Effective results for unit equations over finitely generated domains

Jan-Hendrik Evertse

Universiteit Leiden

Joint work with Kálmán Győry (Debrecen)

Intercity Number Theory Seminar, CWI
March 16, 2012

Unit equations in two unknowns

Let A be a finitely generated domain over \mathbb{Z}, that is a commutative integral domain containing \mathbb{Z} which is finitely generated as a \mathbb{Z}-algebra.

We have $A=\mathbb{Z}\left[z_{1}, \ldots, z_{r}\right] \supset \mathbb{Z}$ with the z_{i} algebraic or transcendental over \mathbb{Q}.

Denote by A^{*} the unit group of A.

Theorem (Siegel, Mahler, Parry, Lang)

Let a, b, c be non-zero elements of A. Then the equation

$$
\begin{equation*}
a x+b y=c \quad \text { in } x, y \in A^{*} \tag{1}
\end{equation*}
$$

has only finitely many solutions.

The proofs of Siegel, Mahler, Perry, Lang are ineffective.

We will focus on effective results, which give a method to determine (in principle) all solutions of (1).

History

Ineffective finiteness proofs for the number of solutions were given by
Siegel (1921): $a x+b y=c$ in $x, y \in O_{K}^{*}$,
O_{K} is ring of integers of number field K.
Mahler (1933): $a x+b y=c$ in $x, y \in \mathbb{Z}_{S}^{*}$,

$$
\begin{aligned}
& \mathbb{Z}_{S}=\mathbb{Z}\left[\left(p_{1} \cdots p_{t}\right)^{-1}\right]\left(S=\left\{p_{1}, \ldots, p_{t}\right\} \text { set of primes }\right) \\
& \mathbb{Z}_{S}^{*}=\left\{ \pm p_{1}^{z_{1}} \cdots p_{t}^{z_{t}}: z_{i} \in \mathbb{Z}\right\} .
\end{aligned}
$$

Parry (1950): $\quad a x+b y=c$ in $x, y \in O_{S}^{*}$,

$$
\begin{aligned}
& O_{S}=O_{K}\left[\left(\mathfrak{p}_{1} \cdots \mathfrak{p}_{t}\right)^{-1}\right]\left(S=\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{t}\right\} \text { set of prime ideals }\right), \\
& O_{S}^{*}=\left\{x \in K^{*}:(x)=\mathfrak{p}_{1}^{z_{1}} \cdots \mathfrak{p}_{t}^{z_{t}}: z_{i} \in \mathbb{Z}\right\} .
\end{aligned}
$$

Lang (1960): $\quad a x+b y=c$ in $x, y \in A^{*}$, A arbitrary finitely generated domain over \mathbb{Z}.

Application: Thue equations

Let $A=\mathbb{Z}\left[z_{1}, \ldots, z_{r}\right] \supset \mathbb{Z}$ be a finitely generated domain over \mathbb{Z}, and K its quotient field.

Theorem

Let $F(X, Y)=a_{0} X^{n}+a_{1} X^{n-1} Y+\cdots+a_{n} Y^{n} \in A[X, Y]$ be a square-free binary form of degree $n \geq 3$ and $\delta \in A \backslash\{0\}$. Then

$$
\begin{equation*}
F(x, y)=\delta \quad \text { in } x, y \in A \tag{2}
\end{equation*}
$$

has only finitely many solutions.
This was proved by A. Thue (1909) for $A=\mathbb{Z}$.

Application: Thue equations

Let $A=\mathbb{Z}\left[z_{1}, \ldots, z_{r}\right] \supset \mathbb{Z}$ be a finitely generated domain over \mathbb{Z}, and K its quotient field.

Theorem

Let $F(X, Y)=a_{0} X^{n}+a_{1} X^{n-1} Y+\cdots+a_{n} Y^{n} \in A[X, Y]$ be a square-free binary form of degree $n \geq 3$ and $\delta \in A \backslash\{0\}$. Then

$$
\begin{equation*}
F(x, y)=\delta \quad \text { in } x, y \in A \tag{2}
\end{equation*}
$$

has only finitely many solutions.

Idea of proof.

Assume wlog $a_{0} \neq 0$ and factor F in a finite extension of K as
$F=a_{0} \prod_{i=1}^{n}\left(X-\beta_{i} Y\right)$. Take $B=A\left[a_{0}^{-1}, \delta^{-1}, \beta_{1}, \ldots, \beta_{n}\right]$.
Then for any solution (x, y) of (2) we have

$$
\left(\beta_{2}-\beta_{3}\right) \frac{x-\beta_{1} y}{x-\beta_{3} y}+\left(\beta_{3}-\beta_{1}\right) \frac{x-\beta_{2} y}{x-\beta_{3} y}=\beta_{2}-\beta_{1}, \quad \frac{x-\beta_{1} y}{x-\beta_{3} y}, \frac{x-\beta_{2} y}{x-\beta_{3} y} \in B^{*}
$$

Effective results for S-unit equations (I)

Let K be an algebraic number field and $S=\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{t}\right\}$ a finite set of prime ideals of O_{K}. Define $O_{S}=O_{K}\left[\left(\mathfrak{p}_{1} \cdots \mathfrak{p}_{t}\right)^{-1}\right]$.

For $\alpha \in \overline{\mathbb{Q}}$ with minimal polynomial $a_{0} X^{d}+\cdots+a_{d} \in \mathbb{Z}[X]$ with $\operatorname{gcd}\left(a_{0}, \ldots, a_{d}\right)=1$, we define its logar. height $h(\alpha):=\log \max _{i}\left|a_{i}\right|$.

Theorem (Győry, 1979)

Let $a, b, c \in O_{S} \backslash\{0\}$. There is an effectively computable number C depending on K, S, a, b, c, such that for every pair x, y with

$$
\begin{equation*}
a x+b y=c, \quad x, y \in O_{S}^{*} \tag{3}
\end{equation*}
$$

we have $h(x), h(y) \leq C$.
Thus, given (suitable representations for) K, S, a, b, c, one can determine effectively (suitable representations for) the solutions of (3).

Proof.

Lower bounds for linear forms in ordinary and p-adic logarithms (Baker, Coates, van der Poorten, Yu).

Effective results for S-unit equations (II)

Let K be an algebraic number field, $S=\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{t}\right\}$ a finite set of prime ideals of O_{K}, and $a, b, c \in O_{S} \backslash\{0\}$.
Suppose that $[K: \mathbb{Q}]=\delta, K$ has discriminant $\Delta, \max _{i} N_{K / \mathbb{Q}} \mathfrak{p}_{i} \leq P$, and $\max (h(a), h(b), h(c)) \leq h$.

Theorem (Győry, Yu, 2006; weaker version)
For every pair x, y with

$$
a x+b y=c, \quad x, y \in O_{S}^{*}
$$

we have $h(x), h(y) \leq C$ with

$$
C=2^{35}(\delta(\delta+t))^{2(\delta+t)+5}|\Delta|^{1 / 2}(\log |2 \Delta|)^{\delta} P^{t+1}(h+1)
$$

Unit equations over arbitrary finitely generated domains

In 1983/84 Győry extended his effective result on S-unit equations from 1979 to an effective result for equations

$$
a x+b y=c \quad \text { in } x, y \in A^{*}
$$

for a special class of finitely generated domains $A=\mathbb{Z}\left[z_{1}, \ldots, z_{r}\right]$ with some of the z_{i} transcendental.

Aim:

Prove an effective result for unit equations over arbitrary finitely generated domains over \mathbb{Z}.

Representation for finitely generated domains

Let $A=\mathbb{Z}\left[z_{1}, \ldots, z_{r}\right] \supset \mathbb{Z}$ be an arbitrary finitely generated domain over \mathbb{Z}. The ideal

$$
I:=\left\{f \in \mathbb{Z}\left[X_{1}, \ldots, X_{r}\right]: f\left(z_{1}, \ldots, z_{r}\right)=0\right\}
$$

is finitely generated, say $I=\left(f_{1}, \ldots, f_{m}\right)$. Thus,

$$
A \cong \mathbb{Z}\left[X_{1}, \ldots, X_{r}\right] /\left(f_{1}, \ldots, f_{m}\right)
$$

By a representative for $a \in A$, we mean a polynomial $f \in \mathbb{Z}\left[X_{1}, \ldots, X_{r}\right]$ such that $a=f\left(z_{1}, \ldots, z_{r}\right)($ or $a=f \bmod I)$.

Representation for finitely generated domains

Let $A=\mathbb{Z}\left[z_{1}, \ldots, z_{r}\right] \supset \mathbb{Z}$ be an arbitrary finitely generated domain over \mathbb{Z}. The ideal

$$
I:=\left\{f \in \mathbb{Z}\left[X_{1}, \ldots, X_{r}\right]: f\left(z_{1}, \ldots, z_{r}\right)=0\right\}
$$

is finitely generated, say $I=\left(f_{1}, \ldots, f_{m}\right)$. Thus,

$$
A \cong \mathbb{Z}\left[X_{1}, \ldots, X_{r}\right] /\left(f_{1}, \ldots, f_{m}\right)
$$

By a representative for $a \in A$, we mean a polynomial $f \in \mathbb{Z}\left[X_{1}, \ldots, X_{r}\right]$ such that $a=f\left(z_{1}, \ldots, z_{r}\right)($ or $a=f \bmod I)$.

Remark

A domain, $A \supset \mathbb{Z} \Longleftrightarrow$
I prime ideal of $\mathbb{Z}\left[X_{1}, \ldots, X_{r}\right]$ with $I \cap \mathbb{Z}=(0)$
f_{1}, \ldots, f_{m} generate a prime ideal of $\mathbb{Q}\left[X_{1}, \ldots, X_{r}\right]$ not containing 1 .
There are various algorithms to check this for given f_{1}, \ldots, f_{m}.

The general effective result

Theorem 1 (Györy, E., to appear)

Given $f_{1}, \ldots, f_{m} \in \mathbb{Z}\left[X_{1}, \ldots, X_{r}\right]$ such that

$$
A=\mathbb{Z}\left[X_{1}, \ldots, X_{r}\right] /\left(f_{1}, \ldots, f_{m}\right) \text { is a domain with } A \supset \mathbb{Z} \text {, }
$$

and given representatives for $a, b, c \in A$, one can effectively determine a list, containing one pair of representatives for each solution (x, y) of

$$
a x+b y=c \text { in } x, y \in A^{*} .
$$

A quantitative result

For $f=\sum_{\mathbf{i}} a_{\mathbf{i}} X_{1}^{i_{1}} \cdots X_{r}^{i_{r}} \in \mathbb{Z}\left[X_{1}, \ldots, X_{r}\right]$ define

$$
\begin{aligned}
& \operatorname{deg} f:=\max \left\{i_{1}+\cdots+i_{r}: a_{\mathbf{i}} \neq 0\right\} \quad \text { (total degree) }, \\
& h(f):=\log \max \left|a_{\mathbf{i}}\right| \quad \text { (logarithmic height). }
\end{aligned}
$$

Let $A=\mathbb{Z}\left[X_{1}, \ldots, X_{r}\right] /\left(f_{1}, \ldots, f_{m}\right)$ be a domain with $A \supset \mathbb{Z}$ and $a, b, c \in A \backslash\{0\}$. Choose representatives $\widetilde{a}, \widetilde{b}, \widetilde{c} \in \mathbb{Z}\left[X_{1}, \ldots, X_{r}\right]$ for a, b, c.

Theorem 2 (Györy, E.)

Suppose that $f_{1}, \ldots, f_{m}, \widetilde{a}, \widetilde{b}, \widetilde{c}$ have total degrees at most d and logarithmic heights at most h. Then each solution x, y of

$$
a x+b y=c \quad \text { in } x, y \in A^{*}
$$

has representatives \widetilde{x}, \tilde{y} such that

$$
\operatorname{deg}(\widetilde{x}), h(\widetilde{x}), \quad \operatorname{deg}(\widetilde{y}), h(\widetilde{y}) \leq \exp \left\{(d+2)^{\kappa^{r}}(h+1)\right\},
$$

where κ is an effectively computable absolute constant >1.

Theorem $2 \Longrightarrow$ Theorem 1 (I)

We need the following result:

Theorem (Aschenbrenner, 2004)

Let $f_{1}, \ldots, f_{m}, b \in \mathbb{Z}\left[X_{1}, \ldots, X_{r}\right] \backslash\{0\}$ of total degrees at most d and logarithmic heights at most h. Suppose there are g_{1}, \ldots, g_{m} such that

$$
\begin{equation*}
g_{1} f_{1}+\cdots+g_{m} f_{m}=b, \quad g_{1}, \ldots, g_{m} \in \mathbb{Z}\left[X_{1}, \ldots, X_{r}\right] . \tag{4}
\end{equation*}
$$

Then there are such g_{1}, \ldots, g_{m} with

$$
\left.\begin{array}{rl}
\operatorname{deg} g_{i} & \leq(d+2)^{\kappa^{r \log (r+1)}}(h+1) \\
h\left(g_{i}\right) & \leq(d+2)^{\kappa^{r \log (r+1)}}(h+1)^{r+1}
\end{array}\right\} \text { for } i=1, \ldots, m
$$

where κ is an effectively computable absolute constant >1. Hence it can be decided effectively whether (4) is solvable.

This is an analogue of results of Hermann (1926) and Seidenberg (1972) on linear equations over $F\left[X_{1}, \ldots, X_{r}\right], F$ any field.

Theorem $2 \Longrightarrow$ Theorem 1 (II)

Corollary (Ideal membership algorithm for $\mathbb{Z}\left[\mathbf{X}_{1}, \ldots, \mathbf{X}_{\mathrm{r}}\right]$)
Given $f_{1}, \ldots, f_{m}, b \in \mathbb{Z}\left[X_{1}, \ldots, X_{r}\right]$ it can be decided effectively whether $b \in\left(f_{1}, \ldots, f_{m}\right)$.

Theorem $2 \Longrightarrow$ Theorem 1 (II)

Corollary (Ideal membership algorithm for $\mathbb{Z}\left[\mathbf{X}_{1}, \ldots, \mathbf{X}_{\mathrm{r}}\right]$)
Given $f_{1}, \ldots, f_{m}, b \in \mathbb{Z}\left[X_{1}, \ldots, X_{r}\right]$ it can be decided effectively whether $b \in\left(f_{1}, \ldots, f_{m}\right)$.

Corollary (Unit decision algorithm)
Given $b, f_{1}, \ldots, f_{m} \in \mathbb{Z}\left[X_{1}, \ldots, X_{r}\right]$ it can be decided effectively whether b represents a unit of $A=\mathbb{Z}\left[X_{1}, \ldots, X_{r}\right] /\left(f_{1}, \ldots, f_{m}\right)$.

Theorem $2 \Longrightarrow$ Theorem 1 (II)

Corollary (Ideal membership algorithm for $\mathbb{Z}\left[\mathbf{X}_{1}, \ldots, \mathbf{X}_{\mathrm{r}}\right]$)
Given $f_{1}, \ldots, f_{m}, b \in \mathbb{Z}\left[X_{1}, \ldots, X_{r}\right]$ it can be decided effectively whether $b \in\left(f_{1}, \ldots, f_{m}\right)$.

Corollary (Unit decision algorithm)

Given $b, f_{1}, \ldots, f_{m} \in \mathbb{Z}\left[X_{1}, \ldots, X_{r}\right]$ it can be decided effectively whether b represents a unit of $A=\mathbb{Z}\left[X_{1}, \ldots, X_{r}\right] /\left(f_{1}, \ldots, f_{m}\right)$.

Proof.

b represents a unit of A
there is $b^{\prime} \in \mathbb{Z}\left[X_{1}, \ldots, X_{r}\right]$ such that $b \cdot b^{\prime} \equiv 1\left(\bmod \left(f_{1}, \ldots, f_{m}\right)\right)$
\Longleftrightarrow
there are $b^{\prime}, g_{1}, \ldots, g_{m} \in \mathbb{Z}\left[X_{1}, \ldots, X_{r}\right]$ with
$b^{\prime} \cdot b+g_{1} f_{1}+\cdots+g_{m} f_{m}=1$.

Theorem $2 \Longrightarrow$ Theorem 1 (III)

Let $A=\mathbb{Z}\left[X_{1}, \ldots, X_{r}\right] /\left(f_{1}, \ldots, f_{m}\right)$, and let $\widetilde{a}, \widetilde{b}, \widetilde{c}$ be representatives for $a, b, c \in A$.

By Theorem 2 there is an effectively computable C such that each solution x, y of

$$
\begin{equation*}
a x+b y=c, \quad x, y \in A^{*} \tag{1}
\end{equation*}
$$

has representatives \widetilde{x}, \tilde{y} of total degrees and logarithmic heights $\leq C$.

Theorem $2 \Longrightarrow$ Theorem 1 (III)

Let $A=\mathbb{Z}\left[X_{1}, \ldots, X_{r}\right] /\left(f_{1}, \ldots, f_{m}\right)$, and let $\widetilde{a}, \widetilde{b}, \widetilde{c}$ be representatives for $a, b, c \in A$.

By Theorem 2 there is an effectively computable C such that each solution x, y of

$$
\begin{equation*}
a x+b y=c, \quad x, y \in A^{*} \tag{1}
\end{equation*}
$$

has representatives $\widetilde{x}, \widetilde{y}$ of total degrees and logarithmic heights $\leq C$.

One can find a representative for each solution of (1) as follows:
Check for each pair $\widetilde{x}, \widetilde{y} \in \mathbb{Z}\left[X_{1}, \ldots, X_{r}\right]$ of total degree and logarithmic height $\leq C$ whether

$$
\begin{aligned}
& \widetilde{a} \cdot \widetilde{x}+\widetilde{b} \cdot \widetilde{y}-\widetilde{c} \in\left(f_{1}, \ldots, f_{m}\right), \\
& \widetilde{x}, \widetilde{y} \text { represent elements of } A^{*}
\end{aligned}
$$

From the pairs $(\widetilde{x}, \widetilde{y})$ satisfying this test, select a maximal subset of pairs that are different modulo $\left(f_{1}, \ldots, f_{m}\right)$.

Exponential equations

Let $A=\mathbb{Z}\left[X_{1}, \ldots, X_{r}\right] /\left(f_{1}, \ldots, f_{m}\right)$ be a domain with $A \supset \mathbb{Z}$, $a, b, c \in A \backslash\{0\}$, and $\gamma_{1}, \ldots, \gamma_{s}$ multiplicatively independent elements of $A \backslash\{0\}$, i.e.,

$$
\left\{\left(k_{1}, \ldots, k_{s}\right) \in \mathbb{Z}^{s}: \gamma_{1}^{k_{1}} \cdots \gamma_{s}^{k_{s}}=1\right\}=\{\mathbf{0}\} .
$$

Consider

$$
\begin{equation*}
a \gamma_{1}^{u_{1}} \cdots \gamma_{s}^{u_{s}}+b \gamma_{1}^{v_{1}} \cdots \gamma_{s}^{v_{s}}=c \text { in } u_{1}, \ldots, v_{s} \in \mathbb{Z} \tag{5}
\end{equation*}
$$

Theorem 3 (Győry, E.)

Let $\widetilde{a}, \widetilde{b}, \widetilde{c}, \widetilde{\gamma_{1}}, \ldots, \widetilde{\gamma_{s}} \in \mathbb{Z}\left[X_{1}, \ldots, X_{r}\right]$ be representatives for $a, b, c, \gamma_{1}, \ldots, \gamma_{s}$ and assume that $f_{1}, \ldots, f_{m}, \widetilde{a}, \widetilde{b}, \widetilde{c}, \widetilde{\gamma_{1}}, \ldots, \widetilde{\gamma}_{s}$ have total degrees at most d and logarithmic heights at most h. Then for each solution of (5) we have

$$
\max \left(\left|u_{1}\right|, \ldots,\left|v_{s}\right|\right) \leq \exp \left\{(d+2)^{\kappa^{r+s}}(h+1)\right\}
$$

where κ is an effectively computable absolute constant >1.

An effective criterion for multiplicative (in)dependence

Let $A=\mathbb{Z}\left[X_{1}, \ldots, X_{r}\right] /\left(f_{1}, \ldots, f_{m}\right)$ be a domain with $A \supset \mathbb{Z}$, let $\gamma_{1}, \ldots, \gamma_{s} \in A \backslash\{0\}$, and choose representatives $\tilde{\gamma_{1}}, \ldots, \tilde{\gamma}_{s}$ for $\gamma_{1}, \ldots, \gamma_{s}$.

Suppose that $f_{1}, \ldots, f_{m}, \widetilde{\gamma}_{1}, \ldots, \widetilde{\gamma}_{s}$ have total degrees at most d and logarithmic heights at most h.

Proposition 4 (Győry, E.)

If $\gamma_{1}, \ldots, \gamma_{s}$ are multiplicatively dependent, then there are integers k_{1}, \ldots, k_{s}, not all 0 , such that

$$
\gamma_{1}^{k_{1}} \cdots \gamma_{s}^{k_{s}}=1, \quad \max _{i}\left|k_{i}\right| \leq(d+2)^{\kappa^{r+s}}(h+1)^{s-1}
$$

where κ is an effectively computable absolute constant >1.

Unit equations vs. exponential equations

Theorem (Roquette, 1956)

Let A be a finitely generated domain over \mathbb{Z}. Then its unit group A^{*} is finitely generated, i.e., there is a finite set of generators $\gamma_{1}, \ldots, \gamma_{s} \in A^{*}$ such that $A^{*}=\left\{\gamma_{1}^{u_{1}} \cdots \gamma_{s}^{u_{s}}: u_{i} \in \mathbb{Z}\right\}$.

By Roquette's Theorem, the unit equation

$$
\begin{equation*}
a x+b y=c \text { in } x, y \in A^{*} \tag{1}
\end{equation*}
$$

can be rewritten as an exponential equation

$$
\begin{equation*}
a \gamma_{1}^{u_{1}} \cdots \gamma_{s}^{u_{s}}+b \gamma_{1}^{v_{1}} \cdots \gamma_{s}^{v_{s}}=c \text { in } u_{1}, \ldots, v_{s} \in \mathbb{Z} \tag{5}
\end{equation*}
$$

But as yet, no algorithm is known which for an arbitrary given finitely generated domain A over \mathbb{Z} computes a finite set of generators for A^{*}.

So from an effective result on (5) one can not deduce an effective result on (1).

Idea of proof of Theorem 2

Let $A=\mathbb{Z}\left[z_{1}, \ldots, z_{r}\right]=\mathbb{Z}\left[X_{1}, \ldots, X_{r}\right] /\left(f_{1}, \ldots, f_{m}\right)$. We can map

$$
\begin{equation*}
a x+b y=c \text { in } x, y \in A^{*} \tag{1}
\end{equation*}
$$

to S-unit equations in a number field by means of specializations

$$
\varphi: A \rightarrow \overline{\mathbb{Q}}: z_{i} \mapsto \xi_{i} \in \overline{\mathbb{Q}} \quad(i=1, \ldots, r) .
$$

Idea of proof of Theorem 2

Let $A=\mathbb{Z}\left[z_{1}, \ldots, z_{r}\right]=\mathbb{Z}\left[X_{1}, \ldots, X_{r}\right] /\left(f_{1}, \ldots, f_{m}\right)$. We can map

$$
\begin{equation*}
a x+b y=c \text { in } x, y \in A^{*} \tag{1}
\end{equation*}
$$

to S-unit equations in a number field by means of specializations

$$
\varphi: A \rightarrow \overline{\mathbb{Q}}: z_{i} \mapsto \xi_{i} \in \overline{\mathbb{Q}} \quad(i=1, \ldots, r) .
$$

1. Apply 'many' specializations to (1) and apply the effective result of Györy-Yu to each of the resulting S-unit equations. This leads, for each solution x, y of (1) and each of the chosen specializations φ, to effective upper bounds for the logarithmic heights $h(\varphi(x))$ and $h(\varphi(y))$.

Idea of proof of Theorem 2

Let $A=\mathbb{Z}\left[z_{1}, \ldots, z_{r}\right]=\mathbb{Z}\left[X_{1}, \ldots, X_{r}\right] /\left(f_{1}, \ldots, f_{m}\right)$. We can map

$$
\begin{equation*}
a x+b y=c \text { in } x, y \in A^{*} \tag{1}
\end{equation*}
$$

to S-unit equations in a number field by means of specializations

$$
\varphi: A \rightarrow \overline{\mathbb{Q}}: z_{i} \mapsto \xi_{i} \in \overline{\mathbb{Q}} \quad(i=1, \ldots, r)
$$

1. Apply 'many' specializations to (1) and apply the effective result of Györy-Yu to each of the resulting S-unit equations. This leads, for each solution x, y of (1) and each of the chosen specializations φ, to effective upper bounds for the logarithmic heights $h(\varphi(x))$ and $h(\varphi(y))$.
2. View (1) as an equation over the algebraic function field $\mathbb{Q}\left(z_{1}, \ldots, z_{r}\right)$ and apply Stothers' and Mason's effective abc-Theorem for function fields, to get upper bounds for the total degrees of representatives for x, y.

Idea of proof of Theorem 2

Let $A=\mathbb{Z}\left[z_{1}, \ldots, z_{r}\right]=\mathbb{Z}\left[X_{1}, \ldots, X_{r}\right] /\left(f_{1}, \ldots, f_{m}\right)$. We can map

$$
\begin{equation*}
a x+b y=c \text { in } x, y \in A^{*} \tag{1}
\end{equation*}
$$

to S-unit equations in a number field by means of specializations

$$
\varphi: A \rightarrow \overline{\mathbb{Q}}: z_{i} \mapsto \xi_{i} \in \overline{\mathbb{Q}} \quad(i=1, \ldots, r) .
$$

1. Apply 'many' specializations to (1) and apply the effective result of Györy-Yu to each of the resulting S-unit equations. This leads, for each solution x, y of (1) and each of the chosen specializations φ, to effective upper bounds for the logarithmic heights $h(\varphi(x))$ and $h(\varphi(y))$.
2. View (1) as an equation over the algebraic function field $\mathbb{Q}\left(z_{1}, \ldots, z_{r}\right)$ and apply Stothers' and Mason's effective abc-Theorem for function fields, to get upper bounds for the total degrees of representatives for x, y.
3. Combine 1) and 2) with Aschenbrenner's theorem on linear equations over $\mathbb{Z}\left[X_{1}, \ldots, X_{r}\right]$, to get effective upper bounds for the logarithmic heights of representatives for x, y.

Work in progress (with Attila Bérczes, Kálmán Györy)

Effective results over finitely generated domains A (with effective upper bounds for the total degrees and logarithmic heights of the solutions) for

- Thue equations $F(x, y)=\delta$ in $x, y \in A$ (F binary form in $A[X, Y], \delta \in A \backslash\{0\}$);
- Schinzel-Tijdeman equation $y^{m}=f(x)$ in $x, y \in A, m \in \mathbb{Z}_{\geq 2}$ ($f \in A[X]$)

Preprint:

J.-H. Evertse, K. Győry,

Effective results for unit equations over finitely generated domains, arXiv:1107.5756 [math.NT] 28 July 2011

