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Een wanhoopskreet

Van Kampen, afdelingsdag natuurkunde, 27 september 2010, over een
voordracht over wiskunde op 31 mei 2010, die hij onbegrijpelijk vond:

Voorzitter, is daar dan ècht nı́ets aan te doen?

Ik zal proberen hier iets aan te doen, door:
definities te geven van de objecten waarover het gaat,
resultaten en methoden zo eenvoudig mogelijk te beschrijven,
te eindigen met een toegankelijke toepassing.

Maar alle verdere details blijven noodzakelijkerwijs in duister gehuld.
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Voorzitter, is daar dan ècht nı́ets aan te doen?

Ik zal proberen hier iets aan te doen, door:
definities te geven van de objecten waarover het gaat,
resultaten en methoden zo eenvoudig mogelijk te beschrijven,
te eindigen met een toegankelijke toepassing.

Maar alle verdere details blijven noodzakelijkerwijs in duister gehuld.

Bas Edixhoven (Universiteit Leiden) Getaltheorie en computeralgebra 2010/10/25, KNAW 2 / 1



Wàt willen we uitrekenen?

Twee-dimensionale Galoisrepresentaties. Uitleg volgt.

Complexe getallen: C = {a + bi |met a en b in R}, met i2 = −1.

(a + bi) + (c + di) = (a + c) + (b + d)i
(a + bi) · (c + di) = (ac − bd) + (ad + bc)i

|a + bi | =
√

a2 + b2

|z·w | = |z|·|w |
r ·eiφ = r cos(φ) + ir sin(φ)

1/(a + bi) = (a− bi)/(a2 + b2)
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Wàt willen we uitrekenen?

Twee-dimensionale Galoisrepresentaties. Uitleg volgt.

Complexe getallen: C = {a + bi |met a en b in R}, met i2 = −1.

(a + bi) + (c + di) = (a + c) + (b + d)i
(a + bi) · (c + di) = (ac − bd) + (ad + bc)i

|a + bi | =
√

a2 + b2

|z·w | = |z|·|w |
r ·eiφ = r cos(φ) + ir sin(φ)

1/(a + bi) = (a− bi)/(a2 + b2)

Bas Edixhoven (Universiteit Leiden) Getaltheorie en computeralgebra 2010/10/25, KNAW 3 / 1



De bril van de getaltheoreticus

Automorfismen van C zijn afbeeldingen σ : C→ C die voldoen aan:
σ(z + w) = σ(z) + σ(w);
σ(z·w) = σ(z)·σ(w);
σ(1) = 1;
voor iedere z is er een w met σ(w) = z.

Voorbeeld. Complexe conjugatie: σ(a + bi) = a− bi .

Feiten:
Aut(C) (de verzameling van deze σ) is heel groot;
Aut(R) is heel klein (opgave);
Aut(C) is gesloten onder samenstellen;
als σ(z) = σ(w), dan z = w ;
voor alle σ in Aut(C) en p/q in Q: σ(p/q) = p/q.
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Galoisgroepen

Laat f = xn + an−1xn−1 + · · ·+ a0 een veelterm zijn met alle ai in Q.

Dan heeft f (z) = 0 precies n oplossingen in C, met multipliciteit geteld.

Voor σ in Aut(C) en z in Roots(f ):

0 = σ(0) = σ(f (z)) = σ(zn + · · ·+ a1z + a0)

= σ(zn) + · · ·σ(a1z) + σ(a0)

= σ(z)n + · · ·+ σ(a1)σ(z) + σ(a0)

= σ(z)n + · · ·+ a1σ(z) + a0 = f (σ(z)),

dus σ(z) is in Roots(f ).

Gal(f ) is de groep van permutaties van Roots(f ) gegeven door
elementen van Aut(C).
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Eenheidswortels

Voorbeeld: f = xn − 1.

Laat z = cos(2π/n) + i sin(2π/n). Dan:

{0,1, . . . ,n−1} → Roots(f ), a 7→ za

is een labelling van de wortels.

Voor n = 5:
z0 = z5

z1

z2

z3

z4

Gal(xn − 1) = {a 7→ ka mod n |0 ≤ k < n, ggd(n, k) = 1}

Conclusie: in termen van de labelling is Gal(f ) gegeven door
vermenigvuldingen in het getal systeem Z/nZ.
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Tweedimensionale Galoisrepresentaties

Een 2-dimensionale Galoisrepresentatie mod n is een polynoom
f = xn2

+ · · ·+ a1x + a0 van graad n2, met ai in Q, zodat een labelling
van Roots(f ) met vectoren v =

(v1
v2

)
met v1 en v2 in Z/nZ bestaat,

zodat Gal(f ) bestaat uit vermenigvuldingen met matrices:(
v1

v2

)
7→
(

a b
c d

)(
v1

v2

)
=

(
av1 + bv2

cv1 + dv2

)
.

Deze objecten spelen de hoofdrol in Andrew Wiles’s bewijs van
Fermat’s laatste stelling (1993-1994).

Sinds 40 jaar is er theorie over waar dit soort representaties vandaan
komen: modulaire vormen, d.w.z., Langlands programma.

Vraag: kan men ze ook efficiënt uitrekenen?
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Computeralgebra? Nee.

Het Langlandsprogramma geeft (nogal impliciet) systemen
polynoomvergelijkingen voor de coëfficiënten ai van f ’s, met
coëfficiënten in Q: 

F1(x1, . . . , xn2) = 0,
F2(x1, . . . , xn2) = 0,
...
Fr (x1, . . . , xn2) = 0.

Men kan proberen dit soort systemen te berekenen, en vervolgens met
computeralgebra op te lossen. Helaas leidt dat tot een rekentijd die
exponentieel groeit in n. (De Fi zijn niet lineair.)

Curse of dimensionality: het aantal monomen in x1, . . . , xn van graad
hoogstens n is minstens 2n.
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Benaderingen, numerieke analyse: ja.

Doorbraak: men kan de f ’s zoals boven toch berekenen in een
rekentijd die hoogstens als een vaste macht van n groeit.

Werk met Couveignes (Toulouse), Merkel (München), de Jong,
Bosman, te verschijnen als boek in Annals of Mathematics Studies,
Princeton University Press, en Peter Bruin’s proefschrift.

Methode: de exacte oplossing kan berekend worden uit een
benadering met voldoend grote precisie.

Als p/q 6= p′/q′ en |p|, |q|, |p′| en |q′| hoogstens M, dan:∣∣∣∣pq − p′

q′

∣∣∣∣ = ∣∣∣∣pq′ − qp′

qq′

∣∣∣∣ ≥ 1
|qq′|

≥ 1
M2 .

Het vereiste aantal cijfers nauwkeurigheid groeit hoogstens als een
vaste macht van n.
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Johan Bosman

Voorbeeld. Het polynoom:

f = x24 + 9x23 + 46x22 + 115x21 − 138x20 − 1886x19

+ 1058x18 + 59639x17 + 255599x16 + 308798x15

− 1208328x14 − 6156732x13 − 10740931x12

+ 2669403x11 + 52203054x10 + 106722024x9

+ 60172945x8 − 158103380x7 − 397878081x6

− 357303183x5 + 41851168x4 + 438371490x3

+ 484510019x2 + 252536071x + 55431347

heeft Galoisgroep PGL2(Z/23Z), en (gereduceerde) discriminant 2337.
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Toepassingen

Toepassing: snel uitrekenen van coëfficiënten van modulaire vormen.
Deze zijn van groot belang in getaltheorie, algebraı̈sche meetkunde,
combinatoriek en roosters.

Nu: de standaardroosters Zk in Rk .

Probleem: tel het aantal roosterpunten met een gegeven afstand tot
de oorsprong.
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Deze zijn van groot belang in getaltheorie, algebraı̈sche meetkunde,
combinatoriek en roosters.

Nu: de standaardroosters Zk in Rk .

Probleem: tel het aantal roosterpunten met een gegeven afstand tot
de oorsprong.

Bas Edixhoven (Universiteit Leiden) Getaltheorie en computeralgebra 2010/10/25, KNAW 11 / 1



Toepassingen

Toepassing: snel uitrekenen van coëfficiënten van modulaire vormen.
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Sommen van kwadraten

Definitie: rk (n) is het aantal (x1, . . . , xk ) in Zk met x2
1 + · · ·+ x2

k = n.
Pythagoras: rk (n) is het aantal elementen van Zk met afstand

√
n tot

de oorsprong.

r2(3) = 0.

r2(5) = 8:

5 = (±2)2 + (±1)2

5 = (±1)2 + (±2)2.
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Diophantus

Diophantus van Alexandrië (≈ 3e eeuw): als

n = a2 + b2 en m = c2 + d2

dan
nm = (ac − bd)2 + (ad + bc)2.
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Fermat

Pierre de Fermat (jurist, Toulouse, 17e eeuw), voor n ≥ 1: r2(n) 6= 0
precies dan als iedere priemfactor van n die 3 modulo 4 is, een even
aantal keer in de factorisatie van n voorkomt.
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Legendre, Gauss

Adrien-Marie Legendre (1798) gaf een formule voor r2(2am2).
Carl Friedrich Gauss (1801) gaf een algemene formule voor r2(n), en
een formule voor r3(n) die laat zien dat de rk (n) voor oneven k
gecompliceerder zijn.
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Jacobi

Carl Gustav Jacob Jacobi (1829) bewees voor n > 1:

r2(n) = 4
∑
d |n

χ(d), met χ(d) =


0 als d even is,
1 als d = 4r + 1,
−1 als d = 4r + 3,

en:
r4(n) = 8

∑
2-d |n

d + 16
∑

2-d |(n/2)

d .
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Eisenstein, Smith

Het volgt uit werk van Jacobi, Ferdinand Eisenstein en Henry Smith
dat:

r6(n) = 16
∑
d |n

χ(n/d)d2 − 4
∑
d |n

χ(d)d2,

r8(n) = 16
∑
d |n

d3 − 32
∑

d |(n/2)

d3 + 256
∑

d |(n/4)

d3.
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Liouville

Voor k = 10 heeft Joseph Liouville (1865) een formule gevonden in
termen van de complexe getallen d = a + bi met a en b geheel.
Liouville’s formule luidt:

r10(n) =
4
5

∑
d |n

χ(d)d4 +
64
5

∑
d |n

χ(n/d)d4 +
8
5

∑
d in Z[i], |d |2=n

d4.
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rk(n) voor k > 10

Negatief. Ila Varma (masters scriptie, Leiden, juni 2010): voor geen
enkele even k > 10 is er een dergelijke “elementaire” formule voor
rk (n).

Positief. Voor iedere even k kan rk (n) worden uitgerekend in een tijd
die polynomiaal begrensd is in log n, als n gegeven wordt met zijn
priemfactorontbinding.

Conclusie. Vanuit algoritmisch standpunt is het klassieke probleem
compleet opgelost voor alle even k . De vraag naar formules heeft een
negatief antwoord, maar voor het berekenen maakt dat niet uit en is er
nu een positief antwoord.
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Einde

Dankuwel voor uw aandacht!

Vragen?

Met: Jean-Marc Couveignes (Toulouse), Robin de Jong, Franz Merkl
(München), Johan Bosman, Peter Bruin, Ila Varma.
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