EFFECTIVE RESULTS FOR POINTS ON CERTAIN SUBVARIETIES OF TORI

 Jan-Hendrik Evertse (Leiden)Joint work with Attila Bérczes, Kálmán Győry, Corentin Pontreau

To appear in Math. Proc. Cambridge Philos. Soc.

Conference on Diophantine Equations HIM, Bonn, April 24, 2009

SUBJECT OF OUR LECTURE

Let X be an algebraic subvariety of the N dimensional torus $\mathbb{G}_{m}^{N}(\overline{\mathbb{Q}})=\left(\overline{\mathbb{Q}}^{*}\right)^{N}$.

Let Γ be a free subgroup of $\mathbb{G}_{m}^{N}(\overline{\mathbb{Q}})$ of finite rank, and let $\bar{\Gamma}$ be the division group of Γ.

Laurent, Poonen, Ev., Rémond proved ineffective results which imply that the points of X which are in $\bar{\Gamma}$ or "close to $\bar{\Gamma}$ " lie in finitely many "families."

We give some limited class of varieties X for which these families can be determined effectively.

HEIGHTS ON TORI

N-dimensional torus:
$\mathbb{G}_{m}^{N}(\overline{\mathbb{Q}})=\left(\overline{\mathbb{Q}}^{*}\right)^{N}$ with multiplication
$\left(x_{1}, \ldots, x_{N}\right) \cdot\left(y_{1}, \ldots, y_{N}\right)=\left(x_{1} y_{1}, \ldots, x_{N} y_{N}\right)$.
Absolute logarithmic height on $\overline{\mathbb{Q}}$:
$h(\alpha):=\frac{1}{d} \log \left(|a| \prod_{i=1}^{d} \max \left(1,\left|\alpha^{(i)}\right|\right)\right)$ for $\alpha \in \overline{\mathbb{Q}}$,
where $a\left(X-\alpha^{(1)}\right) \cdots\left(X-\alpha^{(d)}\right)$ is the minimal polynomial in $\mathbb{Z}[X]$ of α.

Height on $\mathbb{G}_{m}^{N}(\overline{\mathbb{Q}})$:
$\widehat{h}(\mathrm{x}):=\sum_{i=1}^{N} h\left(x_{i}\right)$ for $\mathrm{x}=\left(x_{1}, \ldots, x_{N}\right) \in \mathbb{G}_{m}^{N}(\overline{\mathbb{Q}})$.
Metric on $\mathbb{G}_{m}^{N}(\overline{\mathbb{Q}}) / \mathbb{G}_{m}^{N}(\overline{\mathbb{Q}})_{\text {tors }}$: $d(\mathbf{x}, \mathbf{y}):=\widehat{h}\left(\mathbf{x} \cdot \mathbf{y}^{-1}\right)$.

LANG'S CONJECTURE FOR TORI

Let X be an algebraic subvariety of $\mathbb{G}_{m}^{N}(\overline{\mathbb{Q}})$, i.e., the set of common zeros in $\mathbb{G}_{m}^{N}(\overline{\mathbb{Q}})$ of certain polynomials $f_{1}, \ldots, f_{m} \in \mathbb{\mathbb { Q }}\left[X_{1}, \ldots, X_{N}\right]$.

Let Γ be a free subgroup of $\mathbb{G}_{m}^{N}(\overline{\mathbb{Q}})$ of finite rank r, i.e., $\Gamma=\left\{\mathbf{v}_{1}^{w_{1}} \cdots \mathbf{v}_{r}^{w_{r}}: w_{1}, \ldots, w_{r} \in \mathbb{Z}\right\}$ where $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}\right\}$ is a basis of Γ.

Let $\bar{\Gamma}=\left\{\mathbf{x} \in \mathbb{G}_{m}^{N}(\overline{\mathbb{Q}}): \exists m \in \mathbb{Z}_{>0}\right.$ with $\left.\mathbf{x}^{m} \in \Gamma\right\}$ be the division group of Γ.

Theorem A. (Laurent, 1984)

$X \cap \bar{\Gamma}$ is contained in a finite union of translates of algebraic subgroups $\mathbf{u}_{1} H_{1} \cup \cdots \cup \mathbf{u}_{t} H_{t}$, where

$$
\begin{aligned}
& \mathbf{u}_{i} \in \bar{\Gamma}, H_{i} \text { algebraic subgroup of } \mathbb{G}_{m}^{N}(\overline{\mathbb{Q}}), \\
& \mathbf{u}_{i} H_{i} \subseteq X \text { for } i=1, \ldots, t .
\end{aligned}
$$

A RESULT FOR CYLINDERS

Define the cylinder with radius ε around $\bar{\Gamma}$ by $\bar{\Gamma}_{\varepsilon}:=\left\{\mathbf{x}=\mathbf{y} \cdot \mathbf{z}: \mathbf{y} \in \bar{\Gamma}, \mathbf{z} \in \mathbb{G}_{m}^{N}(\overline{\mathbb{Q}}), \widehat{h}(\mathbf{z})<\varepsilon\right\}$.

Theorem B. (Poonen, 1998)

There is $\varepsilon_{0}=\varepsilon_{0}(N, \operatorname{deg} X)>0$ (effectively computable) such that $X \cap \bar{\Gamma}_{\varepsilon_{0}}$ is contained in a finite union of translates of algebraic subgroups $\mathbf{u}_{1} H_{1} \cup \cdots \cup \mathbf{u}_{t} H_{t}$ of $\mathbb{G}_{m}^{N}(\overline{\mathbb{Q}})$, where

$$
\mathbf{u}_{i} \in \bar{\Gamma}_{\varepsilon_{0}}, \mathbf{u}_{i} H_{i} \subseteq X \text { for } i=1, \ldots, t .
$$

Let X^{exc} denote the union of all translates $\mathbf{u} H$ such that $\mathbf{u} \in X$ and H is an alg. subgroup of $\mathbb{G}_{m}^{N}(\overline{\mathbb{Q}})$ of dimension >0 with $\mathbf{u} H \subseteq X$. Put $X^{0}:=X \backslash X^{\mathrm{exc}}$.

Corollary. The set $X^{0} \cap \bar{\Gamma}_{\varepsilon_{0}}$ is finite.

A RESULT FOR CONES

Define the truncated cone around $\bar{\Gamma}$ by
$\mathcal{C}(\bar{\Gamma}, \varepsilon):=\left\{\mathbf{x}=\mathrm{y} \cdot \mathrm{z}: \mathrm{y} \in \bar{\Gamma}, \mathrm{z} \in \mathbb{G}_{m}^{N}(\overline{\mathbb{Q}})\right.$,

$$
\widehat{h}(\mathbf{z})<\varepsilon(1+\widehat{h}(\mathrm{x}))\} .
$$

Theorem C. (Ev.; Rémond, 2002)

There is $\varepsilon_{1}=\varepsilon_{1}(N, X, \Gamma)>0$ such that the set $X^{0} \cap \mathcal{C}\left(\bar{\Gamma}, \varepsilon_{1}\right)$ is finite.

Remarks.

1) There are varieties X and groups Γ such that for any $\varepsilon>0$, the intersection $X \cap \mathcal{C}(\bar{\Gamma}, \varepsilon)$ is not contained in a finite union of translates $\mathbf{u}_{i} H_{i} \subset X$.
2) Rémond proved that the dependence of ε_{1} on X, Γ is necessary.
3) In general, from the proof ε_{1} can not be computed effectively.

EFFECTIVITY

For some limited class of varieties X, we obtained effective versions of Theorems A, B, C.

In these versions we give:

- explicit expressions for $\varepsilon_{0}, \varepsilon_{1}$;
- explicit upper bounds, in terms of a set of defining equations for X and a basis for Γ, for the heights $\widehat{h}\left(\mathbf{u}_{i}\right)$ and degrees $\left[\mathbb{Q}\left(\mathbf{u}_{i}\right): \mathbb{Q}\right]$ for the translates $\mathbf{u}_{1} H_{1}, \ldots, \mathbf{u}_{t} H_{t} \subset X$ occurring in Thms. A, B or for the heights $\widehat{h}(x)$ and degrees $[\mathbb{Q}(x): \mathbb{Q}]$ of the solutions $\mathrm{x} \in X^{0} \cap \mathcal{C}\left(\bar{\Gamma}, \varepsilon_{1}\right)$ in Thm. C.

These data suffice to determine effectively in principle the translates $\mathbf{u}_{i} H_{i}$ in Thms. A, B or the solutions x in Thm. C .

CURVES IN $\mathbb{G}_{m}^{2}(\overline{\mathbb{Q}})$

Let $N=2$, let $f \in \overline{\mathbb{Q}}[X, Y]$ be a non-zero, irreducible polynomial not of the shape $a X^{m}-b Y^{n}$ or $a X^{m} Y^{n}-b$, and

$$
X=\left\{\mathbf{x}=(x, y) \in \mathbb{G}_{m}^{2}(\overline{\mathbb{Q}}): f(x, y)=0\right\}
$$

(i.e., X is not a translate of an algebraic subgroup).

Put
$h(f):=\max (1$, heights of the coeff. of $f)$, $\delta:=\operatorname{deg}_{X} f+\operatorname{deg}_{Y} f$.

Let Γ be a free subgroup of $\mathbb{G}_{m}^{2}(\overline{\mathbb{Q}})$ with basis $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}\right\}$. Put

$$
\begin{aligned}
h() & :=\max \left(1, \widehat{h}\left(\mathrm{v}_{1}\right), \ldots, \widehat{h}\left(\mathbf{v}_{r}\right)\right), \\
d & :=[\mathbb{Q}(\ulcorner): \mathbb{Q}], \\
C() & :=\exp (50(r+1) d \cdot h(\ulcorner)), \\
K & :=\mathbb{Q}(\Gamma, \text { coeff. of } f) .
\end{aligned}
$$

EFFECTIVE RESULTS FOR CURVES

Theorem 1. (BEGP)

Let $\varepsilon_{0}:=\left(2^{48} \delta(\log \delta)^{5}\right)^{-1}$.
Then for every $\mathrm{x} \in X \cap \bar{\Gamma}_{\varepsilon_{0}}$ we have

$$
\begin{aligned}
\hat{h}(\mathrm{x}) & \leqslant C(\Gamma)^{\delta^{2}} \cdot h(f), \\
{[K(\mathrm{x}): K] } & \leqslant 2^{50} \delta^{2}(\log \delta)^{6} .
\end{aligned}
$$

Theorem 2. (BEGP)
Let $\varepsilon_{1}:=\left(2^{48} \delta(\log \delta)^{5} \cdot C(\Gamma)^{\delta^{2}} h(f)\right)^{-1}$.
Then for every $\mathrm{x} \in X \cap \mathcal{C}\left(\bar{\Gamma}, \varepsilon_{1}\right)$ we have

$$
\begin{aligned}
\hat{h}(\mathrm{x}) & \leqslant C(\Gamma)^{\delta^{2}} \cdot h(f), \\
{[K(\mathrm{x}): K] } & \leqslant 2^{50} \delta^{2}(\log \delta)^{6} .
\end{aligned}
$$

THE ESTIMATE FOR $\widehat{h}(\mathbf{x})$

Step 1. Estimate $\widehat{h}(\mathbf{x})$ for $\mathbf{x} \in X \cap \Gamma$. Use an idea of Bombieri and Gubler ("Heights in Diophantine Geometry") and lower bounds for linear forms in (ordinary and p-adic) logarithms to obtain

$$
\widehat{h}(\mathrm{x}) \leqslant C_{1}(\Gamma)^{\delta^{2}} h(f)
$$

Step 2. Reduce Thms. 1, 2 to Step 1.
For instance, in the case of Thm. 2, let $x \in$ $X \cap \mathcal{C}\left(\bar{\Gamma}, \varepsilon_{1}\right)$. Then $\mathbf{x}=\mathbf{y} \cdot \mathbf{z}$ with

$$
\mathbf{y} \in \bar{\Gamma}, \quad \widehat{h}(\mathbf{z})<\varepsilon_{1}(1+\widehat{h}(\mathbf{x}))
$$

Choose $\mathbf{y}^{\prime} \in \Gamma$ with minimal distance to \mathbf{y}. This gives $\mathbf{x}=\mathrm{y}^{\prime} \cdot \mathrm{z}^{\prime}$ with

$$
\mathbf{y}^{\prime} \in \Gamma, \quad \widehat{h}\left(\mathbf{z}^{\prime}\right) \leqslant C_{2}(\Gamma)+\varepsilon_{1} \widehat{h}(\mathbf{x})
$$

Apply Step 1 to $\mathbf{y}^{\prime} \in \mathbf{z}^{\prime-1} X \cap \Gamma$. This gives $\widehat{h}\left(\mathbf{y}^{\prime}\right) \leqslant C_{1}(\Gamma)^{\delta^{2}}\left(h(f)+\delta h\left(\mathbf{z}^{\prime}\right)\right)$ and thus
$\widehat{h}(\mathbf{x}) \leqslant \widehat{h}\left(\mathbf{y}^{\prime}\right)+\widehat{h}\left(\mathbf{z}^{\prime}\right) \leqslant \cdots+\theta \widehat{h}(\mathbf{x})$ with $\theta<1$.

THE ESTIMATE FOR $[K(\mathrm{x}): K]$ (I)

We use the following explicit Bogomolov type result.

Theorem. (Pontreau)

Let $X \subset \mathbb{G}_{m}^{2}(\overline{\mathbb{Q}})$ be a curve given by $f(x, y)=$ 0 , where $f \in \overline{\mathbb{Q}}[X, Y]$ is an irreducible polynomial not of the form $a X^{m}-b Y^{n}$ or $a X^{m} Y^{n}-b$. Let $\delta:=\operatorname{deg}_{X} f+\operatorname{deg}_{Y} f$. Put

$$
A:=2^{47} \delta(\log \delta)^{5}, \quad B:=2^{50} \delta^{2}(\log \delta)^{6} .
$$

Then there are at most B points $\mathrm{x} \in X$ with $\widehat{h}(\mathrm{x}) \leqslant A^{-1}$.

There are similar such results for arbitrary varieties $X \subset \mathbb{G}_{m}^{N}(\overline{\mathbb{Q}})$, due to Zhang, Zagier, Bombieri\& Zannier, Schmidt, David, Philippon, Amoroso, Viada.

THE ESTIMATE FOR $[K(x): K]$ (II)

For instance, let $\mathbf{x} \in X \cap \mathcal{C}\left(\bar{\Gamma}, \varepsilon_{1}\right)$. Then $\mathbf{x}=$ $\mathbf{y} \cdot \mathbf{z}$ with $\mathbf{y} \in \bar{\Gamma}, \widehat{h}(\mathbf{z})<\varepsilon_{1}(1+\widehat{h}(\mathbf{x}))$.

Note that $[K(\mathrm{x}): K]$ equals the number of distinct points among $\mathrm{x}_{\sigma}:=\sigma(\mathrm{x}) \cdot \mathrm{x}^{-1}$ where $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}} / K)$.

On the one hand, $\sigma(\mathrm{x}) \in X$, hence $\mathrm{x}_{\sigma} \in \mathrm{x}^{-1} X$.

On the other hand, since $\sigma(\mathbf{y}) \mathbf{y}^{-1}$ is a torsion point, and by our upper bound for $\widehat{h}(\mathrm{x})$,

$$
\widehat{h}\left(\mathbf{x}_{\sigma}\right)=\widehat{h}\left(\sigma(\mathbf{z}) \mathbf{z}^{-1}\right) \leqslant 2 \widehat{h}(\mathbf{z})<A^{-1} .
$$

So the number of distinct points \mathbf{x}_{σ}, and hence [$K(\mathrm{x}): K]$, is at most B.

HIGHER DIMENSIONAL VARIETIES

We obtained effective versions of Theorems A, B, C for varieties $X \subset \mathbb{G}_{m}^{N}(\overline{\mathbb{Q}})$ given by equations

$$
\begin{aligned}
& f_{1}(\mathrm{x})=0, \ldots, f_{m}(\mathrm{x})=0, \text { with } \\
& f_{1}, \ldots, f_{m} \in \overline{\mathbb{Q}}\left[X_{1}, \ldots, X_{N}\right] \\
& f_{1}, \ldots, f_{m} \text { binomials or trinomials. }
\end{aligned}
$$

Example: Grassmann type varieties:

$$
\begin{aligned}
& N=\binom{n}{k} \quad(n \geqslant 4,2 \leqslant k \leqslant n-2) \\
& X=\left\{\mathbf{x} \in \mathbb{G}_{m}^{N}(\overline{\mathbb{Q}}): \exists \mathbf{y}_{1}, \ldots, \mathbf{y}_{k} \in \overline{\mathbb{Q}}^{n}\right. \\
&\left.\quad \text { such that } \mathbf{x}=\mathbf{y}_{1} \wedge \cdots \wedge \mathbf{y}_{k}\right\} .
\end{aligned}
$$

Main ingredients: lower bounds for linear forms in logarithms; explicit Bogomolov type results.

A LEMMA

In addition, we needed the following lemma which seems to be non-trivial.

Lemma. (BEGP)

Let $\varepsilon>0$, let Γ a free subgroup of $\mathbb{G}_{m}^{N}(\overline{\mathbb{Q}})$ of finite rank, let H be a positive dimensional algebraic subgroup of $\mathbb{G}_{m}^{N}(\overline{\mathbb{Q}})$, and let $\mathbf{u} \in \mathbb{G}_{m}^{N}(\overline{\mathbb{Q}})$.
If $\mathbf{u} H \cap \bar{\Gamma}_{\varepsilon} \neq \emptyset$, there exists $\mathbf{u}^{\prime} \in \mathbf{u} H \cap \bar{\Gamma}_{\varepsilon}$, with both $\widehat{h}\left(\mathbf{u}^{\prime}\right),\left[\mathbb{Q}\left(\mathbf{u}^{\prime}\right): \mathbb{Q}\right]$ bounded above by effectively computable numbers depending on $\varepsilon, \Gamma, \mathbf{u}, H$.

