LINEAR EQUATIONS WITH UNKNOWNS FROM A

 MULTIPLICATIVE GROUP Jan-Hendrik Evertse (Leiden)Intercity Number Theory Seminar, Delft

October 21, 2005

Notation:

K is an algebraically closed field of characteristic 0 .
K^{*} is the multiplicative group of K.
Γ is a subgroup of K^{*} of finite rank, i.e., there is a free subgroup Γ_{0} of Γ of finite rank such that for every $x \in \Gamma \exists m \in \mathbb{N}$ with $x^{m} \in \Gamma_{0}$.

Define rank $\Gamma:=\operatorname{rank} \Gamma_{0}$.

Example:

$\Gamma=\left\{\sqrt[m]{2^{u} 3^{v} 5^{w}}: u, v, w \in \mathbb{Z}, m \in \mathbb{N}\right\}$ has rank 3.

We consider equations
(1) $\quad a_{1} x_{1}+a_{2} x_{2}=1 \quad$ in $x_{1}, x_{2} \in \Gamma$ with $a_{1}, a_{2} \in K^{*}$.

Siegel-Mahler-Lang (1927-1960): (1) has only finitely many solutions.

Theorem 1. (Beukers, Schlickewei, 1996) Let rank $\Gamma=r$. Then eq. (1) has at most $2^{16(r+1)}$ solutions.

Proof. Specialization (to reduce from arbitrary fields of characteristic 0 to number fields); Diophantine approximation (ThueSiegel method).

It is easy to construct equations
(1) $a_{1} x_{1}+a_{2} x_{2}=1 \quad$ in $x_{1}, x_{2} \in \Gamma$.
with two solutions:
pick any two distinct pairs $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)$ from Γ and solve a_{1}, a_{2} from $a_{1} x_{1}+a_{2} x_{2}=1$, $a_{1} y_{1}+a_{2} y_{2}=1$.

There are "few" equations (1) with more than two solutions.

Two equations
(1) $\quad a_{1} x_{1}+a_{2} x_{2}=1 \quad$ in $x_{1}, x_{2} \in \Gamma$
and $b_{1} x_{1}+b_{2} x_{2}=1$ in $x_{1}, x_{2} \in \Gamma$ have the same number of solutions if $b_{1}=a_{1} u_{1}, b_{2}=$ $a_{2} u_{2}$ for some $u_{1}, u_{2} \in \Gamma$.
Taking for $\left(u_{1}, u_{2}\right)$ a solution of (1) we obtain an equation with the same number as solutions as (1), whose sum of coefficients is 1.

A pair of coefficients $\left(a_{1}, a_{2}\right) \in K^{*} \times K^{*}$ with $a_{1}+a_{2}=1$ is called normalized.

Theorem 2. (Győry, Stewart, Tijdeman, E., 1988): For every subgroup 「 of K^{*} of finite rank there are only finitely many normalized pairs $\left(a_{1}, a_{2}\right)$ such that (1) has more than two solutions.

We now consider equations in $n \geqslant 3$ variables (2) $a_{1} x_{1}+\cdots+a_{n} x_{n}=1 \quad$ in $x_{1}, \ldots, x_{n} \in \Gamma$ with $a_{1}, \ldots, a_{n} \in K^{*}$.

A solution $\left(x_{1}, \ldots, x_{n}\right)$ is called non-degenerate if
$\sum_{i \in I} a_{i} x_{i} \neq 0$ for each non-empty $I \subset\{1, \ldots, n\}$ and otherwise degenerate.

Degenerate solutions give rise to infinite families of solutions.

If $\left(x_{1}, \ldots, x_{n}\right)$ is a solution with $\sum_{i=1}^{m} a_{i} x_{i}=0$ ($m<n$) then $\left(u x_{1}, \ldots, u x_{m}, x_{m+1}, \ldots, x_{n}\right.$) satisfies (2) for every $u \in \Gamma$.

Laurent, van der Poorten, Schlickewei, E. (1980's):
if Γ is a subgroup of K^{*} of finite rank, then
(2) $\quad a_{1} x_{1}+\cdots+a_{n} x_{n}=1 \quad$ in $x_{1}, \ldots, x_{n} \in \Gamma$ has only finitely many non-degenerate solutions.

Theorem 3. (Schlickewei, Schmidt, E., 2002): Let rank $\Gamma=r$. Then eq. (2) has at most $\exp \left((6 n)^{4 n}(r+1)\right)$ non-degenerate solutions.

Proof: Specialization; Diophantine approximation (Thue-Siegel-Roth-Schmidt method)

Let $n \geqslant 3$.

A tuple $\left(a_{1}, \ldots, a_{n}\right)$ is called normalized if $(1, \ldots, 1)$ is a non-degenerate solution of (2) $a_{1} x_{1}+\cdots+a_{n} x_{n}=1$ in $\left(x_{1}, \ldots, x_{n}\right) \in \Gamma$ i.e., $a_{1}+\cdots+a_{n}=1$ and $\sum_{i \in I} a_{i} \neq 0$ for each non-empty $I \subset\{1, \ldots, n\}$.

Question: Does there exist an upper bound H independent of Γ such that for all but finitely normalized tuples $\left(a_{1}, \ldots, a_{n}\right)$, Eq. has at most H non-denegerate solutions?

No: For every h, there exist a multiplicative subgroup 「 of K^{*} of finite rank, and infinitely many normalized tuples $\left(a_{1}, \ldots, a_{n}\right) \in\left(K^{*}\right)^{n}$, such that (2) has at least h non-degenerate solutions.

Proof. ($n=3$). For $i=1, \ldots, h$, pick $u_{i 1}, u_{i 2} \in K^{*}$ with $u_{i 1}+u_{i 2}=2$.
Let Γ be the group generated by $u_{i 1}, u_{i 2}$ ($i=$ $1, \ldots, h$).

Then for every $b \in K$ with $b \neq 0,1$ the equation

$$
\frac{b}{2} x_{1}+\frac{b}{2} x_{2}+(1-b) x_{3}=1
$$

has h solutions in 「, i.e., $\left(u_{i 1}, u_{i 2}, 1\right)(i=$ $1, \ldots, h$).

For all but finitely many b, the tuple of coefficients is normalized and the solutions are non-degenerate.

Remark. The solutions in this construction all lie in the subspace $x_{1}+x_{2}-2 x_{3}=0$.

Theorem 4. (Győry, E., 1989)

For every subgroup Γ of K^{*} of finite rank, there is a finite collection \mathcal{E}_{Γ} of normalized tuples, such that for every normalized tuple $\left(a_{1}, \ldots, a_{n}\right) \in\left(K^{*}\right)^{n}$ outside \mathcal{E}_{Γ}, the set of solutions of

$$
a_{1} x_{1}+\cdots+a_{n} x_{n}=1 \quad \text { in } x_{1}, \ldots, x_{n} \in \Gamma
$$

is contained in the union of at most $2^{(n+1)!}$ proper linear subspaces of K^{n}.

Theorem 5. (E.,2004) For every subgroup Γ of K^{*} of finite rank, there is a finite collection \mathcal{E}_{Γ} of normalized tuples, such that for every normalized tuple $\left(a_{1}, \ldots, a_{n}\right) \in\left(K^{*}\right)^{n}$ outside \mathcal{E}_{Γ}, the set of non-degenerate solutions of

$$
a_{1} x_{1}+\cdots+a_{n} x_{n}=1 \quad \text { in } x_{1}, \ldots, x_{n} \in \Gamma
$$

is contained in the union of at most

$$
2^{n}
$$

proper linear subspaces of K^{n}.

Remark 1. The degenerate solutions lie in at most 2^{n} subspaces $\sum_{i \in I} a_{i} x_{i}=0(I \subseteq$ $\{1, \ldots, n\}$).

Remark 2. The bound 2^{n} is probably far from best possible. (n???)

Ingredients of the proof:

1) The result of Schlickewei, Schmidt, E. that

$$
a_{1} x_{1}+\cdots+a_{n} x_{n}=1 \quad \text { in } x_{1}, \ldots, x_{n} \in \Gamma
$$ has at most $\exp \left((6 n)^{4 n}(r+1)\right)$ non-degenerate solutions, where $r=\operatorname{rank} \Gamma$.

(In fact we will need only that this bound is independent of a_{1}, \ldots, a_{n}).
2) A result by Laurent on points in algebraic subvarieties of $\left(K^{*}\right)^{n}$ with coordinates in Γ.

Laurent's result.

As before, K is an algebraically closed field of characteristic 0 and Γ a subgroup of K^{*} of finite rank.

View $\left(K^{*}\right)^{n}$ as an algebraic group with coordinatewise multiplication $\left(x_{1}, \ldots, x_{n}\right) *\left(y_{1}, \ldots, y_{n}\right)$
$=\left(x_{1} y_{1}, \ldots, x_{n} y_{n}\right)$.

An algebraic subvariety of $\left(K^{*}\right)^{n}$ is a set

$$
X=\left\{\mathrm{x} \in\left(K^{*}\right)^{n}: f_{1}(\mathrm{x})=\cdots f_{m}(\mathrm{x})=0\right\}
$$

with $f_{1}, \ldots, f_{m} \in K\left[X_{1}, \ldots, X_{n}\right]$.

An algebraic subgroup of $\left(K^{*}\right)^{n}$ is an algebraic subvariety closed under coordinatewise multiplication.

A translate of an algebraic subgroup is a coset $\mathbf{x} * H=\{\mathbf{x} * \mathbf{u}: \mathbf{u} \in H\}$ where $\mathbf{x} \in\left(K^{*}\right)^{n}$ and H is an algebraic subgroup.

Let X be an algebraic subvariety of $\left(K^{*}\right)^{n}$.
Call a point $\mathrm{x} \in X$ degenerate if there is a positive dimensional algebraic subgroup H of $\left(K^{*}\right)^{n}$ with $\mathrm{x} * H \subset X$, and non-degenerate otherwise.

Theorem. (Laurent, 1980's)
X has at most finitely many non-degenerate points with coordinates in Γ.

Example. Let $X=\left\{a_{1} x_{1}+\cdots+a_{n} x_{n}=1\right\}$. Then $\mathrm{x}=\left(x_{1}, \ldots, x_{n}\right)$ is non-degenerate \Longleftrightarrow $\sum_{i \in I} a_{i} x_{i} \neq 0$ for each non-empty $I \subset\{1, \ldots, n\}$.

A useful fact.

Every m-dimensional algebraic subgroup H of $\left(K^{*}\right)^{n}$ can be expressed as a direct product

$$
H_{0} \times G
$$

where $H_{0} \cong\left(K^{*}\right)^{m}$ and G is a finite group.

An algebraic subgroup of positive dimension contains points of any finite order.

Construction of a variety.

Let Γ be a subgroup of K^{*} of finite rank.
There is a uniform bound A such that for every $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right) \in\left(K^{*}\right)^{n}$ the equation (2) $a_{1} x_{1}+\cdots+a_{n} x_{n}=1 \quad$ in $x_{1}, \ldots, x_{n} \in \Gamma$ has at most A non-degenerate solutions. (E.g., the bound of Schlickewei, Schmidt, E.)

Given a normalized tuple $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$, we can order the non-degenerate solutions of
(2) $a_{1} x_{1}+\cdots+a_{n} x_{n}=1 \quad$ in $x_{1}, \ldots, x_{n} \in \Gamma$ in a sequence

$$
(1, \ldots, 1),\left(x_{21}, \ldots, x_{2 n}\right), \ldots,\left(x_{A 1}, \ldots, x_{A n}\right),
$$

where we have copied some of the solutions if the number of non-degenerate solutions is smaller than A.

Thus we get

$$
\operatorname{rank}\left(\begin{array}{cccc}
1 & \cdots & 1 & 1 \\
x_{21} & \cdots & x_{2 n} & 1 \\
\vdots & & \vdots & \vdots \\
x_{A 1} & \cdots & x_{A n} & 1
\end{array}\right) \leqslant n .
$$

This defines an algebraic subvariety X of $\left(K^{*}\right)^{n(A-1)}$ which is independent of a.

Each normalized tuple of coefficients $\mathrm{a}=$ $\left(a_{1}, \ldots, a_{n}\right)$ gives rise to a point $\left(x_{21}, \ldots, x_{A n}\right) \in$ X with coordinates in Γ.
$\mathrm{a} \in$ CLASS I
if $\left(x_{21}, \ldots, x_{A n}\right)$ is a non-degenerate point of X.
$\mathrm{a} \in$ CLASS II
if $\left(x_{21}, \ldots, x_{A n}\right)$ is a degenerate point of X.

We will prove:

CLASS I is finite.
If a is in CLASS II, then the non-degenerate solutions of

$$
a_{1} x_{1}+\cdots+a_{n} x_{n}=1 \quad \text { in } x_{1}, \ldots, x_{n} \in \Gamma
$$

lie in at most 2^{n} subspaces of K^{n}.

CLASS I.

$\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$ is such that $\left(x_{21}, \ldots, x_{A n}\right)$ is a non-degenerate point with coordinates in Γ of

$$
X: \operatorname{rank}\left(\begin{array}{cccc}
1 & \cdots & 1 & 1 \\
x_{21} & \cdots & x_{2 n} & 1 \\
\vdots & & \vdots & \vdots \\
x_{A 1} & \cdots & x_{A n} & 1
\end{array}\right) \leqslant n .
$$

By Laurent's Theorem, $\left(x_{21}, \ldots, x_{A n}\right)$ belongs to a finite set independent of a.

We can determine a uniquely from ($x_{21}, \ldots, x_{A n}$) by solving

$$
\begin{aligned}
a_{1}+\cdots+a_{n} & =1 \\
a_{1} x_{i 1}+\cdots+a_{n} x_{i n} & =1 \quad(i=2, \ldots, A) .
\end{aligned}
$$

Hence CLASS I is finite.

CLASS II.

$\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$ is such that $\mathbf{x}=\left(x_{21}, \ldots, x_{A n}\right)$
is a degenerate point of

$$
X: \operatorname{rank}\left(\begin{array}{cccc}
1 & \cdots & 1 & 1 \\
x_{21} & \cdots & x_{2 n} & 1 \\
\vdots & & \vdots & \vdots \\
x_{A 1} & \cdots & x_{A n} & 1
\end{array}\right) \leqslant n .
$$

Then there is a positive dimensional algebraic group H such that $\mathbf{x} * H \subset X$.
Take $\mathbf{p} \in H$ of order $2, \mathbf{p}=\left(\varepsilon_{21}, \ldots, \varepsilon_{A n}\right)$, say, with $\varepsilon_{i j} \in\{ \pm 1\}$ and not all equal to 1 . Then $\mathrm{p} * \mathrm{x} \in X$, i.e.,

$$
\operatorname{rank}\left(\begin{array}{cccc}
1 & \cdots & 1 & 1 \\
\varepsilon_{21} x_{21} & \cdots & \varepsilon_{2 n} x_{2 n} & 1 \\
\vdots & & \vdots & \vdots \\
\varepsilon_{A 1} x_{A 1} & \cdots & \varepsilon_{A n} x_{A n} & 1
\end{array}\right) \leqslant n .
$$

There are $b_{0}, b_{1}, \ldots, b_{n}$, not all 0 , such that

$$
\begin{aligned}
& b_{1}+\cdots+b_{n}=b_{0} \\
& b_{1} \varepsilon_{i 1} x_{i 1}+\cdots+b_{n} \varepsilon_{i n} x_{i n}=b_{0}(i=1, \ldots, A)
\end{aligned}
$$

Recall that $(1, \ldots, 1),\left(x_{i 1}, \ldots, x_{i n}\right)(i=2, \ldots, A)$ contain all non-degenerate solutions of
(2) $a_{1} x_{1}+\cdots+a_{n} x_{n}=1$ in $x_{1}, \ldots, x_{n} \in \Gamma$.

Hence each non-degenerate solution of (2) satisfies one of the 2^{n} equations

$$
\pm b_{1} x_{1} \pm \cdots \pm b_{n} x_{n}=b_{0}
$$

Thus, if $\mathbf{a} \in$ CLASS II, then the non-degenerate solutions of (2) lie in at most 2^{n} proper linear subspaces of K^{n}.

QED

Analogues for abelian varieties.

Let A be an abelian variety and X a subvariety of A, both defined over an algebraically closed field K of characteristic 0.
Denote by + the group operation and by 0 the zero element of A.

A point $\mathbf{x} \in X$ is called degenerate if there is a positive dimensional abelian subvariety B of A such that $\mathrm{x}+B \subset X$, and non-degenerate otherwise.

Denote by $X^{N D}$ the set of non-degenerate points of X.

A subvariety X of A is called normalized if $0 \in X^{N D}$

Every subvariety can be made normalized after a translation.

Abelian varieties vs. linear equations

A(K)
$\longleftrightarrow\left(K^{*}\right)^{n}$
X
$\longleftrightarrow\left\{a_{1} x_{1}+\cdots+a_{n} x_{n}=1\right\}$
$X^{N D}$
$\longleftrightarrow \sum_{i \in I} a_{i} x_{i} \neq 0$ for all I
0
$\longleftrightarrow(1, \ldots, 1)$
X normalized $\longleftrightarrow\left(a_{1}, \ldots, a_{n}\right)$ normalized
$\left(0 \in X^{N D}\right) \quad((1, \ldots, 1)$ non-deg. sol. $)$

A qualitative finiteness result.

Let A be an abelian variety and X a subvariety of A, both defined over an algebraically closed field K of characteristic 0 . Let Γ be a subgroup of $A(K)$ of finite rank.

Theorem 6. (Conjectured by Lang; proved by Faltings, Hindry, McQuillan, 1990's) $X^{N D}(K) \cap \Gamma$ is finite.

Proof: Diophantine approximation (Faltings); Kummer theory and specialization (Hindry, McQuillan).

Rémond's result.

Let A be an abelian variety defined over an algebraically closed field K of characteristic 0 .
We may view A as a projective subvariety of \mathbb{P}^{N} for some N.

Denote by $\mathcal{V}(n, D)$ the collection of subvarieties X of A with the following properties:
(i) X (viewed as a subvariety of \mathbb{P}^{N}) is defined by polynomials of degree $\leqslant D$ with coefficients in K;
(ii) $\operatorname{dim} X=n$;
(iii) X is normalized, i.e., $0 \in X^{N D}$.

Theorem 7. (Rémond, 2004)

For every subgroup Γ of $A(K)$ of finite rank, there is a finite subcollection \mathcal{E}_{Γ} of $\mathcal{V}(n, D)$ such that for every $X \in \mathcal{V}(n, D) \backslash \mathcal{E}_{\Gamma}$, the set $X^{N D}(K) \cap \Gamma$ is contained in the union of at most

$$
\left(2 D^{n+1}\right)^{2(\operatorname{dim} A)^{2}}
$$

($n-1$)-dimensional subvarieties of X, each given by polynomials of degree at most D.

Proof. Theorem $6+$ arguments similar to those going into the proof of the result for linear equations.

Application to curves

Let A be an abelian variety defined over $\overline{\mathbb{Q}}$, viewed as a subvariety of \mathbb{P}^{N}. For every number field L, the group $A(L)$ is finitely generated (Mordell-Weil theorem).
Let $\mathcal{C}(D)$ be the collection of curves $C \subset A$ of genus $\geqslant 2$ defined over $\overline{\mathbb{Q}}$ such that $0 \in C$ and such that C is defined by polynomials of degree $\leqslant D$.

By applying Theorem 8 with $n=1, \Gamma=A(L)$ we obtain:

Corollary. For every number field L there is a finite subcollection \mathcal{E}_{L} of $\mathcal{C}(D)$ such that for every curve $C \in \mathcal{C}(D) \backslash \mathcal{E}_{L}$, the number of L-rational points of C is at most

$$
\left(2 D^{2}\right)^{3(\operatorname{dim} A)^{2}} .
$$

Final remark.

Rémond proved a more general result for subvarieties of semi-abelian varieties which contains as special cases both his result for abelian varieties, and my result for linear equations.

