APPROXIMATION OF COMPLEX ALGEBRAIC NUMBERS BY ALGEBRAIC NUMBERS OF BOUNDED DEGREE

JAN-HENDRIK EVERTSE

Define the height $H(P)$ of $P \in \mathbb{Z}[X]$ to be the maximum of the absolute values of the coefficients of P. Further, for an algebraic number ξ, define its height $H(\xi)$ to be the height of the minimal polynomial of ξ. For $\xi \in \mathbb{C}$ and for a positive integer n, denote by $w_{n}(\xi)$ the supremum of all reals w with the property that there are infinitely many polynomials $P \in \mathbb{Z}[X]$ of degree at most n such that $0<|P(\xi)| \leq H(P)^{-w}$. Further, define $w_{n}^{*}(\xi)$ to be the supremum of all reals w^{*} such that there are infinitely algebraic numbers $\alpha \in \mathbb{C}$ such that $|\xi-\alpha| \leq H(\alpha)^{-w^{*}-1}$. The functions w_{n} and w_{n}^{*} were introduced by Mahler and Koksma, respectively, and they play an important role in the classification of transcendental numbers.

It is known that $w_{n}(\xi)=w_{n}^{*}(\xi)=\min (n-1, d)$ for every real algebraic number ξ of degree d. This result is a consequence of W.M. Schmidt's celebrated Subspace Theorem from Diophantine approximation. As it turns out, the problem to compute $w_{n}(\xi), w_{n}^{*}(\xi)$ for complex, non-real algebraic numbers ξ is more complicated. In my talk, I discuss some joint work with Yann Bugeaud in this direction, in which we determined $w_{n}(\xi), w_{n}^{*}(\xi)$ for all complex, non-real algebraic numbers ξ of degree $\leq n+2$ or $\geq 2 n-1$.

