APPROXIMATION OF

ALGEBRAIC NUMBERS BY

 ALGEBRAIC NUMBERSYann Bugeaud (Strasbourg), Jan-Hendrik Evertse (Leiden)

Lecture given at the symposium on the occasion of Rob Tijdeman's 65-th birthday

August 27, 2008

Preprint:

http://www.math.leidenuniv.nl/~evertse/ publications.shtml

DIRICHLET'S THEOREM

Rational numbers are represented as x / y, where x, y are integers such that $\operatorname{gcd}(x, y)=1$, $y>0$.

Theorem (Dirichlet, 1842)

Let ξ be an irrational real number. Then there are infinitely many rational numbers x / y such that

$$
|\xi-(x / y)| \leqslant y^{-2} .
$$

ROTH'S THEOREM

A number ξ is called algebraic if there exists a non-zero polynomial P with integer coefficients such that $P(\xi)=0$.

Theorem (Roth, 1955) Let ξ be a real, irrational, algebraic number. Let $\kappa>2$. Then there are only finitely many rational numbers x / y such that

$$
|\xi-(x / y)| \leqslant y^{-\kappa} .
$$

This result is a culmination of earlier work of Thue (1909), Siegel (1921), Dyson, Gel'fond (1949).

METRIC DIOPHANTINE APPROXIMATION

We recall a very special (and easy) case of a result of Khintchine (1924):

Theorem.

Let $\kappa>2$. Then the set of real numbers ξ such that
$|\xi-(x / y)| \leqslant y^{-\kappa}$ for infinitely many $x / y \in \mathbb{Q}$, has Lebesgue measure 0.

APPROXIMATION BY RATIONALS

Denote by $\kappa_{1}(\xi)$ the supremum of all $\kappa \in \mathbb{R}$ such that
(*)

$$
\left|\xi-\frac{x}{y}\right| \leqslant y^{-\kappa}
$$

has infinitely many solutions in rational numbers x / y.

So (*) has infinitely many solutions if $\kappa<\kappa_{1}(\xi)$ and only finitely many solutions if $\kappa>\kappa_{1}(\xi)$.

Facts:

- $\kappa_{1}(\xi)=2$ for almost all real numbers ξ (Dirichlet, Khintchine)
- $\kappa_{1}(\xi)=2$ for real, irrational algebraic numbers ξ (Dirichlet, Roth)

So the κ_{1}-value of a real irrational algebraic number ξ is equal to that of almost all real numbers.

ALGEBRAIC NUMBERS

For every algebraic number α (in \mathbb{C}) there is a unique polynomial P of minimal degree such that $P(\alpha)=0$ and P has integer coefficients with gcd 1 and positive leading coefficient.
P is called the minimal polynomial of α.

The degree $\operatorname{deg} \alpha$ of α is the degree of P.

The height $H(\alpha)$ of α is the maximum of the absolute values of the coefficients of P.

EXAMPLES:

$\alpha=x / y(x, y \in \mathbb{Z}, \operatorname{gcd}(x, y)=1, y>0)$ has minimal polynomial $y X-x$, degree 1 and height $\max (|x|, y)$.
$\alpha=\frac{1}{2} \sqrt{2}+\sqrt{3}$ has minimal polynomial $4 X^{4}-28 X^{2}+25$, degree 4 and height 28 .

APPROXIMATION BY ALGEBRAIC NUMBERS OF HIGHER DEGREE

Definition. For a complex number ξ and a positive integer n, denote by $\kappa_{n}(\xi)$ the supremum of all reals κ such that

$$
|\xi-\alpha| \leqslant H(\alpha)^{-\kappa}
$$

has infinitely many solutions in algebraic numbers α of degree at most n.

APPROXIMATION TO REAL ξ

Let n be a positive integer.

Theorem (Sprindzhuk, 1966).
For almost all real numbers ξ we have $\kappa_{n}(\xi)=n+1$.

Theorem (W.M. Schmidt, 1971).
Let ξ be a real algebraic number of degree $d \geqslant 2$. Then $\kappa_{n}(\xi)=\min (n+1, d)$.

Real algebraic numbers of degree $d>n$ have the same κ_{n}-value as almost all real numbers.

APPROXIMATION TO COMPLEX ξ

Let n be an integer $\geqslant 2$.
Theorem (Sprindzhuk, 1966). For almost all $\xi \in \mathbb{C}$ we have $\kappa_{n}(\xi)=(n+1) / 2$.

Lemma. If ξ is a complex, non-real algebraic number of degree $d \leqslant n$ then $\kappa_{n}(\xi)=d / 2$.

Not considered so far: Determination of $\kappa_{n}(\xi)$ for complex, non-real algebraic numbers of degree $d>n$.

Reasonable question: Do complex, nonreal algebraic numbers ξ of degree $>n$ have the same κ_{n}-value as almost all complex numbers, i.e., $\kappa_{n}(\xi)=(n+1) / 2$?

A COUNTEREXAMPLE

Let n, d be even integers with $d>n \geqslant 2$, and η a positive real algebraic number of degree $d / 2$.

Let $\xi:=\sqrt{-\eta}$. Then $\operatorname{deg} \xi=d$.
By Schmidt's Theorem we have $\kappa_{n / 2}(\eta)=(n / 2)+1$.
Hence for every $\kappa<(n / 2)+1$, there are infinitely many algebraic numbers β of degree at most $n / 2$ such that $|\eta-\beta| \leqslant H(\beta)^{-\kappa}$.

Taking $\alpha=\sqrt{-\beta}$, we get infinitely many algebraic numbers α of degree at most n such that for some constant $A>0$,
$|\xi-\alpha| \leqslant A \cdot|\eta-\beta| \leqslant A \cdot H(\beta)^{-\kappa}=A \cdot H(\alpha)^{-\kappa}$.

Hence $\kappa_{n}(\xi) \geqslant(n+2) / 2$.

APPROXIMATION TO COMPLEX AL-

 GEBRAIC ξ
Theorem 1. (Bugeaud, E.)

Let n be an integer $\geqslant 2$ and ξ a complex, non-real algebraic number of degree $>n$.
(i). Suppose that n or $\operatorname{deg} \xi$ is odd. Then

$$
\kappa_{n}(\xi)=\frac{n+1}{2}
$$

(ii). Suppose that both n and deg ξ are even. Then

$$
\kappa_{n}(\xi) \in\left\{\frac{n+1}{2}, \frac{n+2}{2}\right\} .
$$

Further, for every even n, d with $d>n \geqslant 2$ there are ξ of degree d with $\kappa_{n}(\xi)=(n+1) / 2$ and ξ of degree d with $\kappa_{n}(\xi)=(n+2) / 2$.

THE CASE n AND deg ξ EVEN

Theorem 2 (Bugeaud, E.)

Let n be an even integer $\geqslant 2$ and ξ a complex, non-real algebraic number of even degree $\geqslant 2 n$.
Then $\kappa_{n}(\xi)=(n+2) / 2$
$1, \xi+\bar{\xi}, \xi \cdot \bar{\xi}$ are linearly dependent over \mathbb{Q}.

The description of the set of ξ with $\kappa_{n}(\xi)=$ $(n+2) / 2$ and $n<\operatorname{deg} \xi<2 n$ is more complicated, and is not completely known.

ANOTHER THEOREM

For complex numbers ξ, μ, and for integers $n \geqslant 2$, denote by $V_{n}(\mu, \xi)$ the set of polynomials $f(X)$ with coefficients in \mathbb{Q} such that

$$
\operatorname{deg} f \leqslant n, \quad \mu f(\xi) \in \mathbb{R}
$$

This is a vector space over \mathbb{Q}.
Denote by $t_{n}(\xi)$ the maximum of the dimensions of the spaces $V_{n}(\mu, \xi)$, taken over all $\mu \in \mathbb{C} \backslash\{0\}$.

Theorem 3 (Bugeaud, E.)

Let ξ be a complex, non-real algebraic number of degree $>n$. Then

$$
\kappa_{n}(\xi)=\max \left(\frac{n+1}{2}, t_{n}(\xi)\right) .
$$

MAIN TOOL:

SCHMIDT'S SUBSPACE THEOREM
Let $n \geqslant 2, \delta>0$ and let

$$
L_{i}=\alpha_{i 1} X_{1}+\cdots+\alpha_{i n} X_{n}(i=1, \ldots, n)
$$

be linear forms with algebraic coefficients $\alpha_{i j}$ in \mathbb{C}.

Theorem (W.M. Schmidt, 1972). Suppose that the linear forms L_{1}, \ldots, L_{n} are linearly independent. Then the set of solutions

$$
\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}^{n}
$$

of the inequality

$$
\left|L_{1}(\mathrm{x}) \cdots L_{n}(\mathrm{x})\right| \leqslant\left(\max _{i}\left|x_{i}\right|\right)^{-\delta}
$$

is contained in some union $T_{1} \cup \cdots \cup T_{t}$ of proper linear subspaces of \mathbb{Q}^{n}.

