RECENT RESULTS ON LINEAR RECURRENCE SEQUENCES

Jan-Hendrik Evertse (Leiden)

General Mathematics Colloquium, Delft

May 19, 2005

INTRODUCTION

A linear recurrence sequence $U=\left\{u_{n}\right\}_{n=0}^{\infty}$ (in \mathbb{C}) is a sequence given by a linear recurrence
(1) $u_{n}=c_{1} u_{n-1}+c_{2} u_{n-2}+\cdots+c_{k} u_{n-k}$ ($n \geqslant k$)
with coefficients $c_{i} \in \mathbb{C}$ and initial values $u_{0}, \ldots, u_{k-1} \in \mathbb{C}$.

The smallest k such that U satisfies a recurrence of type (1) is called the order of U.

If k is the order of U, then the coefficients c_{1}, \ldots, c_{k} are uniquely determined.
In that case the companion polynomial of U is given by

$$
F_{U}(X):=X^{k}-c_{1} X^{k-1}-c_{2} X^{k-2}-\cdots-c_{k}
$$

FACT. Let $U=\left\{u_{n}\right\}_{n=0}^{\infty}$ be a linear recurrence sequence. Assume that its companion polynomial can be factored as

$$
\text { (2) } \quad F_{U}(X)=\left(X-\alpha_{1}\right)^{e_{1}} \cdots\left(X-\alpha_{r}\right)^{e_{r}}
$$

with distinct $\alpha_{1}, \ldots, \alpha_{r}$ and $e_{i}>0$.
Then u_{n} can be expressed as a polynomialexponential sum,
(3) $u_{n}=\sum_{i=1}^{r} f_{i}(n) \alpha_{i}^{n} \quad$ for $n \geqslant 0$
where f_{i} is a polynomial of degree $e_{i}-1(i=$ $1, \ldots, r$).

Conversely, if $\left\{u_{n}\right\}_{n=0}^{\infty}$ is given by (3) then it is a linear recurrence sequence with companion polynomial given by (2).

Proof. Let $U=\left\{u_{n}\right\}_{n=0}^{\infty}$ be a linear recurrence sequence of order k with companion polynomial

$$
\begin{aligned}
F_{U}(X) & =X^{k}-c_{1} X^{k-1}-\cdots-c_{k} \\
& =\left(X-\alpha_{1}\right)^{e_{1}} \cdots\left(X-\alpha_{r}\right)^{e_{r}}
\end{aligned}
$$

Then for some polynomial A of degree $<k$ and for certain constants $c_{i j}$,

$$
\begin{aligned}
\sum_{n=0}^{\infty} u_{n} X^{n} & =\frac{A(X)}{1-c_{1} X-c_{2} X^{2}-\cdots-c_{k} X^{k}} \\
& =\sum_{i=1}^{r} \sum_{j=1}^{e_{i}} \frac{c_{i j}}{\left(1-\alpha_{i} X\right)^{j}} \\
& =\sum_{i=1}^{r} \sum_{j=1}^{e_{i}} c_{i j} \sum_{n=0}^{\infty}\binom{n+j-1}{j-1} \alpha_{i}^{n} X^{n}
\end{aligned}
$$

ZERO MULTIPLICITY

The zero multiplicity of a linear recurrence sequence $U=\left\{u_{n}\right\}_{n=0}^{\infty}$ is given by
$N(U):=\#\left\{n \in \mathbb{Z}_{\geqslant 0}: u_{n}=0\right\}$.

Assume that U has companion polynomial

$$
F_{U}(X)=\left(X-\alpha_{1}\right)^{e_{1}} \cdots\left(X-\alpha_{r}\right)^{e_{r}}
$$

with α_{i} distinct, $e_{i}>0$.
U is called non-degenerate if none of the quotients $\alpha_{i} / \alpha_{j}(1 \leqslant i<j \leqslant r)$ is a root of unity.

THEOREM (Skolem-Mahler-Lech, 1934-3553)

Let U be a non-degenerate linear recurrence sequence. Then $N(U)$ is finite.

Example. Let $U=\left\{u_{n}\right\}_{n=0}^{\infty}$ be given by $u_{n}=3^{n}+(-3)^{n}+n\left(2^{n}-\left(2 e^{2 \pi i / 3}\right)^{n}\right) \quad(n \geqslant 0)$.

Then U has companion polynomial
$F_{U}(X)=(X-3)(X+3)(X-2)^{2}\left(X-2 e^{2 \pi i / 3}\right)^{2}$
and $u_{n}=0$ for $n=3,9,15, \ldots$.
Problem. Suppose that U is non-degenerate. Find a good upper bound for $N(U)$.

Example. Let $U=\left\{u_{n}\right\}_{n=0}^{\infty}$ be a linear recurrence sequence of order k with terms in \mathbb{R}. Suppose that its companion polynomial is

$$
F_{U}(X)=\left(X-\alpha_{1}\right)^{e_{1}} \cdots\left(X-\alpha_{r}\right)^{e_{r}}
$$

with $0<\alpha_{1}<\cdots<\alpha_{r}$. Then U is nondegenerate and

$$
u_{n}=\sum_{i=1}^{r} f_{i}(n) \alpha_{i}^{n} \quad(n \geqslant 0)
$$

where the f_{i} are polynomials with real coefficients.

FACT (Follows from Rolle's Theorem)
The function $u(x):=\sum_{i=1}^{r} f_{i}(x) \alpha_{i}^{x}$ has at $\operatorname{most} \sum_{i=1}^{r} \operatorname{deg} f_{i} \leqslant k-1$ zeros in \mathbb{R}.

Hence $N(U) \leqslant k-1$.

Old conjecture: $N(U) \leqslant C(k)$ for every nondegenerate linear recurrence sequence U of order k with terms in \mathbb{C}.

Linear recurrence sequences of order 3

THEOREM (Beukers, 1991)
Let $U=\left\{u_{n}\right\}_{n=0}^{\infty}$ be a non-degenerate linear recurrence sequence of order 3 with terms in \mathbb{Q}. Then

$$
N(U) \leqslant 6
$$

Example (Berstel, 1974)
$u_{n+3}=2 u_{n+2}-4 u_{n+1}+4 u_{n}(n \geqslant 3)$,
$u_{0}=u_{1}=0, u_{2}=1$.
Then $u_{0}=u_{1}=u_{4}=u_{6}=u_{13}=u_{52}=0$.

THEOREM (Beukers, Schlickewei, 1996) Let $U=\left\{u_{n}\right\}_{n=0}^{\infty}$ be a non-degenerate linear recurrence sequence of order 3 with terms in C. Then

$$
N(U) \leqslant 61 .
$$

Linear recurrence sequences of arbitrary order

Earlier results in the 1990's:
Schlickewei, van der Poorten and Schlickewei, Schlickewei and Schmidt: upper bounds for $N(U)$ valid for linear recurrence sequences with algebraic terms and depending on the order k of U and other parameters.

THEOREM (Schmidt, 2000).
Let $U=\left\{u_{n}\right\}_{n=0}^{\infty}$ be a non-degenerate linear recurrence sequence of order k with terms in \mathbb{C}. Then

$$
N(U) \leqslant \exp \exp \exp (20 k)
$$

Steps in the proof.

1) Reduce to the case that all terms of U are algebraic numbers, using a specialization argument from algebraic geometry.
2) Apply techniques from Diophantine approximation, the Quantitative p-adic Subspace Theorem.
3) Write $u_{n}=\sum_{i=1}^{r} f_{i}(n) \alpha_{i}^{n}$, where the f_{i} are polynomials. The proof is by induction on $\sum_{i=1}^{r} \operatorname{deg} f_{i}$.
4) Special case (Schlickewei, Schmidt, Ev.) Suppose that $u_{n}=\sum_{i=1}^{k} c_{i} \alpha_{i}^{n}$ where the c_{i} are non-zero constants. Then

$$
N(U) \leqslant e^{(6 k)^{3 k}}
$$

THE QUOTIENT OF TWO LINEAR RECURRENCE SEQUENCES

If $\left\{u_{n}\right\}_{n=0}^{\infty},\left\{v_{n}\right\}_{n=0}^{\infty}$ are linear recurrence sequences, then so are $\left\{\lambda u_{n}+\mu v_{n}\right\}_{n=0}^{\infty}(\lambda, \mu \in$ \mathbb{C}) and $\left\{u_{n} \cdot v_{n}\right\}_{n=0}^{\infty}$. What about $\left\{u_{n} / v_{n}\right\}_{n=0}^{\infty}$?

If this is a linear recurrence sequence then $u_{n} / v_{n}=\sum_{i=1}^{r} h_{i}(n) \gamma_{i}^{n}$ for certain polynomials h_{i} and certain γ_{i}.

Hence all terms u_{n} / v_{n} lie in a finitely generated subring of \mathbb{C}, namely the ring generated by the γ_{i} and the coefficients of the h_{i}.

THEOREM (Pourchet, 1979, van der Poorten, 1988)

Let $U=\left\{u_{n}\right\}_{n=0}^{\infty}, V=\left\{v_{n}\right\}_{n=0}^{\infty}$ be two linear recurrence sequences with terms in \mathbb{C}. Suppose that there is a finitely generated subring R of \mathbb{C} such that $u_{n} / v_{n} \in R$ for all but finitely many n.
Then there is $n_{0} \geqslant 0$ such that $\left\{u_{n} / v_{n}\right\}_{n=n_{0}}^{\infty}$ is a linear recurrence sequence.

Can we weaken the condition
" $u_{n} / v_{n} \in R$ for all but finitely many n " to " $u_{n} / v_{n} \in R$ for infinitely many n "?

THEOREM (Corvaja, Zannier, 2002)
Let $U=\left\{u_{n}\right\}_{n=0}^{\infty}, V=\left\{v_{n}\right\}_{n=0}^{\infty}$ be two linear recurrence sequences with terms in \mathbb{C}.
Assume that there is a finitely generated subring R of \mathbb{C} such that $u_{n} / v_{n} \in R$ for infinitely many n.

Then there are a polynomial $g(X)$ and positive integers a, b such that

$$
\left\{g(a n+b) \frac{u_{a n+b}}{v_{a n+b}}\right\}_{n=0}^{\infty},\left\{\frac{v_{a n+b}}{g(a n+b)}\right\}
$$

are linear recurrence sequences.

Proof.

1) Reduce to the case that U, V have algebraic terms by a specialization argument.
2) Apply the p-adic Subspace Theorem.

Example.

Let

$$
\begin{aligned}
& u_{n}=4^{n-1}-(-1)^{n-1} \\
& v_{n}=n \cdot 2^{n-1}+n \cdot(-1)^{n-1} \quad(n \geqslant 0)
\end{aligned}
$$

For every prime number $n \geqslant 3$ we have

$$
\frac{u_{n}}{v_{n}}=\frac{4^{n-1}-1}{n\left(2^{n-1}+1\right)}=\frac{2^{n-1}-1}{n} \in \mathbb{Z}
$$

(using Fermat's little theorem).
Hence $u_{n} / v_{n} \in \mathbb{Z}$ for infinitely many n.
Verify that

$$
(2 n+1) \cdot \frac{u_{2 n+1}}{v_{2 n+1}}=2^{2 n}-1, \quad \frac{v_{2 n+1}}{2 n+1}=2^{2 n}+1
$$

are linear recurrence sequences, but that $\left\{u_{n} / v_{n}\right\}_{n=0}^{\infty}$ and $\left\{n u_{n} / v_{n}\right\}_{n=0}^{\infty}$ are not linear recurrence sequences.

D-TH ROOTS OF LINEAR RECURRENCE SEQUENCES

Let d be a positive integer, let $\left\{u_{n}\right\}_{n=0}^{\infty}$ be a linear recurrence sequence and suppose that there is a linear recurrence sequence $\left\{v_{n}\right\}_{n=0}^{\infty}$ such that $u_{n}=v_{n}^{d}$ for all n. Write

$$
v_{n}=\sum_{i=1}^{r} h_{i}(n) \gamma_{i}^{n}
$$

where $\gamma_{i} \in \mathbb{C}$ and h_{i} is a polynomial. Let R be the ring generated by the γ_{i} and the coefficients of the h_{i}.
Then for every n there is $y \in R$ with $y^{d}=u_{n}$.

THEOREM (Zannier, 2000)

Let d be a positive integer, let $\left\{u_{n}\right\}_{n=0}^{\infty}$ be a linear recurrence sequence with terms in \mathbb{C} and suppose that there is a finitely generated subring of \mathbb{C} such that for every $n \geqslant 0$ there is $y \in R$ with $y^{d}=u_{n}$.
Then there is a linear recurrence sequence $\left\{v_{n}\right\}_{n=0}^{\infty}$ such that $v_{n}^{d}=u_{n}$ for every $n \geqslant 0$.

Proof. Specialization, algebraic number theory, arithmetic geometry.

What if there is $y \in R$ with $y^{d}=u_{n}$ for infinitely many n ?

THEOREM (Corvaja, Zannier, 1998)
Let d be a positive integer. Let $\left\{u_{n}\right\}_{n=0}^{\infty}$ be a linear recurrence sequence with terms in \mathbb{Q}, satisfying the following condition:

$$
u_{n}=\sum_{i=1}^{r} c_{i} \alpha_{i}^{n} \quad \text { for } n \geqslant 0
$$

where the c_{i} are non-zero constants, and where

$$
\left|\alpha_{1}\right|>\max \left(\left|\alpha_{2}\right|, \ldots,\left|\alpha_{r}\right|\right)
$$

Assume that for infinitely many n there is $y \in$ \mathbb{Q} such that $y^{d}=u_{n}$.
Then there are a linear recurrence sequence $\left\{v_{n}\right\}_{n=0}^{\infty}$ with terms in \mathbb{Q}, as well as positive integers a, b, such that

$$
v_{n}^{d}=u_{a n+b} \quad \text { for every } n \geqslant 0
$$

Proof. p-adic Subspace Theorem.

THE SUBSPACE THEOREM

For $\mathbf{x}=\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{Z}^{m}$ put

$$
\|\mathbf{x}\|:=\max \left(\left|x_{1}\right|, \ldots,\left|x_{m}\right|\right)
$$

SUBSPACE THEOREM (Schmidt, 1972) Let $L_{i}(X)=\alpha_{i 1} X_{1}+\cdots+\alpha_{i m} X_{m}(i=1, \ldots, m)$ be m linearly independent linear forms in m variables with algebraic coefficients in \mathbb{C} and let $\delta>0$.

Then the set of solutions $\mathrm{x} \in \mathbb{Z}^{m}$ of

$$
\left|L_{1}(\mathrm{x}) \cdots L_{m}(\mathrm{x})\right| \leqslant\|\mathrm{x}\|^{-\delta}
$$

is contained in the union of finitely many proper linear subspaces of \mathbb{Q}^{m}.

Example ($m=3$). Consider (4)
$\left|\left(x_{1}-\sqrt{2} x_{2}\right)\left(x_{1}+\sqrt{2} x_{2}\right)\left(x_{3}-\sqrt{2} x_{2}\right)\right| \leqslant\|\mathbf{x}\|^{-1}$.

1) (4) has infinitely many solutions
$\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{Z}^{3}$ in the subspace $x_{1}=x_{3}$, which are given by $x_{1}=x_{3},\left|x_{1}^{2}-2 x_{2}^{2}\right|=1$, $x_{1} x_{2} \geqslant 0$.
2) (4) has infinitely many solutions $x \in \mathbb{Z}^{3}$ in the subspace $x_{1}=-x_{3}$, which are given by $x_{1}=-x_{3},\left|x_{1}^{2}-2 x_{2}^{2}\right|=1, x_{1} x_{2} \leqslant 0$.
3) (4) has only finitely many solutions $x \in \mathbb{Z}^{3}$ with $x_{1} \neq \pm x_{3}$, given by $(\pm 1,0,0),(0,0, \pm 1)$.

Remark. The Pell equation $\left|x_{1}^{2}-2 x_{2}^{2}\right|=1$ has infinitely many solutions in integers x_{1}, x_{2}.

p-adic absolute values

Given a prime number p we define the p-adic absolute value $|\cdot|_{p}$ on \mathbb{Q} by
$|0|_{p}=0 ;$
$|a|_{p}=p^{-r}$ if $a=p^{r} b / c$ where b, c are integers not divisible by p.

Example: $\left|\frac{9}{200}\right|_{2}=2^{3}$ since $\frac{9}{200}=2^{-3} \frac{9}{25}$.
Likewise $\left|\frac{9}{200}\right|_{3}=3^{-2}$.

Properties:
$|a b|_{p}=|a|_{p}|b|_{p} ;|a+b|_{p} \leqslant \max \left(|a|_{p},|b|_{p}\right)$; $a \in \mathbb{Z}, a$ divisible by $p^{r} \Rightarrow|a|_{p} \leqslant p^{-r}$.

Product formula:

a composed of primes p_{1}, \ldots, p_{t}
$\Rightarrow|a| \cdot|a|_{p_{1}} \cdots|a|_{p_{t}}=1$.

P-ADIC SUBSPACE THEOREM

(Schlickewei, 1977)
Let p_{1}, \ldots, p_{t} be distinct prime numbers.
Let $L_{1}(X), \ldots, L_{m}(X)$ be m linearly independent linear forms in m variables with coefficients in \mathbb{Q}.
For each $p \in\left\{p_{1}, \ldots, p_{t}\right\}$, let $L_{1 p}(X), \ldots, L_{m p}(X)$ be m linearly independent linear forms in m variables with coefficients in \mathbb{Q}. Let $\delta>0$.
Then the set of solutions $\mathrm{x} \in \mathbb{Z}^{m}$ of

$$
\begin{array}{r}
\left|L_{1}(\mathrm{x}) \cdots L_{m}(\mathrm{x})\right| \cdot \prod_{i=1}^{t}\left|L_{1, p_{i}}(\mathrm{x}) \cdots L_{m, p_{i}}(\mathrm{x})\right|_{p_{i}} \\
\leqslant\|\mathrm{x}\|^{-\delta}
\end{array}
$$

is contained in the union of finitely many proper linear subspaces of \mathbb{Q}^{m}.

Remark 1. There is a more general result in which the coefficients of the linear forms $L_{i}, L_{i p}$ are algebraic, and the solutions x have their coordinates in a given algebraic number field (Schmidt, Schlickewei).

Remark 2. All proofs given up to now for the (p-adic) Subspace Theorem are ineffective, i.e., these proofs do not allow to determine effectively the subspaces containing all solutions.

Remark 3. There is however a Quantitative p-adic Subspace Theorem, giving an explicit upper bound for the number of subspaces containing all solutions (Schmidt 1989, Schlickewei 1991,..., Schlickewei\& Ev., 2002).

This is a crucial tool in the proof of Schmidt's theorem on the zero multiplicity of linear recurrence sequences.

AN APPLICATION

We prove:

THEOREM Let p, q be two prime numbers with $p>q$. Then there are only finitely many positive integers n such that

$$
\frac{p^{n}-1}{q^{n}-1} \in \mathbb{Z}
$$

(This is a special case of the Theorem of Corvaja and Zannier on quotients of linear recurrence sequences).

Let h be a positive integer. Then

$$
\left(q^{h n}-1\right) \frac{p^{n}-1}{q^{n}-1}=\left(p^{n}-1\right)\left(\sum_{i=0}^{h-1} q^{i n}\right)
$$

Hence

$$
q^{h n} \frac{p^{n}-1}{q^{n}-1}+\sum_{i=0}^{h-1} q^{i n}-\sum_{i=0}^{h-1} p^{n} q^{i n}=\frac{p^{n}-1}{q^{n}-1}
$$

or

$$
x_{1}+x_{2}+\cdots+x_{2 h+1}=\frac{p^{n}-1}{q^{n}-1}
$$

where

$$
\begin{aligned}
& x_{1}=q^{h n \frac{p^{n}-1}{q^{n}-1}} \\
& x_{i}=q^{(i-2) n}(i=2, \ldots, h+1) \\
& x_{i}=-p^{n} q^{(i-h-2) n}(i=h+2, \ldots, 2 h+1)
\end{aligned}
$$

Put

$$
\begin{aligned}
\mathbf{x}_{n}:= & \left(x_{1}, x_{2}, \ldots, x_{2 h+1}\right) \\
= & \left(q^{h n} \frac{p^{n}-1}{q^{n}-1}, 1, \ldots, q^{(h-1) n}\right. \\
& \left.\quad-p^{n}, \ldots,-p^{n} q^{(h-1) n}\right)
\end{aligned}
$$

LEMMA Let $q^{h+1}>p$. Then there is $\delta>0$ such that for all sufficiently large n with $\frac{p^{n}-1}{q^{n}-1} \in$ \mathbb{Z} we have

$$
\begin{aligned}
& \left|\left(x_{1}+\cdots+x_{2 h+1}\right) x_{2} \cdots x_{2 h+1}\right| \\
& \quad \cdot\left|x_{1} \cdots x_{2 h+1}\right|_{p} \cdot\left|x_{1} \cdots x_{2 h+1}\right|_{q} \leqslant\left\|\mathbf{x}_{n}\right\|^{-\delta}
\end{aligned}
$$

Hence $\left\{\mathbf{x}_{n}: \frac{p^{n}-1}{q^{n}-1} \in \mathbb{Z}\right\}$ is contained in a finite union of proper linear subspaces of $\mathbb{Q}^{2 h+1}$.

Proof. Suppose $z_{n}:=\frac{p^{n}-1}{q^{n}-1} \in \mathbb{Z}$. Recall

$$
\begin{aligned}
& \mathbf{x}_{n}=\left(x_{1}, x_{2}, \ldots, x_{2 h+1}\right) \\
&=\left(q^{h n \frac{p^{n}-1}{q^{n}-1}, 1, \ldots, q^{(h-1) n}}\right. \\
& \quad \begin{aligned}
& \left.\quad-p^{n}, \ldots,-p^{n} q^{(h-1) n}\right)
\end{aligned}
\end{aligned}
$$

Hence

$$
\left\|\mathbf{x}_{n}\right\|=q^{h n} \frac{p^{n}-1}{q^{n}-1} \approx\left(p q^{h-1}\right)^{n}
$$

Further,

$$
\begin{aligned}
& \left|x_{1}+\cdots+x_{2 h+1}\right|=\frac{p^{n}-1}{q^{n}-1} \\
& \left|x_{1}\right|_{p}=\left|q^{h n} z_{n}\right|_{p}=1 \\
& \left|x_{1}\right|_{q}=\left|q^{h n} z_{n}\right|_{q} \leqslant q^{-h n} \\
& \left|x_{i}\right| \cdot\left|x_{i}\right|_{p} \cdot\left|x_{i}\right|_{q}=1 \text { for } i=2, \ldots, 2 h+1
\end{aligned}
$$

and so the product of these terms is at most

$$
q^{-h n} \frac{p^{n}-1}{q^{n}-1} \approx\left(q^{h+1} / p\right)^{-n} \approx\left\|\mathbf{x}_{n}\right\|^{-\delta}
$$

where $\delta=\frac{\log q^{h+1} / p}{p q^{h-1}}$. QED.

The set $\left\{\mathbf{x}_{n}: \frac{p^{n}-1}{q^{n}-1} \in \mathbb{Z}\right\}$ is contained in the union of finitely many proper linear subspaces of $\mathbb{Q}^{2 h+1}$.

It suffices to show that if T is any proper linear subspace of $\mathbb{Q}^{2 h+1}$, then there are only finitely many n such that $\mathbf{x}_{n} \in T$.
W.I.o.g. T is given by an equation

$$
a_{1} x_{1}+\cdots+a_{2 h+1} x_{2 h+1}=0 \quad \text { with } a_{i} \in \mathbb{Q}
$$

Substitute

$$
\begin{aligned}
& \mathbf{x}_{n}=\left(q^{h n} \frac{p^{n}-1}{q^{n}-1}, 1, \ldots, q^{(h-1) n}\right. \\
& \left.\quad-p^{n}, \ldots,-p^{n} q^{(h-1) n}\right)
\end{aligned}
$$

and multiply with $q^{n}-1$.
Then we obtain an equation

$$
\sum_{i=1}^{r} c_{i} \alpha_{i}^{n}=0
$$

where each α_{i} is an integer composed of p and q and each c_{i} is a constant.

The left-hand side is a non-degenerate linear recurrence sequence.
So by the Skolem-Mahler-Lech Theorem (or Rolle's Theorem), there are only finitely many possibilities for n. QED

Two integers a, b are called multiplicatively independent if there are no positive integers m, n such that $a^{m}=b^{n}$.

By extending the above argument, the following result can be proved:

THEOREM (Bugeaud, Corvaja, Zannier, 2003)
Let a, b be two multiplicatively independent integers. Then

$$
\lim _{n \rightarrow \infty} \frac{\log \operatorname{gcd}\left(a^{n}-1, b^{n}-1\right)}{n}=0
$$

