LINEAR EQUATIONS WITH

 UNKNOWNS FROM AMULTIPLICATIVE GROUP
WHOSE SOLUTIONS LIE IN A FEW SUBSPACES

Jan-Hendrik Evertse (Leiden)

Lecture given at the 8th conference of the Canadian Number Theory Association

June 20, 2004, Toronto

K is a field of characteristic 0 .
K^{*} is the multiplicative group of K.
Γ is a subgroup of K^{*} of finite rank, i.e., there is a free subgroup Γ_{0} of Γ of finite rank such that for every $x \in \Gamma \exists m \in \mathbb{N}$ with $x^{m} \in \Gamma_{0}$.

Define rank $\Gamma:=\operatorname{rank} \Gamma_{0}$.

We consider equations
(1) $a_{1} x_{1}+\cdots+a_{n} x_{n}=1 \quad$ in $x_{1}, \ldots, x_{n} \in \Gamma$ with $a_{1}, \ldots, a_{n} \in K^{*}$.

Theorem A. (Schlickewei, Schmidt, E., 2002) Let rank $\Gamma=r$. Then the number of non-degenerate solutions of (1), i.e., with
$\sum_{i \in I} a_{i} x_{i} \neq 0 \quad$ for each subset I of $\{1, \ldots, n\}$, is at most $e^{(6 n)^{4 n}(r+1)}$.

Two tuples $\left(a_{1}, \ldots, a_{n}\right),\left(b_{1}, \ldots, b_{n}\right) \in\left(K^{*}\right)^{n}$ are called Γ-equivalent if

$$
\frac{b_{1}}{a_{1}} \in \Gamma, \ldots, \frac{b_{n}}{a_{n}} \in \Gamma
$$

Two equations
(1) $a_{1} x_{1}+\cdots+a_{n} x_{n}=1 \quad$ in $x_{1}, \ldots, x_{n} \in \Gamma$ with 「-equivalent tuples of coefficients have the same number of non-degenerate solutions.

Aim: Obtain more precise results for the set of solutions of (1), valid for "almost all" equivalence classes of $\left(a_{1}, \ldots, a_{n}\right)$.

Theorem B. (Győry, Stewart, Tijdeman, E., 1988)

Let 「 be a given subgroup of K^{*} of finite rank. Then for all pairs $(a, b) \in\left(K^{*}\right)^{2}$ with the exception of finitely many 「-equivalence classes, the equation

$$
a x+b y=1 \quad \text { in } x, y \in \Gamma
$$

has at most two solutions.

Fact: The bound 2 is best possible.

Problem: How to generalize this to equations in $n \geqslant 3$ unknowns?

Let $n \geqslant 3$.
Fact: (Györy, Stewart, Tijdeman, E., 1988) For every h, there exist a multiplicative subgroup 「 of \mathbb{Q}^{*} of finite rank, and infinitely many Γ-equivalence classes of tuples $\left(a_{1}, \ldots, a_{n}\right) \in\left(\mathbb{Q}^{*}\right)^{n}$, such that the equation $a_{1} x_{1}+\cdots+a_{n} x_{n}=1 \quad$ in $x_{1}, \ldots, x_{n} \in \Gamma$ has at least h non-degenerate solutions.

Let 「 be a given subgroup of K^{*} of finite rank.

Theorem C. (Györy, E., 1989)

For all tuples $\left(a_{1}, \ldots, a_{n}\right) \in\left(K^{*}\right)^{n}$ with the exception of finitely many Γ-equivalence classes, the set of solutions of

$$
a_{1} x_{1}+\cdots+a_{n} x_{n}=1 \quad \text { in } x_{1}, \ldots, x_{n} \in \Gamma
$$

is contained in the union of not more than $2^{(n+1)!}$ proper linear subspaces of K^{n}.

Improvements:

E. (1993): $(n!)^{2 n+2}$;
E. (2000) $2^{n^{2}}$ (unpublished)

Theorem. (E.) For all tuples $\left(a_{1}, \ldots, a_{n}\right) \in$ $\left(K^{*}\right)^{n}$ with the exception of finitely many Γ equivalence classes, the set of non-degenerate solutions of
(1) $\quad a_{1} x_{1}+\cdots+a_{n} x_{n}=1 \quad$ in $x_{1}, \ldots, x_{n} \in \Gamma$ is contained in the union of not more than

$$
2^{n}
$$

proper linear subspaces of K^{n}.

Remark. The degenerate solutions lie in at most 2^{n} subspaces $\sum_{i \in I} a_{i} x_{i}=0(I \subseteq\{1, \ldots, n\})$.

Our main tool.

Assume w.l.o.g. that K is algebraically closed. Let Γ be a subgroup of K^{*} of finite rank.

View $\left(K^{*}\right)^{n}$ as an algebraic group with coordinatewise multiplication $\left(x_{1}, \ldots, x_{n}\right) *\left(y_{1}, \ldots, y_{n}\right)$ $=\left(x_{1} y_{1}, \ldots, x_{n} y_{n}\right)$.

Let X be an algebraic subvariety of $\left(K^{*}\right)^{n}$.
Call a point $\mathrm{x} \in X$ degenerate if there is a one-dimensional algebraic subgroup H of $\left(K^{*}\right)^{n}$ with $\mathrm{x} * H \subset X$, and non-degenerate otherwise.

Theorem D. (Laurent, 1980's)
X has at most finitely many non-degenerate points with coordinates in Γ.

Remark. A one-dimensional algebraic subgroup H of $\left(K^{*}\right)^{n}$ can be expressed as

$$
H=\left\{\left(\lambda^{c_{1}}, \ldots, \lambda^{c_{n}}\right): \lambda \in K^{*}\right\}
$$

where c_{1}, \ldots, c_{n} are integers with gcd 1 .

Hence $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ is a degenerate point of X if and only if there are integers c_{1}, \ldots, c_{n} with gcd 1 such that

$$
\left(\lambda^{c_{1}} x_{1}, \ldots, \lambda^{c_{n}} x_{n}\right) \in X \quad \text { for every } \lambda \in K^{*} .
$$

A reduction.

Consider tuples $\left(a_{1}, \ldots, a_{n}\right) \in\left(K^{*}\right)^{n}$ such that
(1) $a_{1} x_{1}+\cdots+a_{n} x_{n}=1 \quad$ in $x_{1}, \ldots, x_{n} \in \Gamma$ has non-degenerate solutions.

Every Γ-equivalence class of such tuples contains a normalized tuple, i.e., a tuple (a_{1}, \ldots, a_{n}) such that $(1,1, \ldots, 1)$ is a non-degenerate solution of (1).

Hence it suffices to show:

Theorem.

For all but finitely many normalized tuples a $\in\left(K^{*}\right)^{n}$, the set of non-degenerate solutions of (1) is contained in the union of not more than 2^{n} proper linear subspaces of K^{n}.

For every $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right) \in\left(K^{*}\right)^{n}$ the equation
(1) $\quad a_{1} x_{1}+\cdots+a_{n} x_{n}=1 \quad$ in $x_{1}, \ldots, x_{n} \in \Gamma$ has at most $A:=e^{(6 n)^{4 n}(r+1)}$ non-degenerate solutions where $r=$ rank Γ.

Given a normalized tuple a, we can order the non-degenerate solutions of (1) in a sequence

$$
(1, \ldots, 1),\left(x_{21}, \ldots, x_{2 n}\right), \ldots,\left(x_{A 1}, \ldots, x_{A n}\right)
$$

where we have copied some of the solutions if the number of non-degenerate solutions is smaller than A.

Thus we get

$$
\operatorname{rank}\left(\begin{array}{cccc}
1 & \cdots & 1 & 1 \\
x_{21} & \cdots & x_{2 n} & 1 \\
\vdots & & \vdots & \vdots \\
x_{A 1} & \cdots & x_{A n} & 1
\end{array}\right) \leqslant n
$$

This defines an algebraic subvariety X of $\left(K^{*}\right)^{n(A-1)}$ which is independent of a.

Each normalized tuple of coefficients $\mathbf{a}=$ $\left(a_{1}, \ldots, a_{n}\right)$ gives rise to a point $\left(x_{21}, \ldots, x_{A n}\right) \in$ X with coordinates in Γ.
$\mathrm{a} \in$ CLASS I
if $\left(x_{21}, \ldots, x_{A n}\right)$ is a non-degenerate point of X.
$\mathrm{a} \in$ CLASS II
if $\left(x_{21}, \ldots, x_{A n}\right)$ is a degenerate point of X.

Each normalized tuple of coefficients $\mathrm{a}=$ $\left(a_{1}, \ldots, a_{n}\right)$ gives rise to a point $\left(x_{21}, \ldots, x_{A n}\right) \in$ X with coordinates in Γ.
$\mathrm{a} \in$ CLASS I
if $\left(x_{21}, \ldots, x_{A n}\right)$ is a non-degenerate point of X.
$\mathrm{a} \in$ CLASS II
if $\left(x_{21}, \ldots, x_{A n}\right)$ is a degenerate point of X.

We will prove:

CLASS I is finite.

If a is in CLASS II, then the non-degenerate solutions of

$$
a_{1} x_{1}+\cdots+a_{n} x_{n}=1 \quad \text { in } x_{1}, \ldots, x_{n} \in \Gamma
$$

lie in not more than 2^{n} subspaces of K^{n}.

CLASS I.

$\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$ is such that $\left(x_{21}, \ldots, x_{A n}\right)$ is a non-degenerate point with coordinates in Γ of

$$
X: \operatorname{rank}\left(\begin{array}{cccc}
1 & \cdots & 1 & 1 \\
x_{21} & \cdots & x_{2 n} & 1 \\
\vdots & & \vdots & \vdots \\
x_{A 1} & \cdots & x_{A n} & 1
\end{array}\right) \leqslant n .
$$

By Laurent's Theorem, $\left(x_{21}, \ldots, x_{A n}\right)$ belongs to a finite set independent of a.

We can determine a uniquely from ($x_{21}, \ldots, x_{A n}$) by solving

$$
\begin{aligned}
a_{1}+\cdots+a_{n} & =1 \\
a_{1} x_{i 1}+\cdots+a_{n} x_{i n} & =1 \quad(i=2, \ldots, A) .
\end{aligned}
$$

Hence CLASS I is finite.

CLASS II.

$\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$ is such that $\mathbf{x}=\left(x_{21}, \ldots, x_{A n}\right)$
is a degenerate point of

$$
X: \operatorname{rank}\left(\begin{array}{cccc}
1 & \cdots & 1 & 1 \\
x_{21} & \cdots & x_{2 n} & 1 \\
\vdots & & \vdots & \vdots \\
x_{A 1} & \cdots & x_{A n} & 1
\end{array}\right) \leqslant n .
$$

Then there are integers $c_{21}, \ldots, c_{A n}$ with $\operatorname{gcd}\left(c_{21}, \ldots, c_{A n}\right)=1$ such that
$\operatorname{rank}\left(\begin{array}{cccc}1 & \cdots & 1 & 1 \\ \lambda^{c_{21}} x_{21} & \cdots & \lambda^{c_{2 n}} x_{2 n} & 1 \\ \vdots & & \vdots & \vdots \\ \lambda^{c} A 1 x_{A 1} & \cdots & \lambda^{c_{A n}} x_{A n} & 1\end{array}\right) \leqslant n$
for every $\lambda \in K^{*}$.

Substitute $\lambda=-1$. Then we get

$$
\operatorname{rank}\left(\begin{array}{cccc}
1 & \cdots & 1 & 1 \\
\pm x_{21} & \cdots & \pm x_{2 n} & 1 \\
\vdots & & \vdots & \vdots \\
\pm x_{A 1} & \cdots & \pm x_{A n} & 1
\end{array}\right) \leqslant n .
$$

Not all signs are + since not all $c_{i j}$ are even.
Hence there are $b_{1}, \ldots, b_{n}, b_{0} \in K$, not all 0 such that

$$
\begin{aligned}
b_{1}+\cdots+b_{n} & =b_{0} \\
\pm b_{1} x_{i 1} \pm \cdots \pm b_{n} x_{i n} & =b_{0}(i=2, \ldots, A) .
\end{aligned}
$$

Conclusion:

Recall that $(1, \ldots, 1),\left(x_{i 1}, \ldots, x_{i n}\right)(i=2, \ldots, A)$ contain all non-degenerate solutions of
(1) $a_{1} x_{1}+\cdots+a_{n} x_{n}=1 \quad$ in $x_{1}, \ldots, x_{n} \in \Gamma$.

So for each non-degenerate solution of (1) there are n signs \pm such that

$$
\pm b_{1} x_{1} \pm \cdots \pm b_{n} x_{n}=b_{0}
$$

Thus, if a \in CLASS II, then the non-degenerate solutions of (1) lie in at most 2^{n} proper linear subspaces of K^{n}.

QED

A speculation.

For every tuple $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right) \in\left(K^{*}\right)^{n}$ with the exception of finitely many Γ-equivalence classes, the following holds:

1) If a is Γ-equivalent to (b, b, \ldots, b) for some $b \in K^{*}$, then the set of solutions of
(1) $a_{1} x_{1}+\cdots+a_{n} x_{n}=1 \quad$ in $x_{1}, \ldots, x_{n} \in \Gamma$ is contained in the union of not more than n proper linear subspaces of K^{n}.
2) If \mathbf{a} is not Γ-equivalent to (b, b, \ldots, b) for any $b \in K^{*}$, then the set of solutions of (1) is contained in the union of not more than 2 proper linear subspaces of K^{n}.

Remark. If $\mathbf{u}=\left(u_{1}, \ldots, u_{n}\right)$ is a solution of

$$
b x_{1}+b x_{2}+\cdots+b x_{n}=1
$$

then so are the points $\mathbf{u}_{\sigma}=\left(u_{\sigma(1)}, \ldots, u_{\sigma(n)}\right)$ for each permutation σ of $1,2, \ldots, n$.
For "generic" u, precisely n proper linear subspaces of K^{n} are needed to cover the set of all points \mathbf{u}_{σ}.

