LINEAR EQUATIONS WITH UNKNOWNS FROM A

MULTIPLICATIVE GROUP

 OF FINITE RANK Jan-Hendrik Evertse (Leiden)Lecture given at the
Colloquium on Number Theory
in honour of professors
Kálmán Györy and András Sárközy on the occasion of their 60th birthday

July 3-July 7, 2000, Debrecen

We start with:
Theorem. (E., 1984)
Let $a, b \in \mathrm{Q}^{*}$, let p_{1}, \ldots, p_{r} be distinct prime numbers, and let $\Gamma=\left\{ \pm p_{1}^{z_{1}} \cdots p_{r}^{z_{r}}: z_{i} \in \mathbf{Z}\right\}$ be the multiplicative group generated by p_{1}, \ldots, p_{r}. Then the equation

$$
a x+b y=1 \quad \text { in } x, y \in \Gamma
$$

has at most $3 \times 7^{2 r+3}$ solutions.

This can be generalized to equations with unknowns x, y in the group of S-units of a number field.

We consider a more general situation.

Notation.

K is any field of characteristic 0 .
K^{*} is the multiplicative group of K.
Γ is a subgroup of K^{*} of rank r, i.e.
there are multiplicatively independent elements $u_{1}, \ldots, u_{r} \in \Gamma$ such that
$\forall x \in \Gamma \exists m \in \mathbf{N}, z_{i} \in \mathbf{Z}$ with $x^{m}=u_{1}^{z_{1}} \cdots u_{r}^{z_{r}}$.

Theorem (Beukers, Schlickewei, 1996)
Let $a, b \in K^{*}$. Suppose Γ has rank r. Then the equation

$$
a x+b y=1 \quad \text { in } x, y \in \Gamma
$$

has at most $2^{16(r+1)}$ solutions.

Remark: Earlier Schlickewei proved a similar result with the upper bound $c^{r^{2}}$.

Now let $a_{1}, \ldots, a_{N} \in K^{*}$ and consider the equation in N variables:
(1) $a_{1} x_{1}+\cdots+a_{N} x_{N}=1$

$$
\text { in } x_{1}, \ldots, x_{N} \in \Gamma \text {. }
$$

To prevent easy constructions of infinite sets of solutions we consider only non-degenerate solutions, i.e., with
$\sum_{i \in I} a_{i} x_{i} \neq 0 \quad$ for each subset I of $\{1, \ldots, N\}$.

History:

1980's van der Poorten\&Schlickewei, E., Laurent: (1) has finitely many non-degenerate solutions.
1990's Schlickewei: explicit upper bounds in special cases depending on $N, r=r a n k \Gamma$ and other parameters.
Later improvements by E. and Schlickewei\&Schmidt.

Theorem (Schlickewei, Schmidt, E.)
Suppose Γ has rank r. Then the equation
$a_{1} x_{1}+\cdots+a_{N} x_{N}=1 \quad$ in $x_{1}, \ldots, x_{N} \in \Gamma$
has at most $2^{2^{6 N}(r+1)}$ non-degenerate solutions.

Ingredients in proof of Theorem:

1. A specialization argument, to reduce equations over arbitrary fields of characteristic 0 to equations over number fields.
2. Estimates for the number of solutions of small height (Schmidt 1994, David\&Philippon 2000).
3. A quantitative version of the Subspace Theorem (Schmidt $1989--\rightarrow$ Schlickewei\& E. 2000), to treat solutions with large height.

Polynomial equations.

K is again an arbitrary field of char. 0 .
f is an inhomogeneous polynomial in
$K\left[X_{1}, \ldots, X_{N}\right]$.
Γ is a subgroup of K^{*} of finite rank r.
We consider the equation
(2) $f\left(x_{1}, \ldots, x_{N}\right)=0$ in $x_{1}, \ldots, x_{N} \in \Gamma$.

We must again exclude degenerate solutions to prevent easy constructions of infinite sets of solutions.

Definition: $\mathrm{x}=\left(x_{1}, \ldots, x_{N}\right)$ is called a degenerate solution of $f(\mathrm{x})=0$ if there are integers t_{1}, \ldots, t_{N}, not all zero, such that

$$
f\left(x_{1} \lambda^{t_{1}}, \ldots, x_{N} \lambda^{t_{N}}\right)=0 \quad \text { identically in } \lambda .
$$

Otherwise x is called non-degenerate.

Another formulation of degeneracy.

Write $\mathrm{x}^{\mathbf{a}}=x_{1}^{a_{1}} \cdots x_{N}^{a_{N}}$ and let

$$
f=\sum_{\mathbf{a} \in A} c(\mathbf{a}) \mathbf{x}^{\mathbf{a}}
$$

where

$$
c(\mathbf{a}) \neq 0 \text { for } \mathbf{a} \in A, \quad A \subset\left(\mathbf{Z}_{\geq 0}\right)^{N} \text { finite. }
$$

For a partition $\mathcal{P}=\left\{P_{1}, \ldots, P_{k}\right\}$ of A into pairwise disjoint sets, let $H_{\mathcal{P}}$ denote the abelian group generated by all vectors

$$
\mathbf{a}-\mathbf{b} \quad\left(\mathbf{a}, \mathbf{b} \in P_{i}, i=1, \ldots, k\right) .
$$

Lemma. x is a degenerate solution of $f(\mathrm{x})=0$ if and only if there is a partition $\mathcal{P}=\left\{P_{1}, \ldots, P_{k}\right\}$ of A such that

$$
\begin{aligned}
& \sum_{\mathbf{a} \in P_{i}} c(\mathbf{a}) \mathbf{x}^{\mathbf{a}}=0 \quad \text { for } i=1, \ldots, k, \\
& H_{\mathcal{P}} \neq(0) .
\end{aligned}
$$

Theorem. (Laurent, 1984)
Let $f \in K\left[X_{1}, \ldots, X_{N}\right]$ be an inhomogeneous polynomial and let Γ be a subgroup of K^{*} of finite rank. Then the equation

$$
f\left(x_{1}, \ldots, x_{N}\right)=0 \quad \text { in } x_{1}, \ldots, x_{N} \in \Gamma
$$

has only finitely many non-degenerate solutions.

Quantitative results:
1993, Györy: K number field, 「 group of S-units in K
1994, Schmidt: K arbitrary, 「 group of roots of unity in K

Theorem. (Schlickewei, E.)
Let rank $\Gamma=r$. Suppose that f has total degree D. Then the number of non-degenerate solutions of

$$
f\left(x_{1}, \ldots, x_{N}\right)=0 \quad \text { in } x_{1}, \ldots, x_{N} \in \Gamma
$$

is at most

$$
c(N, D)^{r+1} \text { with } c(N, D)=2^{2^{6(\stackrel{N+D}{D})} .}
$$

Back to linear equations.

Let again K be a field of characteristic 0 , $a_{1}, \ldots, a_{N} \in K^{*}$, 「 a subgroup of K^{*} of rank r and consider again

$$
a_{1} x_{1}+\cdots+a_{N} x_{N}=1 \quad \text { in } x_{1}, \ldots, x_{N} \in Г
$$

Two tuples of coefficients $\mathbf{a}=\left(a_{1}, \ldots, a_{N}\right)$, $\mathbf{b}=\left(b_{1}, \ldots, b_{N}\right)$ are called Γ-equivalent if $b_{i}=a_{i} u_{i}$ with $u_{i} \in \Gamma$ for $i=1, \ldots, N$.

Equations with 「-equivalent tuples of coefficients have the same number of non-degenerate solutions.

Theorem. (Győry, Stewart, Tijdeman, E., 1986)

There are finitely many Γ-equivalence classes of pairs in $K^{*} \times K^{*}$ such that for every pair (a, b) outside the union of these classes, the equation

$$
a x+b y=1 \quad \text { in } x, y \in \Gamma
$$

has at most two solutions.

Remark 1. The upper bound 2 is best possible.

Remark 2. The exceptional equivalence classes can not be determined effectively from the method of proof.

Remark 3. The situation for equations in $N \geq 3$ variables is much more complicated.

Denote by $H(\alpha)$ the height (the maximum of the absolute values of the coefficients of the minimal polynomial in $\mathrm{Z}[X]$) of an algebraic number α.

Theorem. (Györy, Stewart, Tijdeman, E., 1986)

Let $a, b \in \mathbf{Q}^{*}$, let p_{1}, \ldots, p_{r} be distinct prime numbers, and let $\Gamma=\left\{ \pm p_{1}^{z_{1}} \cdots p_{r}^{z_{r}}: z_{i} \in \mathbf{Z}\right\}$. If the equation

$$
a x+b y=1 \quad \text { in } x, y \in \Gamma
$$

has more than $r+2$ solutions, then (a, b) is Γ-equivalent to a pair (a^{\prime}, b^{\prime}) with

$$
\max \left(H\left(a^{\prime}\right), H\left(b^{\prime}\right)\right) \leq C^{\mathrm{eff}}\left(p_{1}, \ldots, p_{r}\right)
$$

The proof uses estimates for linear forms in (ordinary and p-adic) logarithms.

This can be extended as follows:
Theorem. (E.) Let $a, b \in \overline{\mathbf{Q}}^{*}$ and let Γ be a subgroup of $\overline{\mathbf{Q}}^{*}$ of rank r. Let u_{1}, \ldots, u_{r} be multiplicatively independent elements of Γ. If

$$
a x+b y=1 \quad \text { in } x, y \in \Gamma
$$

has more than $2 r+2$ solutions, then (a, b) is Γ-equivalent to a pair $\left(a^{\prime}, b^{\prime}\right)$ with

$$
\max \left(H\left(a^{\prime}\right), H\left(b^{\prime}\right)\right) \leq C^{\mathrm{eff}}\left(u_{1}, \ldots, u_{r}\right)
$$

$$
\max \left(\operatorname{deg} a^{\prime}, \operatorname{deg} b^{\prime}\right) \leq C^{\mathrm{eff}}\left(u_{1}, \ldots, u_{r}\right)
$$

Fact: Let $N \geq 3$. Then for every $h>0$ there are Γ and infinitely many Γ - equivalence classes of tuples $\left(a_{1}, \ldots, a_{N}\right)$ such that the equation

$$
a_{1} x_{1}+\cdots+a_{N} x_{N}=1 \quad \text { in } x_{1}, \ldots, x_{N} \in \Gamma
$$

has more than h non-degenerate solutions.
Example. Consider the equation

$$
x_{1}+\cdots+x_{N-1}=1
$$

Choose 「 sufficiently large such that this equation has more than h non-degenerate solutions $x_{1}, \ldots, x_{N-1} \in \Gamma$.
Then for all but finitely many $\lambda \in K^{*}$, the equation

$$
\lambda x_{1}+\cdots+\lambda x_{N-1}+(1-\lambda) x_{N}=1
$$

has more than h non-degenerate solutions $x_{1}, \ldots, x_{N} \in \Gamma$, with $x_{N}=1$.

Let $A(\mathbf{a}, \Gamma)$ denote the smallest integer t such that the set of $\mathrm{x}=\left(x_{1}, \ldots, x_{N}\right)$ with

$$
a_{1} x_{1}+\cdots+a_{N} x_{N}=1, \quad x_{1}, \ldots, x_{N} \in \Gamma
$$

is contained in the union of not more than t proper linear subspaces of K^{N}.

Theorem. (Győry, E., 1989)
There are finitely many 「-equivalence classes of tuples in $\left(K^{*}\right)^{N}$, such that for every tuple $\mathbf{a}=\left(a_{1}, \ldots, a_{N}\right)$ outside the union of these classes we have $A(\mathbf{a}, \Gamma) \leq 2^{(N+1)!}$.
In 1993 I improved this to $(N!)^{2 N+2} \approx e^{2 N^{2} \log N}$. By a simple argument this can be improved somewhat further:

Theorem. (E.) There are finitely many Γ equivalence classes of tuples in $\left(K^{*}\right)^{N}$, such that for every tuple $\mathbf{a}=\left(a_{1}, \ldots, a_{N}\right)$ outside the union of these classes we have

$$
A(\mathbf{a}, \Gamma) \leq 2^{N^{2}}
$$

Sketch of proof.

Take $\mathbf{a}=\left(a_{1}, \ldots, a_{N}\right) \in\left(K^{*}\right)^{N}$ and consider

$$
a_{1} x_{1}+\cdots+a_{N} x_{N}=1 \quad \text { in } x_{1}, \ldots, x_{N} \in \Gamma .
$$

By replacing a by a Γ-equivalent tuple we may assume that $(1,1, \ldots, 1)$ is a solution.
Take N other solutions
$\mathrm{x}_{1}=\left(x_{11}, \ldots, x_{1 N}\right), \ldots, \mathbf{x}_{N}=\left(x_{N 1}, \ldots, x_{N N}\right)$.
Then

$$
\left|\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
1 & x_{11} & \cdots & x_{1 N} \\
\vdots & \vdots & & \vdots \\
1 & x_{N 1} & \cdots & x_{N N}
\end{array}\right|=0 .
$$

We apply the general result on polynomial equations.

We distinguish two cases:
a) $\left(x_{11}, \ldots, x_{N N}\right)$ is non-degenerate. Then $\left(x_{11}, \ldots, x_{N N}\right)$ belongs to a finite set which is independent of the coefficients a_{1}, \ldots, a_{N}. Now we can solve a_{1}, \ldots, a_{N} from

$$
\begin{aligned}
a_{1} x_{11}+\cdots+a_{N} x_{1 N} & =1 \\
\vdots & \\
a_{1} x_{N 1}+\cdots+a_{N} x_{N N} & =1
\end{aligned}
$$

and we get finitely many possibilities for a_{1}, \ldots, a_{N}.
b) $\left(x_{11}, \ldots, x_{N N}\right)$ is degenerate.

This means that there are integers $t_{11}, \ldots, t_{N N}$, not all zero, such that
$\left|\begin{array}{cccc}1 & 1 & \cdots & 1 \\ 1 & \lambda^{t_{11}} x_{11} & \cdots & \lambda^{t_{1} N} x_{1 N} \\ \vdots & \vdots & & \vdots \\ 1 & \lambda^{t_{N 1}} x_{N 1} & \cdots & \lambda^{t_{N N}} x_{N N}\end{array}\right|=0 \quad$ for every λ.
Choosing $\lambda=-1$ we get
(3) $\quad\left|\begin{array}{cccc}1 & 1 & \cdots & 1 \\ 1 & \pm x_{11} & \cdots & \pm x_{1 N} \\ \vdots & \vdots & & \vdots \\ 1 & \pm x_{N 1} & \cdots & \pm x_{N N}\end{array}\right|=0$.

Now fix $\mathbf{x}_{1}=\left(x_{11}, \ldots, x_{1 N}\right), \ldots, \mathbf{x}_{N-1}$ and let $\mathbf{x}_{N}=\left(x_{N 1}, \ldots, x_{N N}\right)$ run through the solutions of $a_{1} x_{1}+\cdots+a_{N} x_{N}=1$ in Γ.
Then \mathbf{x}_{N} satisfies one of at most $2^{N^{2}}$ linear equations determined by the signs in (3) and each equation determines a linear subspace of $\left(K^{*}\right)^{N}$. QED.

A lower bound for $A(\mathbf{a}, \Gamma)$.

Take arbitrary $u_{1}, \ldots, u_{N} \in \Gamma$ such that $b:=u_{1}+\cdots+u_{N} \neq 0$. Let \mathcal{S}_{N} be the set of of permutations of $\{1, \ldots, N\}$.
For $\sigma \in \mathcal{S}_{N}$ define $\mathbf{u}_{\sigma}=\left(u_{\sigma(1)}, \ldots, u_{\sigma(N)}\right)$. Then \mathbf{u}_{σ} is a solution of

$$
\frac{1}{b} x_{1}+\cdots+\frac{1}{b} x_{N}=1
$$

The vectors \mathbf{u}_{σ} with $\sigma(N)=i$ lie in the proper subspace given by the equation

$$
u_{i}\left(x_{1}+\cdots+x_{N-1}\right)-\left(b-u_{i}\right) x_{N}=0 .
$$

Hence the set $\left\{\mathbf{u}_{\sigma}: \sigma \in \mathcal{S}_{N}\right\}$ can be covered by N proper linear subspaces of K^{N}.

Fact: If u_{1}, \ldots, u_{N} are "sufficiently general" then the set $\left\{\mathbf{u}_{\sigma}: \sigma \in \mathcal{S}_{N}\right\}$ can not be covered by fewer than N proper linear subspaces of K^{N}.

So for $\mathbf{a}=\left(\frac{1}{b}, \ldots, \frac{1}{b}\right)$ we have $A(\mathbf{a}, \Gamma) \geq N$.

