The Subspace Theorem and twisted heights

Jan-Hendrik Evertse Universiteit Leiden evertse@math.leidenuniv.nl

Heights 2011, Tossa de Mar April 29, 2011

Theorem (Schmidt, 1972)

Let L_0, \ldots, L_n be linearly independent linear forms in n + 1variables with real or complex algebraic coefficients and let a_0, \ldots, a_n be reals with $a_0 + \cdots + a_n > 0$. Then the set of solutions $\mathbf{x} = (x_0, \ldots, x_n) \in \mathbb{Z}^{n+1}$ of the system

(1)
$$|L_0(\mathbf{x})| \leq \|\mathbf{x}\|^{-a_0}, \dots, |L_n(\mathbf{x})| \leq \|\mathbf{x}\|^{-a_n} \ (\|\mathbf{x}\| = \max_{0 \leq i \leq n} |x_i|)$$

is contained in a finite union of proper linear subspaces of \mathbb{Q}^{n+1} .

Theorem (Schmidt, 1972)

Let L_0, \ldots, L_n be linearly independent linear forms in n + 1variables with real or complex algebraic coefficients and let a_0, \ldots, a_n be reals with $a_0 + \cdots + a_n > 0$. Then the set of solutions $\mathbf{x} = (x_0, \ldots, x_n) \in \mathbb{Z}^{n+1}$ of the system

$$(1) \quad |\mathcal{L}_{0}(\mathbf{x})| \leqslant \|\mathbf{x}\|^{-a_{0}}, \ldots, |\mathcal{L}_{n}(\mathbf{x})| \leqslant \|\mathbf{x}\|^{-a_{n}} \quad (\|\mathbf{x}\| = \max_{0 \leqslant i \leqslant n} |x_{i}|)$$

is contained in a finite union of proper linear subspaces of \mathbb{Q}^{n+1} .

Consider the class of convex bodies parametrized by Q,

$$B(Q):=\{\mathbf{y}\in \mathbb{R}^{n+1}: \max_{0\leqslant i\leqslant n}|L_i(\mathbf{y})|Q^{\mathbf{a}_i}\leqslant 1\}.$$

If $\mathbf{x} \in \mathbb{Z}^{n+1}$ satisfies (1) then $\mathbf{x} \in B(Q)$ with $Q = \|\mathbf{x}\|$. The Subspace Theorem follows from a study of the successive minima of the bodies B(Q).

Notation

 $\overline{\mathbb{Q}}$ is an algebraic closure of \mathbb{Q} .

 $K \subset \overline{\mathbb{Q}}$ is an algebraic number field, M_K its set of places.

Choose normalized absolute values $|\cdot|_v$ ($v \in M_K$) on K such that

$$|\cdot|_{v}$$
 extends $|\cdot|^{[K_{v}:\mathbb{R}]/[K:\mathbb{Q}]}$ if v is infinite,
 $|\cdot|_{v}$ extends $|\cdot|_{p}^{[K_{v}:\mathbb{Q}_{p}]/[K:\mathbb{Q}]}$ if v is finite, $v|p$, p prime

Notation

 $\overline{\mathbb{Q}}$ is an algebraic closure of \mathbb{Q} .

 $K \subset \overline{\mathbb{Q}}$ is an algebraic number field, M_K its set of places.

Choose normalized absolute values $|\cdot|_v$ ($v \in M_K$) on K such that

$$|\cdot|_{v}$$
 extends $|\cdot|^{[K_{v}:\mathbb{R}]/[K:\mathbb{Q}]}$ if v is infinite,
 $|\cdot|_{v}$ extends $|\cdot|_{p}^{[K_{v}:\mathbb{Q}_{p}]/[K:\mathbb{Q}]}$ if v is finite, $v|p, p$ prime.

For
$$\mathbf{x} = (x_0, \dots, x_n) \in \mathbb{P}^n(K)$$
 define
 $\|\mathbf{x}\|_v := \max(|x_0|_v, \dots, |x_n|_v) \quad (v \in M_K),$
 $H(\mathbf{x}) := \prod_{v \in M_K} \|\mathbf{x}\|_v.$

 $H(\mathbf{x})$ is extended to $\mathbb{P}^n(\overline{\mathbb{Q}})$ in the usual way.

The height H(F) of $F \in \overline{\mathbb{Q}}[X_0, \ldots, X_n]$ is the height of its vector of coefficients.

The Subspace Theorem over number fields

Let S be a finite set of places of K.

For $v \in S$, let L_{0v}, \ldots, L_{nv} be linearly independent linear forms in X_0, \ldots, X_n with coefficients in K and let c_{0v}, \ldots, c_{nv} be non-negative reals.

Consider the system of inequalities

(2)
$$\frac{|L_{i\nu}(\mathbf{x})|_{\nu}}{\|\mathbf{x}\|_{\nu}} \leqslant H(\mathbf{x})^{-c_{i\nu}} \ (\nu \in S, i = 0, ..., n) \text{ in } \mathbf{x} \in \mathbb{P}^{n}(K).$$

The Subspace Theorem over number fields

Let S be a finite set of places of K.

For $v \in S$, let L_{0v}, \ldots, L_{nv} be linearly independent linear forms in X_0, \ldots, X_n with coefficients in K and let c_{0v}, \ldots, c_{nv} be non-negative reals.

Consider the system of inequalities

(2)
$$\frac{|L_{i\nu}(\mathbf{x})|_{\nu}}{\|\mathbf{x}\|_{\nu}} \leqslant H(\mathbf{x})^{-c_{i\nu}} \ (\nu \in S, i = 0, ..., n) \text{ in } \mathbf{x} \in \mathbb{P}^{n}(K).$$

Theorem (Schmidt, Schlickewei, 1975–1977) Assume that

$$\sum_{\nu\in S}\sum_{i=0}^n c_{i\nu} > n+1.$$

Then the set of solutions of (2) is contained in a finite union of proper linear subspaces of $\mathbb{P}^n(K)$.

Theorem (Vojta, Schmidt, Faltings-Wüstholz, 1989–1994) Assume again that

$$\sum_{\nu\in S}\sum_{i=0}^n c_{i\nu}>n+1.$$

Then there is a proper linear subspace T of $\mathbb{P}^{n}(K)$ such that the system

$$\frac{|L_{i\nu}(\mathbf{x})|_{\nu}}{\|\mathbf{x}\|_{\nu}} \leqslant H(\mathbf{x})^{-c_{i\nu}} \ (\nu \in S, \ i = 0, \dots, n) \ \text{ in } \mathbf{x} \in \mathbb{P}^n(K)$$

has only finitely many solutions outside T.

Theorem (Vojta, Schmidt, Faltings-Wüstholz, 1989–1994) Assume again that

$$\sum_{\nu\in S}\sum_{i=0}^n c_{i\nu} > n+1.$$

Then there is a proper linear subspace T of $\mathbb{P}^{n}(K)$ such that the system

$$\frac{|L_{iv}(\mathbf{x})|_{v}}{\|\mathbf{x}\|_{v}} \leqslant H(\mathbf{x})^{-c_{iv}} \ (v \in S, \ i = 0, \dots, n) \ \text{ in } \mathbf{x} \in \mathbb{P}^{n}(K)$$

has only finitely many solutions outside T.

Moreover, T can be determined effectively, and T belongs to a finite collection independent of the c_{iv} .

For $\mathbf{x} \in \mathbb{P}^n(K)$, $Q \ge 1$, define

$$H_Q(\mathbf{x}) = \prod_{v \in S} \max_{0 \leqslant i \leqslant n} \left(|L_{iv}(\mathbf{x})|_v Q^{c_{iv}} \right) \cdot \prod_{v \in M_K \setminus S} \|\mathbf{x}\|_v.$$

Lemma

Let $\mathbf{x} \in \mathbb{P}^n(K)$ and $Q := H(\mathbf{x})$. If \mathbf{x} is a solution to

$$\frac{|L_{i\nu}(\mathbf{x})|_{\nu}}{\|\mathbf{x}\|_{\nu}} \leqslant H(\mathbf{x})^{-c_{i\nu}} \ (\nu \in S, i = 0, \dots, n)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

then $H_Q(\mathbf{x}) \leq Q$.

Theorem (Schlickewei, E., 2002)

Suppose that $\sum_{v \in S} \sum_{i=0}^{n} c_{iv} > n+1$. Then there are $Q_0 > 1$, and proper linear subspaces T_1, \ldots, T_t of $\mathbb{P}^n(K)$, such that the following holds:

for every $Q \ge Q_0$, there is $T_i \in \{T_1, \dots, T_t\}$ such that

 $\{\mathbf{x}\in\mathbb{P}^n(K): H_Q(\mathbf{x})\leqslant Q\}\subset T_i.$

Theorem (Schlickewei, E., 2002)

Suppose that $\sum_{v \in S} \sum_{i=0}^{n} c_{iv} > n+1$. Then there are $Q_0 > 1$, and proper linear subspaces T_1, \ldots, T_t of $\mathbb{P}^n(K)$, such that the following holds: for every $Q \ge Q_0$, there is $T_i \in \{T_1, \ldots, T_t\}$ such that

$$\{\mathbf{x}\in\mathbb{P}^n(K):\ H_Q(\mathbf{x})\leqslant Q\}\subset T_i.$$

Proof of the Subspace Theorem.

Pick a solution $\mathbf{x} \in \mathbb{P}^n(K)$ with $H(\mathbf{x}) \geqslant Q_0$ of

$$\frac{|L_{iv}(\mathbf{x})|_{v}}{\|\mathbf{x}\|_{v}} \leqslant H(\mathbf{x})^{-c_{iv}} \ (v \in S, i = 0, \ldots, n).$$

Then with $Q = H(\mathbf{x})$ we have $H_Q(\mathbf{x}) \leq Q$, hence $\mathbf{x} \in \bigcup_i T_i$.

Define $\lambda_i(Q)$ to be the minimum of all λ such that

$$\{\mathbf{x} \in \mathbb{P}^n(K) : H_Q(\mathbf{x}) \leqslant \lambda\}$$

contains *i* linearly independent points.

Then

$$0 < \lambda_1(Q) \leqslant \cdots \leqslant \lambda_{n+1}(Q) < \infty.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

We are interested in the behaviour of the $\lambda_i(Q)$ as $Q \to \infty$.

Let $\mathbf{c} = (c_{iv} : v \in S, i = 0, ..., n)$ be a tuple of non-negative reals.

For a linear subspace T of $\mathbb{P}^n(K)$ we define

$$w_v(T) := \max_A \sum_{i \in A} c_{iv} \ (v \in S), \quad w(T) := \sum_{v \in S} w_v(T)$$

where for $v \in S$ the maximum is taken over all subsets A of $\{0, \ldots, n\}$ such that the restrictions $L_{iv}|_{\mathcal{T}}$ $(i \in A)$ are linearly independent. Let

$$P(T) := \big(\dim T + 1, w(T)\big) \in \mathbb{R}^2.$$

Denote by $C(\mathbf{c})$ the convex hull of the points $P(T) = (\dim T + 1, w(T))$, for all linear subspaces T of $\mathbb{P}^{n}(K)$.

Lemma (Faltings-Wüstholz)

There exists a unique filtration

$$\emptyset = T_0 \underset{\neq}{\subseteq} T_1 \underset{\neq}{\subseteq} \cdots \underset{\neq}{\subseteq} T_t = \mathbb{P}^n(\overline{\mathbb{Q}})$$

of linear subspaces of $\mathbb{P}^{n}(K)$, such that the lower boundary of $C(\mathbf{c})$ is a concave polygon with vertices $P(T_0), \ldots, P(T_t)$.

An asymptotic result for the successive minima

Let $\emptyset = T_0 \underset{\neq}{\subseteq} T_1 \underset{\neq}{\subseteq} \cdots \underset{\neq}{\subseteq} T_t = \mathbb{P}^n(K)$ be the filtration of Faltings-Wüstholz. Put

$$\begin{aligned} d_i &:= \dim T_i + 1 \quad (i = 0, \dots, t), \\ s_i &:= \frac{w(T_i) - w(T_{i-1})}{\dim T_i - \dim T_{i-1}} \quad (i = 1, \dots, t) \\ (\text{the slope of the line segment from } P(T_{i-1}) \text{ to } P(T_i)). \end{aligned}$$

An asymptotic result for the successive minima

Let $\emptyset = T_0 \underset{\neq}{\subseteq} T_1 \underset{\neq}{\subseteq} \cdots \underset{\neq}{\subseteq} T_t = \mathbb{P}^n(K)$ be the filtration of Faltings-Wüstholz. Put

$$\begin{aligned} d_i &:= \dim T_i + 1 \quad (i = 0, \dots, t), \\ s_i &:= \frac{w(T_i) - w(T_{i-1})}{\dim T_i - \dim T_{i-1}} \quad (i = 1, \dots, t) \\ (\text{the slope of the line segment from } P(T_{i-1}) \text{ to } P(T_i)). \end{aligned}$$

Theorem (Schmidt, 1993, Faltings-Wüstholz, 1994; Ferretti, E.)

For every $\delta > 0$ there is $Q_1 = Q_1(\delta) > 1$ such that for $Q \ge Q_1$, $i = 1, \dots, t$,

$$egin{aligned} Q^{s_i-\delta} &\leqslant \lambda_{d_{i-1}+1}(Q) \leqslant \cdots \leqslant \lambda_{d_i}(Q) \leqslant Q^{s_i+\delta}; \ & \mathcal{H}_Q(\mathbf{x}) \geqslant Q^{s_i-\delta} ext{ for } \mathbf{x} \in \mathbb{P}^n(\mathcal{K}) \setminus \mathcal{T}_{i-1}. \end{aligned}$$

For a linear form L define H(L) to be the height of its coefficient vector.

For a linear subspace T of $\mathbb{P}^n(K)$, define $H(T) := H(\mathbf{a}_0 \wedge \cdots \wedge \mathbf{a}_m)$, where $\mathbf{a}_0, \dots, \mathbf{a}_m$ is any basis of T.

Lemma

Suppose that $H(L_{iv}) \leqslant H$ for $v \in S$, i = 0, ..., n. Then

$$H(T_i) \leqslant (\sqrt{n}H)^{4^n}$$
 $(i = 1, \ldots, t).$

Thus, the spaces T_i belong to a finite, effectively computable collection independent of the c_{iv} .

For a linear form L define H(L) to be the height of its coefficient vector.

For a linear subspace T of $\mathbb{P}^n(K)$, define $H(T) := H(\mathbf{a}_0 \wedge \cdots \wedge \mathbf{a}_m)$, where $\mathbf{a}_0, \dots, \mathbf{a}_m$ is any basis of T.

Lemma

Suppose that $H(L_{iv}) \leqslant H$ for $v \in S$, i = 0, ..., n. Then

$$H(T_i) \leqslant (\sqrt{n}H)^{4^n}$$
 $(i = 1, \ldots, t).$

Thus, the spaces T_i belong to a finite, effectively computable collection independent of the c_{iv} .

Open problem: To give more precise information about the spaces T_i .

Let $a_0, \ldots, a_n \in K^*$ and suppose that

$$\{L_{0\nu},\ldots,L_{n\nu}\}\subset \left\{X_0,\ldots,X_n,\sum_{i=0}^na_iX_i\right\}$$
 for $\nu\in S.$

Then

$$\mathcal{T}_i = \left\{ \mathbf{x} \in \mathbb{P}^n(\mathcal{K}) : \sum_{k \in A_{ij}} a_k x_k = 0 \ (j = 0, \dots, n - d_i) \right\}$$

where $d_i = \dim T_i + 1$, and $A_{i0}, \ldots, A_{i,n-d_i}$ are non-empty, pairwise disjoint subsets of $\{0, \ldots, n\}$.

Back to systems of inequalities

Consider again

(2)
$$\frac{|L_{iv}(\mathbf{x})|_{v}}{\|\mathbf{x}\|_{v}} \leq H(\mathbf{x})^{-c_{iv}} \ (v \in S, i = 0, ..., n) \quad \text{in } \mathbf{x} \in \mathbb{P}^{n}(K).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Assume again $c_{iv} \ge 0$, $\sum_{v \in S} \sum_{i=0}^{n} c_{iv} > n+1$.

Consider again

(2)
$$\frac{|L_{i\nu}(\mathbf{x})|_{\nu}}{\|\mathbf{x}\|_{\nu}} \leqslant H(\mathbf{x})^{-c_{i\nu}} \ (\nu \in S, i = 0, ..., n) \quad \text{ in } \mathbf{x} \in \mathbb{P}^{n}(K).$$

Assume again $c_{iv} \ge 0$, $\sum_{v \in S} \sum_{i=0}^{n} c_{iv} > n+1$.

Corollary

Let m be the smallest index such that $s_m > 1$. Then (2) has only finitely many solutions outside T_{m-1} .

Consider again

(2)
$$\frac{|L_{iv}(\mathbf{x})|_{v}}{\|\mathbf{x}\|_{v}} \leq H(\mathbf{x})^{-c_{iv}} \ (v \in S, i = 0, ..., n) \quad \text{in } \mathbf{x} \in \mathbb{P}^{n}(K).$$

Assume again $c_{iv} \ge 0$, $\sum_{v \in S} \sum_{i=0}^{n} c_{iv} > n+1$.

Corollary

Let m be the smallest index such that $s_m > 1$. Then (2) has only finitely many solutions outside T_{m-1} .

Proof.

Choose $\delta > 0$ with $s_m - \delta > 1$. Let **x** be a solution of (2) outside T_{m-1} with $H(\mathbf{x}) > Q_1(\delta)$. Put $Q := H(\mathbf{x})$. Then $H_Q(\mathbf{x}) \leq Q$ since **x** satisfies (2) and $H_Q(\mathbf{x}) \geq Q^{s_m - \delta}$ since $\mathbf{x} \notin T_{m-1}$. Contradiction. It follows that $H(\mathbf{x}) \leq Q_1(\delta)$.

What about the solutions in T_{m-1} ?

Consider (2) $\frac{|L_{iv}(\mathbf{x})|_{v}}{\|\mathbf{x}\|_{v}} \leq H(\mathbf{x})^{-c_{iv}} \ (v \in S, i = 0, ..., n) \text{ in } \mathbf{x} \in \mathbb{P}^{n}(\mathcal{K}),$

and keep our above assumptions. Let m be as above and assume $m \ge 2$, dim $T_{m-1} > 0$. Put

$$r_{v} := \operatorname{rank}\{L_{iv}|_{T_{m-1}}: c_{iv} > 0\}.$$

Theorem (E.)

(i) Assume there is $v \in S$ with $r_v = \dim T_{m-1} + 1$. Then (2) has only finitely many solutions in T_{m-1} .

What about the solutions in T_{m-1} ?

Consider (2) $\frac{|L_{iv}(\mathbf{x})|_{v}}{\|\mathbf{x}\|_{v}} \leq H(\mathbf{x})^{-c_{iv}} \ (v \in S, i = 0, ..., n) \text{ in } \mathbf{x} \in \mathbb{P}^{n}(\mathcal{K}),$

and keep our above assumptions. Let m be as above and assume $m \ge 2$, dim $T_{m-1} > 0$. Put

$$r_{v} := \operatorname{rank}\{L_{iv}|_{T_{m-1}}: c_{iv} > 0\}.$$

Theorem (E.)

(i) Assume there is $v \in S$ with $r_v = \dim T_{m-1} + 1$. Then (2) has only finitely many solutions in T_{m-1} .

(ii) Assume that $r_v \leq \dim T_{m-1}$ for all $v \in S$ and $s_{m-1} < 1$. Then the solutions of (2) in T_{m-1} are Zariski dense in T_{m-1} .

What about the solutions in T_{m-1} ?

Consider (2) $\frac{|L_{iv}(\mathbf{x})|_{v}}{\|\mathbf{x}\|_{v}} \leq H(\mathbf{x})^{-c_{iv}} \ (v \in S, i = 0, ..., n) \text{ in } \mathbf{x} \in \mathbb{P}^{n}(\mathcal{K}),$

and keep our above assumptions. Let m be as above and assume $m \ge 2$, dim $T_{m-1} > 0$. Put

$$r_{v} := \operatorname{rank}\{L_{iv}|_{T_{m-1}}: c_{iv} > 0\}.$$

Theorem (E.)

(i) Assume there is $v \in S$ with $r_v = \dim T_{m-1} + 1$. Then (2) has only finitely many solutions in T_{m-1} .

(ii) Assume that $r_v \leq \dim T_{m-1}$ for all $v \in S$ and $s_{m-1} < 1$. Then the solutions of (2) in T_{m-1} are Zariski dense in T_{m-1} .

Open problem: What if $r_v \leq \dim T_{m-1}$ for all $v \in S$ and $s_{m-1} = 1$?

An extension of the Subspace Theorem: Assumptions

Let $X \subset \mathbb{P}^R$ be a projective subvariety defined over K, of dimension n, degree deg X and exponential height H(X) := H(Chow form of X).

We consider systems of inequalities

$$\frac{|f_{i\nu}(\mathbf{x})|_{\nu}^{1/\deg f_{i\nu}}}{\|\mathbf{x}\|_{\nu}} \leqslant H(\mathbf{x})^{-c_{i\nu}} \ (\nu \in S, i = 0, \dots, n) \text{ in } \mathbf{x} \in X(K),$$

with homogeneous $f_{iv} \in K[X_0, \ldots, X_R]$ and $c_{iv} \ge 0$.

An extension of the Subspace Theorem: Assumptions

Let $X \subset \mathbb{P}^R$ be a projective subvariety defined over K, of dimension n, degree deg X and exponential height H(X) := H(Chow form of X).

We consider systems of inequalities

$$\frac{|f_{iv}(\mathbf{x})|_v^{1/\deg f_{iv}}}{\|\mathbf{x}\|_v} \leqslant H(\mathbf{x})^{-c_{iv}} \ (v \in S, i = 0, \dots, n) \ \text{ in } \mathbf{x} \in X(K),$$

with homogeneous $f_{i\nu} \in K[X_0, \ldots, X_R]$ and $c_{i\nu} \ge 0$.

We assume that

$$\{\mathbf{x} \in X(\overline{\mathbb{Q}}) : f_{0\nu}(\mathbf{x}) = \dots = f_{n\nu}(\mathbf{x}) = 0\} = \emptyset \text{ for } \nu \in S,$$
$$\sum_{\nu \in S} \sum_{i=0}^{n} c_{i\nu} = n + 1 + \delta \text{ with } \delta > 0.$$

Theorem (Ferretti, E., 2008; Corvaja, Zannier 2004 for $X = \mathbb{P}^n$)

The set of solutions of the system

$$\frac{|f_{iv}(\mathbf{x})|_{v}^{1/\deg f_{iv}}}{\|\mathbf{x}\|_{v}} \leqslant H(\mathbf{x})^{-c_{iv}} \ (v \in S, i = 0, \dots, n) \ \text{ in } \mathbf{x} \in X(K)$$

is not Zariski dense in X.

Theorem (Ferretti, E., 2008; Corvaja, Zannier 2004 for $X = \mathbb{P}^n$)

The set of solutions of the system

$$\frac{|f_{iv}(\mathbf{x})|_v^{1/\deg f_{iv}}}{\|\mathbf{x}\|_v} \leqslant H(\mathbf{x})^{-c_{iv}} \ (v \in S, i = 0, \dots, n) \ \text{ in } \mathbf{x} \in X(K)$$

is not Zariski dense in X. More precisely, the set of solutions is contained in $X \cap \left(\bigcup_{i=1}^{t} \{G_i = 0\} \right)$, where $G_1, \ldots, G_t \in K[X_0, \ldots, X_R]$ are homogeneous polynomials not vanishing identically on X, of degree at most

$$8(n+2)^3 \Delta^{n+1}(\deg X)(1+\delta^{-1})$$

where $\Delta := \operatorname{lcm} \{ \deg f_{iv} : v \in S, i = 0, \dots, n \}.$

Theorem

There is an effectively computable, proper projective subvariety $Y \subseteq X$, defined over K, such that

$$\frac{|f_{iv}(\mathbf{x})|_v^{1/\deg f_{iv}}}{\|\mathbf{x}\|_v} \leqslant H(\mathbf{x})^{-c_{iv}} \ (v \in S, \ i = 0, \dots, n) \ \text{ in } \mathbf{x} \in X(K),$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

has only finitely many solutions outside Y.

Theorem

There is an effectively computable, proper projective subvariety $Y \subseteq X$, defined over K, such that

$$\frac{|f_{i\nu}(\mathbf{x})|_{\nu}^{1/\deg f_{i\nu}}}{\|\mathbf{x}\|_{\nu}} \leqslant H(\mathbf{x})^{-c_{i\nu}} \ (\nu \in S, \ i = 0, \dots, n) \ \text{ in } \mathbf{x} \in X(K),$$

has only finitely many solutions outside Y. We may choose $Y = X \cap \{G = 0\}$, where $G \in K[X_0, ..., X_R]$ is homogeneous with

$$\deg G \leqslant 8(n+2)^3 \deg X \Delta^{n+1}(1+\delta^{-1}), \quad H(G) \leqslant c_1 H^{c_2},$$

where
$$\Delta := \operatorname{lcm} \{ \deg f_{iv} : v \in S, i = 0, ..., n \},$$

 $H := \max \{ H(X); H(f_{iv}) : v \in S, i = 0, ..., n \},$
 c_1, c_2 effectively computable in terms of $R, n, \deg X, \Delta, \delta.$

Idea of the proof

Construct an embedding $\Psi : X \hookrightarrow \mathbb{P}^M : \mathbf{x} \mapsto (g_0(\mathbf{x}), \dots, g_M(\mathbf{x}))$ with homogeneouus polynomials g_0, \dots, g_M of equal degree such that if $\mathbf{x} \in X(K)$ is a solution to

$$\frac{|f_{i\nu}(\mathbf{x})|_{\nu}^{1/\deg f_{i\nu}}}{\|\mathbf{x}\|_{\nu}} \leqslant H(\mathbf{x})^{-c_{i\nu}} \ (\nu \in S, i = 0, \dots, n),$$

then $\mathbf{y} = \Psi(\mathbf{x})$ satisfies

$$\frac{|L_{iv}(\mathbf{y})|_{v}}{\|\mathbf{y}\|_{v}} \ll H(\mathbf{y})^{-d_{iv}} \ (v \in S, i = 0, \dots, M), \ \mathbf{y} \in \mathbb{P}^{M}(K)$$

for certain linear forms L_{iv} and reals d_{iv} with $d_{iv} \ge 0$ and $\sum_{v \in S} \sum_{i=0}^{M} d_{iv} > M + 1$.

Idea of the proof

Construct an embedding $\Psi : X \hookrightarrow \mathbb{P}^M : \mathbf{x} \mapsto (g_0(\mathbf{x}), \dots, g_M(\mathbf{x}))$ with homogenenous polynomials g_0, \dots, g_M of equal degree such that if $\mathbf{x} \in X(K)$ is a solution to

$$\frac{|f_{i\nu}(\mathbf{x})|_{\nu}^{1/\deg f_{i\nu}}}{\|\mathbf{x}\|_{\nu}} \leqslant H(\mathbf{x})^{-c_{i\nu}} \ (\nu \in S, i = 0, \dots, n),$$

then $\mathbf{y} = \Psi(\mathbf{x})$ satisfies

$$\frac{|L_{i\nu}(\mathbf{y})|_{\nu}}{\|\mathbf{y}\|_{\nu}} \ll H(\mathbf{y})^{-d_{i\nu}} \ \, (\nu \in S, \, i=0,\ldots,M), \ \, \mathbf{y} \in \mathbb{P}^M(K)$$

for certain linear forms $L_{i\nu}$ and reals $d_{i\nu}$ with $d_{i\nu} \ge 0$ and $\sum_{\nu \in S} \sum_{i=0}^{M} d_{i\nu} > M + 1$.

Ferretti, E.: Such an embedding exists with deg $g_i = [8(n+2)^3 \deg X \Delta^{n+1} \delta^{-1}].$

1. The system of inequalities

$$\frac{|f_{i\nu}(\mathbf{x})|_{\nu}^{1/\deg f_{i\nu}}}{\|\mathbf{x}\|_{\nu}} \leqslant H(\mathbf{x})^{-c_{i\nu}} \ (\nu \in S, \ i = 0, \dots, n)$$

has only finitely many solutions in $(X \setminus Y)(K)$, where Y can be chosen from a finite collection depending on $\delta = \sum_{v \in S} \sum_{i=0}^{n} c_{iv} - (n+1)$.

Is this dependence on δ necessary?

2. More precise information on Y.