APPROXIMATION OF ALGEBRAIC NUMBERS BY ALGEBRAIC NUMBERS

Yann Bugeaud (Strasbourg), Jan-Hendrik Evertse (Leiden)

Lecture given at the symposium on the occasion of Rob Tijdeman's 65-th birthday

August 27, 2008

Preprint:

http://www.math.leidenuniv.nl/~evertse/ publications.shtml

DIRICHLET'S THEOREM

Rational numbers are represented as x/y, where x, y are integers such that gcd(x, y) = 1, y > 0.

Theorem (Dirichlet, 1842)

Let ξ be an irrational real number. Then there are infinitely many rational numbers x/ysuch that

 $|\xi - (x/y)| \leqslant y^{-2}.$

ROTH'S THEOREM

A number ξ is called algebraic if there exists a non-zero polynomial P with integer coefficients such that $P(\xi) = 0$.

Theorem (Roth, 1955) Let ξ be a real, irrational, algebraic number. Let $\kappa > 2$. Then there are only finitely many rational numbers x/y such that

$$|\xi - (x/y)| \leqslant y^{-\kappa}.$$

This result is a culmination of earlier work of Thue (1909), Siegel (1921), Dyson, Gel'fond (1949).

METRIC DIOPHANTINE APPROXIMA-TION

We recall a very special (and easy) case of a result of Khintchine (1924):

Theorem.

Let $\kappa > 2$. Then the set of real numbers ξ such that

 $|\xi - (x/y)| \leq y^{-\kappa}$ for infinitely many $x/y \in \mathbb{Q}$, has Lebesgue measure 0.

APPROXIMATION BY RATIONALS

Denote by $\kappa_1(\xi)$ the supremum of all $\kappa \in \mathbb{R}$ such that

$$(*) |\xi - \frac{x}{y}| \leqslant y^{-\kappa}$$

has infinitely many solutions in rational numbers x/y.

So (*) has infinitely many solutions if $\kappa < \kappa_1(\xi)$ and only finitely many solutions if $\kappa > \kappa_1(\xi)$.

Facts:

• $\kappa_1(\xi) = 2$ for almost all real numbers ξ (Dirichlet, Khintchine)

• $\kappa_1(\xi) = 2$ for real, irrational algebraic numbers ξ (Dirichlet, Roth)

So the κ_1 -value of a real irrational algebraic number ξ is equal to that of almost all real numbers.

ALGEBRAIC NUMBERS

For every algebraic number α (in \mathbb{C}) there is a unique polynomial P of minimal degree such that $P(\alpha) = 0$ and P has integer coefficients with gcd 1 and positive leading coefficient.

P is called the *minimal polynomial* of α .

The degree deg α of α is the degree of P.

The height $H(\alpha)$ of α is the maximum of the absolute values of the coefficients of P.

EXAMPLES:

 $\alpha = x/y \ (x, y \in \mathbb{Z}, \ \gcd(x, y) = 1, \ y > 0)$ has minimal polynomial yX - x, degree 1 and height $\max(|x|, y)$.

 $\alpha = \frac{1}{2}\sqrt{2} + \sqrt{3}$ has minimal polynomial $4X^4 - 28X^2 + 25$, degree 4 and height 28.

APPROXIMATION BY ALGEBRAIC NUMBERS OF HIGHER DEGREE

Definition. For a complex number ξ and a positive integer n, denote by $\kappa_n(\xi)$ the supremum of all reals κ such that

 $|\xi - \alpha| \leqslant H(\alpha)^{-\kappa}$

has infinitely many solutions in algebraic numbers α of degree at most n.

APPROXIMATION TO REAL ξ

Let n be a positive integer.

Theorem (Sprindzhuk, 1966).

For almost all real numbers ξ we have $\kappa_n(\xi) = n + 1$.

Theorem (W.M. Schmidt, 1971).

Let ξ be a real algebraic number of degree $d \ge 2$. Then $\kappa_n(\xi) = \min(n+1, d)$.

Real algebraic numbers of degree d > nhave the same κ_n -value as almost all real numbers.

APPROXIMATION TO COMPLEX ξ

Let *n* be an integer ≥ 2 .

Theorem (Sprindzhuk, 1966). For almost all $\xi \in \mathbb{C}$ we have $\kappa_n(\xi) = (n+1)/2$.

Lemma. If ξ is a complex, non-real algebraic number of degree $d \leq n$ then $\kappa_n(\xi) = d/2$.

Not considered so far: Determination of $\kappa_n(\xi)$ for complex, non-real algebraic numbers of degree d > n.

Reasonable question: Do complex, nonreal algebraic numbers ξ of degree > n have the same κ_n -value as almost all complex numbers, i.e., $\kappa_n(\xi) = (n+1)/2$?

A COUNTEREXAMPLE

Let n, d be even integers with $d > n \ge 2$, and η a positive real algebraic number of degree d/2.

Let $\xi := \sqrt{-\eta}$. Then deg $\xi = d$.

By Schmidt's Theorem we have $\kappa_{n/2}(\eta) = (n/2) + 1.$

Hence for every $\kappa < (n/2) + 1$, there are infinitely many algebraic numbers β of degree at most n/2 such that $|\eta - \beta| \leq H(\beta)^{-\kappa}$.

Taking $\alpha = \sqrt{-\beta}$, we get infinitely many algebraic numbers α of degree at most n such that for some constant A > 0,

 $|\xi - \alpha| \leq A \cdot |\eta - \beta| \leq A \cdot H(\beta)^{-\kappa} = A \cdot H(\alpha)^{-\kappa}.$

Hence $\kappa_n(\xi) \ge (n+2)/2$.

APPROXIMATION TO COMPLEX ALGEBRAIC $\boldsymbol{\xi}$

Theorem 1. (Bugeaud, E.)

Let n be an integer ≥ 2 and ξ a complex, non-real algebraic number of degree > n.

(i). Suppose that n or deg ξ is odd. Then

$$\kappa_n(\xi) = \frac{n+1}{2}.$$

(ii). Suppose that both n and deg ξ are even. Then

$$\kappa_n(\xi) \in \left\{\frac{n+1}{2}, \frac{n+2}{2}\right\}.$$

Further, for every even n, d with $d > n \ge 2$ there are ξ of degree d with $\kappa_n(\xi) = (n+1)/2$ and ξ of degree d with $\kappa_n(\xi) = (n+2)/2$.

THE CASE n and $\deg \xi$ even

Theorem 2 (Bugeaud, E.)

Let n be an even integer ≥ 2 and ξ a complex, non-real algebraic number of even degree $\ge 2n$.

Then $\kappa_n(\xi) = (n+2)/2 \iff$ 1, $\xi + \overline{\xi}$, $\xi \cdot \overline{\xi}$ are linearly dependent over \mathbb{Q} .

The description of the set of ξ with $\kappa_n(\xi) = (n+2)/2$ and $n < \deg \xi < 2n$ is more complicated, and is not completely known.

ANOTHER THEOREM

For complex numbers ξ, μ , and for integers $n \ge 2$, denote by $V_n(\mu, \xi)$ the set of polynomials f(X) with coefficients in \mathbb{Q} such that

$$\deg f \leqslant n, \quad \mu f(\xi) \in \mathbb{R}.$$

This is a vector space over \mathbb{Q} .

Denote by $t_n(\xi)$ the maximum of the dimensions of the spaces $V_n(\mu, \xi)$, taken over all $\mu \in \mathbb{C} \setminus \{0\}$.

Theorem 3 (Bugeaud, E.)

Let ξ be a complex, non-real algebraic number of degree > n. Then

$$\kappa_n(\xi) = \max\left(\frac{n+1}{2}, t_n(\xi)\right).$$

MAIN TOOL: SCHMIDT'S SUBSPACE THEOREM

Let $n \ge 2$, $\delta > 0$ and let

 $L_i = \alpha_{i1}X_1 + \dots + \alpha_{in}X_n \quad (i = 1, \dots, n)$

be linear forms with algebraic coefficients α_{ij} in \mathbb{C} .

Theorem (W.M. Schmidt, 1972). Suppose that the linear forms L_1, \ldots, L_n are linearly independent. Then the set of solutions

 $\mathbf{x} = (x_1, \ldots, x_n) \in \mathbb{Z}^n$

of the inequality

$$|L_1(\mathbf{x})\cdots L_n(\mathbf{x})| \leq \left(\max_i |x_i|\right)^{-\delta}$$

is contained in some union $T_1 \cup \cdots \cup T_t$ of proper linear subspaces of \mathbb{Q}^n .