Effective results for unit equations over finitely generated domains

Jan-Hendrik Evertse Universiteit Leiden

Joint work with Kálmán Győry (Debrecen)

Paul Turán Memorial Conference, Budapest August 22, 2011

History

Let A be a *finitely generated domain over* \mathbb{Z} , that is a commutative integral domain containing \mathbb{Z} which is finitely generated as a \mathbb{Z} -algebra.

We have $A = \mathbb{Z}[z_1, \ldots, z_r] \supset \mathbb{Z}$ with the z_i algebraic or transcendental over \mathbb{Q} .

Denote by A^* the unit group of A.

Theorem (Siegel, Mahler, Parry, Lang)

Let a, b, c be non-zero elements of A. Then the equation

(1) $ax + by = c \text{ in } x, y \in A^*$

has only finitely many solutions.

Siegel (1921): $A = O_K$ =ring of integers in a number field K, Mahler (1933): $A = \mathbb{Z}[1/p_1 \cdots p_t]$, p_i primes, Parry (1950): $A = O_S$ =ring of S-integers in a number field K, Lang (1960): A arbitrary finitely generated domain over \mathbb{Z}

The proofs of Siegel, Mahler, Parry, Lang are ineffective.

Thue equations

Let $A = \mathbb{Z}[z_1, \dots, z_r] \supset \mathbb{Z}$ be a finitely generated domain over \mathbb{Z} , and K its quotient field.

Theorem

Let $F(X, Y) = a_0 X^n + a_1 X^{n-1} Y + \dots + a_n Y^n \in A[X, Y]$ be a square-free binary form of degree $n \ge 3$ and $\delta \in A \setminus \{0\}$. Then

(2)
$$F(x,y) = \delta \text{ in } x, y \in A$$

has only finitely many solutions.

Thue equations

Let $A = \mathbb{Z}[z_1, \ldots, z_r] \supset \mathbb{Z}$ be a finitely generated domain over \mathbb{Z} , and K its quotient field.

Theorem

Let $F(X, Y) = a_0 X^n + a_1 X^{n-1} Y + \dots + a_n Y^n \in A[X, Y]$ be a square-free binary form of degree $n \ge 3$ and $\delta \in A \setminus \{0\}$. Then

(2)
$$F(x,y) = \delta \text{ in } x, y \in A$$

has only finitely many solutions.

Idea of proof.

Assume wlog $a_0 \neq 0$ and factor F in a finite extension of K as $F = a_0 \prod_{i=1}^n (X - \beta_i Y)$. Take $B = A[a_0^{-1}, \delta^{-1}, \beta_1, \dots, \beta_n]$. Then for any solution (x, y) of (2) we have

$$(\beta_2-\beta_3)\frac{x-\beta_1y}{x-\beta_3y}+(\beta_3-\beta_1)\frac{x-\beta_2y}{x-\beta_3y}=\beta_2-\beta_1, \quad \frac{x-\beta_1y}{x-\beta_3y}, \frac{x-\beta_2y}{x-\beta_3y}\in B^*.$$

Effective results for S-unit equations (I)

Let *K* be an algebraic number field and $S = \{\mathfrak{p}_1, \dots, \mathfrak{p}_t\}$ a finite set of prime ideals of O_K . Define $O_S = O_K[(\mathfrak{p}_1 \cdots \mathfrak{p}_t)^{-1}]$. Then O_S^* consists of all elements of *K* composed of prime ideals from *S*.

For $\alpha \in \overline{\mathbb{Q}}$ with minimal polynomial $a_0 X^d + \cdots + a_d \in \mathbb{Z}[X]$ with $gcd(a_0, \ldots, a_d) = 1$, we define its logar. height $h(\alpha) := \log \max_i |a_i|$.

Theorem (Győry, 1979)

Let $a, b, c \in O_S \setminus \{0\}$. There is an effectively computable number C depending on K, S, a, b, c, such that for every pair x, y with

$$ax + by = c, \quad x, y \in O_S^*$$

we have $h(x), h(y) \leq C$.

Thus, given (suitable representations for) K, S, a, b, c, one can determine effectively (suitable representations for) the solutions of (3).

Proof.

Lower bounds for linear forms in ordinary and *p*-adic logarithms (Baker, Coates, van der Poorten, Yu).

Let K be an algebraic number field, $S = \{p_1, \ldots, p_t\}$ a finite set of prime ideals of O_K , and $a, b, c \in O_S \setminus \{0\}$.

Suppose that $[K : \mathbb{Q}] = \delta$, K has discriminant Δ , $\max_i N_{K/\mathbb{Q}}\mathfrak{p}_i \leq P$, and $\max(h(a), h(b), h(c)) \leq h$.

Theorem (Győry, Yu, 2006; weaker version)

For every pair x, y with

$$ax+by=c, \ x,y\in O^*_S$$

we have $h(x), h(y) \leq C$ with

 $C = 2^{35} (\delta(\delta + t))^{2(\delta + t) + 5} |\Delta|^{1/2} (\log |2\Delta|)^{\delta} P^{t+1}(h+1).$

Unit equations over arbitrary finitely generated domains

In 1983/84 Győry extended his effective result on S-unit equations from 1979 to an effective result for equations

$$ax + by = c$$
 in $x, y \in A^*$

for a special class of finitely generated domains $A = \mathbb{Z}[z_1, \ldots, z_r]$ with some of the z_i transcendental.

Aim:

Prove an effective result for unit equations over *arbitrary* finitely generated domains over \mathbb{Z} .

The general effective result

Let $A = \mathbb{Z}[z_1, \ldots, z_r] \supset \mathbb{Z}$ be an arbitrary finitely generated domain over \mathbb{Z} . The ideal

$$I:=\{f\in\mathbb{Z}[X_1,\ldots,X_r]:\ f(z_1,\ldots,z_r)=0\}$$

is finitely generated, say $I = (f_1, \ldots, f_m)$. Thus,

$$A \cong \mathbb{Z}[X_1,\ldots,X_r]/(f_1,\ldots,f_m).$$

Remark. A domain, $A \supset \mathbb{Z} \iff$ f_1, \ldots, f_m generate a prime ideal of $\mathbb{Q}[X_1, \ldots, X_r]$ not containing 1. There are various algorithms to check this for given f_1, \ldots, f_m .

By a *representative* for $a \in A$, we mean a polynomial $f \in \mathbb{Z}[X_1, \ldots, X_r]$ such that $a = f(z_1, \ldots, z_r)$.

Theorem 1 (Győry, E., to appear)

Given f_1, \ldots, f_m and representatives for a, b, c, one can effectively determine representatives for all solutions of

ax + by = c in $x, y \in A^*$.

A quantitative result

Let $A \cong \mathbb{Z}[X_1, \ldots, X_r]/(f_1, \ldots, f_m)$ be a domain with $A \supset \mathbb{Z}$ and $a, b, c \in A \setminus \{0\}$. For $f \in \mathbb{Z}[X_1, \ldots, X_r]$ define

$$\begin{split} & \deg f := \text{total degree of } f, \\ & h(f) := \log \max | \text{coefficients of } f | \quad (\text{logarithmic height}), \\ & s(f) := \max(1, \deg f, h(f)) \quad (\text{size}). \end{split}$$

Theorem 2 (Győry , E.)

Let $\tilde{a}, \tilde{b}, \tilde{c} \in \mathbb{Z}[X_1, \ldots, X_r]$ be representatives for a, b, c. Suppose that f_1, \ldots, f_m , $\tilde{a}, \tilde{b}, \tilde{c}$ have total degrees at most d and logarithmic heights at most h. Then each solution x, y of

$$ax + by = c$$
 in $x, y \in A^*$

has representatives \tilde{x}, \tilde{y} such that

$$s(\widetilde{x}), s(\widetilde{y}) \leq \exp\left\{(d+2)^{\kappa^r}(h+1)\right\},$$

where κ is an effectively computable absolute constant > 1.

Theorem 2 \implies Theorem 1 (I)

We need the following result:

Theorem (Aschenbrenner, 2004)

Let $f_1, \ldots, f_m, b \in \mathbb{Z}[X_1, \ldots, X_r] \setminus \{0\}$ of total degrees at most d and logarithmic heights at most h. Suppose there are g_1, \ldots, g_m such that

$$(4) g_1f_1+\cdots+g_mf_m=b, g_1,\ldots,g_m\in\mathbb{Z}[X_1,\ldots,X_r].$$

Then there are such g_1, \ldots, g_m with

$$\begin{array}{ll} \deg g_i & \leq & (d+2)^{\kappa^{r \log(r+1)}}(h+1), \\ h(g_i) & \leq & (d+2)^{\kappa^{r \log(r+1)}}(h+1)^{r+1} \end{array} \right\} \ for \ i=1,\ldots,m$$

where κ is an effectively computable absolute constant > 1. Hence it can be decided effectively whether (4) is solvable.

This is an analogue of earlier results of Hermann (1926) and Seidenberg (1972) on linear equations over $F[X_1, \ldots, X_r]$, F any field.

Theorem 2 \implies Theorem 1 (II)

Corollary (Ideal membership algorithm)

Given $f_1, \ldots, f_m, b \in \mathbb{Z}[X_1, \ldots, X_r]$ it can be decided effectively whether $b \in (f_1, \ldots, f_m)$.

Theorem 2 \implies Theorem 1 (II)

Corollary (Ideal membership algorithm)

Given $f_1, \ldots, f_m, b \in \mathbb{Z}[X_1, \ldots, X_r]$ it can be decided effectively whether $b \in (f_1, \ldots, f_m)$.

Corollary (Unit decision algorithm)

Given $b, f_1, \ldots, f_m \in \mathbb{Z}[X_1, \ldots, X_r]$ it can be decided effectively whether b represents a unit of $A = \mathbb{Z}[X_1, \ldots, X_r]/(f_1, \ldots, f_m)$.

Theorem 2 \implies Theorem 1 (II)

Corollary (Ideal membership algorithm)

Given $f_1, \ldots, f_m, b \in \mathbb{Z}[X_1, \ldots, X_r]$ it can be decided effectively whether $b \in (f_1, \ldots, f_m)$.

Corollary (Unit decision algorithm)

Given $b, f_1, \ldots, f_m \in \mathbb{Z}[X_1, \ldots, X_r]$ it can be decided effectively whether b represents a unit of $A = \mathbb{Z}[X_1, \ldots, X_r]/(f_1, \ldots, f_m)$.

Proof.

b represents a unit of *A* \iff there is $b' \in \mathbb{Z}[X_1, \ldots, X_r]$ such that $b \cdot b' \equiv 1 \pmod{(f_1, \ldots, f_m)}$ \iff there are $b', g_1, \ldots, g_m \in \mathbb{Z}[X_1, \ldots, X_r]$ with $b' \cdot b + g_1 f_1 + \cdots + g_m f_m = 1.$

Theorem 2 \implies Theorem 1 (III)

Let f_1, \ldots, f_m such that $A \cong \mathbb{Z}[X_1, \ldots, X_r]/(f_1, \ldots, f_m)$, and let $\tilde{a}, \tilde{b}, \tilde{c}$ be representatives for $a, b, c \in A$.

By Theorem 2 there is an effectively computable ${\cal C}$ such that each solution x,y of

(1) $ax + by = c, x, y \in A^*$

has representatives \tilde{x}, \tilde{y} of size $\leq C$.

Theorem 2 \implies Theorem 1 (III)

Let f_1, \ldots, f_m such that $A \cong \mathbb{Z}[X_1, \ldots, X_r]/(f_1, \ldots, f_m)$, and let $\tilde{a}, \tilde{b}, \tilde{c}$ be representatives for $a, b, c \in A$.

By Theorem 2 there is an effectively computable ${\cal C}$ such that each solution x,y of

(1) $ax + by = c, x, y \in A^*$ has representatives \tilde{x}, \tilde{y} of size < C.

One can find a representative for each solution of (1) as follows: Check for each pair $\tilde{x}, \tilde{y} \in \mathbb{Z}[X_1, \dots, X_r]$ of size $\leq C$ whether

$$\widetilde{a} \cdot \widetilde{x} + \widetilde{b} \cdot \widetilde{y} - \widetilde{c} \in (f_1, \dots, f_m),$$

 $\widetilde{x}, \widetilde{y}$ represent elements of A^* .

From the pairs (\tilde{x}, \tilde{y}) satisfying this test, select a maximal subset of pairs that are different modulo (f_1, \ldots, f_m) .

Let $A \cong \mathbb{Z}[X_1, \ldots, X_r]/(f_1, \ldots, f_m)$ be a domain with $A \supset \mathbb{Z}$, $a, b, c \in A \setminus \{0\}$, and $\gamma_1, \ldots, \gamma_s$ multiplicatively independent elements of $A \setminus \{0\}$. Consider

(5)
$$a\gamma_1^{u_1}\cdots\gamma_s^{u_s}+b\gamma_1^{v_1}\cdots\gamma_s^{v_s}=c \text{ in } u_1,\ldots,v_s\in\mathbb{Z}.$$

Theorem 3 (Győry, E.)

Let $\tilde{a}, \tilde{b}, \tilde{c}, \tilde{\gamma_1}, \ldots, \tilde{\gamma_s} \in \mathbb{Z}[X_1, \ldots, X_r]$ be representatives for $a, b, c, \gamma_1, \ldots, \gamma_s$ and assume that $f_1, \ldots, f_m, \tilde{a}, \tilde{b}, \tilde{c}, \tilde{\gamma_1}, \ldots, \tilde{\gamma_s}$ have total degrees at most d and logarithmic heights at most h. Then for each solution of (5) we have

$$\max(|u_1|,\ldots,|v_s|) \leq \exp\left\{(d+2)^{\kappa^{r+s}}(h+1)
ight\}$$

where κ is an effectively computable absolute constant > 1.

An effective criterion for multiplicative (in)dependence

Let f_1, \ldots, f_m be such that $A \cong \mathbb{Z}[X_1, \ldots, X_r]/(f_1, \ldots, f_m)$, let $\gamma_1, \ldots, \gamma_s$ be non-zero elements of A, and choose representatives $\tilde{\gamma_1}, \ldots, \tilde{\gamma_s}$ for $\gamma_1, \ldots, \gamma_s$.

Suppose that $f_1, \ldots, f_m, \widetilde{\gamma}_1, \ldots, \widetilde{\gamma}_s$ have total degrees at most d and logarithmic heights at most h.

Proposition 4 (Győry, E.)

If $\gamma_1, \ldots, \gamma_s$ are multiplicatively dependent, then there are integers k_1, \ldots, k_s , not all 0, such that

$$\gamma_1^{k_1} \cdots \gamma_s^{k_s} = 1, \;\; \max_i |k_i| \leq (d+2)^{\kappa^{r+s}} (h+1)^{s-1}$$

where κ is an effectively computable absolute constant > 1.

Theorem (Roquette, 1956)

Let A be a finitely generated domain over \mathbb{Z} . Then its unit group A^* is finitely generated, i.e., there is a finite set of generators $\gamma_1, \ldots, \gamma_s \in A^*$ such that $A^* = \{\gamma_1^{u_1} \cdots \gamma_s^{u_s} : u_i \in \mathbb{Z}\}.$

By Roquette's Theorem, the unit equation

(1)
$$ax + by = c \text{ in } x, y \in A^*$$

can be rewritten as an exponential equation

(5)
$$a\gamma_1^{u_1}\cdots\gamma_s^{u_s}+b\gamma_1^{v_1}\cdots\gamma_s^{v_s}=c \text{ in } u_1,\ldots,v_s\in\mathbb{Z}.$$

But as yet, no algorithm is known which for an arbitrary given finitely generated domain A over \mathbb{Z} computes a finite set of generators for A^* .

So from an effective result on (5) one can not deduce an effective result on (1).

Let $A = \mathbb{Z}[z_1, \ldots, z_r]$. We can map

(1) $ax + by = c \text{ in } x, y \in A^*$

to S-unit equations in a number field by means of specializations

$$\varphi: A \to \overline{\mathbb{Q}}: z_i \mapsto \xi_i \in \overline{\mathbb{Q}} \ (i = 1, \dots, r).$$

Let $A = \mathbb{Z}[z_1, \ldots, z_r]$. We can map

(1) $ax + by = c \text{ in } x, y \in A^*$

to S-unit equations in a number field by means of specializations

$$\varphi: A \to \overline{\mathbb{Q}}: z_i \mapsto \xi_i \in \overline{\mathbb{Q}} \ (i = 1, \dots, r).$$

1. Apply 'many' specializations to (1) and apply the effective result of Győry-Yu to each of the resulting *S*-unit equations. This leads, for each solution x, y of (1) and each of the chosen specializations φ , to effective upper bounds for the logarithmic heights $h(\varphi(x))$ and $h(\varphi(y))$.

Let $A = \mathbb{Z}[z_1, \ldots, z_r]$. We can map

(1) $ax + by = c \text{ in } x, y \in A^*$

to S-unit equations in a number field by means of specializations

$$\varphi: A \to \overline{\mathbb{Q}}: z_i \mapsto \xi_i \in \overline{\mathbb{Q}} \ (i = 1, \dots, r).$$

1. Apply 'many' specializations to (1) and apply the effective result of Győry-Yu to each of the resulting *S*-unit equations. This leads, for each solution x, y of (1) and each of the chosen specializations φ , to effective upper bounds for the logarithmic heights $h(\varphi(x))$ and $h(\varphi(y))$.

2. View (1) as an equation over the algebraic function field $\mathbb{Q}(z_1, \ldots, z_r)$ and determine effective upper bounds for the function field heights $h_f(x)$, $h_f(y)$, using Stothers' and Mason's effective abc-Theorem for function fields.

Let $A = \mathbb{Z}[z_1, \ldots, z_r]$. We can map

(1) $ax + by = c \text{ in } x, y \in A^*$

to S-unit equations in a number field by means of specializations

$$\varphi: A \to \overline{\mathbb{Q}}: z_i \mapsto \xi_i \in \overline{\mathbb{Q}} \ (i = 1, \dots, r).$$

1. Apply 'many' specializations to (1) and apply the effective result of Győry-Yu to each of the resulting *S*-unit equations. This leads, for each solution x, y of (1) and each of the chosen specializations φ , to effective upper bounds for the logarithmic heights $h(\varphi(x))$ and $h(\varphi(y))$.

2. View (1) as an equation over the algebraic function field $\mathbb{Q}(z_1, \ldots, z_r)$ and determine effective upper bounds for the function field heights $h_f(x)$, $h_f(y)$, using Stothers' and Mason's effective abc-Theorem for function fields.

3. Combine the bounds from 1) and 2) with Aschenbrenner's theorem on linear equations over $\mathbb{Z}[X_1, \ldots, X_r]$, to get effective upper bounds for the sizes of representatives for x, y.

Effective results over finitely generated domains A (with effective upper bounds for the sizes of the solutions) for

- Thue equations F(x, y) = δ in x, y ∈ A (F binary form in A[X, Y], δ ∈ A \ {0});
- Hyper- and superelliptic equations y^m = f(x) in x, y ∈ A (f ∈ A[X], m ≥ 2);
- Discriminant form equations $\text{Discr}_{L/K}(\alpha_1 x_1 + \dots + \alpha_m x_m) = \delta$ in $x_1, \dots, x_m \in A$ (K quotient field of A, L finite extension of K, $\alpha_1, \dots, \alpha_m \in L, \ \delta \in A \setminus \{0\}$).

Preprint:

J.-H. Evertse, K. Győry, *Effective results for unit equations over finitely generated domains*, arXiv:1107.5756 [math.NT] 28 July 2011