
97 Drie equivalente condities voor compactheid; 2004/03/22

97.1 Definition. Een metrische ruimte (X, d) heet precompact als voor iedere ε > 0 er eindig

veel bollen zijn van straal ε die X overdekken, d.w.z. als er een n ≥ 0 is en x1, . . . , xn in X met

X = B(x1, ε) ∪ · · · ∪ B(xn, ε).

Een metrische ruimte (X, d) heet volledig als iedere Cauchy rij in X convergeert.

Een metrische ruimte heet rijcompact als iedere rij in X een convergente deelrij heeft.

97.2 Theorem. Laat (X, d) een metrische ruimte zijn. Dan zijn de volgende condities equiva-

lent:

1. X is compact;

2. X is rijcompact;

3. X is precompact en volledig.

Proof. We bewijzen dat (1) ⇒ (2). Dit volgt direct uit Bolzano-Weierstrass (Stelling 3.8 uit

het boek), maar we spellen het nogmaals uit. We nemen dus aan dat X compact is, en we laten

x0, x1, . . . een rij in X zijn. Als de deelverzameling {x0, x1, . . .} eindig is, dan is er een constante

deelrij xi0 , xi1 , . . ., en die convergeert zeker. Als aan de andere kant die deelverzameling oneindig

is, dan heeft-ie een limietpunt (Stelling 3.8 van het boek). Kies een limietpunt a. We construeren

een deelrij xi0 , xi1, . . . als volgt. Neem i0 zo dat xi0 6= a. Stel nu dat i0, · · · , ir−1 al gekozen zijn.

Kies dan ir zo dat d(xir , a) < d(xir−1
, a)/2. Dan convergeert de zo verkregen deelrij naar a.

Laten we nu bewijzen dat (2) ⇒ (3). We nemen dus aan dat X rijcompact is, en we willen

laten zien dat X precompact en volledig is. Eerst de volledigheid. Laat x0, x1, . . . een Cauchy rij

zijn. Vanwege de rijcompactheid is er dan een convergente deelrij xi0 , xi1 , . . .. Laat a de limiet

van deze deelrij zijn. We claimen dat x0, x1, . . . naar a convergeert. Laat namelijk ε > 0. Dan is

er een K in N zodat d(xik , a) < ε/2 voor alle k ≥ K. En er is een N zodat d(xi, xj) < ε/2 voor

alle i ≥ N en j ≥ N . Laat M := max(iK , N). Dan geldt voor alle m ≥ M dat:

d(xm, a) ≤ d(xm, xiK ) + d(xiK , a) < ε/2 + ε/2 = ε.

Nu dan de precompactheid. Stel dat X niet precompact is, en laat ε > 0 zijn zodat X niet met

eindig veel B(x, ε) overdekt kan worden. We maken dan een rij x0, x1, . . . in X als volgt. Stel

dat x0, . . . , xr al gekozen zijn. Dan is B(x0, ε)∪ · · · ∪B(xr, ε) niet gelijk aan X . Kies dan xr+1

buiten B(x0, ε) ∪ · · · ∪ B(xr, ε). We claimen dat x1, x2, . . . geen convergente deelrij heeft. Stel

namelijk dat xi0 , xi1 , . . . een convergente deelrij is, en laat a de limiet zijn. Dan is er een K ≥ 0

zodat d(xik , a) < ε/2 voor alle k ≥ K. Maar dan hebben we d(xik , xik+1
) < ε, in tegenspraak
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met de constructie van x0, x1, . . .. De rij x0, x1, . . . heeft dus geen convergente deelrij, wat in

tegenspraak is met de aanname dat X rijcompact is. Dus is X wel precompact.

Tot slot bewijzen we dat (3) ⇒ (1). Dit is verreweg de moeilijkste stap. We nemen dus

aan dat X precompact en volledig is. Stel nu dat X niet compact is. Laat dan C ⊂ OX een

open overdekking van X zijn die geen eindige deeloverdekking heeft. Dan is er een x1 in X

zodat B1 := B(x1, 1) niet door eindig veel elementen van C wordt overdekt, want X is pre-

compact en wordt dus door eindig veel B(x, 1) overdekt. Vervolgens is er een x2 in X zodat

B2 := B(x2, 1/2) ∩ B1 niet door eindig veel elementen van C wordt overdekt, want B1 wordt

al door eindig veel B(x, 1/2) overdekt. Zo gaan we door: stel we hebben zo al deelverza-

melingen B1, . . . , Br en elementen x1, . . . , xr gedefinieerd, zodat Bi niet door eindig veel ele-

menten van C wordt overdekt, en zodat Bi+1 = B(xi+1, 1/2i) ∩ Bi. Dan kiezen we xr+1 zo

dat Br+1 := B(xr+1, 1/2r) ∩ Br niet door eindig veel elementen van C wordt overdekt (dit kan

omdat Br al door eindig veel B(x, 1/2r) wordt overdekt).

We merken nu op dat Bi 6= ∅ voor alle i. Ook merken we op dat, voor alle i,

Bi ⊂ B(xi, 1/2i−1), dus dat diam(Bi) ≤ 1/2i−1, en dat Bi+1 ⊂ Bi. Kies nu, voor alle i,

een bi in Bi. Dan is de rij b1, b2, . . . een Cauchy rij, want d(bn, bn+m) ≤ 1/2n−2. Aangezien X

volledig is, is deze Cauchy rij convergent. Laat b de limiet zijn. Dan is er een C in C die b bevat.

Maar dan bevat C ook Bi als i voldoende groot is, hetgeen in flagrante tegenspraak is met de

eigenschap dat Bi niet door eindig veel elementen van C wordt overdekt. �
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98 Edixhoven’s Peano curve; 2004/03/22

Let X := {0, 1}N (the set of functions from N to {0, 1}). We put the discrete topology on {0, 1}

and the product topology on X . Note that X is compact (to prove this, one may equip each

factor {0, 1} with the metric d whose values are 0 and 1, and X with the metric given by

D(x, y) =
∑

i≥0
d(x(i), y(i))/2i, and show that X is precompact and complete). Let:

f : X −→ R, x 7→
2

3

∑

i≥0

x(i)3−i.

This map is injective, continuous, and hence the image C is closed. The image C is the set of

real numbers in [0, 1] that can be written in base 3 without the digit 1, i.e., the standard Cantor

set ([0, 1] with (1/3, 2/3) removed, etc.). So, f is an isomorphism of topological spaces from X

to C. Put:

g : X −→ R
2, x 7→

1

2

(

∑

i≥0

x(2i)2−i,
∑

i≥0

x(2i + 1)2−i

)

.

Then g is continuous, and the image clearly is the unit square [0, 1]2, because every element

of [0, 1] can be written in base 2. Now consider the function:

h := g ◦ f−1 : C −→ R
2.

This h is continuous, on the closed subset C of [0, 1], hence can be extended to a continuous

function k : [0, 1] → [0, 1]2 as follows. The open subset [0, 1] − C is the disjoint union of open

intervals (namely, the ones that were removed in the construction of the Cantor set C). On each

of these open intervals, just interpolate linearly between the endpoints. As [0, 1]2 is convex, this

gives a Peano curve k, i.e., a surjective continuous map from [0, 1] to [0, 1]2.

A nice property of this Peano curve k is that it is differentiable (even linear) on an open subset

of measure 1 of [0, 1]. The image of this open subset of measure one has measure zero, and the

image of its closed complement of measure zero has measure one.
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