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History

Let A be a finitely generated domain over Z, that is a commutative
integral domain containing Z which is finitely generated as a Z-algebra.

We have A = Z[z1, . . . , zr ] ⊃ Z with the zi algebraic or transcendental
over Q.

Denote by A∗ the unit group of A.

Theorem (Siegel, Mahler, Parry, Lang)

Let a, b, c be non-zero elements of A. Then the equation

(1) ax + by = c in x , y ∈ A∗

has only finitely many solutions.

Siegel (1921): A = OK =ring of integers in a number field K ,
Mahler (1933): A = Z[1/p1 · · · pt ], pi primes,
Parry (1950): A = OS =ring of S-integers in a number field K ,
Lang (1960): A arbitrary finitely generated domain over Z

The proofs of Siegel, Mahler, Parry, Lang are ineffective.
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Thue equations

Let A = Z[z1, . . . , zr ] ⊃ Z be a finitely generated domain over Z, and K
its quotient field.

Theorem

Let F (X ,Y ) = a0X n + a1X n−1Y + · · ·+ anY n ∈ A[X ,Y ] be a
square-free binary form of degree n ≥ 3 and δ ∈ A \ {0}. Then

(2) F (x , y) = δ in x , y ∈ A

has only finitely many solutions.

Idea of proof.

Assume wlog a0 6= 0 and factor F in a finite extension of K as
F = a0

∏n
i=1(X − βiY ). Take B = A[a−10 , δ−1, β1, . . . , βn].

Then for any solution (x , y) of (2) we have

(β2−β3)
x − β1y

x − β3y
+(β3−β1)

x − β2y

x − β3y
= β2−β1,

x − β1y

x − β3y
,

x − β2y

x − β3y
∈ B∗.
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Effective results for S-unit equations (I)

Let K be an algebraic number field and S = {p1, . . . , pt} a finite set of
prime ideals of OK . Define OS = OK [(p1 · · · pt)−1].
Then O∗S consists of all elements of K composed of prime ideals from S .

For α ∈ Q with minimal polynomial a0X d + · · ·+ ad ∈ Z[X ] with
gcd(a0, . . . , ad) = 1, we define its logar. height h(α) := log maxi |ai |.

Theorem (Győry, 1979)

Let a, b, c ∈ OS \ {0}. There is an effectively computable number C
depending on K ,S , a, b, c, such that for every pair x , y with

(3) ax + by = c , x , y ∈ O∗S

we have h(x), h(y) ≤ C .

Thus, given (suitable representations for) K ,S , a, b, c, one can determine
effectively (suitable representations for) the solutions of (3).

Proof.

Lower bounds for linear forms in ordinary and p-adic logarithms (Baker,
Coates, van der Poorten, Yu).
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Effective results for S-unit equations (II)

Let K be an algebraic number field, S = {p1, . . . , pt} a finite set of prime
ideals of OK , and a, b, c ∈ OS \ {0}.

Suppose that [K : Q] = δ, K has discriminant ∆, maxi NK/Qpi ≤ P, and

max
(
h(a), h(b), h(c)

)
≤ h.

Theorem (Győry, Yu, 2006; weaker version)

For every pair x , y with

ax + by = c , x , y ∈ O∗S

we have h(x), h(y) ≤ C with

C = 235(δ(δ + t))2(δ+t)+5|∆|1/2(log |2∆|)δ P t+1(h + 1).
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Unit equations over arbitrary finitely generated
domains

In 1983/84 Győry extended his effective result on S-unit equations from
1979 to an effective result for equations

ax + by = c in x , y ∈ A∗

for a special class of finitely generated domains A = Z[z1, . . . , zr ] with
some of the zi transcendental.

Aim:
Prove an effective result for unit equations over arbitrary finitely
generated domains over Z.
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The general effective result

Let A = Z[z1, . . . , zr ] ⊃ Z be an arbitrary finitely generated domain over
Z. The ideal

I := {f ∈ Z[X1, . . . ,Xr ] : f (z1, . . . , zr ) = 0}

is finitely generated, say I = (f1, . . . , fm). Thus,

A ∼= Z[X1, . . . ,Xr ]/(f1, . . . , fm).

Remark. A domain, A ⊃ Z ⇐⇒
f1, . . . , fm generate a prime ideal of Q[X1, . . . ,Xr ] not containing 1.

There are various algorithms to check this for given f1, . . . , fm.

By a representative for a ∈ A, we mean a polynomial f ∈ Z[X1, . . . ,Xr ]
such that a = f (z1, . . . , zr ).

Theorem 1 (Győry, E., to appear)

Given f1, . . . , fm and representatives for a, b, c, one can effectively
determine representatives for all solutions of

ax + by = c in x , y ∈ A∗.
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A quantitative result

Let A ∼= Z[X1, . . . ,Xr ]/(f1, . . . , fm) be a domain with A ⊃ Z and
a, b, c ∈ A \ {0}. For f ∈ Z[X1, . . . ,Xr ] define

deg f := total degree of f ,
h(f ) := log max |coefficients of f | (logarithmic height),
s(f ) := max(1, deg f , h(f )) (size).

Theorem 2 (Győry , E.)

Let ã, b̃, c̃ ∈ Z[X1, . . . ,Xr ] be representatives for a, b, c. Suppose that

f1, . . . , fm, ã, b̃, c̃ have total degrees at most d and logarithmic heights at
most h. Then each solution x , y of

ax + by = c in x , y ∈ A∗

has representatives x̃ , ỹ such that

s(x̃), s(ỹ) ≤ exp
{

(d + 2)κ
r
(h + 1)

}
,

where κ is an effectively computable absolute constant > 1.
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Theorem 2 =⇒ Theorem 1 (I)

We need the following result:

Theorem (Aschenbrenner, 2004)

Let f1, . . . , fm, b ∈ Z[X1, . . . ,Xr ] \ {0} of total degrees at most d and
logarithmic heights at most h. Suppose there are g1, . . . , gm such that

(4) g1f1 + · · ·+ gmfm = b, g1, . . . , gm ∈ Z[X1, . . . ,Xr ].

Then there are such g1, . . . , gm with

deg gi ≤ (d + 2)κ
r log(r+1)

(h + 1),

h(gi ) ≤ (d + 2)κ
r log(r+1)

(h + 1)r+1

}
for i = 1, . . . ,m

where κ is an effectively computable absolute constant > 1.
Hence it can be decided effectively whether (4) is solvable.

This is an analogue of earlier results of Hermann (1926) and Seidenberg
(1972) on linear equations over F [X1, . . . ,Xr ], F any field.
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Theorem 2 =⇒ Theorem 1 (II)

Corollary (Ideal membership algorithm)

Given f1, . . . , fm, b ∈ Z[X1, . . . ,Xr ] it can be decided effectively whether
b ∈ (f1, . . . , fm).

Corollary (Unit decision algorithm)

Given b, f1, . . . , fm ∈ Z[X1, . . . ,Xr ] it can be decided effectively whether b
represents a unit of A = Z[X1, . . . ,Xr ]/(f1, . . . , fm).

Proof.

b represents a unit of A
⇐⇒
there is b′ ∈ Z[X1, . . . ,Xr ] such that b · b′ ≡ 1 (mod (f1, . . . , fm))
⇐⇒
there are b′, g1, . . . , gm ∈ Z[X1, . . . ,Xr ] with
b′ · b + g1f1 + · · ·+ gmfm = 1.



12/24

Theorem 2 =⇒ Theorem 1 (II)

Corollary (Ideal membership algorithm)

Given f1, . . . , fm, b ∈ Z[X1, . . . ,Xr ] it can be decided effectively whether
b ∈ (f1, . . . , fm).

Corollary (Unit decision algorithm)

Given b, f1, . . . , fm ∈ Z[X1, . . . ,Xr ] it can be decided effectively whether b
represents a unit of A = Z[X1, . . . ,Xr ]/(f1, . . . , fm).

Proof.

b represents a unit of A
⇐⇒
there is b′ ∈ Z[X1, . . . ,Xr ] such that b · b′ ≡ 1 (mod (f1, . . . , fm))
⇐⇒
there are b′, g1, . . . , gm ∈ Z[X1, . . . ,Xr ] with
b′ · b + g1f1 + · · ·+ gmfm = 1.



13/24

Theorem 2 =⇒ Theorem 1 (II)

Corollary (Ideal membership algorithm)

Given f1, . . . , fm, b ∈ Z[X1, . . . ,Xr ] it can be decided effectively whether
b ∈ (f1, . . . , fm).

Corollary (Unit decision algorithm)

Given b, f1, . . . , fm ∈ Z[X1, . . . ,Xr ] it can be decided effectively whether b
represents a unit of A = Z[X1, . . . ,Xr ]/(f1, . . . , fm).

Proof.

b represents a unit of A
⇐⇒
there is b′ ∈ Z[X1, . . . ,Xr ] such that b · b′ ≡ 1 (mod (f1, . . . , fm))
⇐⇒
there are b′, g1, . . . , gm ∈ Z[X1, . . . ,Xr ] with
b′ · b + g1f1 + · · ·+ gmfm = 1.



14/24

Theorem 2 =⇒ Theorem 1 (III)

Let f1, , . . . , fm such that A ∼= Z[X1, . . . ,Xr ]/(f1, . . . , fm), and let ã, b̃, c̃
be representatives for a, b, c ∈ A.

By Theorem 2 there is an effectively computable C such that each
solution x , y of

(1) ax + by = c , x , y ∈ A∗

has representatives x̃ , ỹ of size ≤ C .

One can find a representative for each solution of (1) as follows:

Check for each pair x̃ , ỹ ∈ Z[X1, . . . ,Xr ] of size ≤ C whether

ã · x̃ + b̃ · ỹ − c̃ ∈ (f1, . . . , fm),

x̃ , ỹ represent elements of A∗.

From the pairs (x̃ , ỹ) satisfying this test, select a maximal subset of pairs
that are different modulo (f1, . . . , fm).
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One can find a representative for each solution of (1) as follows:
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Exponential equations

Let A ∼= Z[X1, . . . ,Xr ]/(f1, . . . , fm) be a domain with A ⊃ Z,
a, b, c ∈ A \ {0}, and γ1, . . . , γs multiplicatively independent elements of
A \ {0}. Consider

(5) aγu11 · · · γ
us
s + bγv11 · · · γ

vs
s = c in u1, . . . , vs ∈ Z.

Theorem 3 (Győry, E.)

Let ã, b̃, c̃ , γ̃1, . . . , γ̃s ∈ Z[X1, . . . ,Xr ] be representatives for

a, b, c , γ1, . . . , γs and assume that f1, . . . , fm, ã, b̃, c̃ , γ̃1, . . . , γ̃s have total
degrees at most d and logarithmic heights at most h. Then for each
solution of (5) we have

max(|u1|, . . . , |vs |) ≤ exp
{

(d + 2)κ
r+s

(h + 1)
}

where κ is an effectively computable absolute constant > 1.



17/24

An effective criterion for multiplicative
(in)dependence

Let f1, . . . , fm be such that A ∼= Z[X1, . . . ,Xr ]/(f1, . . . , fm), let γ1, . . . , γs
be non-zero elements of A, and choose representatives γ̃1, . . . , γ̃s for
γ1, . . . , γs .

Suppose that f1, . . . , fm, γ̃1, . . . , γ̃s have total degrees at most d and
logarithmic heights at most h.

Proposition 4 (Győry, E.)

If γ1, . . . , γs are multiplicatively dependent, then there are integers
k1, . . . , ks , not all 0, such that

γk11 · · · γ
ks
s = 1, max

i
|ki | ≤ (d + 2)κ

r+s
(h + 1)s−1

where κ is an effectively computable absolute constant > 1.



18/24

Unit equations vs. exponential equations

Theorem (Roquette, 1956)

Let A be a finitely generated domain over Z. Then its unit group A∗ is
finitely generated, i.e., there is a finite set of generators γ1, . . . , γs ∈ A∗

such that A∗ = {γu11 · · · γuss : ui ∈ Z}.

By Roquette’s Theorem, the unit equation

(1) ax + by = c in x , y ∈ A∗

can be rewritten as an exponential equation

(5) aγu11 · · · γuss + bγv11 · · · γvss = c in u1, . . . , vs ∈ Z.

But as yet, no algorithm is known which for an arbitrary given finitely
generated domain A over Z computes a finite set of generators for A∗.

So from an effective result on (5) one can not deduce an effective result
on (1).
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Idea of proof of Theorem 2

Let A = Z[z1, . . . , zr ]. We can map

(1) ax + by = c in x , y ∈ A∗

to S-unit equations in a number field by means of specializations

ϕ : A→ Q : zi 7→ ξi ∈ Q (i = 1, . . . , r).

1. Apply ‘many’ specializations to (1) and apply the effective result of
Győry-Yu to each of the resulting S-unit equations. This leads, for each
solution x , y of (1) and each of the chosen specializations ϕ, to effective
upper bounds for the logarithmic heights h(ϕ(x)) and h(ϕ(y)).

2. View (1) as an equation over the algebraic function field Q(z1, . . . , zr )
and determine effective upper bounds for the function field heights hf (x),
hf (y), using Stothers’ and Mason’s effective abc-Theorem for function
fields.

3. Combine the bounds from 1) and 2) with Aschenbrenner’s theorem on
linear equations over Z[X1, . . . ,Xr ], to get effective upper bounds for the
sizes of representatives for x , y .
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Work in progress
(with Attila Bérczes, Kálmán Győry)

Effective results over finitely generated domains A (with effective upper
bounds for the sizes of the solutions) for

I Thue equations F (x , y) = δ in x , y ∈ A
(F binary form in A[X ,Y ], δ ∈ A \ {0});

I Hyper- and superelliptic equations ym = f (x) in x , y ∈ A
(f ∈ A[X ], m ≥ 2);

I Discriminant form equations DiscrL/K (α1x1 + · · ·+ αmxm) = δ in
x1, . . . , xm ∈ A (K quotient field of A, L finite extension of K ,
α1, . . . , αm ∈ L, δ ∈ A \ {0}).
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