LINEAR EQUATIONS WITH UNKNOWNS FROM A MULTIPLICATIVE GROUP

Jan-Hendrik Evertse (Leiden)

Intercity Number Theory Seminar, Delft

October 21, 2005

Notation:

K is an algebraically closed field of characteristic 0.

 K^* is the multiplicative group of K.

 Γ is a subgroup of K^* of finite rank, i.e., there is a free subgroup Γ_0 of Γ of finite rank such that for every $x \in \Gamma \exists m \in \mathbb{N}$ with $x^m \in \Gamma_0$.

Define rank $\Gamma := \operatorname{rank} \Gamma_0$.

Example:

 $\Gamma = \{ \sqrt[m]{2^u 3^v 5^w} : u, v, w \in \mathbb{Z}, m \in \mathbb{N} \} \text{ has rank}$ 3.

We consider equations

(1) $a_1x_1 + a_2x_2 = 1$ in $x_1, x_2 \in \Gamma$ with $a_1, a_2 \in K^*$.

Siegel-Mahler-Lang (1927-1960): (1) has only finitely many solutions.

Theorem 1. (Beukers, Schlickewei, 1996) Let rank $\Gamma = r$. Then eq. (1) has at most $2^{16(r+1)}$ solutions.

Proof. Specialization (to reduce from arbitrary fields of characteristic 0 to number fields); Diophantine approximation (Thue-Siegel method).

It is easy to construct equations

(1) $a_1x_1 + a_2x_2 = 1$ in $x_1, x_2 \in \Gamma$.

with two solutions:

pick any two distinct pairs (x_1, x_2) , (y_1, y_2) from Γ and solve a_1, a_2 from $a_1x_1 + a_2x_2 = 1$, $a_1y_1 + a_2y_2 = 1$.

There are "few" equations (1) with more than two solutions.

Two equations

(1) $a_1x_1 + a_2x_2 = 1$ in $x_1, x_2 \in \Gamma$

and $b_1x_1 + b_2x_2 = 1$ in $x_1, x_2 \in \Gamma$ have the same number of solutions if $b_1 = a_1u_1$, $b_2 = a_2u_2$ for some $u_1, u_2 \in \Gamma$.

Taking for (u_1, u_2) a solution of (1) we obtain an equation with the same number as solutions as (1), whose sum of coefficients is 1.

A pair of coefficients $(a_1, a_2) \in K^* \times K^*$ with $a_1 + a_2 = 1$ is called *normalized*.

Theorem 2. (Győry, Stewart, Tijdeman, E., 1988): For every subgroup Γ of K^* of finite rank there are only finitely many normalized pairs (a_1, a_2) such that (1) has more than two solutions.

We now consider equations in $n \ge 3$ variables (2) $a_1x_1 + \cdots + a_nx_n = 1$ in $x_1, \ldots, x_n \in \Gamma$ with $a_1, \ldots, a_n \in K^*$.

A solution (x_1, \ldots, x_n) is called *non-degenerate* if

 $\sum_{i \in I} a_i x_i \neq 0 \text{ for each non-empty } I \subset \{1, \dots, n\}$

and otherwise degenerate.

Degenerate solutions give rise to infinite families of solutions.

If (x_1, \ldots, x_n) is a solution with $\sum_{i=1}^m a_i x_i = 0$ (m < n) then $(ux_1, \ldots, ux_m, x_{m+1}, \ldots, x_n)$ satisfies (2) for every $u \in \Gamma$.

Laurent, van der Poorten, Schlickewei, E. (1980's):

if Γ is a subgroup of K^* of finite rank, then (2) $a_1x_1 + \cdots + a_nx_n = 1$ in $x_1, \ldots, x_n \in \Gamma$ has only finitely many non-degenerate solutions.

Theorem 3. (Schlickewei, Schmidt, E., 2002): Let rank $\Gamma = r$. Then eq. (2) has at most $\exp\left((6n)^{4n}(r+1)\right)$ non-degenerate solutions.

Proof: Specialization; Diophantine approximation (Thue-Siegel-Roth-Schmidt method)

Let $n \ge 3$.

A tuple (a_1, \ldots, a_n) is called normalized if (1,...,1) is a non-degenerate solution of (2) $a_1x_1 + \cdots + a_nx_n = 1$ in $(x_1, \ldots, x_n) \in \Gamma$ i.e., $a_1 + \cdots + a_n = 1$ and $\sum_{i \in I} a_i \neq 0$ for each non-empty $I \subset \{1, \ldots, n\}$.

Question: Does there exist an upper bound H independent of Γ such that for all but finitely normalized tuples (a_1, \ldots, a_n) , Eq. (2) has at most H non-denegerate solutions?

No: For every h, there exist a multiplicative subgroup Γ of K^* of finite rank, and infinitely many normalized tuples $(a_1, \ldots, a_n) \in (K^*)^n$, such that (2) has at least h non-degenerate solutions.

Proof. (n = 3). For $i = 1, \ldots, h$, pick $u_{i1}, u_{i2} \in K^*$ with $u_{i1} + u_{i2} = 2$. Let Γ be the group generated by u_{i1}, u_{i2} $(i = 1, \ldots, h)$.

Then for every $b \in K$ with $b \neq 0, 1$ the equation

$$\frac{b}{2}x_1 + \frac{b}{2}x_2 + (1-b)x_3 = 1$$

has h solutions in Γ , i.e., $(u_{i1}, u_{i2}, 1)$ $(i = 1, \ldots, h)$.

For all but finitely many b, the tuple of coefficients is normalized and the solutions are non-degenerate.

Remark. The solutions in this construction all lie in the subspace $x_1 + x_2 - 2x_3 = 0$.

Theorem 4. (Győry, E., 1989) For every subgroup Γ of K^* of finite rank, there is a finite collection \mathcal{E}_{Γ} of normalized tuples, such that for every normalized tuple $(a_1, \ldots, a_n) \in (K^*)^n$ outside \mathcal{E}_{Γ} , the set of solutions of

 $a_1x_1 + \cdots + a_nx_n = 1$ in $x_1, \ldots, x_n \in \Gamma$ is contained in the union of at most $2^{(n+1)!}$ proper linear subspaces of K^n .

Theorem 5. (E.,2004) For every subgroup Γ of K^* of finite rank, there is a finite collection \mathcal{E}_{Γ} of normalized tuples, such that for every normalized tuple $(a_1, \ldots, a_n) \in (K^*)^n$ outside \mathcal{E}_{Γ} , the set of **non-degenerate** solutions of

 $a_1x_1 + \dots + a_nx_n = 1$ in $x_1, \dots, x_n \in \Gamma$

is contained in the union of at most

2^n

proper linear subspaces of K^n .

Remark 1. The degenerate solutions lie in at most 2^n subspaces $\sum_{i \in I} a_i x_i = 0$ ($I \subseteq \{1, \ldots, n\}$).

Remark 2. The bound 2^n is probably far from best possible. (*n*???)

Ingredients of the proof:

1) The result of Schlickewei, Schmidt, E. that

 $a_1x_1 + \dots + a_nx_n = 1$ in $x_1, \dots, x_n \in \Gamma$ has at most $\exp\left((6n)^{4n}(r+1)\right)$ non-degenerate solutions, where $r = \operatorname{rank} \Gamma$.

(In fact we will need only that this bound is independent of a_1, \ldots, a_n).

2) A result by Laurent on points in algebraic subvarieties of $(K^*)^n$ with coordinates in Γ .

Laurent's result.

As before, K is an algebraically closed field of characteristic 0 and Γ a subgroup of K^* of finite rank.

View $(K^*)^n$ as an algebraic group with coordinatewise multiplication $(x_1, \ldots, x_n)*(y_1, \ldots, y_n) = (x_1y_1, \ldots, x_ny_n).$

An algebraic subvariety of $(K^*)^n$ is a set

 $X = \{ \mathbf{x} \in (K^*)^n : f_1(\mathbf{x}) = \cdots f_m(\mathbf{x}) = 0 \}$ with $f_1, \ldots, f_m \in K[X_1, \ldots, X_n].$

An algebraic subgroup of $(K^*)^n$ is an algebraic subvariety closed under coordinatewise multiplication.

A translate of an algebraic subgroup is a coset $\mathbf{x} * H = {\mathbf{x} * \mathbf{u} : \mathbf{u} \in H}$ where $\mathbf{x} \in (K^*)^n$ and H is an algebraic subgroup.

Let X be an algebraic subvariety of $(K^*)^n$.

Call a point $\mathbf{x} \in X$ degenerate if there is a positive dimensional algebraic subgroup H of $(K^*)^n$ with $\mathbf{x} * H \subset X$, and non-degenerate otherwise.

Theorem. (Laurent, 1980's) X has at most finitely many non-degenerate points with coordinates in Γ .

Example. Let $X = \{a_1x_1 + \dots + a_nx_n = 1\}$. Then $\mathbf{x} = (x_1, \dots, x_n)$ is non-degenerate $\iff \sum_{i \in I} a_i x_i \neq 0$ for each non-empty $I \subset \{1, \dots, n\}$.

A useful fact.

Every *m*-dimensional algebraic subgroup H of $(K^*)^n$ can be expressed as a direct product

$H_0 \times G$

where $H_0 \cong (K^*)^m$ and G is a finite group.

An algebraic subgroup of positive dimension contains points of any finite order.

Construction of a variety.

Let Γ be a subgroup of K^* of finite rank. There is a uniform bound A such that for every $\mathbf{a} = (a_1, \dots, a_n) \in (K^*)^n$ the equation (2) $a_1x_1 + \dots + a_nx_n = 1$ in $x_1, \dots, x_n \in \Gamma$ has at most A non-degenerate solutions. (E.g., the bound of Schlickewei, Schmidt, E.)

Given a normalized tuple $\mathbf{a} = (a_1, \ldots, a_n)$, we can order the non-degenerate solutions of

(2) $a_1x_1 + \cdots + a_nx_n = 1$ in $x_1, \ldots, x_n \in \Gamma$ in a sequence

 $(1,\ldots,1),(x_{21},\ldots,x_{2n}),\ldots,(x_{A1},\ldots,x_{An}),$

where we have copied some of the solutions if the number of non-degenerate solutions is smaller than A.

Thus we get

rank
$$\begin{pmatrix} 1 & \cdots & 1 & 1 \\ x_{21} & \cdots & x_{2n} & 1 \\ \vdots & & \vdots & \vdots \\ x_{A1} & \cdots & x_{An} & 1 \end{pmatrix} \leqslant n.$$

This defines an algebraic subvariety X of $(K^*)^{n(A-1)}$ which is independent of **a**.

Each normalized tuple of coefficients $\mathbf{a} = (a_1, \ldots, a_n)$ gives rise to a point $(x_{21}, \ldots, x_{An}) \in X$ with coordinates in Γ .

$a \in \textbf{CLASS I}$

if (x_{21}, \ldots, x_{An}) is a non-degenerate point of X.

$\mathbf{a} \in \textbf{CLASS II}$

if (x_{21}, \ldots, x_{An}) is a degenerate point of X.

We will prove:

CLASS I is finite.

If a is in CLASS II, then the non-degenerate solutions of

 $a_1x_1 + \dots + a_nx_n = 1 \quad \text{in } x_1, \dots, x_n \in \Gamma$

lie in at most 2^n subspaces of K^n .

CLASS I.

 $\mathbf{a}=(a_1,\ldots,a_n)$ is such that (x_{21},\ldots,x_{An}) is a non-degenerate point with coordinates in Γ of

$$X: \text{ rank } \begin{pmatrix} 1 & \cdots & 1 & 1 \\ x_{21} & \cdots & x_{2n} & 1 \\ \vdots & & \vdots & \vdots \\ x_{A1} & \cdots & x_{An} & 1 \end{pmatrix} \leqslant n.$$

By Laurent's Theorem, (x_{21}, \ldots, x_{An}) belongs to a finite set independent of **a**.

We can determine a uniquely from (x_{21}, \ldots, x_{An}) by solving

$$a_1 + \dots + a_n = 1$$

 $a_1 x_{i1} + \dots + a_n x_{in} = 1 \quad (i = 2, \dots, A).$

Hence CLASS I is finite.

CLASS II.

 $\mathbf{a} = (a_1, \dots, a_n)$ is such that $\mathbf{x} = (x_{21}, \dots, x_{An})$ is a degenerate point of

$$X: \text{ rank } \begin{pmatrix} 1 & \cdots & 1 & 1 \\ x_{21} & \cdots & x_{2n} & 1 \\ \vdots & & \vdots & \vdots \\ x_{A1} & \cdots & x_{An} & 1 \end{pmatrix} \leqslant n.$$

Then there is a positive dimensional algebraic group H such that $\mathbf{x} * H \subset X$.

Take $\mathbf{p} \in H$ of order 2, $\mathbf{p} = (\varepsilon_{21}, \dots, \varepsilon_{An})$, say, with $\varepsilon_{ij} \in \{\pm 1\}$ and not all equal to 1. Then $\mathbf{p} * \mathbf{x} \in X$, i.e.,

$$\operatorname{rank} \begin{pmatrix} 1 & \cdots & 1 & 1\\ \varepsilon_{21}x_{21} & \cdots & \varepsilon_{2n}x_{2n} & 1\\ \vdots & & \vdots & \vdots\\ \varepsilon_{A1}x_{A1} & \cdots & \varepsilon_{An}x_{An} & 1 \end{pmatrix} \leqslant n.$$

There are b_0, b_1, \ldots, b_n , not all 0, such that

$$b_1 + \dots + b_n = b_0$$

$$b_1 \varepsilon_{i1} x_{i1} + \dots + b_n \varepsilon_{in} x_{in} = b_0 \quad (i = 1, \dots, A).$$

Recall that $(1, \ldots, 1)$, (x_{i1}, \ldots, x_{in}) $(i = 2, \ldots, A)$ contain all non-degenerate solutions of

(2) $a_1x_1 + \dots + a_nx_n = 1 \text{ in } x_1, \dots, x_n \in \Gamma.$

Hence each non-degenerate solution of (2) satisfies one of the 2^n equations

$$\pm b_1 x_1 \pm \cdots \pm b_n x_n = b_0.$$

Thus, if $a \in CLASS II$, then the non-degenerate solutions of (2) lie in at most 2^n proper linear subspaces of K^n .

QED

Analogues for abelian varieties.

Let A be an abelian variety and X a subvariety of A, both defined over an algebraically closed field K of characteristic 0. Denote by + the group operation and by 0 the zero element of A.

A point $\mathbf{x} \in X$ is called degenerate if there is a positive dimensional abelian subvariety B of A such that $\mathbf{x} + B \subset X$, and non-degenerate otherwise.

Denote by X^{ND} the set of non-degenerate points of X.

A subvariety X of A is called normalized if $\mathbf{0} \in X^{ND}$

Every subvariety can be made normalized after a translation.

Abelian varieties vs. linear equations

 $A(K) \qquad \longleftrightarrow \qquad (K^*)^n$ $X \qquad \longleftrightarrow \qquad \{a_1x_1 + \dots + a_nx_n = 1\}$ $X^{ND} \qquad \longleftrightarrow \qquad \sum_{i \in I} a_ix_i \neq 0 \text{ for all } I$ $0 \qquad \longleftrightarrow \qquad (1, \dots, 1)$ $X \text{ normalized} \qquad \longleftrightarrow \qquad (a_1, \dots, a_n) \text{ normalized}$ $(0 \in X^{ND}) \qquad ((1, \dots, 1) \text{ non-deg. sol.})$

A qualitative finiteness result.

Let A be an abelian variety and X a subvariety of A, both defined over an algebraically closed field K of characteristic 0. Let Γ be a subgroup of A(K) of finite rank.

Theorem 6. (Conjectured by Lang; proved by Faltings, Hindry, McQuillan, 1990's) $X^{ND}(K) \cap \Gamma$ is finite.

Proof: Diophantine approximation (Faltings); Kummer theory and specialization (Hindry, McQuillan).

Rémond's result.

Let A be an abelian variety defined over an algebraically closed field K of characteristic 0.

We may view A as a projective subvariety of \mathbb{P}^N for some N.

Denote by $\mathcal{V}(n, D)$ the collection of subvarieties X of A with the following properties:

(i) X (viewed as a subvariety of \mathbb{P}^N) is defined by polynomials of degree $\leq D$ with coefficients in K;

(ii) dim X = n;

(iii) X is normalized, i.e., $0 \in X^{ND}$.

Theorem 7. (Rémond, 2004)

For every subgroup Γ of A(K) of finite rank, there is a finite subcollection \mathcal{E}_{Γ} of $\mathcal{V}(n, D)$ such that for every $X \in \mathcal{V}(n, D) \setminus \mathcal{E}_{\Gamma}$, the set $X^{ND}(K) \cap \Gamma$ is contained in the union of at most

$$(2D^{n+1})^{2(\dim A)^2}$$

(n-1)-dimensional subvarieties of X, each given by polynomials of degree at most D.

Proof. Theorem 6 + arguments similar to those going into the proof of the result for linear equations.

Application to curves

Let A be an abelian variety defined over $\overline{\mathbb{Q}}$, viewed as a subvariety of \mathbb{P}^N . For every number field L, the group A(L) is finitely generated (Mordell-Weil theorem).

Let C(D) be the collection of curves $C \subset A$ of genus ≥ 2 defined over $\overline{\mathbb{Q}}$ such that $0 \in C$ and such that C is defined by polynomials of degree $\leq D$.

By applying Theorem 8 with n = 1, $\Gamma = A(L)$ we obtain:

Corollary. For every number field L there is a finite subcollection \mathcal{E}_L of $\mathcal{C}(D)$ such that for every curve $C \in \mathcal{C}(D) \setminus \mathcal{E}_L$, the number of L-rational points of C is at most

 $(2D^2)^{3(\dim A)^2}.$

Final remark.

Rémond proved a more general result for subvarieties of semi-abelian varieties which contains as special cases both his result for abelian varieties, and my result for linear equations.