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Een wanhoopskreet

Van Kampen, afdelingsdag natuurkunde, 27 september 2010, over een
voordracht over wiskunde op 31 mei 2010, die hij onbegrijpelijk vond:

Voorzitter, is daar dan echt niets aan te doen?
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Een wanhoopskreet

Van Kampen, afdelingsdag natuurkunde, 27 september 2010, over een
voordracht over wiskunde op 31 mei 2010, die hij onbegrijpelijk vond:

Voorzitter, is daar dan echt niets aan te doen?

Ik zal proberen hier iets aan te doen, door:
@ definities te geven van de objecten waarover het gaat,
@ resultaten en methoden zo eenvoudig mogelijk te beschrijven,
@ te eindigen met een toegankelijke toepassing.
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Een wanhoopskreet

Van Kampen, afdelingsdag natuurkunde, 27 september 2010, over een
voordracht over wiskunde op 31 mei 2010, die hij onbegrijpelijk vond:

Voorzitter, is daar dan echt niets aan te doen?

Ik zal proberen hier iets aan te doen, door:
@ definities te geven van de objecten waarover het gaat,
@ resultaten en methoden zo eenvoudig mogelijk te beschrijven,
@ te eindigen met een toegankelijke toepassing.

Maar alle verdere details blijven noodzakelijkerwijs in duister gehuld.

Bas Edixhoven (Universiteit Leiden) Getaltheorie en computeralgebra 2010/10/25, KNAW 2/1



Wat willen we uitrekenen?

Twee-dimensionale Galoisrepresentaties. Uitleg volgt.
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Wat willen we uitrekenen?

Twee-dimensionale Galoisrepresentaties. Uitleg volgt.

Complexe getallen: C = {a+ bi|met aen bin R}, met 2 = —1.

Im (a+bi)+(c+d)=(a+c)+(b+d)i
. Sy (a+ bi) - (c+ di) = (ac — bd) + (ad + bc)i
la+ bi| = /& + b2
|z-w| = |z|-|w|
r-e'¢ = rcos(¢) + irsin(¢)
1/(a+ bi) = (a— bi)/(&° + b?)
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De bril van de getaltheoreticus

Automorfismen van C zijn afbeeldingen o: C — C die voldoen aan:
@ o(z+w)=0(2)+a(w);
@ o(zw) =0(2)0(w);
e o(1)=1;
@ voor iedere z is er een w met o(w) = Zz.
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Voorbeeld. Complexe conjugatie: o(a+ bi) = a — bi.
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Feiten:
@ Aut(C) (de verzameling van deze o) is heel groot;
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De bril van de getaltheoreticus

Automorfismen van C zijn afbeeldingen o: C — C die voldoen aan:
@ o(z+w)=0(2)+a(w);
@ o(zw) =0(2)0(w);
e o(1)=1;
@ voor iedere z is er een w met o(w) = Zz.

Voorbeeld. Complexe conjugatie: o(a+ bi) = a — bi.
Feiten:

@ Aut(C) (de verzameling van deze o) is heel groot;
@ Aut(R) is heel klein (opgave);

@ Aut(C) is gesloten onder samenstellen;

@ also(z) =o(w),dan z = w;
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De bril van de getaltheoreticus

Automorfismen van C zijn afbeeldingen o: C — C die voldoen aan:
@ o(z+w)=0(2)+a(w);
@ o(zw) =0(2)0(w);
e o(1)=1;
@ voor iedere z is er een w met o(w) = Zz.

Voorbeeld. Complexe conjugatie: o(a+ bi) = a — bi.
Feiten:
@ Aut(C) (de verzameling van deze o) is heel groot;
@ Aut(R) is heel klein (opgave);
@ Aut(C) is gesloten onder samenstellen;
@ also(z) =o(w),dan z = w;
@ voor alle o in Aut(C) en p/qin Q: o(p/q) = p/q.
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Galoisgroepen

Laat f = x" + ap_1x"~ ' +--- + ag een veelterm zijn met alle g; in Q.
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Dan heeft f(z) = 0 precies n oplossingen in C, met multipliciteit geteld.
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Galoisgroepen

Laat f = x" + ap_1x"~ ' +--- + ag een veelterm zijn met alle g; in Q.
Dan heeft f(z) = 0 precies n oplossingen in C, met multipliciteit geteld.

Voor ¢ in Aut(C) en z in Roots(f):

0=0(0) =0o(f(2)) =0(2"+--- + a1z + a)
=o(2")+ - o(a12) + o(ap)
=0(2)"+ -+ o(a1)o(z) + o(ao)
=o(2)"+---+ ai0(2) + ag = f(o(2)),

dus o(z) is in Roots(f).
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Galoisgroepen

Laat f = x" + ap_1x"~ ' +--- + ag een veelterm zijn met alle g; in Q.
Dan heeft f(z) = 0 precies n oplossingen in C, met multipliciteit geteld.

Voor ¢ in Aut(C) en z in Roots(f):

0=0(0) =0o(f(2)) =0(2"+--- + a1z + a)
=o(2")+ - o(a12) + o(ap)
=0(2)"+ -+ o(a1)o(z) + o(ao)
=o(2)"+---+ ai0(2) + ag = f(o(2)),

dus o(z) is in Roots(f).

Gal(f) is de groep van permutaties van Roots(f) gegeven door
elementen van Aut(C).
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Eenheidswortels

Voorbeeld: f = x"7 — 1.
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Eenheidswortels

Voorbeeld: f = x" — 1. Laat z = cos(2n/n) + isin(2w/n).
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Eenheidswortels

Voorbeeld: f = x" — 1. Laat z = cos(2n/n) + i sin(2x/n). Dan:
{0,1,...,n—1} — Roots(f), aw~ z?%

is een labelling van de wortels.
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Voorbeeld: f = x" — 1. Laat z = cos(2n/n) + i sin(2x/n). Dan:
{0,1,...,n—1} — Roots(f), aw~ z?%

is een labelling van de wortels.

Voor n=5:
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Eenheidswortels

Voorbeeld: f = x" — 1. Laat z = cos(2n/n) + i sin(2x/n). Dan:
{0,1,...,n—1} — Roots(f), aw~ z?%

is een labelling van de wortels.

Voor n=5:

Gal(x" —1)={a+~ ka mod n|0 < k < n,ggd(n, k) =1}
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Eenheidswortels

Voorbeeld: f = x" — 1. Laat z = cos(2n/n) + i sin(2x/n). Dan:
{0,1,...,n—1} — Roots(f), aw~ z?%

is een labelling van de wortels.

Voor n=5:

Gal(x" —1)={a+~ ka mod n|0 < k < n,ggd(n, k) =1}

Conclusie: in termen van de labelling is Gal(f) gegeven door
vermenigvuldingen in het getal systeem Z/nZ.
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Tweedimensionale Galoisrepresentaties

Een 2-dimensionale Galoisrepresentatie mod n is een polynoom
f=x" ... + a;x + ap van graad n?, met g; in Q, zodat een labelling
van Roots(f) met vectoren v = (J!) met v; en vz in Z/nZ bestaat,
zodat Gal(f) bestaat uit vermenigvuldingen met matrices:

2 a b\ (v avqy + bvo
= = .
Vo c d/ \w cvy + dvo
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Tweedimensionale Galoisrepresentaties

Een 2-dimensionale Galoisrepresentatie mod n is een polynoom
f=x" ... + a;x + ap van graad n?, met g; in Q, zodat een labelling
van Roots(f) met vectoren v = (J!) met v; en vz in Z/nZ bestaat,
zodat Gal(f) bestaat uit vermenigvuldingen met matrices:

2 a b\ (v avqy + bvo
= = .
Vo c d/ \w cvy + dvo

Deze objecten spelen de hoofdrol in Andrew Wiles’s bewijs van
Fermat’s laatste stelling (1993-1994).
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Tweedimensionale Galoisrepresentaties

Een 2-dimensionale Galoisrepresentatie mod n is een polynoom
f=x" ... + a;x + ap van graad n?, met g; in Q, zodat een labelling
van Roots(f) met vectoren v = (J!) met v; en vz in Z/nZ bestaat,
zodat Gal(f) bestaat uit vermenigvuldingen met matrices:

2 a b\ (v avqy + bvo
> = .
Vo c d/ \w cvy + dvo
Deze objecten spelen de hoofdrol in Andrew Wiles’s bewijs van

Fermat’s laatste stelling (1993-1994).

Sinds 40 jaar is er theorie over waar dit soort representaties vandaan
komen: modulaire vormen, d.w.z., Langlands programma.
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Tweedimensionale Galoisrepresentaties

Een 2-dimensionale Galoisrepresentatie mod n is een polynoom
f=x" ... + a;x + ap van graad n?, met g; in Q, zodat een labelling
van Roots(f) met vectoren v = (J!) met v; en vz in Z/nZ bestaat,
zodat Gal(f) bestaat uit vermenigvuldingen met matrices:

2 a b\ (v avqy + bvo
> = .
Vo c d/ \w cvy + dvo
Deze objecten spelen de hoofdrol in Andrew Wiles’s bewijs van

Fermat’s laatste stelling (1993-1994).

Sinds 40 jaar is er theorie over waar dit soort representaties vandaan
komen: modulaire vormen, d.w.z., Langlands programma.

Vraag: kan men ze ook efficiént uitrekenen?
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Computeralgebra? Nee.

Het Langlandsprogramma geeft (nogal impliciet) systemen
polynoomvergelijkingen voor de coéfficiénten a; van f’'s, met
coéfficiénten in Q:
F1(X1,..., ):0
Fg(X1,..., ):0,

)

X2
X2

Fr(X‘|,...,Xn2):O.
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Computeralgebra? Nee.

Het Langlandsprogramma geeft (nogal impliciet) systemen
polynoomvergelijkingen voor de coéfficiénten a; van f’'s, met
coéfficiénten in Q:

)

Fi(xi,....x2) =0,
Fg(X1,...,Xn2) =0

Fr(X‘|,...,Xn2):O.

Men kan proberen dit soort systemen te berekenen, en vervolgens met
computeralgebra op te lossen.
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polynoomvergelijkingen voor de coéfficiénten a; van f’'s, met
coéfficiénten in Q:
F1(X1,..., ):0
Fg(X1,..., ):0,

)

X2
X2
Fr(X‘],...,XnZ) :0

Men kan proberen dit soort systemen te berekenen, en vervolgens met
computeralgebra op te lossen. Helaas leidt dat tot een rekentijd die
exponentieel groeit in n. (De F; zijn niet lineair.)
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Computeralgebra? Nee.

Het Langlandsprogramma geeft (nogal impliciet) systemen
polynoomvergelijkingen voor de coéfficiénten a; van f’'s, met
coéfficiénten in Q:

Fi (X17 SER) )

X2 =0
Fg(X1,...,Xn2) =0

)

)

Fr(X‘],...,XnZ):O.

Men kan proberen dit soort systemen te berekenen, en vervolgens met
computeralgebra op te lossen. Helaas leidt dat tot een rekentijd die
exponentieel groeit in n. (De F; zijn niet lineair.)

Curse of dimensionality: het aantal monomen in xy, ..., X, van graad
hoogstens n is minstens 2".
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Benaderingen, numerieke analyse: ja.

Doorbraak: men kan de f’s zoals boven toch berekenen in een
rekentijd die hoogstens als een vaste macht van n groeit.
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Benaderingen, numerieke analyse: ja.

Doorbraak: men kan de f’s zoals boven toch berekenen in een
rekentijd die hoogstens als een vaste macht van n groeit.

Werk met Couveignes (Toulouse), Merkel (Minchen), de Jong,
Bosman, te verschijnen als boek in Annals of Mathematics Studies,
Princeton University Press, en Peter Bruin’s proefschrift.
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Doorbraak: men kan de f’s zoals boven toch berekenen in een
rekentijd die hoogstens als een vaste macht van n groeit.

Werk met Couveignes (Toulouse), Merkel (Minchen), de Jong,
Bosman, te verschijnen als boek in Annals of Mathematics Studies,
Princeton University Press, en Peter Bruin’s proefschrift.

Methode: de exacte oplossing kan berekend worden uit een
benadering met voldoend grote precisie.

Als p/q# p'/q en|p|, |q|, |P| en |q’'| hoogstens M, dan:

1 1
> > —

~lqq'| T M2

'P_P'
qg q

_ 'pq’ —qp
qq’
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Benaderingen, numerieke analyse: ja.

Doorbraak: men kan de f’s zoals boven toch berekenen in een
rekentijd die hoogstens als een vaste macht van n groeit.

Werk met Couveignes (Toulouse), Merkel (Minchen), de Jong,
Bosman, te verschijnen als boek in Annals of Mathematics Studies,
Princeton University Press, en Peter Bruin’s proefschrift.

Methode: de exacte oplossing kan berekend worden uit een
benadering met voldoend grote precisie.

Als p/q# p'/q en|p|, |q|, |P| en |q’'| hoogstens M, dan:

1 1
> >

'P_P' 1
~lgq'| T M?

qa q

_ 'pq’ —qp
qq’

Het vereiste aantal cijfers nauwkeurigheid groeit hoogstens als een
vaste macht van n.
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Voorbeeld. Het polynoom:

f=x?* 1+ 9x3 + 46x%2 + 115x%" — 138x2° — 1886x"°
+1058x '8 + 59639x"” + 255599x'6 + 308798x°
—1208328x'* — 6156732x"3 — 10740931x?
+ 2669403x"" ++ 52203054 % + 106722024 x°
+60172945x% — 158103380x — 397878081 x°
— 357303183x° + 41851168x* + 438371490x°
+ 484510019x2 + 25253607 1x + 55431347

heeft Galoisgroep PGL»(Z/23Z), en (gereduceerde) discriminant 23%7.
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Toepassing: snel uitrekenen van coéfficiénten van modulaire vormen.

Deze zijn van groot belang in getaltheorie, algebraische meetkunde,
combinatoriek en roosters.
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Getaltheorie en computeralgebra

2010/10/25, KNAW 11/1



Toepassing: snel uitrekenen van coéfficiénten van modulaire vormen.
Deze zijn van groot belang in getaltheorie, algebraische meetkunde,
combinatoriek en roosters.

Nu: de standaardroosters ZK in RX.
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Toepassing: snel uitrekenen van coéfficiénten van modulaire vormen.
Deze zijn van groot belang in getaltheorie, algebraische meetkunde,
combinatoriek en roosters.

Nu: de standaardroosters ZK in RX.

Probleem: tel het aantal roosterpunten met een gegeven afstand tot
de oorsprong.
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Sommen van kwadraten

Definitie: rc(n) is het aantal (xi,..., xx) in ZX met x2 + - - + x2 = n.
Pythagoras: rx(n) is het aantal elementen van Z* met afstand \/n tot
de oorsprong.
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Sommen van kwadraten

Definitie: rc(n) is het aantal (xi,..., xx) in ZX met x2 + - - + x2 = n.
Pythagoras: rx(n) is het aantal elementen van Z* met afstand \/n tot
de oorsprong.

r(3) =0 //' \\
ra(5) = 8 / \
5= (£2)2 + (£1) \ 1 /
5= (+1)% + (£2)2 N ~
N~
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DIOPHANTI

ALEX ANDRINI -
ARITHMETICORVM
LIBRI SEX.
ET DE NVMERIS MVLTANGVLIS

Sumptibus Sesastiant Cramorsy, via
Tacobga, fub Ciconiis.
cra BaipIEora mEars
Diophantus van Alexandrié (=~ 3e eeuw): als
n=a+b%> en m=c?>+d?

dan
nm = (ac — bd)? + (ad + bc)?.

Bas Edixhoven (Universiteit Leiden) Getaltheorie en computeralgebra 2010/10/25, KNAW



Pierre de Fermat (jurist, Toulouse, 17e eeuw), voor n > 1: ra(n) # 0
precies dan als iedere priemfactor van n die 3 modulo 4 is, een even
aantal keer in de factorisatie van n voorkomt.

14 /1
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Legendre, Gauss

Adrien-Marie Legendre (1798) gaf een formule voor ra(22m?).

Carl Friedrich Gauss (1801) gaf een algemene formule voor r>(n), en
een formule voor r3(n) die laat zien dat de rx(n) voor oneven k
gecompliceerder zijn.
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Jacobi

Q)
|

Carl Gustav Jacob Jacobi (1829) bewees voor n > 1:

0 als d even is,
rp(n)=4> x(d), met x(d)=< talsd=4r+1,
din —1alsd=4r+3,
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Jacobi

a
\

Carl Gustav Jacob Jacobi (1829) bewees voor n > 1:

0 als d even is,
rp(n)=4> x(d), met x(d)=< talsd=4r+1,
din —1alsd=4r+3,

n(n)=8% d+16 »  d.

2(dln 2/d(n/2)

en:
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Eisenstein, Smith

Het volgt uit werk van Jacobi, Ferdinand Eisenstein en Henry Smith

dat:
n) =16 x(n/d)d*—4% x(d)d*
d|n d|n
(n=16Y d*-32 Y d*+256 » d°
din d|(n/2) d|(n/4)
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Liouville

Voor k = 10 heeft Joseph Liouville (1865) een formule gevonden in

termen van de complexe getallen d = a+ bi met a en b geheel.
Liouville’s formule luidt:

4 64 8
ro(n) = ¢ Y x(d)d* + 5 Y x(n/d)d* + = > at
d|n din din Z[i],|d]2=n
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rk(n) voor k > 10

Negatief. lla Varma (masters scriptie, Leiden, juni 2010): voor geen

enkele even k > 10 is er een dergelijke “elementaire” formule voor
r(n).

Bas Edixhoven (Universiteit Leiden)
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rk(n) voor k > 10

Negatief. lla Varma (masters scriptie, Leiden, juni 2010): voor geen
enkele even k > 10 is er een dergelijke “elementaire” formule voor
r(n).

Positief. Voor iedere even k kan ri(n) worden uitgerekend in een tijd

die polynomiaal begrensd is in log n, als n gegeven wordt met zijn
priemfactorontbinding.
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rk(n) voor k > 10

Negatief. lla Varma (masters scriptie, Leiden, juni 2010): voor geen
enkele even k > 10 is er een dergelijke “elementaire” formule voor

re(n).

Positief. Voor iedere even k kan ri(n) worden uitgerekend in een tijd
die polynomiaal begrensd is in log n, als n gegeven wordt met zijn
priemfactorontbinding.

Conclusie. Vanuit algoritmisch standpunt is het klassieke probleem
compleet opgelost voor alle even k. De vraag naar formules heeft een
negatief antwoord, maar voor het berekenen maakt dat niet uit en is er
nu een positief antwoord.
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Dankuwel voor uw aandacht!

Vragen?

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

UNIVERSITE DE%

RENNES 1 DGA

Met: Jean-Marc Couveignes (Toulouse), Robin de Jong, Franz Merkl
(Minchen), Johan Bosman, Peter Bruin, lla Varma.
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