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What are modular forms?

Let k be in Z. A modular form of weight k on SL2(Z) is a function
f : H→ C, holomorphic, such that

∀
(

a b
c d

)
∈ SL2(Z), ∀z ∈ H : f

(
az + b
cz + d

)
= (cz + d)k f (z),

and such that for all y ∈ R>0, the restriction of f to {z ∈ H : =(z) > y}
is bounded.

Let q : H→ C, z 7→ e2πiz . Then

f =
∑
n≥0

an(f )qn.

The an(f ) are called the coefficients of f . There is a more general
notion of modular form on congruence subgroups of SL2(Z).
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Why are we interested in modular forms?

One among many reasons: coefficients of modular forms arise in
counting problems in number theory, combinatorics, algebraic
geometry, lattices.

The function θ =
∑

x1∈Z qx2
1 is a modular form of weight 1/2 on

Γ1(4) = {( a b
c d ) ∈ SL2(Z) : a ≡ 1(4) and c ≡ 0(4)}.

Then for all d ∈ Z≥0:

θd =

∑
x1∈Z

qx2
1

 · · ·
∑

xd∈Z
qx2

d

 =
∑
x∈Zd

qx2
1+···+x2

d =
∑
n≥0

rd (n)qn

with rd (n) = #{x ∈ Zd : x2
1 + · · ·+ x2

d = n}, is in Md/2(Γ1(4)), the
C-vector space of modular forms of weight d/2 on Γ1(4).
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The first results

Fact: the Mk (Γ1(N)) are finite dimensional, and have a C-basis of
forms with integer coeffients.

Theorem 1(Couveignes, Edixhoven, de Jong, Merkl). There is a
deterministic algorithm that on input the weight k and the coefficients
ai(f ) ∈ Z for 0 ≤ i ≤ k/12 of a modular form on SL2(Z) with integer
coefficients, and an integer n ≥ 1 with its factorisation into primes,
computes the integer an(f ). For fixed k, the running time is polynomial
in log n. If the Generalised Riemann Hypothesis for number fields
holds, then the running time is polynomial in k and log n.

Remarks. This is very fast.
Necessity of getting n with factorisation: E4 = 1 + 240

∑
n≥1 σ3(n)qn is

in M4(SL2(Z), with σ3(n) =
∑

d |n d3.
By the way: E4(q2) is the theta function of the E8-lattice. The theorem
gives coefficients of the powers of E4.
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How does it work? Read our book! PUP, 2011.
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The commercial by PUP:

. . . Such fast computation of Fourier coefficients is itself based on the
main result of the book: the computation, in polynomial time, of Galois
representations over finite fields attached to modular forms by the
Langlands program. Because these Galois representations typically
have a nonsolvable image, this result is a major step forward from
explicit class field theory, and it could be described as the start of the
explicit Langlands program.
The computation of the Galois representations uses their realization,
following Shimura and Deligne, in the torsion subgroup of Jacobian
varieties of modular curves. The main challenge is then to perform the
necessary computations in time polynomial in the dimension of these
highly nonlinear algebraic varieties. Exact computations involving
systems of polynomial equations in many variables take exponential
time. This is avoided by numerical approximations with a precision that
suffices to derive exact results from them. Bounds for the required
precision. . . are obtained from Arakelov theory. . .
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Generalisation by Peter Bruin, PhD thesis 2010

Theorem 2(Bruin). Let a be a positive integer. There is a probabilistic
algorithm that, given a positive integer k, a squarefree positive integer
b coprime to a, the q-expansion of a Hecke eigenform f of weight k for
Γ1(ab) up to sufficient precision to determine f uniquely, and a positive
integer m in factored form, computes am(f ), and that runs in expected
time polynomial in b, k and log m under GRH for number fields.

Remarks probabilistic, Las Vegas: because based on numerical
computations over finite fields, and not as before over C.

The Arakelov theory is more involved (in the level one case we had a
very special non-special divisor).

In these theoretical results, it is the length of the proofs that is
minimised, not the running time. I will describe real computations a bit
later in this lecture.
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A nice theoretical consequence: sums of squares

Let χ : Z→ C, χ(d) = 0,1,0,−1 if d ≡ 0,1,2,3(4).
Fermat, Gauss, Legendre, Jacobi, Eisenstein, Smith and Liouville:

r2(n) = 4
∑
d |n

χ(d),

r3(n) = 12·h(Z[
√
−n]), for n > 1 squarefree, 1 or 2 mod 4,

r4(n) = 8
∑
2-d |n

d + 16
∑

2-d |(n/2)

d ,

r6(n) = 16
∑
d |n

χ
(n

d

)
d2 − 4

∑
d |n

χ(d)d2,

r8(n) = 16
∑
d |n

d3 − 32
∑

d |(n/2)

d3 + 256
∑

d |(n/4)

d3,

r10(n) =
4
5

∑
d |n

χ(d)d4 +
64
5

∑
d |n

χ
(n

d

)
d4 +

8
5

∑
d∈Z[i], |d |2=n

d4.
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A nice theoretical consequence

Theorem 3 (Ila Varma, masters thesis, Leiden, 2010). There is no
even d > 10 for which θd is a linear combination of Eisenstein series
and modular forms attached to Hecke characters.

Theorem 4 (book+Bruin). Assume GRH. Then there is a probabilistic
algorithm that for even d and n with factorisation computes rd (n) in
time polynomial in d and log n.

Conclusion. From an algorithmic perspective this classical problem
now has a satisfactory answer for all even d . The question for formulas
has a negative answer, but for computing that negative answer does
not matter and we now have a positive answer. For odd d > 3, see
Shimura, Bull. AMS 43, 2006.
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Galois representations attached to modular forms

It is better to consider just one typical case, the discriminant modular
form in S12(SL2(Z)):

∆ = q·
∏
n≥1

(1− qn)24 =
∑
n≥1

τ(n)qn.

Deligne showed (1969) that for each prime number ` there is a
representation:

ρ` : Gal(Q/Q) � Gal(K`/Q)↪→GL2(F`),

such that Q→ K` is unramified at all primes p 6= `, and such that for all
p 6= ` the characteristic polynomial of ρ`(Frobp) is given by:

det(1− x ·Frobp,V`) = 1− τ(p)x + p11x2.

In particular: trace(ρ`(Frobp)) = τ(p) mod ` for all primes p 6= `.
Serre and Swinnerton-Dyer: for ` not in {2,3,5,7,23,691} we have
im(ρ`) ⊃ SL2(F`).
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Main theorem of the book (in this special case)

Theorem 5 There exists an algorithm that on input ` computes ρ` in
time polynomial in `. It gives:

the extension Q→ K`, given as a Q-basis e and the products
eiej =

∑
k ai,j,kek ;

a list of the elements σ of Gal(K`/Q), where each σ is given as its
matrix with respect to e;
the injective morphism ρ` : Gal(K`/Q)↪→GL2(F`).

Theorem 5 implies Theorem 1 via “standard algorithms”.

One can compute τ(p) mod ` in time O((`· log p)c).

Note: |τ(p)| < 2p11/2 by Deligne, and
∏
`<x ` ≈ ex .
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Where to find ρ`

Deligne’s work shows that ρ` is realised on a subspace V` in:
H11(E10

Q,et
,F`)∨, this is computable! (Poonen–Testa–van Luijk,

Madore–Orgogozo (and Jinbi Jin, in progress)),
H1(j-lineQ,et,Sym10(R1π∗F`))∨,

J`(Q)[`].

Here J` = jac(X`), X` = X1(`), X1(`)(C) = Γ1(`)\(H ∪ P1(Q)).

X` is the (compactified) moduli space of (E ,P), elliptic curves with a
point of order `. Smooth and proper over Z[1/`].

Problem: g` := genus(X`) = dim(J`) = (`− 5)(`− 7)/24.

Couveignes’ suggestion: don’t use computer algebra, but
approximation and height bounds instead.
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Strategy for computing ρ`

X` has Hecke correspondences. For n ≥ 1:

Tn : (E ,P) 7→
∑

C

(E/C,P), C ⊂ E subgroup of order n, with P 6∈ C.

The Tn commute, generate a commutative subring T` ⊂ End(J`).

ω1, . . . , ωg`
a basis of normalised eigenforms of Ω1(X`)

J`(C) = Cg`/Λ, Λ = H1(X`(C),Z)

V` ⊂ J`(C)[`] = (`−1Λ)/Λ, V` =
⋂

1≤i≤`2
ker (Ti − τ(i))

Modular symbols algorithms (Magma, Sage): T ⊂ End(H1(X`(C),Z)).
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Strategy for computing ρ`

We have∞ ∈ X`(Q), we choose f : X`,Q � P1
Q as simple as possible.

φ : X`(C)g` −→ J`(C) = Cg`/Λ,

Q 7→ [Q1 + · · ·+ Qg`
− g`·∞] =

g∑̀
i=1

Qi∫
∞

(ω1, . . . , ωg`
)

For x in V` ⊂ `−1Λ/Λ, there are Qx ,1, . . . ,Qx ,g`
in X`(Q), unique up to

permutation (with a bit of luck), such that φ(Qx ) = x .

Then K` is the splitting field of:

P` :=
∏

06=x∈V`

(T −
∑

i

f (Qx ,i)) in Q[T ].
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Strategy for computing ρ`

How to compute P`?

Recall the (logarithmic) height: h(a/b) = log(max(|a|, |b|)) if
a,b ∈ Z, b > 0 and gcd(a,b) = 1.
Show that h(P`,i) = O(`c).
Edixhoven and de Jong, with help from Merkl: h(P`,i) = O(`16).
This uses Arakelov geometry. Has been generalised by Bruin, and
by Javan Peykar. The problem is uniformity in the level.
Show that P` can be approximated in C[T ] with a precision of n
digits, in time O((n`)c).
Or approximated p-adically, or reductions mod many small primes.
Couveignes: did two cases: in C (deterministic) and over finite
fields (Las Vegas).
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Couveignes’s complex algorithm

Over C, rough sketch.

1 Let x be in V` = `−1Λ/Λ.
2 Lift it to x̃ in `−1Λ ⊂ Cg` .
3 Take m ∈ Z large enough, and let y = 2−mx̃ .
4 By integration of power series get Rx in X`(C)g` , close to∞g`

hence good convergence, such that φ(Rx ) = y with desired
precision.

5 Then double Rx m times, using algebraic operations in J`(C)
involving effective divisors of degree g`. This gives Q′x .

6 For general x ∈ J`(C), φ(Q′x ) ≈ x , but for Q′x ≈ Qx , still some
Arakelov theory is used (for our x ∈ V`).

We do not know how to make the homotopy lifting method provably
work in time polynomial in `.
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Bosman’s computations

Bosman did the first computations, between 2004 and 2006, using
Newton iteration (HLM) globally, randomising initial data.
With Magma he has found, for all ` ≤ 23 and all normalised cuspidal
eigenforms fk of level one and weight k ≤ 22, a polynomial Pproj

k ,` of
degree `+1 that gives:

P(ρfk ,`) : Gal(Q/Q)→ PGL2(F`)

To prove that his polynomials are correct, he uses that Serre’s
modularity conjecture has been proved by Khare, Wintenberger and
Kisin.

Convergence gets worse if ` increases: one covers X`(C) by disks
around the cusps, and one has to work ever closer to the radius of
convergence.
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An example by Bosman

f = x24 − 2x23 + 115x22 + 23x21 + 1909x20 + 22218x19

+ 9223x18 + 121141x17 + 1837654x16 − 800032x15

+ 9856374x14 + 52362168x13 − 32040725x12

+ 279370098x11 + 1464085056x10 + 1129229689x9

+ 3299556862x8 + 14586202192x7 + 29414918270x6

+ 45332850431x5 − 6437110763x4 − 111429920358x3

− 12449542097x2 + 93960798341x − 31890957224

has Galois group PGL2(Z/23Z), and (reduced) discriminant 2343; note
that g23 = 12, and that deg(P23) = 232 − 1 = 528. Before “polredding”
his polynomial Pproj

22,23 had coefficients of almost 2000 digits.
Computations took months.
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Jinxiang Zeng’s computations

Couveignes and I lectured on this subject in Beijing in 2011–2012.
Jinxiang Zeng (Tsinghua) has implemented Couveignes’s finite field
method, using Hess’s algorithms (already implemented in Magma) for
computing in J`(Fq), and in certain jac(X`/H), H ⊂ (Z/`Z)×. He uses
recent algorithms for isogenies between elliptic curves for computing
Hecke operators.

He computed (arxiv, 2013) a polynomial P19 of degree 192 − 1, with
coefficients up to 1681 digits, and a polynomial Pproj

12,31 of degree 32,
with coefficients up to 2426 digits.

He worked with a quotient of X31 of genus 6, as suggested by Maarten
Derickx, and for which a plane model was provided by Mark van Hoeij.
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Nicolas Mascot’s computations

Nicolas Mascot (Warwick) has made Couveignes’s complex method
much more practical. I just describe the main improvements.

He uses Khuri-Makdisi’s algorithms for doubling in J`(C) in terms of
divisors on X`(C) (Peter Bruin had already used this (theoretically) for
finite fields) . This now only involves linear algebra.

He has a much better rational function on J` to map V` to Q. Let L be a
line bundle of degree g` on X`, and let P0 and P1 be in X`(Q). For x in
V`, H0(X`,Q,Lx ⊗ L) = Q·s, then take “s(P0)/s(P1)”.This rational
function has poles only along two translates of Θ, whereas the
previous function along deg(f ) translates (f : X` → P1

Q).

For the computation of P29 (of degree 292−1 = 840) a precision of
4000 bits was already sufficient.
He used Dokchitsers’s resolvents. Estimates complexity at O(`9).

Bas Edixhoven (Universiteit Leiden) Gal reps, mod forms, computations
FOCM, Montevideo, 2014/12/11 20 /

23



Some congruences by Mascot

p Similarity class of ρ29(Frobp) τ(p) mod 29

101000 + 453
[

0 5
1 21

]
21

101000 + 1357
[

0 28
1 8

]
8

101000 + 2713
[

0 9
1 11

]
11

101000 + 4351
[

0 26
1 0

]
0
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Tian Peng’s computations

Tian Peng (PhD student of René Schoof) used Johan Bosman’s code
and he trick proposed by Derickx to use appropriate X1(`)/H and
found the projective representations for (k , `) equal to (12,31),
(16,29), (20,31), (22,31).
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