LINEAR EQUATIONS WITH UNKNOWNS FROM A MULTIPLICATIVE GROUP WHOSE SOLUTIONS LIE IN A FEW SUBSPACES

Jan-Hendrik Evertse (Leiden)

Lecture given at the 8th conference of the Canadian Number Theory Association

June 20, 2004, Toronto

K is a field of characteristic 0. K^* is the multiplicative group of K.

 Γ is a subgroup of K^* of finite rank, i.e., there is a free subgroup Γ_0 of Γ of finite rank such that for every $x \in \Gamma \exists m \in \mathbb{N}$ with $x^m \in \Gamma_0$.

Define rank $\Gamma := \operatorname{rank} \Gamma_0$.

We consider equations

(1) $a_1x_1 + \dots + a_nx_n = 1$ in $x_1, \dots, x_n \in \Gamma$ with $a_1, \dots, a_n \in K^*$.

Theorem A. (Schlickewei, Schmidt, E., 2002) Let rank $\Gamma = r$. Then the number of non-degenerate solutions of (1), *i.e.*, with

 $\sum_{i \in I} a_i x_i \neq 0 \quad \text{for each subset } I \text{ of } \{1, \dots, n\},$

is at most $e^{(6n)^{4n}(r+1)}$.

Two tuples (a_1, \ldots, a_n) , $(b_1, \ldots, b_n) \in (K^*)^n$ are called Γ -equivalent if

$$\frac{b_1}{a_1} \in \Gamma, \dots, \frac{b_n}{a_n} \in \Gamma$$

Two equations

(1) $a_1x_1 + \cdots + a_nx_n = 1$ in $x_1, \ldots, x_n \in \Gamma$ with Γ -equivalent tuples of coefficients have the same number of non-degenerate solutions.

Aim: Obtain more precise results for the set of solutions of (1), valid for "almost all" equivalence classes of (a_1, \ldots, a_n) .

Theorem B. (Győry, Stewart, Tijdeman, E., 1988)

Let Γ be a given subgroup of K^* of finite rank. Then for all pairs $(a,b) \in (K^*)^2$ with the exception of finitely many Γ -equivalence classes, the equation

$$ax + by = 1$$
 in $x, y \in \Gamma$

has at most two solutions.

Fact: The bound 2 is best possible.

Problem: How to generalize this to equations in $n \ge 3$ unknowns?

Let $n \ge 3$.

Fact: (Győry, Stewart, Tijdeman, E., 1988) For every h, there exist a multiplicative subgroup Γ of \mathbb{Q}^* of finite rank, and infinitely many Γ -equivalence classes of tuples $(a_1, \ldots, a_n) \in (\mathbb{Q}^*)^n$, such that the equation

 $a_1x_1 + \cdots + a_nx_n = 1$ in $x_1, \ldots, x_n \in \Gamma$ has at least h non-degenerate solutions.

Let Γ be a given subgroup of K^* of finite rank.

Theorem C. (Győry, E., 1989) For all tuples $(a_1, \ldots, a_n) \in (K^*)^n$ with the exception of finitely many Γ -equivalence classes, the set of solutions of

 $a_1x_1 + \cdots + a_nx_n = 1$ in $x_1, \ldots, x_n \in \Gamma$

is contained in the union of not more than $2^{(n+1)!}$ proper linear subspaces of K^n .

Improvements:

E. (1993): $(n!)^{2n+2}$; E. (2000) 2^{n^2} (unpublished)

Theorem. (E.) For all tuples $(a_1, \ldots, a_n) \in (K^*)^n$ with the exception of finitely many Γ -equivalence classes, the set of **non-degener**ate solutions of

(1) $a_1x_1 + \cdots + a_nx_n = 1$ in $x_1, \ldots, x_n \in \Gamma$ is contained in the union of not more than

2^n

proper linear subspaces of K^n .

Remark. The degenerate solutions lie in at most 2^n subspaces $\sum_{i \in I} a_i x_i = 0$ ($I \subseteq \{1, \ldots, n\}$).

Our main tool.

Assume w.l.o.g. that K is algebraically closed. Let Γ be a subgroup of K^* of finite rank.

View $(K^*)^n$ as an algebraic group with coordinatewise multiplication $(x_1, \ldots, x_n)*(y_1, \ldots, y_n) = (x_1y_1, \ldots, x_ny_n).$

Let X be an algebraic subvariety of $(K^*)^n$.

Call a point $\mathbf{x} \in X$ degenerate if there is a one-dimensional algebraic subgroup H of $(K^*)^n$ with $\mathbf{x} * H \subset X$, and non-degenerate otherwise.

Theorem D. (Laurent, 1980's) X has at most finitely many non-degenerate points with coordinates in Γ .

Remark. A one-dimensional algebraic subgroup H of $(K^*)^n$ can be expressed as

$$H = \{ (\lambda^{c_1}, \dots, \lambda^{c_n}) : \lambda \in K^* \}$$

where c_1, \ldots, c_n are integers with gcd 1.

Hence $\mathbf{x} = (x_1, \dots, x_n)$ is a degenerate point of X if and only if there are integers c_1, \dots, c_n with gcd 1 such that

 $(\lambda^{c_1}x_1,\ldots,\lambda^{c_n}x_n) \in X$ for every $\lambda \in K^*$.

A reduction.

Consider tuples $(a_1, \ldots, a_n) \in (K^*)^n$ such that

(1) $a_1x_1 + \cdots + a_nx_n = 1$ in $x_1, \ldots, x_n \in \Gamma$ has non-degenerate solutions.

Every Γ -equivalence class of such tuples contains a **normalized** tuple, i.e., a tuple (a_1, \ldots, a_n) such that $(1, 1, \ldots, 1)$ is a non-degenerate solution of (1).

Hence it suffices to show:

Theorem.

For all but finitely many normalized tuples $a \in (K^*)^n$, the set of non-degenerate solutions of (1) is contained in the union of not more than 2^n proper linear subspaces of K^n .

For every $\mathbf{a} = (a_1, \dots, a_n) \in (K^*)^n$ the equation

(1) $a_1x_1 + \cdots + a_nx_n = 1$ in $x_1, \ldots, x_n \in \Gamma$ has at most $A := e^{(6n)^{4n}(r+1)}$ non-degenerate solutions where $r = \operatorname{rank} \Gamma$.

Given a normalized tuple a, we can order the non-degenerate solutions of (1) in a sequence

 $(1,\ldots,1),(x_{21},\ldots,x_{2n}),\ldots,(x_{A1},\ldots,x_{An}),$

where we have copied some of the solutions if the number of non-degenerate solutions is smaller than A.

Thus we get

rank
$$\begin{pmatrix} 1 & \cdots & 1 & 1 \\ x_{21} & \cdots & x_{2n} & 1 \\ \vdots & & \vdots & \vdots \\ x_{A1} & \cdots & x_{An} & 1 \end{pmatrix} \leqslant n.$$

This defines an algebraic subvariety X of $(K^*)^{n(A-1)}$ which is independent of a.

Each normalized tuple of coefficients $\mathbf{a} = (a_1, \ldots, a_n)$ gives rise to a point $(x_{21}, \ldots, x_{An}) \in X$ with coordinates in Γ .

$\mathbf{a} \in \textbf{CLASS I}$

if (x_{21}, \ldots, x_{An}) is a non-degenerate point of X.

$\mathbf{a} \in \textbf{CLASS II}$

if (x_{21}, \ldots, x_{An}) is a degenerate point of X.

Each normalized tuple of coefficients $\mathbf{a} = (a_1, \ldots, a_n)$ gives rise to a point $(x_{21}, \ldots, x_{An}) \in X$ with coordinates in Γ .

$a \in \textbf{CLASS I}$

if (x_{21}, \ldots, x_{An}) is a non-degenerate point of X.

$\mathbf{a} \in \textbf{CLASS II}$

if (x_{21}, \ldots, x_{An}) is a degenerate point of X.

We will prove:

CLASS I is finite.

If a is in CLASS II, then the non-degenerate solutions of

 $a_1x_1 + \dots + a_nx_n = 1 \quad \text{in } x_1, \dots, x_n \in \Gamma$

lie in not more than 2^n subspaces of K^n .

12-a

CLASS I.

 $\mathbf{a}=(a_1,\ldots,a_n)$ is such that (x_{21},\ldots,x_{An}) is a non-degenerate point with coordinates in Γ of

$$X: \operatorname{rank} \left(\begin{array}{cccc} 1 & \cdots & 1 & 1 \\ x_{21} & \cdots & x_{2n} & 1 \\ \vdots & & \vdots & \vdots \\ x_{A1} & \cdots & x_{An} & 1 \end{array} \right) \leqslant n.$$

By Laurent's Theorem, (x_{21}, \ldots, x_{An}) belongs to a finite set independent of **a**.

We can determine a uniquely from (x_{21}, \ldots, x_{An}) by solving

$$a_1 + \dots + a_n = 1$$

 $a_1 x_{i1} + \dots + a_n x_{in} = 1 \quad (i = 2, \dots, A).$

Hence CLASS I is finite.

CLASS II.

 $\mathbf{a} = (a_1, \dots, a_n)$ is such that $\mathbf{x} = (x_{21}, \dots, x_{An})$ is a degenerate point of

$$X: \operatorname{rank} \left(\begin{array}{cccc} 1 & \cdots & 1 & 1 \\ x_{21} & \cdots & x_{2n} & 1 \\ \vdots & & \vdots & \vdots \\ x_{A1} & \cdots & x_{An} & 1 \end{array} \right) \leqslant n \, .$$

Then there are integers c_{21}, \ldots, c_{An} with $gcd(c_{21}, \ldots, c_{An}) = 1$ such that

$$\operatorname{rank} \begin{pmatrix} 1 & \cdots & 1 & 1 \\ \lambda^{c_{21}} x_{21} & \cdots & \lambda^{c_{2n}} x_{2n} & 1 \\ \vdots & & \vdots & \vdots \\ \lambda^{c_{A1}} x_{A1} & \cdots & \lambda^{c_{An}} x_{An} & 1 \end{pmatrix} \leqslant n$$
 for every $\lambda \in K^*$.

Substitute $\lambda = -1$. Then we get

$$\operatorname{rank} \begin{pmatrix} 1 & \cdots & 1 & 1 \\ \pm x_{21} & \cdots & \pm x_{2n} & 1 \\ \vdots & & \vdots & \vdots \\ \pm x_{A1} & \cdots & \pm x_{An} & 1 \end{pmatrix} \leqslant n.$$

Not all signs are + since not all c_{ij} are even.

Hence there are $b_1, \ldots, b_n, b_0 \in K$, not all 0 such that

$$b_1 + \dots + b_n = b_0$$

 $\pm b_1 x_{i1} \pm \dots \pm b_n x_{in} = b_0 \ (i = 2, \dots, A).$

Conclusion:

Recall that $(1, \ldots, 1)$, (x_{i1}, \ldots, x_{in}) $(i = 2, \ldots, A)$ contain all non-degenerate solutions of

(1) $a_1x_1 + \cdots + a_nx_n = 1$ in $x_1, \ldots, x_n \in \Gamma$.

So for each non-degenerate solution of (1) there are n signs \pm such that

$$\pm b_1 x_1 \pm \cdots \pm b_n x_n = b_0.$$

Thus, if $a \in CLASS II$, then the non-degenerate solutions of (1) lie in at most 2^n proper linear subspaces of K^n .

QED

A speculation.

For every tuple $\mathbf{a} = (a_1, \ldots, a_n) \in (K^*)^n$ with the exception of finitely many Γ -equivalence classes, the following holds:

1) If a is Γ -equivalent to (b, b, \ldots, b) for some $b \in K^*$, then the set of solutions of

(1) $a_1x_1 + \dots + a_nx_n = 1$ in $x_1, \dots, x_n \in \Gamma$

is contained in the union of not more than n proper linear subspaces of K^n .

2) If a is not Γ -equivalent to (b, b, \ldots, b) for any $b \in K^*$, then the set of solutions of (1) is contained in the union of not more than 2 proper linear subspaces of K^n .

Remark. If $\mathbf{u} = (u_1, \ldots, u_n)$ is a solution of

$$bx_1 + bx_2 + \dots + bx_n = 1$$

then so are the points $\mathbf{u}_{\sigma} = (u_{\sigma(1)}, \dots, u_{\sigma(n)})$ for each permutation σ of $1, 2, \dots, n$.

For "generic" **u**, precisely n proper linear subspaces of K^n are needed to cover the set of all points \mathbf{u}_{σ} .