fini” et unépimorphisme

a: T —R'f.G

(SGA 4 IX 2.7); de plus on peut supposer que I'image de la section identiqug de est
définie par un torseup) surX xy 7' = X7, de group&~|Xr. Soientf;: X1 — T le morphisme
canoniqueFr = F|Xr, etc. D’apes 1) b) on peut supposer, quittgestreindres a un ouvert
non vide, qué @/ Fr, fr) est cohomologiquement propre relativem&st en dimensior< 0 et
que fr.(Q/ Fr) est constructible. ll&sulte alors de 3.1.2 qygV est constructible.

Montrons que(F, f) est cohomologiquement propre relativemant en dimension< 1.
D’apres 1.13 2) il suffit de prouver que, pour tout 8ofaY; étale sury” et pour tout torseu),
surX; = X xy Yy, sifi: X; — Y] estle morphisme canonique, ald€g, / F1, fi) cohomologi-
guement propre relativemeatS en dimensior< 0. Or, par éfinition deT’, @), est, localement
pour la topologiettale deY;, image inverse dé), ce qui &montre notreagduction.

4) 2. Cas @réral.

On voit en utilisant le lemme 6.1.1, 4) 1 et 1) a) que, quitt@streindreS a un ouvert non
vide, on peut supposéf( f.®) constructible etS®, f) cohomologiquement propre relativement
a S en dimensiork 0. On peut alors trouver un faisceau repentable par un-sclemaétale de
type finiT et unépimorphisme

a: T — S(f.®) .

On reprend les notations de 4) 1, et on pose de plus 7' xy T, X; = X Xy Z et on note
fz: Xz — Z le morphisme canonique. On peut suppdBahoisi de sorte que I'imaggde la
section identique d&(7") para soit cefinie par un objet de(f.®)r = ... Soientp; etp, (resp.
q1 et g») les images inverses ge(resp.q) par les deux projections dé dans7'. On peut sup-
poser, quitted restreindres a un ouvert non vide, qu@Autx..(p), fr) est cohomologiquement
propre relativemena S en dimensior< 1, que (Homy, (p1,p2), f7) est cohomologiquement
propre relativemend S en dimensior< 0, et quefr.(Autx,.(p)), fz.(Homx, (p1,ps2)) sont
constructibles (a) 1) et 4) 1)).

On en aduit d’'abord que, pour tout semaY; étale surY et pour tout couple d’objets
y, y1 de (f.®)y,, le faisceauAuty, (y) (resp.Homy, (y,y1)) est constructible, un tel faisceau
étant, localement pour la topologétale deY;, image inverse dgr.(Auty,(p)) (resp. de

fz«(Homx, (p1,p2))).
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Il restea prouver qué®, f) est conomologiquement propre relativemart en dimension
< 1. Il suffit pour cela de montrer que, pour totftsclemas et pour tout point gonetriquey’
deY, sil'on noteY le locali® strict deY eny’, X = X xy Y/, etc. , alors le foncteur canonique

p: (X)) — @'(X)
est uneequivalence de cagories.

Montrons quep est pleinement fidle. Soientr, y € ®(X), 2/, 3/ leurs images dan@’(f)
et montrons que le morphisme canonique

(*) HOIHY([E, y) - Homy’(flf/a y/)

est bijectif. Par éfinition deT il existe deux morphismes dé dansT tels quex ety soient
les images inverses depar ces deux morphismes. Cela reviardire qu'il y a un morphisme
Y — Z, d’ou un morphismé.: X — X tel que I'on ait

)=z M(p2) =y

Par suite on a un isomorphisme canonique

Homy(x,y) = h*(Hosz (p1,p2)) -

mais, compte tenu du fait q&lomy, (p1, p2), fz) €st conomologiquement propre relativement
a S en dimensior 0, on voit qu’il en est de me de(Hom+(z,y), f), ce qui prouve que le
morphisme %) est bijectif.

Montrons quep est essentiellement surjectif. Soite @’(Y’). Comme(S?, f) est cohomo-
logiguement propre relativemeatS en dimensior< 0, le morphisme canonique

H'(X,5®) — H(X', 5P
est bijectif. Soit’ la sous-gerbe maximﬂ(/a de engendee par:’; il existe alors une sous-gerbe
maximaleGG de® dont 'image inverse suk estG’. D'apres 4) 1(G, f) est cohomologiquement
propre relativemera S en dimensior< 1 ; par suite le foncteur canonique
G(X) = G'(X)

est uneéquivalence de cagories, ce qui prouve I'existence d'@émentz de &(X) dont
I'image dansd’(X’) soitisomorphé 2’ et acteve la @monstration du goeme.

Lemme 3.1.1 Soient S un schéma localement noethérien et

o —L- 0y =2 D,
p2
un diagramme exact de champs sur S (1.10.1). Si ®; est constructible, il en est de méme de
®. Si, pour tout schéma S’ étale sur S et pour tout couple d’objet x1, y; de (P1)s le faisceau
Homyg (21, y1) est constructible, alors, pour tout couple d’objets z, y de ®g, il en est de méme
de Homg/ (x,y). Supposons que ®; soit I-constructible (0) et que ®, soit constructible, alors ¢
est I—constructible.
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Pour tout scemas’ étale surS et pour tout objet: de ®s/, on a un monomorphisme
Autg (z) — Autg(p(z)).

Il résulte donc de SGA 4 I1X 2.9 que, $i; est constructible, il en est deéme de®, et la
deuxime assertion du lemme serdontre de la iame facon.

Supposons maintenaft I-constructible etb, constructible. Le morphismeinduit sur les
faisceaux de sous-gerbes maximales un morphisme

p: SO — SP,.

SoitG I'mage deS® paryp ; d'apres SGA 4 IX 2.9( est un faisceau constructible. On peut donc
trouver un faisceau repsentable par uf—sctemaétale de type fini” et unépimorphisme

a:T — G

(SGA 41X 2.7). De plus on peut choisif de sorte que I'imagg de section identique d&(T')
para soit céfinie par un objet; de(®,) de la former; = p(z), Uz € Oy,

Il suffit de montrer que, pour tout pointde S, il exist un ouvert non vidé/ de@ tel que
S®|U soit localement constant constructible. Soiert S, 5 un point geonetrique au—dessus de
s ety,,...,y, lesélements de&;. Par cfinition deT il existe des morphismés : s — T tels
que l'on aith;(y) = v,. SoitS’ le produit fibe surS den sckéemas isomorphes™’, h: 5 — 5’
le produit fibe desh;, y; (resp.z;) 'image inverse des (resp.z) par lai—eme projection dé&’
surT. Soit F; le sous—faisceau dg®|S’ image Eciproque dey; et montrons que les; sont
constructibles. Le faisceald est un quotient de faiscedy tel que, pour tout s@&mas” étale
au—dessus d#’, on ait

F/(S") = {classes mod. isomorphisme d’objede ®¢» muni
d’'un isomorphismeé: p(z) ~ p(z;|S").

Il suffit de montrer que les! sont constructibles. Or, si'on pose= pip(z;), 2! = pap(z;), On
a un monomorphisme
v, F;-/ - ISOmS/(Zi, Z;)7

obtenu en associarg, tout sceémasS” étale surS’ et a tout objetz de &4~ tel que I'on ait un
isomorphisme: p(z) ~ p(x;|S”), lisomorphisme de; dansz, défini par la condition que le
diagramme

Plp(z) pl—(i)> Zi

Lo

pap(z) 20 2

soit commutatif ( est le morphisme canonique as&oau diagramme exact).
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Le morphismeV; est injectif car dire que deux objets 2/, tels que I'on ait des ismorphismes

i p(z) = p(z]S"), i': p(z') = p(x;]9"), définissent le rameélement delsomgn (z;, 27) re-
vienta dire que I'on ap; (i~ 'i) = py(i'~'4), i.e. ques’~1i provient d’'un isomorphisme — 2’
Le faisceauF; étant un sous—faisceau B®my (z;, z;) est constructible.

Comme on peut trouver un ouvert non villede {s} tel quey:|U, . . ., y,|U engendrend,
il résulte du lemme 6.1.2 ci-dessous diflU est constructible, donc, quitierestreindré’,
S®|U est localement constant constructible.

Lemme 3.1.2 Soient S un schéma localement noethérien, f: X — S un morphisme, F' — G
un monomorphisme de faisceaux en groupes sur X, V (resp. V1) le champ des torseurs sous F'
(resp. sous G), ® = f.V, &; = f,V;. On suppose donné un faisceau sur S représentable par un
S—schéma étale de type fini T' et un morphisme surjectif

a: T — SP, ~R' £.G,

de sorte qu’il existe un torseur () sur Xy = X Xxg T de groupe G|Xr qui définisse dans
R! f,G(T) I'image par a de la section identique de T(T). Soit fr: Xp — T le morphisme
canonique et posons Fr = F|Xp. On suppose que ®; est I-constructible et que fr.(Q/Fr) est
constructible. Alors ® est I-constructible.

Il suffit en effet de recopier la@monstration de 3.1.1, le fait que I'on ait des morphisfgs
etant remplag par le fait que I'on a des isomorphismes

P = Q) Fr)]S

Remarque 3.1.3 Supposons que k = k(s) soit de caractéristique nulle ; alors les schémas de
type fini sur k de dimension < dim X sont fortement désingularisables et la démonstration de
3.1 permet de prouver les résultats suivants :

a) Il existe un ouvert non vide S, de S tel que, pour tout schéma S’ au—dessus de S; dont
les points maximaux sont de caractéristique nulle et pour tout faisceau d’ensembles localement
constant constructible F' sur X' = X x¢.5’, (F, f') soit cohomologiquement propre relativement
a S’ en dimension < 0.

b) Si toutes les caractéristiques résiduelles de S sont nulles, il existe un ouvert non vide S}
de S tel que, pour tout schéma S’ au—dessus de Sy et pour tout faisceau en groupes localement
constant constructible F' sur X', (F, f') soit cohomologiquement propre relativement a S" en
dimension < 1.

11 suffit en effet de recopier la démonstration de 3.1.2)a). La proposition 2.7 utilisée dans 3) 4
s’applique au cas d’un faisceau localement constant F', car, reprenant les notations de 3) 4, tout
torseur sous I’ est modérément ramifié sur P relativament a S puisque toutes les caractéristiques
résiduelles de S sont nulles.

Corollaire 3.2 Soient k un corps de caractéristique p > 0, p’ I’ensemble des nombres premiers
distincts de p, f: X — k un morphisme cohérent.
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1) Pour tout faisceau d’ensembles F', (F, f) est cohomologiquement propre en dimension
<0.

2) Supposons satisfaite I’'une des deux conditions suivantes :

a) f estde type fini et les schémas de type fini de dimension < dim X sur une cl6ture
algébrique de k sont fortement désingularisables.

b) Les schémas de type fini sur une cloture algébrique de k sont fortement
désingularisables.

Alors, pour tout faisceau de ind—p'—groupe F, (F, f) est cohomologiquement propre en
dimension < 1.

Soit F' un faisceau d’ensembles (resp. de iplelgroupes). D’apprs SGA 4 IX 2.7.2 on peut
écrire F' comme limite inductive filtrante

F=limF,,

ou les F; sont des faisceaux d’ensembles (resp. dejfrdroupes) constructibles. Comryfiees
cokérent, f, (resp.R' f.) commute aux limites inductives (SGA 4 VII 3.3). Si I'on sait que les
(F;, f) sont cohomologiquement propres en dimensiod (resp. que tout faisceau d’ensemble
est cohomologiquement propre en dimensior et que les(F;, f) sont cohomologiqguement
propres en dimensiod 1), il en sera de i@me de F, f). On peut donc supposérconstructible.

Si I'on supposef de type fini (resp. satisfaisaata)), la propositiongsulte de 3.1 1) b) (resp.
de 3.1 2) b)). Prouvons maintenant 3.2 quand on ne suppos¢ geitype fini. Pour tout s@ma
S" au—-dessus deet pour tout point gonetriques deS’, on notek (resp.S') le localis strict de
k ens (resp. deS’ ens), X l'image inverse deX surk, et on considre le caré carésien

-/

X <X
ol
k— 3
Il suffit de prouver que, pour tout’, pour touts, le morphisme canonique
H'(X,F) - H(X,F) (respH'(X,F) - H' (X, F))

est un isomorphisme. Il suffit de montrer que I'on a les relations

(%) F~g.gF  (respR'g.(¢°F)) = 0).

Or, sous cette forme, la question est localeXsyrour la topologiettale. On peut donc supposer
X affine; par passagela limite on peut supposéf de type fini surk. On sait alors quéF, f)
est cohomologiquement propre en dimensiof (resp.< 1) et qu’il en est de r@me quand on
remplaceX par un scemaétale de type fini suk, ce qui prouvex).
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Théeoreme 3.3 Soient S un schéma irréductible de point générique s, f: X — S un morphisme
de présentation finie. Supposons que les schémas de type fini de dimension < dim X sur une
clbture algébrique k de k soient désingularisables (EGA IV 7.9.1). Alors, si L désigne I’ensemble
des nombres premiers distincts des caractéristiques résiduelles de .S, on peut trouver un ouvert
non vide S de S tel que le morphisme f|S; soit universellement localement 1-asphérique pour L.

On peut supposes integre etX réduit (SGA 4 VIII 1.1). Par passagela limite on peut
supposelS noetterien. De plus, pour&mnontrer le tBoreme, il suffit de le faire ajs extension
finie S; — S, ou S; est un scema inégre et @ S; — S est compos d’extensiongtales et
d’extensions radicielles surjectives.

Montrons d’abord que, quitta restreindreS a un ouvert non videf est universellement
localement-acyclique. Quitteh faire une extension radicielle d¢s), on peut supposer que le
morphisme( X;),.q — s est €parable ; on peut donc supposer, quittestreindres a un ouvert
non vide et faire une extension radicielle surjective $leque le morphisme¢ est plat,a fibres
geonetriques éparables (EGA IV 12.1.1), ce qui eritna quef est universellemerttacyclique
(SGA 4 XV 4.1).

Montrons que, quitt@ restreindreS a un ouvert non videf est universellement localement
412 1-asplerique pouil. Quittea faire une extension finie d€s), ce qui est loisible car on peut la
consicerer comme comp@g d’une extensioatale et d’'une extension radicielle, on peut trouver
un morphisme propre surjectif: Y, — X, ouY, estun schma lisse suf, de néeme dimension
gque X,, et on peut supposer que provient d’'un morphisme propre surjecpif Y — X, ouY
est un schma lisse suf (EGA IV 9.6.1 et 12.1.6). Il suffit de montrer que, quiteestreindre
S a un ouvert non vide, pour tout diagrameargés cargésiens

S// < f” XI/

1

S/ < X/

L,

S<—X,

ou i estétale de pesentation finie, et pour tout faisceau de Indproupest’ sur.S”, si @ est le
champ des torseurs sofs alors le morphisme canonique

f/*2*® SN j*f'//*¢

est uneéquivalence. Soienff = Y xx Y, T = Y xx Y xx Y. On a de fagon naturelle un
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diagramme commutatif

1" /!
p -
Sl/ < X// < Yl/ -~ Z// = Tl/

P AP T

S’ X <ty =—g=17

O T

S X<t ys=—gg=—17

413 Soientq: Z — X etr: T'— X les morphismes canoniques, les notatigng’, ¢”, " ayant un
sensévident. D’apés 1.11 2), on a le diagramme essentiellement commutatif suivant, dont les
lignes sont exactes :

f l q) p/ />|<(J£‘/>|<,ng ) / /*(f/*Z q)) r/r/*(f/*l'*q))

| ) | |
]*f//*q) j p// //*(f//*q)) ]*qi/ //*(f//*q)) ]* // //*(f//*@)

CommeY est lisse suiS, le morphismefp est universellement localement 1-asphue pour
L (SGA XV 2.1), et il fesulte de [2, VII 2.1.7] qué est uneéquivalence de cagories. D’autre
part, quittea restreindreS' a un ouvert non vide, on peut supposer que les morphigmes S
etT — S sont universellement localemebracycliques. Il en&sulte que les foncteurset d
sont pleinement figles, et le diagramme ci-dessus montre alorsaces uneequivalence, ce qui
acteve la émonstration.

Corollaire 3.4 Soient k un corps de caractéristique p > 0, p’ I’ensemble des nombres premiers
distincts de p, f: X — k un morphisme cohérent. Supposons satistaite I’'une des deux conditions
suivantes :

a) f est de type fini et les schémas de type fini de dimension < dim X sur une cl6ture
algébrique de k sont désingularisables.

b) Les schémas de type fini sur une cl6ture algébrique de k sont désingularisables.

Alors f est universellement localement 1-asphérique pour p'.

Le cas a) esulte de 3.3. Dans le cas b), la questtant locale suX, on peut supposex
414 affine ; par passagela limite (SGA 4 XV 1.3), on se raeme au casw.X est de type fini suk.

Corollaire 3.5 Soient S un schéma irréductible de point générique s, f: X — S un morphisme
de présentation finie. Supposons que les schémas de type fini de dimension < dim X sur une
cloture algébrique k de k(s) soient fortement désingularisables (SGA 5 I 3.1.5). Si L désigne
I’ensemble des nombres premiers distincts des caractéristiques résiduelles de S, on peut trouver
un ouvert non vide S, de S tel que, pour toute spécialisation S, — S, de points géométriques de
S, le morphisme de spécialisation (2.10)

71%(*)(51) - W]%(X@)
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soit bijectif.

D’apres 3.1 et 3.3, on peut, quitéerestreindreS’ @ un ouvert non vide, supposer gfiest
localementl-asplérique pouil, et que, pour tout faisceau degroupes constant firfi' sur X,
(F, f) est cohomologiquement propre en dimension. Il résulte alors de 1.14 que, pour toute
specialisations; — 5, de points g@onétriques de51, le morphisme de grialisation

1 1
(R f*F)§2 - (R f*F)gl

est bijectif. Le corollaire n’est autre que la traduction de ce gaogme en termes de groupes
fondamentaux.

4 Suites exactes d’homotopie

4.0 SoientX etS deux sclémas connexeg,: X — S un morphismeg un point gconetrique
de X, L un ensemble de nombres premiers. Soite noyau de ’homomorphisme canonique
m(X,a) — m(S,a) et N le plus petit pro-sous-groupe distifgde K tel que K/N soit un
prodL-groupek™. Alors N est distingé dansr, (X, a) et on note

m (X, a)

le quotient der; (X, a) par N. Sia est un point gonétrique d’une fibre gonétrique X;, les
morphismes canoniques
771<X§7a) - 7T1(X7 CL) I 771(‘37 CL)

permettent de &finir des morphismes canoniques
W]{J(X& G)L>7Ti (Xa CL)#-TH(S, CL)
On avu = 0.

Proposition 4.1 Soient S un schéma connexe, f: X — S un morphisme localement 0-acyclique
(SGA 4 XV 1.11); supposons de plus f 0-acyclique (ce qui, lorsque f est cohérent, revient a
dire que les fibres géométriques de f sont connexes (SGA 4 XV 1.16)). Soit . un ensemble de
nombres premiers. Si S’ est un schéma étale sur S, on note X', f' les images inverses de X, f sur
S’. Supposons que, pour tout revétement étale S’ de S et pour tout revétement étale E' de X', quo-
tient d’un revétement galoisien de groupe un LL-groupe, (F, ') soit cohomologiquement propre
relativement a S’ en dimension < 0 et f.E constructible. Alors, si § est un point géométrique de
S et a un point géométrique de la fibre X3, la suite d’homomorphismes de groupes

(4.1.2) (X5, a)——m1 (X, a)——m (S, a)—=1

est exacte
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Ceténoné ceréeralise X.1.4, dont on va copier I&@chonstration.

Montrons d’abord que est surjectif. Il suffit de montrer que, pour tout ésmentéetale
connexes’ de S, X’ est aussi connexe (V.6.9). S6ltun ensemble ayant au moins d&éments.
Il résulte du fait qug est0-acyclique que le morphisme canonique

H(S', Cs) — HY(X', Cx)
est bijectif, donc queX’ est connexe, dla surjectivié dew.

416 Par cefinition deK™ (4.0), on a la suite exacte
l—=Kl'——7 (X, a)—m(S,a)—=1

SoientS le revetement universel d§ et X = S xg X ; le groupeK™ classe les rédtements
galoisiens” de groupe uii.-groupe, tels qu'il existe un rétemengétaleS’ de.S et un reétement
galoisien) de X’ = X x 4.5’ tels que I'on ait un isomorphisme ~ (Q x x» X. Pour que la suite
(4.1.1) soit exacte, il faut et il suffit que le morphisme canonique

(X5, a) — K-

soit surjectif. D’apes l'interpiétation deK™ cela revien& dire que, pour tout rétementétale
S’ de S et pour tout regtement galoisiefy de X’ de groupe uri.-groupe, tel que® = Q xx X
soit connexe, alor®| X est connexe. Montrons que cette déeraicondition est satisfaite. Soient
en effetS’ un re\etementtale deS, @ un re\etement galoisien d&”’ de groupe urL-groupe
F, tel que| X; soit disconnexe et montrons que, quateemplacerS’ par un re@étemenétale,
() devient disconnexe. Il existe un sous-grodpde F' distinct deF' et un torseut? sousG|X;
tel que@|X; s’obtienne par extension du groupe structdral> F' a partir deR. Le re\vetement
étaleF = (/G de X’ est tel quel’| X ait une section. D’a@rs 1.16f, E est localement constant
constructible et, quitté remplacelS’ par un reétemengtale, on peut @me supposer qug F
est constant. Commé&”, f’) est cohomologiquement propre relativem&st en dimensior 0
et commeH’( X5, E|X;) est non vide, on voit qu& a une section. Mais ceci prouve gQeest
part 82 disconnexe, ce qui aekie la &monstration.

On ceduit de 4.1 le lemme suivant, qui sera uélans 4.6.

Lemme 4.2 Soient S un schéma connexe, f: X — S un morphisme localement 0-acyclique
417 et 0-acyclique, . un ensemble de nombres premiers. Supposons que, pour tout faisceau de L-

groupes constant fini F' sur X, (F, f) soit cohomologiquement propre relativement a S en di-

mension < 1, et que, pour tout revétement étale S" de S et pour tout revétement étale E de X',

quotient d’un revétement galoisien de groupe un LL-groupe, f!E soit constructible. Alors, si 5 est

un point géométrique de S et a un point géométrique de la fibre X3, la suite d’homomorphismes

de groupes

1 (Xs, a)—m (X, a)—m1 (S, a) —1

est exacte.
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les hypotleses de 4.1 sont satisfaites.dkulte en effet de 1.13 3) que, pour tout&mias’
étale surS et pour tout regtementgtale £ de X', quotient d’'un regtement galoisien de groupe
unLL-groupe,(E, ') est conomologiquement propre relativemait en dimensiork 0.

Proposition 4.3 Soient S un schéma connexe, IL. un ensemble de nombres premiers, f: X — S
un morphisme 0-acyclique, localement 1-asphérique pour L. (SGA 4 XV 1.11), g: S — X une
section de f. Soient § un point géométrique de S, a un point géométrique de la fibre X;. On
suppose que, pour tout faisceau de IL-groupe constant F', (F, f) est cohomologiquement propre
en dimension < 1, que I'image directe par f du champ des torseurs sous F' est un champ 1-
constructible (0) et que, pour tout revétement étale E' de X', quotient d’un revétement galoisien
de groupe un IL-groupe, f.FE est constructible. Alors la suite d’homomorphismes de groupes

(4.3.1) 11—k (X5, a)——m (X, a)——=m (S, a)—=1

est exacte.

Compte-tenu de 4.2, il suffit de montrer I'inject&ilu morphisme, i.e. de prouver que,
418 pour tout reétement principal de X; de groupe urL.-groupeC, il existe un reétementétale
Z de X et un morphisme d’une composante connexe g€, dansZ (V.6.8). Soient don& un
revetement principal dé&(; de groupe uri.-groupeC et z sa classe darig!(X;, Cx,). D'apres
1.5 d), on a un isomorphisme canonique

(Rl f*CX)g = Hl(X§7 CX§)>

etd’apes 1.16R' f.C'x est un faisceau localement constant constructible. On peut donc trouver
un re\dtemengtales’ de S tel queR' f,C'x|S’ soit constant. Si — S’ est un point gonétrique
au-dessus du poinggneétriques — S, il existe unélementz deH°(S’, R! f,Cx) dont I'image
dansH' (X5, Cx,) estz. D'apres le lemme 4.3.1 ci-dessous, on peut trouver uatezuenétale

S7 de S’ et un torseurP sur X, de groupeC dont I'image dandi®(S], R' f.C) soit égalea la
restriction dez. Le torseurP est repesentable par un rétemenétaleZ de X| = X x4 5 tel

queZ x x; X soit isomorphex Z. Si I'on considre Z comme un regtemengétale deX, on a

alors un morphisme d& x x X; dansZ, ce qui ackve la @monstration.

Lemme 4.3.1 Soient f: X — S un morphisme 0-acyclique et localement 0-acyclique, g une
section de f. Soit C' un groupe constant fini tel que (C'y, f) soit cohomologiquement propre en
dimension < 0 et que I’'image directe par [ du champ des torseurs sous C'x soit constructible.
Alors, pour toute section z de H°(S, R! f+«Cx), on peut trouver un revétement étale Sy de S et,
si X; = X xg 51, un élément de H' (X, C, ), dont I'image par le morphisme canonique

HY(X1, Cx,) — HY(S1, R f.Cx,)

soit égale a la restriction de z a H°(S, R' £,Cx,).

Pour tout scmas’ étale surS, on poseX’ = X x5 .5, eton notey (resp.F’, etc.) I'image
419 inverse d&~ (resp.F, etc.) par le morphismg” — S. Le préfaisceaus sur.S défini par
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G(S') = classes mod. isomorphisme de torsef@irsur X’ de groupeCx, munis d’'un
~ |isomorphisme/*P = Cg

est alors un faisceau. Celesulte en effet par descente du fait qu’un isomorphisme d’un torseur
P sur X’ est bien étermiré par sa restrictioa ¢’(S’). De plus, on a un morphisme surjectif

G — R'f.F.

Soientz un élement de’(S,R! f,Cx) et H le sous-faisceau d€ image Eciproque de:. ||
suffit de montrer qued est un faisceau localement constant constructible. Or, cette p#pri
étant locale suf, on peut supposer queprovient d’'unélement de! (X, Cx) repieseng par
un torseurP tel queg* P soit isomorph& Cs. Se donner un isomorphismeg* P — Cy revient

a se donner une section globale Aatq (¢*P) et deux isomorphismeset i’ définissent le
mémeélement de(X) si et seulement si’~! est image d'unélement deAutq, (P). Sil'on
consicere l'injection canonique

f* AutCX(P) e Alltcs (g*P) ~ C,

H s’identifie donc au quotient dAutq(¢* P) par f. Autq, (P). D’apres 1.16f, Autq, (P)
est localement constant; il en est donc deanme def, ce qui ackve la &monstration.

Exemples 4.4Notons que, si5 est un schma connexe, les hypaibes de 4.1 sont satisfaites
lorsque le morphismg est propre plat de psentation finiea fibres @oneétriques gparables
connexes]L étant quelconque (cf. X.1.3). Les hypeties de 4.3 sont satisfaites si de pfus
est lisse et a une section, si I'o@églgne pail. 'ensemble des nombres premiers distincts des
caracéristiques esiduelles d&' (SGA 4 XV.2.1 et XVI 5.2).

Les hypotleses de 4.1 sont aussi satisfaite$ &ist connexe, si 'on a un sema’Z propre
de pésentation finie, plat suf, a fibres @onétriques &parables connexes, tel giesoit le
compEmentaire dang d’un diviseura croisements normaux relativement, I étant I'en-
semble des nombres premiers distincts des daniatijues eésiduelles d& (2.9). Les hypotases
de 4.3 sont satisfaites si de plfigst lisse et a une section.

4.5 Reprenons les notations et les hyprstes de 4.3. Si est un point gonetrique deS et
a = ¢(5s), la sectiony permet de &finir un morphisme

w: m(S,a) — 7 (X, a),

de sorte que’| (X, a) S'identifie au produit semi-direct dg (.S, a) parm (X5, a). Le groupe pro-
fini (S, a) opere donc surr; (X5, a). Comment (X5, a) est limite projective stricte de groupes
invariants par I'action de (S, a), la donrée der}'( X5, a) muni de cette action egguivalentex

la donree d’'un systme projectif strict de s&mas en groupesales finis sus que I'on note

7 (X/S,g,5) ousimplement 7(X/S,g).
On a alors les propeies suivantes :
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4.5.1 Pour tout scema en groupesétale finiG sur S, dont les fibres sont dds-groupes,
'ensembleFE des classes de torseuPssous I'image inversé:x de G sur X, munis d’un iso-
morphismeg*P = G, est canoniquement isomorpadensemble

Homg(n1'(X/S,¢,5),G) mod. automorphismes iatieurs de’.

4.5.2 Pour tout scema en groupestale finiG sur S dont les fibres sont dds-groupes, le
faiscealR! f.Gx est canoniquement isomorphe au faisceau assacpéfaisceau

S’ +— Homg (77(X/S, g,5), G) mod. automorphismes itieurs deG.

(S’ designe un saddmaétale surs).

4.5.3 SoientS’ un S-schema connexes un point ggonetrique deS’, X', ¢’ les images in-
verses respectives dg g surS’. Alors i(X’/S’, ¢, 5) est canoniquement isomorphd¢image
inverse derl(X/S, g, 5) surS’. Pour tout point gonétriqueé de S, la fibren(X/S, g, 5)¢ est
isomorphea i (Xe).

La donree deG est en effeequivalentea la don@e d’'unlL-groupe abstraitz sur lequel
opéerem (S, a), d’ou une action der| (X, a) sur G. L'isomorphisme éfini dans 4.5.1 s’obtient
alors par restriction au sous-ensembl@ partir du morphisme canonique

H1<7T£(X7 a)a G) - Hl(”%(Xﬁ a)? G)
= Hom(7}(Xs, a), G)/aut. int.G,
I'ensembleFE s’envoyant bijectivement sur le sous-ensemble des morphismeg dg, a) dans
G qui sont compatibles avec I'action a@g(S, a). L'assertion 4.5.3&sulte alors de la&finition

den(X/S, g,5) compte-tenu de la suite exacte d’homotopie (4.3.1) et 4.5.2deitdde 4.5.1
et4.5.3.

Proposition 4.6 (Formule de Kiinneth). Soient k un corps séparablement clos de caractéristique
p >0, X etY deux k-schémas connexes, a un point géométrique de X, b un point géométrique
de Y, c un point géométrique de X X, Y au-dessus de a et b. On suppose satisfaite I’'une des
deux conditions suivantes :

a) X est de type fini sur k et les schémas de type fini sur une cloture algébrique k de k, de
dimension < dim X, sont fortement désingularisables. (SGA 513.1.5).

b) X est quasi-compact et quasi-séparé et tout schéma de type fini sur k est fortement
désingularisable.

Alors, sip’ est I’ensemble des nombres premiers distincts de p, le morphisme
(4.6.0) (X xY,¢) = 7} (X,a) x 7} (Y, 1),

déduit des homomorphismes sur les groupes fondamentaux associés aux projections
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XXkY—>X et XXkYHY

Y

est un isomorphisme.

On peut supposeér algebriquement clos eX réduit (SGA 4 VIII 1.1). Soient = X x, Y,
g: X — ketf: Z— Y les morphismes canoniques. Le morphigmedonc aussf, est univer-
sellement localement 1-aspiique poup’ d’apres 5.3. Comme est connexef est 0-acyclique
(SGA 4 XV 1.16). D’autre part il &sulte de 3.2 que, pour topt-groupe finiC, (Cx, g) est
cohomologiquement propre relativemenk en dimension< 1. Il en résulte que(Cy, f) est
cohomologiquement propre relativemeérit’ en dimensior< 1 (1.5 c)) et quef.C etR! £.C
sont des faisceaux constants. Par syigatisfaita toutes les hypo#étses de 4.2. On a donc la
Suite exacte

(X, ¢) = 7 (Z,¢) — 7 (Y, b) — 1.

De plus le morphisme comp@es
' (Xp,¢) = 7 (Z,¢) = 71 (Y, )
est un isomorphisme et I'on a donc la suite exacte
1 7'(X,a) = 7 (Z,¢) = 7 (V,b) — 1.

D’autre part le morphisme (4.6.0) permet d&fidir un morphisme de cette suite exacte dans la
Suite exacte
1= (X,a) — wf (X, a) x 7] (Y, 0) x ] (Y,b) — 1,

et il en resulte que le morphisme (4.6.0) est un isomorphisme.

4.7  Soit
X — Xy — X

l o | |

S —— U «—— s
un diagramme dont les c&s sont ca#siens, 0 S est un scma connexe par arcs (SGA 4
IX 2.12), U un ouvert connexe d€, s un point geconétrique dd/. Soienta un point geonétrique
de X5, L un ensemble de nombres premiers. aihe section d¢ et supposons que les condi-
tions suivantes soient satisfaites :

a) Le morphismg est 0-acyclique, localement 0-acyclique, et, pour toudtewenetales’
deS ettout reetementetaleF de X x ¢S’ quotient d’'un regtement galoisien de groupe un
LL-groupe,(E, f(s) est conomologiquement propre relativemast en dimensior< 0.

b) Le morphismef;; est localement 1-asphque pouil, et, pour tout faisceau de-groupe
constant finiF' sur Xy, (F, fy) est conomologiquement propre en dimension et les
fibres deR! f;, F sont finies.
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On céduit alors de 4.1 et 4.3 le diagramme commutatif suivant dont les lignes sont exactes :

1 —— W]{‘(Xg,a) — m(Xy,a) —— m(U,a) —— 1

(4.7.0) H l l

T]{‘(ng(l) - ﬂ-i(X7a) - 7T1(S,CL) — 1

Gracea la sectiory, on a des morphismes (U, a) — 7} (Xy,a) m(S,a) — 71(X,a); on
en ceduit un morphisme de la somme amal@ender, (S, a) etn](Xy, a) au dessus de; (U, a)
dansr}(X,a) :

(4.7.1) p:m=m(S,a) [ =(Xv,a)— (X, a).
1 (Ua)
Supposons satisfaite la conditon suivante :
c) SiT =S — U, onaprof étp(S) > 2 (SGA 2 XIV 1.1).
Alors le foncteur qui,a un reetementétale desS, fait correspondre sa restrictichn U est
pleinement figle (SGA 2 XVI 1.4). Il en esulte que le morphisme;(U,a) — (S, a)

est surjectif (6.9) et I'on @duit du diagramme (4.7.0) qu'il en est deéme du morphisme
1 (Xy,a) — 7 (X, a) ; afortiori ¢ est unépimorphisme. Soit

(4.7.2) K = Ker(m (U, a) — m(S, a)).

Le grouper de (4.7.1) s'identifie au quotient de|(Xy,a) par le sous-groupe invariant
fermé engend® par I'image L de K dansti(Xy,a). Consicronsmi(Xy,a) comme pro-
duit semi-direct der,(U,a) par n+(Xs,a). Le groupe K opere alors par automorphismes
intérieurs sur(Xg,a), et le quotientr = 7/ (Xy,a)/L s'identifie au produit semi-direct de
m(U,a)/K = m(S,a) par le grouper} (X5, a)x des coinvariants del'(Xs, a) sousk. On a
finalement urépimorphisme

(4.7.3) o m=m(Xs,a)k - m(S,a) — T (X, a).

La proposition qui suit donne des conditions sous-lesquelles le morphisgaeun isomor-
phisme.

Proposition 4.7.4 Les notations sont celles de 4.7. On suppose que, en plus des conditions a),
b), ¢) les conditions suivantes soient satisfaites :

d) Pour tout pointt de'l' = S — U, le morphisme f est localement 1-asphérique pour IL. en
g(t).

e) Pour tout pointt € T, toute composante irréductible de la fibre X, contient ¢(t) et, pour
tout point x de X; — {g(t)} qui n’est pas maximal, on a

prof hop,(X) >3 (SGA2XIV 1.2)

et I’anneau O’ , est noethérien.
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Alors le morphisme (4.7.3)est un isomorphisme.

Comme on l'a dit pecedemment, le groupe s’identifie au quotient de| (X, a) par le
sous-groupe invariant fe@n. engende par I'image dek (4.7.2) dansr|(Xy, a). Cela revient
a dire quer classe les redtements principau¥ de X;; tels queg;'(Z) se prolonge en un
revetementétale deS, et qui induisent suX; un re\etement qui s’obtient par extension du
groupe structurah partir d’'un re@étement principal de groupe lirgroupe. Pour prouver que
est un isomorphisme, il suffit de montrer qu’un tel&@mentZ se prolongex X tout entier.

Montrons d’abord queZ se prolongue en un rétementtale d’'un ouvert contenadf;; et
g(S). SoitlV un sclemaétale surtX dont 'image contienfX;; etg(S), et posondVy = W xgU.
Du fait que le morphismél” — S est 0-acyclique et de l&lationprof .ét7S > 2, résulte que
'ona

prof .ty _w, ) W > 2

(SGA 2 XIV 1.13); par suite, s|I¥; se prolonge en un réementtale dell/, ce prolonge-
ment est uniqua isomorphisme unique @s. Il en esulte que le prokime de prolongef a un
voisinage dey(S) U X, est local pour la topologiétale au voisinage des pointsgd”). Sit est
un point deT’, on poser = g(t), et on noteX (resp.S) le localig strict deX enz (resp. deS
ent),U =U x5S, Xy = X xx Xy, g: S — X le morphisme éduit deg. Il suffit de montrer
que, pour tout point de T, 'image inverseZ de Z sur X se prolongei X ou, ce qui revient
au méme, est triviale. Or, parédinition de Z, I'image inverse de d¢& sur U est triviale. Pour
prouver queZ est trivial, il suffit de montrer qu'il est de la formg; E, ol E est un re@tement
principal deU ; on aura en effet ~ g fE ~ g;;Z, d’ou le résultat puisque;; Z est trivial.
Or le morphismef; étant 0-acyclique et localement 0-acyclique, il suffit, pour prouver 4ue
provient del/, de montrer que, pour tout poinégnetrique al@brique sur un point d&, que
I'on peut supposegtre le points, Z| X est trivial (SGA 4 XV 1.15). MaiZ| X; étant obtenu par
extension du groupe structuralpartir d’'un reetement principal de groupe unrgroupe, cela
résulte du fait que le morphisnyeest 1-aspérique poutL.

On a donc @monté qu’il existe un voisinage ouvevt de g(S) U Xy tel queZ se prolonge
en un re@étemenetaleZ,, de V. Montrons queZy, se prolonge X tout entier. Il suffit de voir
que, pour tout point deX — V,on a

prof hop, X > 3.

Or cela esulte de I'hypothse e) et du fait qu’un point de X — V' ne peutétre maximal dans
sa fibreX, car, toute composante &ductible deX; contanant(t), tout point maximal deX;
appartieng V.

Corollaire 4.8 Les hypotheses sont celles de 4.7.4 mais on suppose de plus que 1’on a
m1(S,a) = 1. Alors on a un isomorphisme

(%) (X, a) 5 m (X5, a)k.

296



X1

En particulier, si 1( X5, a) est topologiquement de présentation finie et si K opére sur wi*( X5, a)
par I'intermédiaire d’un groupe de type fini, alors 7'( X, a) est topologiquement de présentation
finie.

L'isomorphisme §) a ée demonté dans 4.7.4. Supposons(Xs,a) quotient du prak-

groupe librean gérérateursl(z4, ..., z,) par le sous-groupe invariant feenengend par les
élementsy,, ..., y,deL(zy,...,x,), et supposons quE agisse par l'interrddiaire d’un groupe
engende par delementst,, ..., k,. Si pour tout; € [1,n], j € [1, ¢, on notez;; un élément

deL(xi,...,x,) relevantlelement(k; - z;)z; ', alorstt (X5, a) x est quotient dé.(zy, . . ., z,,)
part 84 par le sous-groupe invariant feenengends par lelements(y; )icpi ), (2ij)ic(1.n),je[1.q)-

Remarques 4.6 a) Les conditions aa e) de 4.7 sont satisfaites lorsqgfeest un scbma
normal connexel/ on ouvert denseétrocompact deS, f un morphisme propre de
présentation finiea fibres @onetriquement connexes etéductibles en tout poirtdeT’,

427 f étant de plusé&parable, lisse aux points d&; U ¢(7'), L étant 'ensemble des nombres
premiers distincts des carédistiques esiduelles des, et X étant égulier en tout point
de X,. La condition a) esulte en effet de SGA 4 XV 4.1 et 1.4; les conditions b) et d)
résultent de 1.4 et SGA 4 XV 2.1 et XVI 5.2. Enfin €sulte de SGA XIV 1.11.

b) Le corollaire 4.5 s’applique pour calculer le groupe fondamezrﬁt/aIX) d’'une surface
X propre et lisse sur un corpgmarablement clog de capadristiquep (p' désignant
'ensemble des nombres premiers distinctspiieLa méthode nous &t communigée
par J.-P. MURRE ; elle consistese ramener, en faisa@tlaterX, au cas a I'on a une
fibration X — P} et un ouvert’ de P} satisfaisant aux hypodises de 4.7 (voir SGA 7
pour plus de étails). La néme n&éthode peuétre utilie plus @réralement (loc.cit.) pour
prouver que, siX est unk-schema connexe de type fini, et, si les aofas de type fini
de dimensior< dim X sur une dbture algbrique det sont fortement ésingularisables
(SGA513.1.5), alorSrf' (X) est topologiquement de gsentation finie.

5 Appendice | : Variations sur le lemme d’Abhyankar

Cet appendice contient diffentes variantes du lemme d’Abhyankar.

Proposition 5.1 Soient X = Spec A un schéma local régulier, D = ), _, .. div f; un diviseur
a croisements normaux, ou les f; sont des éléments de 1’idéal maximal de A faisant partie d’un
systeme régulier de parametres. Soient n;, 1 < ¢ < r, des entiers > 0 et posons

X' =X[T,...,T,)J(T" — f1,..., T — f),

U' =U xx X'. Alors X' est régulier et U’ est le complémentaire dans X' du diviseur a croise-
428 ments normaux » ., div T;. Si les entiers n; sont premiers a la caractéristique résiduelle p de
X, U’ est un revétement étale connexe de U, modérément ramifié relativement a D (2.3 ¢)).
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En effet X’ est le spectre d’un anneau locdl dont l'idéal maximal est engengr
par 11,...,T,. Comme A" est fini et plat surA, donc de dimension, A’ est egulier
(EGA 05 17.1.1) et lesl; forment un systme Egulier de paragtres deA’. Supposons les
n; premiersa p. Comme tous leg; sont inversibles sul/, le fait queU’ soit étale sur résulte
de 7.4. De plug/’ est mo@rement rami relativemena D ; soit en effetr; le point gerérique
deV(f;), R le locali strict deR = O, K le corps des fractions d&. Alors la K-algebre
qui repsentel/’| K s’obtienta partir du corps<[T;]/ (T} — f;) en faisant une extension non
ramifiee ; elle est donc m@ement ramifee surk.

Proposition 5.2 (Lemme d’Abhyankar absolu.) Soit X un schéma local régulier,

un diviseur a croisements normaux comme dans 5.1, Y = SuppD, U = X — Y. Soit V
un revétement étale de U modérément ramifié relativement a D. Si x; est le point générique
du fermé V (f;), Ox ., est un anneau de valuation discréte de corps des fractions K;, et on a
VI|K; = Spec([ [, L;), ot les L; sont des extensions finies séparables de K; ; notons n; I’ordre
du groupe d’inertie d’une extension galoisienne engendrée par L; et n; le p.p.c.m. des n; quand
J parcourt J;. Si I’on pose

X/:X[Tl,...,TT]/(Tlnl —fl,...,T,:LT—fT>7

U = Uxry, V= Vixn, etc., le revétement étale V' de U’ se prolonge de maniére unique a iso-
morphisme unique prés en un revétement étale de X', et les n; sont premiers a la caractéristique
résiduelle p de X.

L'unicité résulte du fait queX’ est normal (5.1); en effet un retementétale deX’ qui
prolongeV’ est isomorphe au normadisle X’ dans la fibre dd/’ au point grérique deX’
(10.2). Siz’ est un point @onetrique deY”’, on noteX” le locali€ strict deX’ enz’, V' = V/X,),
etc. Par descente, compte tenu de I'uiicit suffit de montrer que, pour tout poinégnetrique
7 deY’, le reletementtaleV’ deU’ se prolongeér X'. Etant don@ qu’un reétemengétale d’'un
ouvert du scema Egulier X’ qui contient tous les pointg’ tels que I'on aitdim Oy ,» < 1
se prolongea X tout entier (SGA 2 XIV 1.11), on peut @mne se borner aux poini$ qui se
projettent sur un point maximal dé’. Or, en un tel point’, le fait quel”’ se prolonge en un

revetemengétale deX’ résulte de 3.6.

Montrons que les; sont premier&ap. En effet, s'il n’enétait pas ainsi, on aurait par exemple
p|ny. Quittea remplaceX par X |7, ... ,TT]/Tl”l/p — f1,15% — fo, ..., T™ — f,), On se raréne
aucas alonaX’' = X[T1]/T7 — fi1. Il suffit de montrer qué” se prolonge en un rétement
étale deX, car on aura alors; = 1 contrairemendé I’hypothese. On peut supposer pour cela que
X est strictement local. Saff le sous-scéma ferngé deX d’équatiorp = 0etZ; = ZNXy, ; Z;
est un ouvert non vide dé. D’apres ce qui peade le regtementtalel’’ deU’ se prolonge en un
revétementétalell’’ de X’. SoientlW] etV les images inverses d&’ par les deux projections
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X" = X' xx X' = X', et montrons que Iisomorphisme de descentéV]'|U" — W, |U"
se prolonge en uX”-morphismelV” — W qui sera kcessairement une dasde descente
sur W’ relativementa X’ — X. Soit Z” (resp.Z) 'image inverse deZ (resp.Z;) dansX”.
Comme le morphism&” — Z est radiciel, il existe un isomorphisme W{'|Z" — W |Z" qui
prolonge I'isomorphisme|Z]. Mais, commeX est henglien, on a une bijection

oy (W, W) = Homy (W/| 2", W|2"),

430 d’ou un morphismev: W) — W/ relevantv. Le sous-scemaa la fois ouvert et feria de X"
au-dessus duqueletw coincident contientZ;’, doncégala X", d'ou le fait queV’ se prolonge
ax.

5.3.0 Reprenons les hypaotlses et les notations de 5.2 en supposant de$ktsictement
local. Alors il résulte de loc.cit. que tout retementétale connexe d& moderément ramie
relativement D est quotient d’un reédtement modrement ramif de la forme

U =U[Ty, ..., T,))(T" = fi,.... T — f.),

ou lesn; sont des entiers premieésp. Soit 1, le groupe des racinesiemes de l'uni deU.
Le groupe ded/-automorphismes d€’ n’est autre que le groupe,, x --- X u,,, Une racine
n;-ieme de l'unié & opérant sur/’ en transformant; en&;T;. On a donc lenon& suivant :

Corollaire 5.3 Soit X un schéma strictement local régulier de caractéristique résiduelle p > 0,
D =", .., div f; un diviseur a croisements normaux sur X, U = X — Supp D. Posons

U =1mU[Ty, ..., T,/ (T = fr.. T = f),
(ni)
la limite projective étant prise suivant I’ensemble ordonné filtrant (pour la relation de divisibilité)
des familles d’entiers n; > 0, premiers a p. Alors U est un revétement universel modérément
ramifié de U. Par suite le groupe fondamental modérément ramifié de U est

T (U) ~ H Zy[1]"  (isomorphisme canonique)
t#p

ol I’on a posé Zy[1] = limyun. Le groupe 1 (U) est non canoniquement isomorphe a [[,.., Zj.
n>0

Proposition 5.4 Soient f: X — S un morphisme de schémas, D = ), _,., div f; un diviseur

431 a croisements normaux relativement a S (2.1), ot, pour chaque point v de Y = Supp D, si
I(z) C [1,r] est I’ensemble des i tels que I’on ait f;(x) = 0, le sous-schéma V ((fi)ic1(x))
est lisse sur S de codimension card.l(z) dans X. Soit U = X — Y. Soient x un point de Y,
Xy =SpecOx ., Uy = U xx Xy, n;, 1 € I(x) des entiers et

X' = X[Tlierw) /(17" = fi)-

Alors, si x' est le point de X' au-dessus de x, X' est lisse sur S en . Si les entiers n; sont
premiers a la caractéristique p de k(z), U] = U; xx X' est un revétement étale connexe de U,
modérément ramifié sur X, relativement a S, (2.1.1).
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Sis = f(x), la fibre geonetrique X est Eguliere au point:’ (5.1) ; commeX’ est plat sur
S au voisinage dé&’, cela prouve queX’ est lisse suiS enz’ (EGA IV 12.1.6). Si les entiers
n; sont premiers p, U] est un reétementtale del/; (7.4); il est mo@rément ramife sur.X;
relativement S car il en est ainsi sur les fibreg@gmetriques en chaque point 8€5.1). Enfin
le fait queU; soit connexe@sulte de SGA 4 XVI 3.2.

Proposition 5.5 (Lemme d’Abhyankar relatit). Soient X un S-schéma, D un diviseur a croise-
ments normaux relativement a S, comme dans (5.4). SoientY = X —Supp D, U = X —Y, z un
pointde Y, X; le localisé strict de X en un point géométrique au-dessus de x, Uy = U X x X1, V}
un revétement étale de U;. On suppose que, pour tout point maximal s de S, Vi3 est modérément
ramifié sur X5 relativement a’s. Alors on peut trouver des entiers n; premiers a la caractéristique
pdek(x), aveci € I(x), tels que, si I’on pose

X1 = X0 [Tlierw) /(T = ),

Ul = Uy xx, X], etc., le revétement étale V| de U] se prolonge de maniére unique a isomor-
phisme unique preés en un revétement étale de X|. En particulier V; est modérément ramifié sur
X relativement a S.

On peut supposef localement noetrien de point ferra f(x). Pour chaque point maximal
s de S et pour chaque € I(x), soitz; le point ggrérique du ferreé V(f;) de la fibre Xis.
L'anneau local O, ., ).sa €St Un anneau de valuation distr de corps de fractiorTs; et I'on a
Vi|K; = Spec([ ] ¢ 5.,y L), 0t L; est une extension fini€parable dé< ; on noten; I'ordre du
groupe d’inertie d’une extension galoisienne engéadrarL,; etn, le p.p.c.m. des; quands
parcourt les points maximaux deetj € J(x;).

Lesn; étant ainsi choisis, nous allons montrer dfese prolonge de fagon unique en un
revétementtale deX;. L'unicité résulte du fait queX’ étant lisse suf aux points d&’, on a
prof étys(X7) > 2 (SGA 4 XVI 3.2 ou SGA 2 XIV 1.19). Soient’ un point deY, 7} un point

géonetrique au-dessus dé, et notonsY’1 le localis strict deX| enz, U’l = U{(Y,), etc. Par
1

descente, compte tenu de I'ungiil suffit de montrer qu?’1 se proIonge&Y;. De plus on peut
se bornei& prendre pour’ les point maximaux d&7 ; en effet on aura alors un prolongement
deV/ sur un ouverWV| de X contenant les points maximaux #¢; or, siZ; = X| — W/, on a
codim(Z1,, X1,) = 2 si s est un point maximal d&' et codim(Z1,, Xi,) > 1, prof éts(S) > 1

si s est un point de&5' qui n’est pas maximal ; le fait que&/ se prolonge X tout entier esulte
alors de SGA 2 XIV 1.20. Mais, en un poinégnétriquer; au-dessus d’'un point maximal de
Y], X],.q €St le spectre d’'un anneau de valuation diggret le fait quel7/1 se prolongea 7/1

1ré

resulte alors de X.3.6.

Montrons que les; sont premiers p. En effet, s'il n’enétait pas ainsi, on aurait un indice
io € I(x) tel quep divisen,,. Quittea remplaceX par Xy [T}, Tilicra /(T1™°"" = fio, TI — 1),

on se ramne au caswX| = X;[T]/T? — f;,- D’aprés ce qui peazde le regtementetalel/
de U] se prolonge en un rétementétale £] de X. Soitn le point fernée deS; comme le

morphismeX{n — X, est radiciel,};, se prolonge en un réementétale £, de X;,. On
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en céduit alors, comme dans 5.2, qi# est muni d’'une dorge de descente relativement au
morphismeX] — X, qui prolonge la donee de descente naturelle que I'on a 4tU;. Il

en tesulte quel; se prolongea X; ; mais ceci entfime que I'on an;, = 1 contrairemeng
I'hypothesen;, = p.

Corollaire 5.6 Soient X un S-schéma, D = ) div f; un diviseur a croisements normaux
1<ir

relativement a S, comme dans 5.4. Soient T un point géométrique de X, X le localisé strict de
XenE,Y:Y(y),U:X—Yet

U =

J—

—
n

im U[Tierw)/(T]" = f)

—~
N

la limite projective €tant prise suivant I’ensemble filtrant des familles d’entiers n; > 0, premiers
a la caractéristique p de k(x). Alors U est un revétement universel modérément ramifié de U
relativement a S. Par suite le groupe fondamentale modérément ramifié de U est

I4(U) ~ H Z[1]1®) (isomorphisme canonique) .
L#p

Le groupe 11 (U) est isomorphe non canoniquement a [, 4p Zé(m)

Remarque 5.6.1 Soient X un S-schéma, D = > div f; un diviseur a croisements normaux
1<isr
relativement a S, comme dans 5.4, U = X — Supp D. Pour toute partie I C [1,r] soit

X =YV () X5 -

iel ieCI

Soit p un entier premier ou nul et soit Z un sous-ensemble de X dont tous les points sont de
caractéristique p. Soit B
Uy = lim U[T] /(T ~ 1),
(n4)
434 ou la limite projective est prise suivant I’ensemble filtrant des familles d’entiers n; > 0, pre-
miers a p. Alors, pour tout point géométrique T de Z, I’image inverse de U; sur U s’identifie au
revétement universel modérément ramifié de U.

Corollaire 5.7 Les notations sont celles de 5.6. Soient S Ie localisé strict de S en T,
g U—S e G:U—S

les morphismes canoniques. Alors les morphismes g et g sont 0-acycliques (SGA 4 XV 1.3).
Soient G un faisceau en groupes constructible sur S, F = g*G, P un torseur sous F'. Alors, pour
que P soit modérément ramifié sur X relativement a S, il faut et il suffit que son image inverse
P sur U soit triviale.
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En effet, pour tout s@maX = X[T)ier@ /(T7" — f;), ou lesn; sont des entiers- 0
premiersa p, le morphismef’: X =g est0-acyclique. Les fibres@pmétriques def’ aux
differents points d& sont donc connexes etéme iréductibles. 1l en est donc deéme des
fibres geonetriques des morphismes: U — S, ce qui prouve que leg, donc aussij, sont
0-acycliques (SGA 4 XV 1.16).

Il est clair qu'un torseur” surU de groupel’, dont I'image inverse sul/ est triviale, est
moderément rami® surX relativemen& S. Montrons queé&ciproquement, s? est moérement
ramifié surX relativementa .S, son image inverse sur est triviale.

Il résulte de SGA 41X 2.14 (i) que I'on peut trouver un morphismesfinis; — S, un fais-
ceau en groupes constaritsur S, un monomorphismé& — n,C'. Consicrons le diagramme
commutatif suivant forra de cares carésiens :

ﬁl—>U1i>51

J—0U—>3.

SoientC (resp.@l) I'image inverse de&' surU; (resp. suﬁl). On a un diagramme commutatif,
dans lequel et j sont des isomorphismes (SGA 4 VIII 5.8) :

(*) HY(U, q.Cy) —— H'(Uy, C)

Lo

H1<[7,T*51> L>I‘Il(fjl, 51) .

Soit @) le torseur soug,.C; déduit de P par I'extension du groupe structurdl — ¢.C.
D’apres 2.1.4,() est mo@&rément ramie surX relativementa S. Au torseur correspond,
graceai, un torseur); sousCt, et il est clair qu&); est mo@rement ramie  surX; = X x5S
relativementa S;. Il résulte donc de 5.6 que I'i image mver@@ de surU1 est triviale, et le
diagrammef) montre alors que I'image inverggde @ surU est triviale.

Consicerons le diagramme commutatif suivant, dont la deme ligne est exacte (SGA 4
XI13.1) :

() H°(S,n,C/G) —=HY(S,G) = 1

| l

H(U, r,C,/F)—HYU, F)—HY(U,r.C}).

Comme le morphism& — S est0-acyclique k est un isomoprhisme. Le fait quNésoit trivial
résulte alors dex).
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6 Appendice Il : theéoreme de finitude pour les images directes
des champs

Proposition 6.1 Soient S un schéma localement noethérien, f: X — S un morphisme. Si S’
est un S-schéma, on note X' (resp. f’, etc.) I'image inverse de X (resp. f, etc.) par le mor-

436 phisme S — S. Supposons que, pour tout schéma S’ étale sur S, pour tout faisceau d’ensembles
constructible F' sur X', f. F" soit constructible, et que, pour tout faisceau en groupes constructible
F sur X', R! f'F soit constructible. Soit ® un champ 1-constructible sur X (0). Alors f,® est
1-constructible.

Pour tout scemas’ étale surS et pour tout objet: de (f.®)s/, On a un isomorphisme
Allts/(:L') >~ f:( AutX/ (1’) ,

ou, dans le deugime membre de&galig, = est consiérée comme objet dé y.. Les hypotleses

faites entrinent donc que,® est constructible. Soff® le faisceau des sous-gerbes maximales

de® [1, lll, 2.1.7]. Commef,(SP) est constructible, on peut lui appliquer SGA 41X 2.7, et le
part 86 fait que f,® soit 1-constructible esulte alors du lemme qui suit.

Lemme 6.1.1 Soient S un schéma localement noethérien, f: X — S un morphisme, ® un
champ sur X . On suppse donné un faisceau sur S, représentable par un S—schéma étale de type
fini T', un morphisme surjectif

a: T — f.(SP)

et un objet p de la fibre ®x.. (ou X; = X xgT), définissant dans f.(SP)(T) = SP(Xr) un
élément égal a I'image q par a de la section identique de T'(T'). Soit fr: X7 — T le morphisme
canonique et supposons que le faisceau R' fr.(Autx, (p)) soit constructible ; alors il en est de
méme de S(f.P).

Le morphisme canoniqug' f,® — ® donne un morphisme
S f®) = [H(S(fu®)) — 5P,

d’ou un morphisme canonique
p: S(fu®) — fu(S9).
437 SoientF’ = S(f.®) etG I'image deF pary; d'apres SGA 4 IX, 2.9 est un faisceau construc-
tible.

Il suffit de montrer que, pour tout poirtde S, il existe un ouvert non vidé& de s tel que
F|U soit localement constant constructible. Soiemt .S, s un point gorrétrique au—dessus de
$,qyq,---,q, leséléments dé&r ;. Par cfinition deT’, il existe desS—morphismes,;: 5 — S’ tels
que I'on aitg; = h!(q). SoientS’ le produit fibé surS den sctémas isomorphes 7', 5 — 5’
le produit fibe desh;, X' = X xg .5, ¢; (resp.p;) 'image inverse de (resp.p) par lai—-eme
projection deS’ surT'. Si ¥; est la sous—gerbe maximale @#e€X’ engendee parp;, le faisceau
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F; = R! f/(Autx (p;)) n’est autre que le faiscedl( f'¥;) des sous—gerbes maximalesfde,.
En particulier I'injection canoniqu&; — ®|X’ donne un morphisme

a;: F; — F|S'.

Nous allons montrer que; est une bijection dé; sur I'mage inverse dg; dansF'|S’. Pour
tout sctema S” étale surS’ toute sectiony de F;(S”) a pour imagey;|S” dansF(S”), car,
localement pour la topologigtale surS”, y est cfini par un objetr de ® x» qui est isomorphe
ap;|X". Réciproquement, sy € F(S”) a pour imagey;|S” dansF'(S”), localement pour la
topologieétale surS”, y est fini par un objet: de ®x» qui est isomorpha p; ; par suiter est
un objet del, v et par suitey € F;(S”).

La demonstration s’adve en utilisant 6.1.2 ci—dessous. On peut en effet trouver un voi-
sinage ouverl’ de s tel queq,|U’,. .., q,|U’ soient des sections d&(U’) et engendrent ce
faisceau. Comme lek;|U’ et G|U’ sont constructibles, il en est deéme del’|U’ d’apres 6.1.2;
quitte & remplacer U par un ouvert plus petit|U est localement constant, ce qui auh la
demonstration.

Lemme 6.1.2 Soient S un schéma localement noethérien, ' — G un morphsime surjectif de
faisceaux en groupes sur S. Soient g; une famille finie de sections de G sur X qui engendrent
G, et, pour chaque 1, soit F; le sous-faisceau de F' image inverse de q;. Alors, si G et les F;; sont
constructibles, il en est de méme de F'.

Pour prouver qué’ est constructible, il suffit de montrer que, pour tout peide.S, il existe
un voisinage ouvert/ de s tel que F'|U soit localement constant constructible. Soit denm
point deS. Comme les faisceauk; et G sont constructibles, on peut trouver un voisinage ouvert
U des tel queF;|U etG|U soient localement constants. Montrons alors g€ est localement
constant. D’apes SGA 4 IX 2.13 (i), il sufiit de voir que, Siest un point @onetrique au—dessus
de s, § un point geonetrique delU ets — 5 un morphisme de $eialisation, le morphisme
canonique

Fg — Fg

est bijectif.

On consi@re les diagrammes commutatifs

Soitg, (resp.q;) 'image inverse de; dansGs (resp.Gs) ; les morphismes eta sont surjectifs,
et le morphismez; (resp.a;) induit une bijection de€F;)s (resp.(F;)s) sura'(g) (resp. sur

a~(q;)). Il resulte donc du diagramme ci—dessus geast un isomorphisme.
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Corollaire 6.2 Soient S un schéma localement noethérien, f: X — S un morphisme propre.
Soit ® un champ I-constructible sur X, alors f,® est un champ I-constructible.

La demonstration de 6.1 prouve aussiésultat suivant, compte tenu de 2.4 2).

Corollaire 6.3 Soient S un schéma localement noetherien, f: X — S un morphisme, D un
diviseur sur X a croisements normaux relativament a S (2.1), Y = SuppD, U = X —-Y,
1: U — X I'immersion canonique. Soit ® un champ sur U donné, localement pour la topologie
étale sur X et S, comme image inverse d’un champ W I-constructible sur S. Alors le champ i’ ®
est I-constructible.
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