APPROXIMATION OF COMPLEX ALGEBRAIC NUMBERS BY ALGEBRAIC NUMBERS OF BOUNDED DEGREE

Yann Bugeaud (Strasbourg), Jan-Hendrik Evertse (Leiden)

Lecture given at the 7th Polish, Slovak and Czech Conference on Number Theory

June 10-12, 2008, Ostravice

http://www.math.leidenuniv.nl/~evertse/

APPROXIMATION BY RATIONALS

Let $\xi \in \mathbb{C}$.

Denote by $\kappa_1(\xi)$ the supremum of all $\kappa \in \mathbb{R}$ such that

 $|\xi - \frac{x}{y}| \leq (\max |x|, |y|)^{-\kappa}$ in coprime $x, y \in \mathbb{Z}$

has infinitely many solutions.

So it has finitely many solutions if $\kappa > \kappa_1(\xi)$ and infinitely many solutions if $\kappa < \kappa_1(\xi)$.

Facts:

• $\kappa_1(\xi) = 0$ for $\xi \in \mathbb{C} \setminus \mathbb{R}$; • $\kappa_1(\xi) \ge 2$ for $\xi \in \mathbb{R} \setminus \mathbb{Q}$ (Dirichlet, 1842); • $\kappa_1(\xi) = 2$ for almost all $\xi \in \mathbb{R}$; • $\kappa_1(\xi) = 2$ for $\xi \in \mathbb{R} \setminus \mathbb{Q}$ algebraic (Roth, 1955)

APPROXIMATION BY ALGEBRAIC NUMBERS OF HIGHER DEGREE

For an algebraic number α , denote by P_{α} its minimal polynomial in $\mathbb{Z}[X]$, i.e., $P_{\alpha} = \sum_{j=0}^{n} a_j X^j$ with $gcd(a_0, \ldots, a_n) = 1$, and define its height

$$H(\alpha) = H(P_{\alpha}) := \max_{i} |a_{i}|.$$

Definition. For $\xi \in \mathbb{C}$, $n \in \mathbb{Z}_{\geq 1}$, denote by $\kappa_n(\xi)$ the supremum of all reals κ such that

 $|\xi - \alpha| \leqslant H(\alpha)^{-\kappa}$

has infinitely many solutions in algebraic numbers $\alpha \in \mathbb{C}$ of degree at most n.

Remark. $\kappa_n(\xi) = w_n^*(\xi) + 1$, where $w_n^*(\xi)$ was introduced by Koksma (1939) for a classification of transcendental numbers.

The case $\xi \in \mathbb{R}$

Let $n \in \mathbb{Z}_{\geq 1}$.

Theorem (Sprindzhuk, 1966). For almost all $\xi \in \mathbb{R}$ we have $\kappa_n(\xi) = n + 1$.

Theorem (Schmidt, 1971). Let ξ be a real algebraic number of degree $d \ge 2$. Then $\kappa_n(\xi) = \min(n+1, d)$.

Real algebraic numbers of degree $d \ge n + 1$ are equally well approximable by algebraic numbers of degree at most n as almost all real numbers.

THE CASE $\xi \in \mathbb{C} \setminus \mathbb{R}$

Let $n \in \mathbb{Z}_{\geq 2}$.

Theorem (Sprindzhuk, 1966). For almost all $\xi \in \mathbb{C}$ we have $\kappa_n(\xi) = (n+1)/2$.

Lemma (Liouville's inequality). If $\xi \in \mathbb{C} \setminus \mathbb{R}$ is algebraic of degree $d \leq n + 1$ then $\kappa_n(\xi) = d/2$.

Not considered so far: Computation of $\kappa_n(\xi)$ for $\xi \in \mathbb{C} \setminus \mathbb{R}$ algebraic of degree $d \ge n+2$.

Is it true that complex algebraic numbers ξ of degree $d \ge n+2$ are equally well approximable by algebraic numbers of degree at most n as almost all complex numbers, i.e., $\kappa_n(\xi) = (n+1)/2$?

A COUNTEREXAMPLE

Let $n \ge 2$ be an even integer, and η a positive real algebraic number of degree d/2 where dis even and $d \ge n + 2$.

Let $\xi = \sqrt{-\eta}$. Then deg $\xi = d \ge n+2$.

By Schmidt's Theorem in the real case, we have $\kappa_{n/2}(\eta) = (n/2) + 1$. Hence for every $\kappa < (n/2) + 1$, there are infinitely many algebraic numbers β of degree at most n/2 such that $|\eta - \beta| \leq H(\beta)^{-\kappa}$.

Taking $\alpha = \sqrt{-\beta}$, we get infinitely many algebraic numbers α of degree at most n such that

 $|\xi - \alpha| \ll |\eta - \beta| \ll H(\beta)^{-\kappa} \ll H(\alpha)^{-\kappa}.$

Hence $\kappa_n(\xi) \ge (n+2)/2$.

THE CASE $\xi \in \mathbb{C} \setminus \mathbb{R}$ algebraic

Theorem 1. (Bugeaud, E.) Let $n \in \mathbb{Z}_{\geq 2}$, $\xi \in \mathbb{C} \setminus \mathbb{R}$ algebraic of degree $d \ge n + 2$.

(i). Suppose that *n* is odd. Then $\kappa_n(\xi) = \frac{n+1}{2}$.

(ii). Suppose that n is even. Then $\kappa_n(\xi) \in \left\{\frac{n+1}{2}, \frac{n+2}{2}\right\}.$

Further, for every even $n \ge 2$, both cases may occur.

Proof. Schmidt's Subspace Theorem + elementary algebra.

The case n even

Let $n \in \mathbb{Z}_{\geqslant 2}$ even, $\xi \in \mathbb{C} \setminus \mathbb{R}$ algebraic of degree $d \ge n+2$.

Theorem 2 (Bugeaud, E.)

We have $\kappa_n(\xi) =$

	$\deg \xi \geqslant n+2,$
$\frac{n+2}{2}$	$\{1, \xi + \overline{\xi}, \xi \cdot \overline{\xi}\}$ Q-linearly dependent
	$\deg \xi = n + 2, \ [\mathbb{Q}(\xi) : \mathbb{Q}(\xi) \cap \mathbb{R}] = 2$
	$\deg\xi>2n-2$,
$\frac{n+1}{2}$	$\{1, \xi + \overline{\xi}, \xi \cdot \overline{\xi}\}$ Q-linearly independent
	$[\mathbb{Q}(\xi):\mathbb{Q}(\xi)\cap\mathbb{R}]\geqslant 3$
??	remaining cases

We can determine $\kappa_n(\xi)$ in all cases, except n even, $n \ge 6$, $n + 3 \le \deg \xi \le 2n - 2$.

ANOTHER THEOREM

For $\xi \in \mathbb{C}$, $n \in \mathbb{Z}_{\geqslant 2}$, $\mu \in \mathbb{C}^*$ define the Q-vector space

 $V_n(\mu,\xi) := \{ f \in \mathbb{Q}[X] : \deg f \leq n, \, \mu f(\xi) \in \mathbb{R} \}.$ Let

$$t_n(\xi) := \max\{\dim_{\mathbb{Q}} V_n(\mu,\xi) : \mu \in \mathbb{C}^*\}.$$

Theorem 3 (Bugeaud, E.)

Let $\xi \in \mathbb{C} \setminus \mathbb{R}$ algebraic of degree $d \ge n + 2$. Then

$$\kappa_n(\xi) = \max\left(\frac{n+1}{2}, t_n(\xi)\right).$$

Proof. Schmidt's Subspace Theorem.

IDEA OF PROOF

Let $P_{\alpha} = \sum_{i=0}^{n} x_i X^i$ denote the minimal polynomial of α . Put $\mathbf{x} = (x_0, \dots, x_n)$. Then $H(\alpha) = \max_i |x_i| =: \|\mathbf{x}\|$. Notice

$$|\xi - lpha| \gg \ll \frac{|P_{lpha}(\xi)|}{|P_{lpha}'(\xi)|}.$$

Define linear forms

$$L_1(\mathbf{x}) = \operatorname{Re} P_{\alpha}(\xi), \ L_2(\mathbf{x}) = \operatorname{Im} P_{\alpha}(\xi),$$
$$M_1(\mathbf{x}) = \operatorname{Re} P'_{\alpha}(\xi), \ M_2(\mathbf{x}) = \operatorname{Im} P'_{\alpha}(\xi).$$

Use the Subspace Theorem and Minkowski's Theorem to decide for which u, v the following system has finitely or infinitely many solutions in $\mathbf{x} \in \mathbb{Z}^{n+1}$:

$$\begin{cases} |L_1(\mathbf{x})| \leq ||\mathbf{x}||^u, & |L_2(\mathbf{x})| \leq ||\mathbf{x}||^u, \\ |M_1(\mathbf{x})| \leq ||\mathbf{x}||^v, & |M_2(\mathbf{x})| \leq ||\mathbf{x}||^v. \end{cases}$$

PROPERTIES OF $t_n(\xi)$

Let $\xi \in \mathbb{C} \setminus \mathbb{R}$ algebraic, deg $\xi \ge n+2$, $n \in \mathbb{Z}_{\ge 2}$.

Lemma 1. $t_n(\xi) \leq [(n+2)/2]$.

Lemma 2. Suppose n is even. Then

$t_n(\xi)$	$\deg \xi \geqslant n+2,$
$=\frac{n+2}{2}$	$\{1, \xi + \overline{\xi}, \xi \cdot \overline{\xi}\}$ Q-linearly dependent
	$\deg \xi = n + 2, \ [\mathbb{Q}(\xi) : \mathbb{Q}(\xi) \cap \mathbb{R}] = 2$
$t_n(\xi)$	$\deg\xi>2n-2$,
$\leq \frac{n+1}{2}$	$\{1, \xi + \overline{\xi}, \xi \cdot \overline{\xi}\}$ Q-linearly independent
	$[\mathbb{Q}(\xi):\mathbb{Q}(\xi)\cap\mathbb{R}]\geqslant 3$
??	remaining cases

Proof of $t_n(\xi) \leq [(n+2)/2]$.

Recall $\xi \in \mathbb{C} \setminus \mathbb{R}$, deg $\xi \ge n + 2$. Choose $\mu \in \mathbb{C}^*$ such that dim_Q $V_n(\mu, \xi) = t_n(\xi)$. Put $X \cdot V_n(\mu, \xi) := \{X \cdot f : f \in V_n(\mu, \xi)\}.$

Then $V_n(\mu,\xi) \cap X \cdot V_n(\mu,\xi) = (0)$. Otherwise, there is non-zero $f \in V_n(\mu,\xi)$ such that also $X \cdot f \in V_n(\mu,\xi)$. Then $\mu f(\xi) \in \mathbb{R}^*$ and $\mu \xi f(\xi) \in \mathbb{R}^*$, implying $\xi \in \mathbb{R}$, which is impossible.

Now

$$2t_n(\xi) = \dim_{\mathbb{Q}} V_n(\mu,\xi) + \dim_{\mathbb{Q}} X \cdot V_n(\mu,\xi)$$

= $\dim_{\mathbb{Q}} \left(V_n(\mu,\xi) + X \cdot V_n(\mu,\xi) \right)$
 $\leq \dim_{\mathbb{Q}} \{ f \in \mathbb{Q}[X] : \deg f \leq n+1 \}$
= $n+2.$

APPROXIMATION BY ALGEBRAIC INTEGERS

Instead of approximation by algebraic numbers of degree at most n we consider approximation by algebraic integers of degree at most n + 1.

Let $\xi \in \mathbb{C}$, $n \in \mathbb{Z}_{\geq 1}$.

Define $\lambda_n(\xi)$ to be the supremum of all $\lambda \in \mathbb{R}$ such that

 $0 < |\xi - \alpha| \leqslant H(\alpha)^{-\lambda}$

has infinitely many solutions in algebraic integers α of degree $\leq n + 1$.

Theorem (Bugeaud, Teulié).

Let $\xi \in \mathbb{R}$ be algebraic of degree $d \ge 2$ and $n \in \mathbb{Z}_{\ge 1}$. Then $\lambda_n(\xi) = \min(n+1, d)$.

Theorem 4 (Bugeaud, E.)

Let $\xi \in \mathbb{C} \setminus \mathbb{R}$ be algebraic of degree $d \ge 2$ and $n \in \mathbb{Z}_{\ge 2}$.

Then

$$\lambda_{n}(\xi) = \begin{cases} \frac{d}{2} & \text{if } d \leq n+1, \\ \frac{n+1}{2} & \text{if } d \geq n+2, \ \kappa_{n}(\xi) = \frac{n+1}{2}, \\ \frac{n}{2} & \text{if } d \geq n+2, \ \kappa_{n}(\xi) = \frac{n+2}{2}. \end{cases}$$

NUMBER OF APPROXIMANTS

Let $n \in \mathbb{Z}_{\geqslant 2}$, $\kappa > 0$, and $\xi \in \mathbb{C}$ algebraic of degree d > n. Consider

(1) $|\xi - \alpha| \leq H(\alpha)^{-\kappa}$

in algebraic numbers α of degree at most n.

Theorem (E.)

Let $\delta > 0$. Suppose that

$$\kappa = \begin{cases} 2n + \delta & \text{if } \xi \in \mathbb{R}, \\ n + \delta & \text{if } \xi \in \mathbb{C} \setminus \mathbb{R}. \end{cases}$$

Then (1) has at most

 $2^{2n}(10n)^{20}(1+\delta^{-4})\log 4d\log\log 4d$ solutions with $H(\alpha) \ge \max\left(2^{3n^2/\delta}, H(\xi)\right).$

Proof. Quantitative Subspace Theorem.

VERY DIFFICULT OPEN PROBLEM:

let $\xi \in \mathbb{C}$ be algebraic of degree d.

Recall

$$\kappa_n(\xi) \begin{cases} = \min(n+1,d) & \text{if } \xi \in \mathbb{R}, \\ = \frac{d}{2} & \text{if } \xi \in \mathbb{C} \setminus \mathbb{R}, \ d \leq n+1, \\ \in \{\frac{n+1}{2}, \frac{n+2}{2}\} & \text{if } \xi \in \mathbb{C} \setminus \mathbb{R}, \ d \geq n+2. \end{cases}$$

The number of solutions of

(1)
$$|\xi - \alpha| \leq H(\alpha)^{-\kappa}$$

in algebraic numbers α of degree $\leq n$ is finite if $\kappa > \kappa_n(\xi)$.

Give an explicit upper bound for this number if

•
$$\kappa_n(\xi) < \kappa \leqslant 2n$$
 if $\xi \in \mathbb{R}$,

• $\kappa_n(\xi) < \kappa \leqslant n \text{ if } \xi \in \mathbb{C} \setminus \mathbb{R}.$