APPROXIMATION OF COMPLEX ALGEBRAIC NUMBERS BY ALGEBRAIC NUMBERS OF BOUNDED DEGREE

Yann Bugeaud (Strasbourg), Jan-Hendrik Evertse (Leiden)

Lecture given at the 7th Polish, Slovak and Czech Conference on Number Theory
June 10-12, 2008, Ostravice
http://www.math.leidenuniv.nl/~evertse/

APPROXIMATION BY RATIONALS

Let $\xi \in \mathbb{C}$.
Denote by $\kappa_{1}(\xi)$ the supremum of all $\kappa \in \mathbb{R}$ such that
$\left|\xi-\frac{x}{y}\right| \leqslant(\max |x|,|y|)^{-\kappa}$ in coprime $x, y \in \mathbb{Z}$
has infinitely many solutions.

So it has finitely many solutions if $\kappa>\kappa_{1}(\xi)$ and infinitely many solutions if $\kappa<\kappa_{1}(\xi)$.

Facts:

- $\kappa_{1}(\xi)=0$ for $\xi \in \mathbb{C} \backslash \mathbb{R}$;
- $\kappa_{1}(\xi) \geqslant 2$ for $\xi \in \mathbb{R} \backslash \mathbb{Q}$
(Dirichlet, 1842);
- $\kappa_{1}(\xi)=2$ for almost all $\xi \in \mathbb{R}$;
- $\kappa_{1}(\xi)=2$ for $\xi \in \mathbb{R} \backslash \mathbb{Q}$ algebraic (Roth, 1955)

APPROXIMATION BY ALGEBRAIC NUMBERS OF HIGHER DEGREE

For an algebraic number α, denote by P_{α} its minimal polynomial in $\mathbb{Z}[X]$, i.e., $P_{\alpha}=$ $\sum_{j=0}^{n} a_{j} X^{j}$ with $\operatorname{gcd}\left(a_{0}, \ldots, a_{n}\right)=1$, and define its height

$$
H(\alpha)=H\left(P_{\alpha}\right):=\max _{i}\left|a_{i}\right| .
$$

Definition. For $\xi \in \mathbb{C}, n \in \mathbb{Z} \geqslant 1$, denote by $\kappa_{n}(\xi)$ the supremum of all reals κ such that

$$
|\xi-\alpha| \leqslant H(\alpha)^{-\kappa}
$$

has infinitely many solutions in algebraic numbers $\alpha \in \mathbb{C}$ of degree at most n.

Remark. $\kappa_{n}(\xi)=w_{n}^{*}(\xi)+1$, where $w_{n}^{*}(\xi)$ was introduced by Koksma (1939) for a classification of transcendental numbers.

THE CASE $\xi \in \mathbb{R}$

Let $n \in \mathbb{Z}_{\geqslant 1}$.
Theorem (Sprindzhuk, 1966). For almost all $\xi \in \mathbb{R}$ we have $\kappa_{n}(\xi)=n+1$.

Theorem (Schmidt, 1971). Let ξ be a real algebraic number of degree $d \geqslant 2$.
Then $\kappa_{n}(\xi)=\min (n+1, d)$.

Real algebraic numbers of degree $d \geqslant n+1$ are equally well approximable by algebraic numbers of degree at most n as almost all real numbers.

THE CASE $\xi \in \mathbb{C} \backslash \mathbb{R}$

Let $n \in \mathbb{Z}_{\geqslant 2}$.
Theorem (Sprindzhuk, 1966). For almost all $\xi \in \mathbb{C}$ we have $\kappa_{n}(\xi)=(n+1) / 2$.

Lemma (Liouville's inequality). If $\xi \in \mathbb{C} \backslash \mathbb{R}$ is algebraic of degree $d \leqslant n+1$ then $\kappa_{n}(\xi)=d / 2$.

Not considered so far: Computation of $\kappa_{n}(\xi)$ for $\xi \in \mathbb{C} \backslash \mathbb{R}$ algebraic of degree $d \geqslant n+2$.

Is it true that complex algebraic numbers ξ of degree $d \geqslant n+2$ are equally well approximable by algebraic numbers of degree at most n as almost all complex numbers, i.e., $\kappa_{n}(\xi)=$ $(n+1) / 2$?

A COUNTEREXAMPLE

Let $n \geqslant 2$ be an even integer, and η a positive real algebraic number of degree $d / 2$ where d is even and $d \geqslant n+2$.

Let $\xi=\sqrt{-\eta}$. Then $\operatorname{deg} \xi=d \geqslant n+2$.
By Schmidt's Theorem in the real case, we have $\kappa_{n / 2}(\eta)=(n / 2)+1$.
Hence for every $\kappa<(n / 2)+1$, there are infinitely many algebraic numbers β of degree at most $n / 2$ such that $|\eta-\beta| \leqslant H(\beta)^{-\kappa}$.

Taking $\alpha=\sqrt{-\beta}$, we get infinitely many algebraic numbers α of degree at most n such that

$$
|\xi-\alpha| \ll|\eta-\beta| \ll H(\beta)^{-\kappa} \ll H(\alpha)^{-\kappa} .
$$

Hence $\kappa_{n}(\xi) \geqslant(n+2) / 2$.

The CAse $\xi \in \mathbb{C} \backslash \mathbb{R}$ ALGEbRAIC

Theorem 1. (Bugeaud, E.)
Let $n \in \mathbb{Z} \geqslant 2, \xi \in \mathbb{C} \backslash \mathbb{R}$ algebraic of degree $d \geqslant n+2$.
(i). Suppose that n is odd. Then $\kappa_{n}(\xi)=\frac{n+1}{2}$.
(ii). Suppose that n is even. Then $\kappa_{n}(\xi) \in\left\{\frac{n+1}{2}, \frac{n+2}{2}\right\}$.
Further, for every even $n \geqslant 2$, both cases may occur.

Proof. Schmidt's Subspace Theorem + elementary algebra.

THE CASE n EVEN

Let $n \in \mathbb{Z}_{\geqslant 2}$ even, $\xi \in \mathbb{C} \backslash \mathbb{R}$ algebraic of degree $d \geqslant n+2$.

Theorem 2 (Bugeaud, E.)

We have $\kappa_{n}(\xi)=$

$\frac{n+2}{2}$	$\operatorname{deg} \xi \geqslant n+2$, $\operatorname{deg}, \xi+\bar{\xi}, \xi \cdot \bar{\xi}\} \mathbb{Q}$-linearly dependent
	$\operatorname{deg} \xi>2 n-2,[\mathbb{Q}(\xi): \mathbb{Q}(\xi) \cap \mathbb{R}]=2$
	$[\mathbb{Q}(\xi): \mathbb{Q}(\xi) \cap \mathbb{R}] \geqslant 3$
$? ?$	remaining cases

We can determine $\kappa_{n}(\xi)$ in all cases, except n even, $n \geqslant 6, n+3 \leqslant \operatorname{deg} \xi \leqslant 2 n-2$.

ANOTHER THEOREM

For $\xi \in \mathbb{C}, n \in \mathbb{Z}_{\geqslant 2}, \mu \in \mathbb{C}^{*}$ define the \mathbb{Q}-vector space
$V_{n}(\mu, \xi):=\{f \in \mathbb{Q}[X]: \operatorname{deg} f \leqslant n, \mu f(\xi) \in \mathbb{R}\}$. Let

$$
t_{n}(\xi):=\max \left\{\operatorname{dim}_{\mathbb{Q}} V_{n}(\mu, \xi): \mu \in \mathbb{C}^{*}\right\} .
$$

Theorem 3 (Bugeaud, E.)

Let $\xi \in \mathbb{C} \backslash \mathbb{R}$ algebraic of degree $d \geqslant n+2$.
Then

$$
\kappa_{n}(\xi)=\max \left(\frac{n+1}{2}, t_{n}(\xi)\right) .
$$

Proof. Schmidt's Subspace Theorem.

IDEA OF PROOF

Let $P_{\alpha}=\sum_{i=0}^{n} x_{i} X^{i}$ denote the minimal polynomial of α. Put $\mathbf{x}=\left(x_{0}, \ldots, x_{n}\right)$. Then $H(\alpha)=\max _{i}\left|x_{i}\right|=:\|\mathbf{x}\|$. Notice

$$
|\xi-\alpha| \gg<\frac{\left|P_{\alpha}(\xi)\right|}{\left|P_{\alpha}^{\prime}(\xi)\right|}
$$

Define linear forms

$$
\begin{aligned}
& L_{1}(\mathrm{x})=\operatorname{Re} P_{\alpha}(\xi), \quad L_{2}(\mathrm{x})=\operatorname{Im} P_{\alpha}(\xi) \\
& M_{1}(\mathrm{x})=\operatorname{Re} P_{\alpha}^{\prime}(\xi), \quad M_{2}(\mathrm{x})=\operatorname{Im} P_{\alpha}^{\prime}(\xi)
\end{aligned}
$$

Use the Subspace Theorem and Minkowski's Theorem to decide for which u, v the following system has finitely or infinitely many solutions in $\mathrm{x} \in \mathbb{Z}^{n+1}$:

$$
\left\{\begin{aligned}
\left|L_{1}(\mathrm{x})\right| \leqslant\|\mathrm{x}\|^{u}, & \left|L_{2}(\mathrm{x})\right| \leqslant\|\mathrm{x}\|^{u}, \\
\left|M_{1}(\mathrm{x})\right| \leqslant\|\mathrm{x}\|^{v}, & \left|M_{2}(\mathrm{x})\right| \leqslant\|\mathrm{x}\|^{v} .
\end{aligned}\right.
$$

PROPERTIES OF $t_{n}(\xi)$

Let $\xi \in \mathbb{C} \backslash \mathbb{R}$ algebraic, deg $\xi \geqslant n+2, n \in \mathbb{Z} \geqslant 2$.
Lemma 1. $t_{n}(\xi) \leqslant[(n+2) / 2]$.
Lemma 2. Suppose n is even. Then

$t_{n}(\xi)$	$\operatorname{deg} \xi \geqslant n+2$,
$=\frac{n+2}{2}$	$\{1, \xi+\bar{\xi}, \xi \cdot \bar{\xi}\} \mathbb{Q}$-linearly dependent
	$\operatorname{deg} \xi=n+2,[\mathbb{Q}(\xi): \mathbb{Q}(\xi) \cap \mathbb{R}]=2$
$t_{n}(\xi)$	$\operatorname{deg} \xi>2 n-2$,
$\leqslant \frac{n+1}{2}$	$\{1, \xi+\bar{\xi}, \xi \cdot \bar{\xi}\} \mathbb{Q}$-linearly independent
	$[\mathbb{Q}(\xi): \mathbb{Q}(\xi) \cap \mathbb{R}] \geqslant 3$
$? ?$	remaining cases

Proof of $t_{n}(\xi) \leqslant[(n+2) / 2]$.
Recall $\xi \in \mathbb{C} \backslash \mathbb{R}, \operatorname{deg} \xi \geqslant n+2$.
Choose $\mu \in \mathbb{C}^{*}$ such that $\operatorname{dim}_{\mathbb{Q}} V_{n}(\mu, \xi)=$ $t_{n}(\xi)$.
Put $X \cdot V_{n}(\mu, \xi):=\left\{X \cdot f: f \in V_{n}(\mu, \xi)\right\}$.
Then $V_{n}(\mu, \xi) \cap X \cdot V_{n}(\mu, \xi)=(0)$.
Otherwise, there is non-zero $f \in V_{n}(\mu, \xi)$ such that also $X \cdot f \in V_{n}(\mu, \xi)$.
Then $\mu f(\xi) \in \mathbb{R}^{*}$ and $\mu \xi f(\xi) \in \mathbb{R}^{*}$, implying $\xi \in \mathbb{R}$, which is impossible.

Now

$$
\begin{aligned}
2 t_{n}(\xi) & =\operatorname{dim}_{\mathbb{Q}} V_{n}(\mu, \xi)+\operatorname{dim}_{\mathbb{Q}} X \cdot V_{n}(\mu, \xi) \\
& =\operatorname{dim}_{\mathbb{Q}}\left(V_{n}(\mu, \xi)+X \cdot V_{n}(\mu, \xi)\right) \\
& \leqslant \operatorname{dim}_{\mathbb{Q}}\{f \in \mathbb{Q}[X]: \operatorname{deg} f \leqslant n+1\} \\
& =n+2 .
\end{aligned}
$$

APPROXIMATION BY ALGEBRAIC INTEGERS

Instead of approximation by algebraic numbers of degree at most n we consider approximation by algebraic integers of degree at most $n+1$.

Let $\xi \in \mathbb{C}, n \in \mathbb{Z}_{\geqslant 1}$.
Define $\lambda_{n}(\xi)$ to be the supremum of all $\lambda \in \mathbb{R}$ such that

$$
0<|\xi-\alpha| \leqslant H(\alpha)^{-\lambda}
$$

has infinitely many solutions in algebraic integers α of degree $\leqslant n+1$.

Theorem (Bugeaud, Teulié).

Let $\xi \in \mathbb{R}$ be algebraic of degree $d \geqslant 2$ and $n \in \mathbb{Z} \geqslant 1$.
Then $\lambda_{n}(\xi)=\min (n+1, d)$.

Theorem 4 (Bugeaud, E.)

Let $\xi \in \mathbb{C} \backslash \mathbb{R}$ be algebraic of degree $d \geqslant 2$ and $n \in \mathbb{Z} \geqslant 2$.
Then
$\lambda_{n}(\xi)=\left\{\begin{array}{cl}\frac{d}{2} & \text { if } d \leqslant n+1, \\ \frac{n+1}{2} & \text { if } d \geqslant n+2, \kappa_{n}(\xi)=\frac{n+1}{2}, \\ \frac{n}{2} & \text { if } d \geqslant n+2, \kappa_{n}(\xi)=\frac{n+2}{2} .\end{array}\right.$

NUMBER OF APPROXIMANTS

Let $n \in \mathbb{Z}_{\geqslant 2}, \kappa>0$, and $\xi \in \mathbb{C}$ algebraic of degree $d>n$. Consider
(1)
$|\xi-\alpha| \leqslant H(\alpha)^{-\kappa}$
in algebraic numbers α of degree at most n.

Theorem (E.)
Let $\delta>0$. Suppose that

$$
\kappa=\left\{\begin{array}{cl}
2 n+\delta & \text { if } \xi \in \mathbb{R} \\
n+\delta & \text { if } \xi \in \mathbb{C} \backslash \mathbb{R}
\end{array}\right.
$$

Then (1) has at most

$$
2^{2 n}(10 n)^{20}\left(1+\delta^{-4}\right) \log 4 d \log \log 4 d
$$

solutions with $H(\alpha) \geqslant \max \left(2^{3 n^{2} / \delta}, H(\xi)\right)$.
Proof. Quantitative Subspace Theorem.

VERY DIFFICULT OPEN PROBLEM:

let $\xi \in \mathbb{C}$ be algebraic of degree d.
Recall
$\kappa_{n}(\xi) \begin{cases}=\min (n+1, d) & \text { if } \xi \in \mathbb{R}, \\ =\frac{d}{2} & \text { if } \xi \in \mathbb{C} \backslash \mathbb{R}, d \leqslant n+1, \\ \in\left\{\frac{n+1}{2}, \frac{n+2}{2}\right\} & \text { if } \xi \in \mathbb{C} \backslash \mathbb{R}, d \geqslant n+2 .\end{cases}$
The number of solutions of
(1) $\quad|\xi-\alpha| \leqslant H(\alpha)^{-\kappa}$
in algebraic numbers α of degree $\leqslant n$ is finite if $\kappa>\kappa_{n}(\xi)$.

Give an explicit upper bound for this number if

- $\kappa_{n}(\xi)<\kappa \leqslant 2 n$ if $\xi \in \mathbb{R}$,
- $\kappa_{n}(\xi)<\kappa \leqslant n$ if $\xi \in \mathbb{C} \backslash \mathbb{R}$.

