
ON THE

SUBSPACE THEOREM

Jan-Hendrik Evertse (Leiden)

Winter school on

Explicit Methods in Number Theory

Debrecen, January 30, 2009

1



DIRICHLET’S THEOREM

Rational numbers are represented as x/y, where

x, y are integers such that gcd(x, y) = 1,

y > 0.

Theorem 1 (Dirichlet, 1842)

Let α be an irrational real number. Then

there are infinitely many rational numbers x/y

such that

|α− (x/y)| 6 y−2.
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ROTH’S THEOREM

Theorem 2 (Roth, 1955)

Let α be a real algebraic number. Let δ >

0. Then there are only finitely many rational

numbers x/y such that

|α− (x/y)| 6 y−2−δ.

This result is the outgrow of earlier work of

Thue (1909), Siegel (1921), Dyson, Gel’fond

(1949).

3



THE SUBSPACE THEOREM

For x = (x1, . . . , xn) ∈ Zn define

‖x‖ := max(|x1|, . . . , |xn|).

Let

Li = αi1X1 + · · ·+ αinXn (i = 1, . . . , n)

be n linear forms with (real or complex)
algebraic coefficients.

Suppose that L1, . . . , Ln are linearly indepen-
dent, i.e., det(αij) 6= 0.

Theorem 3 (Subspace Theorem,
W.M. Schmidt, 1972)
For every δ > 0, there are a finite number
T1, . . . , Tt of proper linear subspaces of Qn

such that the set of solutions of the inequality

(1) |L1(x) · · ·Ln(x)| 6 ‖x‖−δ in x ∈ Zn

is contained in T1 ∪ · · · ∪ Tt.
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SUBSPACE THM =⇒ ROTH’S THM

Consider

(∗) |α− (x/y)| 6 y−2−δ in x/y ∈ Q
where α is algebraic and δ > 0. Then

|y(x− αy)| 6 y−δ � max(|x|, |y|)−δ.

By the Subspace Theorem, the solutions

(x, y) ∈ Z2 lie in finitely many one-dimensional

proper linear subspaces of Q2.

Each of these subspaces gives rise to one

rational number x/y.

Hence (*) has only finitely many solutions.
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AN EXAMPLE WITH INFINITELY MANY
SOLUTIONS

Let 0 < δ < 1 and consider
(2)
|(x1+

√
2x3)(x1−

√
2x3)(x2−

√
2x3)| 6 ‖x‖−δ .

Inequality (2) has infinitely many solutions
x = (x1, x2, x3) ∈ Z3 in the following four sub-
spaces:

• x1 = x2 (e.g., with x1 = x2, x1x3 > 0 and
satisfying the Pell equation |x2

1 − 2x2
3| = 1);

• x1 = −x2, (e.g., with x1 = −x3, x1x3 6 0,
|x2

1 − 2x2
3| = 1);

• x1 = x3 = 0;

• x2 = x3 = 0.

Exercise. Inequality (2) has only finitely many
solutions outside these four subspaces, each
satisfying ‖x‖ 6 101/δ.
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REMARKS

1) In general, the available methods of proof

of the Subspace Theorem are ineffective in

that they do not provide an algorithm to de-

termine the subspaces T1, . . . , Tt containing

the solutions of

|L1(x) · · ·Ln(x)| 6 ‖x‖−δ.

2) It is possible to estimate from above the

number t of subspaces. This leads to quan-

titative versions of the Subspace Theorem.
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VOJTA’S REFINEMENT

Let again L1, . . . , Ln be linearly independent

linear forms in n variables with algebraic

coefficients and δ > 0. Consider again the

inequality

(1) |L1(x) · · ·Ln(x)| 6 ‖x‖−δ in x ∈ Zn.

Theorem 4 (Vojta, 1989)

There is a finite, effectively determinable col-

lection U1, . . . , Ur of proper linear subspaces of

Qn, independent of δ, such that (1) has only

finitely many solutions outside U1 ∪ · · · ∪ Ur.

Remark. With Vojta’s method of proof it is

not possible to determine the solutions out-

side U1 ∪ · · · ∪ Ur effectively.

Nor is it possible to estimate from above the

number of solutions outside U1 ∪ · · · ∪ Ur.
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ABSOLUTE VALUES ON Q

For a ∈ Q we define |a|∞ := |a| and

|a|p :=

{
0 if a = 0;

p−r if a = prb/c where b, c ∈ Z, p - bc

for every prime number p.

We fix an algebraic closure Q of Q.

For every p ∈ {∞} ∪ {prime numbers}, we
choose an extension of | · |p to Q.

Thus, the absolute values | · |p are all defined
on Q.

Product Formula:

Let a ∈ Q \ {0} composed of primes p1, . . . , pt

and S = {∞, p1, . . . , pt}. Then∏
p∈S

|a|p = 1.
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THE P-ADIC SUBSPACE THEOREM

Theorem 5 (Schlickewei, 1977)

Let S = {∞, p1, . . . , pt}, n > 2, δ > 0.

For each p ∈ S, let L1p, . . . , Lnp be n linearly

independent linear forms in n variables with

coefficients in Q.

Then the set of solutions of

(3)∏
p∈S

|L1p(x) · · ·Lnp(x)|p 6 ‖x‖−δ in x ∈ Zn

is contained in a union of finitely many proper

linear subspaces of Qn.

There is a more general result in which the

solutions x have their coordinates in a given

algebraic number field instead of Z (Schmidt,

Schlickewei).
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THE QUANTITATIVE SUBSPACE
THEOREM: HISTORY

Quantitative versions of the Subspace Theo-
rem give an explicit upper bound for the num-
ber of subspaces.

In 1989, Schmidt gave the first quantitative
version of his basic Subspace Theorem (The-
orem 3).

In 1991, Schlickewei generalized this to the
p-adic case.

There were subsequent improvements and gen-
eralizations by Ev. (1995) and Schlickewei
and Ev. (2002).

The result of Schlickewei and Ev. was re-
cently improved by Ferretti and Ev. (in prepa-
ration).
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Quantitative versions of the p-adic Subspace

Theorem are important tools to derive good

explicit upper bounds for the number of solu-

tions of Diophantine equations from several

classes.

There are recent applications by Adamczewski,

Bugeaud et.al. to complexity measures of

expansions of algebraic numbers, and to tran-

scendence measures.
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SPLITTING THE PRODUCT

Let S = {∞, p1, . . . , pt}.

The quantitative version of the Subspace The-

orem of Ferretti and Ev. does not give an

explicit upper bound for the number of

subspaces containing the solutions of

(3)
∏
p∈S

|L1p(x) · · ·Lnp(x)|p 6 ‖x‖−δ

but instead for the number of subspaces con-

taining the solutions of a system of inequali-

ties

(4) |Lip(x)|p 6 ‖x‖cip (p ∈ S, i = 1, . . . , n)

in x ∈ Zn, where the cip are fixed reals with

∑
p∈S

n∑
i=1

cip < 0.
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REMARKS

One can reduce inequality (3) to a finite num-

ber of systems of type (4).

For a system (4) we have a much sharper

upper bound for the number of subspaces of

solutions than for an inequality (3).

In many Diophantine applications one obtains

sharper results by making a reduction to sys-

tems (4) instead of inequalities of type (3).
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THE QUANTITATIVE P-ADIC

SUBSPACE THEOREM

Let S = {∞, p1, . . . , pt}.

Let Lip, cip (p ∈ S, i = 1, . . . , n) be linear

forms in n variables with coefficients in Q,

resp. reals satisfying

|det(L1p, . . . , Lnp)|p = 1 for p ∈ S,∑
p∈S

n∑
i=1

cip 6 −δ with 0 < δ < 1.
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Theorem 6 (Ferretti, Ev., 201?)

The set of solutions x ∈ Zn of

(4) |Lip(x)|p 6 ‖x‖cip (p ∈ S, i = 1, . . . , n)

is contained in a union of at most

C({Lip}) · cn
1δ−3(log δ−1)2

proper linear subspaces of Qn.

Here c1 is an absolute constant, and C({Lip})
depends only on the set of linear forms {Lip :

p ∈ S, i = 1, . . . , n} and is independent of

p1, . . . , pt and the cip.

Previously, Schlickewei and Ev. (2002) had

obtained a bound

C({Lip}) · cn2
δ−n−4.
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AN APPLICATION

Let a0, . . . , an be non-zero integers, and

B0, . . . , Bn pairwise coprime integers > 2.

Consider the equation

a0B
z1
0 + · · ·+ anBzn

n = 0(5)

in z0, . . . , zn ∈ Z>0.

Theorem 7

Eq. (5) has at most

(c2n)c3n2

solutions, where c2, c3 are absolute constants,

independent of a0, . . . , an, B0, . . . , Bn.
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A QUALITATIVE PROOF (I)

Let S = {∞, p1, . . . , pt}, where p1, . . . , pt are

the primes occurring in the factorizations of

a0, . . . , an, B0, . . . , Bn.

For a solution (z0, . . . , zn) of (5), write

xi := aiB
zi
i (i = 0, . . . , n).

Notice that x1, . . . , xn and x0 = −x1− · · ·−xn

are linear forms in x = (x1, . . . , xn).

For p ∈ S, choose ip ∈ {0, . . . , n} for which

|xip|p is maximal. Thus,

|xi∞|∞ = ‖x‖, |xip|p � 1 (p = p1, . . . , pt).

Then using
∏

p∈S |xi|p = 1 for i = 0, . . . , n we

infer ∏
p∈S

n∏
i=0
i6=ip

|xi|p � ‖x‖−1.
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A QUALITATIVE PROOF (II)

By the p-adic Subspace Theorem, the vectors

x = (x1, . . . , xn) lie in finitely many proper

linear subspaces of Qn.

Consider the solutions x in one of these

subspaces. Then we can eliminate one of the

variables and make a reduction to an equation

in fewer variables.

By induction, (5) has only finitely many

solutions.
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DEDUCTION OF THE UPPER BOUND

It can be shown that there is a collection of
at most (c4n)c5n systems of type (4) with

δ =
1

2
, Lip ∈

X1, . . . , Xn, −
n∑

i=1

Xi

 ∀i, p

such that each vector x = (a1B
z1
1 , . . . , anBzn

n )
corresponding to a solution (z0, . . . , zn) of (5)
satisfies one of these systems.

By the QPST, the vectors x satisfying a sin-
gle system lie in at most cn

6 proper linear sub-
spaces of Qn.

Thus, the whole set of vectors x is contained
in at most (c7n)c8n proper linear subspaces of
Qn.

By induction, the total number of solutions
of (5) is at most (c2n)c3n2

.
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A MORE GENERAL RESULT (I)

Let

Γ := {αz1
1 · · ·αzr

r : z1, . . . , zr ∈ Z}

where α1, . . . , αr are non-zero complex num-

bers.

Define the division group of Γ by

Γ := {x ∈ C∗ : ∃m ∈ Z>0 with xm ∈ Γ}

=
{

m
√

α
z1
1 · · ·αzr

r : m ∈ Z>0, z1, . . . , zr ∈ Z
}

.

Theorem 8 (Beukers, Schlickewei, 1996)

Let a1, a2 be non-zero complex numbers. Then

the equation

a1x1 + a2x2 = 1 in x1, x2 ∈ Γ

has at most 216(r+1) solutions.
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DEGENERATE SOLUTIONS

Now let n > 3 and consider

(6) a1x1 + · · ·+ anxn = 1 in x1, . . . , xn ∈ Γ.

A solution (x1, . . . , xn) of (6) is called degen-

erate if there is a vanishing subsum∑
i∈I

aixi = 0 for some I ⊂ {1, . . . , n}

and non-degenerate otherwise.

From such a degenerate solution (x1, . . . , xn)

we may construct infinitely many other solu-

tions (x′1, . . . , x′n) of the shape

x′i = x · xi (i ∈ I), x′i = xi (i /∈ I)

with x ∈ Γ.
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A MORE GENERAL RESULT (II)

Theorem 9 (Schlickewei, Schmidt, Ev.,

2002)

Let Γ = {αz1
1 · · ·αzr

r : z1, . . . , zn ∈ Z} where

α1, . . . , αn ∈ C∗, denote by Γ the division group

of Γ, and let n > 3, a1, . . . , an ∈ C∗.
Then the equation

a1x1 + · · ·+ anxn = 1 in x1, . . . , xn in Γ

has at most c(n, r) non-degenerate solutions.

Schlickewei, Schmidt, Ev. proved this with

c(n, r) = e(6n)4n(r+1).

This was very recently improved by Amoroso

and Viada to c(n, r) = (9n)8n5(r+1).
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INGREDIENTS OF THE PROOF

• A specialization argument from algebraic

geometry, to make a reduction to the case

that the generators α1, . . . , αr of Γ are

algebraic.

• A strong general quantitative version of the

Subspace Theorem, where the unknowns may

be algebraic numbers instead of rational in-

tegers (Schlickewei, Ev., 2002).

• Upper bounds for the number of algebraic

points of small height on an algebraic variety.

This was a development which started with S.

Zhang (1996). Recently Amoroso and Viada

obtained a new sharpening leading to their

improvement of c(n, r).
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A TRANSCENDENCE RESULT

We consider gap series

ξ =
∞∑

k=1

b−nk

where b > 2 and 0 < n1 < n2 < n3 < · · · are

integers.

Theorem 10 (Schneider, 1957)

Suppose

lim sup
k→∞

nk+1

nk
> 1.

Then ξ is transcendental.
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AN IMPROVEMENT

We consider again numbers ξ =
∑∞

k=1 b−nk

with integers b > 2, 0 < n1 < n2 < · · · .

Theorem 11 (Bugeaud, Ev., 2008)

Suppose that nk+1/nk ↓ 1 monotonically.

Further suppose that for some ε > 0 there

are infinitely many k such that

nk+1

nk
> 1 +

1

k(1/3)−ε
.

Then ξ is transcendental.

Example.
∞∑

k=1

b−2[kη]
with η > 2/3.
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PROOF OF THEOREM 11 (I)

Assume that ξ is algebraic.

Fix δ with 0 < δ < 1, and consider the set

A(δ) :=

{
k :

nk+1

nk
> 1 + δ

}
.

Let k ∈ A(δ). Define

xk := bnk, yk := bnk

k∑
i=1

b−ni, xk := (xk, yk).

Then xk, yk ∈ Z>0, gcd(xk, yk) = 1,

‖xk‖ � bnk and

|xkξ − yk| = bnk

∞∑
i=k+1

b−ni

� bnk−nk+1 = (bnk)−δ � ‖xk‖−δ.
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PROOF OF THEOREM 11 (II)

Let S = {∞, p1, . . . , pt}, where p1, . . . , pt are

the primes dividing b. Then

(7) |xkξ − yk|∞ � ‖xk‖−δ, |xk|∞ 6 ‖xk‖,

|xk|p � ‖xk‖log |b|p/ log b, |yk|p 6 1

for p = p1, . . . , pt.

The sum of the exponents is −δ.

So by the QPST, the solutions of (7) lie in

� δ−3(log δ−1)2 one-dimensional subspaces

of Q2, each of which gives rise to at most

one value of k.
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PROOF OF THEOREM 11 (III)

So for all δ with 0 < δ < 1,

#A(δ) = #

{
k :

nk+1

nk
> 1 + δ

}
� δ−3(log δ−1)2.

Hence

nk+1

nk
− 1 �

(log k)2/3

k1/3

for every sufficiently large k, contrary to our

assumption.
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COMPLEXITY OF ALGEBRAIC

NUMBERS (I)

Let ξ be an irrational algebraic number with

0 < ξ < 1 and b an integer > 2. Consider the

b-ary expansion of ξ,

ξ =
∞∑

n=1

anb−n with an ∈ {0, . . . , b− 1}.

We measure the complexity of ξ by estimating

its number of digit changes up to N ,

nbdc(ξ, b;N) := #{n 6 N : an+1 6= an}.
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COMPLEXITY OF ALGEBRAIC

NUMBERS (II)

Assuming that the digits of the b-ary expan-

sion of an irrational real algebraic number ξ

behave like a random sequence, one should

expect nbdc(ξ, b;N) to be linear in N .

Theorem 12 (Bugeaud, Ev., 2008)

For any real, irrational algebraic number ξ

and any integer b > 2 we have

nbdc(ξ, b;N) �ξ,b
(logN)3/2

log logN
as N →∞.

The proof is similar to that of the previous

transcendence result.
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