
Effective results for Diophantine equations
over finitely generated domains

Jan-Hendrik Evertse
Universiteit Leiden
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The subject of our lecture

Let A be a finitely generated domain over Z, that is a commutative
integral domain containing Z which is finitely generated as a Z-algebra.

We have A = Z[z1, . . . , zr ] ⊃ Z with the zi algebraic or transcendental
over Q.

We consider certain classes of Diophantine equations with unknowns
taken from A.

We are interested in effective finiteness results, these are results which
imply that the equation has only finitely many solutions and provide a
method to determine all solutions in principle.
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Thue equations

Let
F (X ,Y ) = a0X n + a1X n−1Y + · · ·+ anY n ∈ Z[X ,Y ]

be a square-free binary form of degree n ≥ 3
(i.e., not divisible by G (X ,Y )2 for some binary form G (X ,Y ) ∈ Q[X ,Y ]
of positive degree).

Let b be a non-zero integer.

Theorem (Thue, 1909)

The equation
F (x , y) = b in x , y ∈ Z

has only finitely many solutions.

Thue’s proof is ineffective.
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Thue equations over finitely generated domains

Theorem (Lang, 1960)

Let A be a finitely generated domain over Z, F (X ,Y ) ∈ A[X ,Y ] a
square-free binary form of degree n ≥ 3 and b ∈ A \ {0}.
Then the equation

F (x , y) = b in x , y ∈ A

has only finitely many solutions.

This extends work of

Siegel (1921): A = OK = ring of integers of number field K ;

Mahler (1933): A = ZS = Z[(p1 · · · pt)
−1] (S = {p1, . . . , pt} set of primes)

Parry (1950): A = OS = OK [(p1 · · · pt)−1] (S = {p1, . . . , pt} set of pr. ideals)
(ring of S-integers in number field K )

The proofs of Siegel, Mahler, Parry, Lang are also ineffective.
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Baker’s Theorem

Theorem (A. Baker, 1967/68)

Let F (X ,Y ) =
∑n

i=0 aiX
n−iY i ∈ Z[X ,Y ] be a square-free binary form

of degree n ≥ 3 and b ∈ Z \ {0}. Then for the solutions of

F (x , y) = b in x , y ∈ Z

we have
max(|x |, |y |) ≤ C ,

where C is an effectively computable number depending only on the
coefficients of F and of b and n.

Baker’s proof is based on his own lower bounds for linear forms in
logarithms of algebraic numbers.

One may take

C = exp

{
1030(n+1)n32n

(
max

i
|ai |
)2n
· log |2b|

}
(Bugeaud, 1998).
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Effective Thue’s theorem over the S-integers

Let K be an algebraic number field and S = {p1, . . . , pt} a finite set of
prime ideals of OK .

Theorem (Kotov, Sprindžuk, 1975)

Let F ∈ OS [X ,Y ] be a square-free binary form of degree n ≥ 3 and
b ∈ OS \ {0}. Then the solutions of

(1) F (x , y) = b, x , y ∈ OS

have heights H(x),H(y) ≤ C , where C is an effectively computable
number depending only on K ,S , n, the coefficients of F and b.

Thus, given (suitable representations for) K ,S , b and the coefficients of
F , one can determine effectively (suitable representations for) the
solutions of (1).

C has been made explicit by Kotov & Sprindžuk (1975),. . .,
Győry & Yu (2006).
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Extension to finitely generated domains

In 1983/84 Győry extended the result of Kotov and Sprindzǔk to an
effective finiteness result for Thue equations

F (x , y) = b in x , y ∈ A

for domains of the shape

A = OK [z1, . . . , zq, y , g
−1]

where K is a number field, z1, . . . , zq are algebraically independent, y is
integral over OK [z1, . . . , zq], and g ∈ OK [z1, . . . , zq] \ {0}.

Aim:
An effective finiteness result for Thue equations over arbitrary finitely
generated domains over Z.
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Representation for finitely generated domains

Let A = Z[z1, . . . , zr ] ⊃ Z be an arbitrary finitely generated domain over
Z. The ideal

I := {f ∈ Z[X1, . . . ,Xr ] : f (z1, . . . , zr ) = 0}

is finitely generated, say I = (f1, . . . , fm). Thus,

A ∼= Z[X1, . . . ,Xr ]/(f1, . . . , fm).

By a representative for a ∈ A, we mean a polynomial ã ∈ Z[X1, . . . ,Xr ]
such that a = ã(z1, . . . , zr ) (or a = ã mod I ).

Remark

A domain, A ⊃ Z ⇐⇒
I prime ideal of Z[X1, . . . ,Xr ] with I ∩ Z = (0) ⇐⇒
f1, . . . , fm generate a prime ideal of Q[X1, . . . ,Xr ] not containing 1.

There are various algorithms to check this for given f1, . . . , fm.
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The general effective result

Theorem 1 (Bérczes, Győry, E., to appear)

Given f1, . . . , fm ∈ Z[X1, . . . ,Xr ] such that

A = Z[X1, . . . ,Xr ]/(f1, . . . , fm) is a domain with A ⊃ Z,

and given representatives for b ∈ A \ {0} and for the coefficients of a
square-free binary form F ∈ A[X ,Y ] of degree ≥ 3,

one can effectively determine a list, consisting of one pair of
representatives for each solution of

F (x , y) = b, x , y ∈ A.
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A quantitative result

For f =
∑

i ciX
i1
1 · · ·X ir

r ∈ Z[X1, . . . ,Xr ] define

deg f := max{i1 + · · ·+ ir : ci 6= 0} (total degree),

h(f ) := log max |ci| (logarithmic height).

Let A = Z[X1, . . . ,Xr ]/(f1, . . . , fm) be a domain with A ⊃ Z,
F =

∑n
i=0 aiX

n−iY i ∈ A[X ,Y ] a square-free binary form of degree n ≥ 3

and b ∈ A \ {0}. Choose representatives ãi , b̃ for the ai and b.

Theorem 2 (Bérczes, Győry, E.)

Suppose that f1, . . . , fm, the ãi and b̃ have total degrees at most d and
logarithmic heights at most h. Then each solution of

F (x , y) = b, x , y ∈ A

has representatives x̃ , ỹ such that

deg(x̃), h(x̃), deg(ỹ), h(ỹ) ≤ exp
{

(n!)3n5(d + 2)κ
r
(h + 1)

}
,

where κ is an effectively computable absolute constant > 1.
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Theorem 2 =⇒ Theorem 1

Let A = Z[X1, . . . ,Xr ]/(f1, . . . , fm) be a domain with A ⊃ Z, b ∈ A \ {0},
F =

∑n
i=0 aiX

n−iY i ∈ A[X ,Y ] the binary form under consideration,

ãi , b̃ ∈ Z[X1, . . . ,Xr ] the representatives, and F̃ (X ,Y ) =
∑n

i=0 ãiX
n−iY i .

By Theorem 2, there is an effectively computable number C such that all
x , y ∈ A with F (x , y) = b have representatives x̃ , ỹ ∈ Z[X1, . . . ,Xr ] of
total degrees and logarithmic heights at most C .

There exist algorithms which for given f1, . . . , fm, g ∈ Z[X1, . . . ,Xr ]
decide whether g belongs to the ideal of Z[X1, . . . ,Xr ] generated by
f1, . . . , fm (Simmons (1970); Aschenbrenner (2004)).

Using such an algorithm, check for all polynomials x̃ , ỹ ∈ Z[X1, . . . ,Xr ]
of total degrees and logarithmic heights ≤ C whether

F̃ (x̃ , ỹ) ≡ b̃ (mod (f1, . . . , fm)).

From the pairs (x̃ , ỹ) satisfying this test, select a maximal subset of pairs
that are different modulo (f1, . . . , fm).
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Hyper/superelliptic equations

Let f ∈ Z[X ], b a non-zero integer, and m an integer ≥ 2. Consider

(2) bym = f (x) in x , y ∈ Z.

Theorem (A. Baker, 1968/69)

Assume that f has no multiple roots, and f has degree ≥ 3 if m = 2 and
degree ≥ 2 if m ≥ 3.

Then for each solution x , y ∈ Z of (2) we have

max(|x |, |y |) ≤ C ,

where C is an effectively computable number depending on f , b,m.

This effective result has been generalized by Brindza (1989) to equations
bym = f (x) in x , y ∈ A where A belongs to the restricted class of finitely
generated domains considered by Győry.
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Hyper/superelliptic equations with varying exponent

Let f ∈ Z[X ] and b a non-zero integer.

Theorem (Schinzel, Tijdeman, 1976)

Assume that f has no multiple roots and deg f ≥ 2. Then there is an
effectively computable number C ′ depending only on f , b such that if

m > C ′

then bym = f (x) has no solutions x , y ∈ Z with y 6= 0,±1.

This has been generalized by Végső (1994) to equations bym = f (x) in
x , y ∈ A where A belongs to the restricted class of finitely generated
domains considered by Győry.
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Hyper/superelliptic equations over arbitrary
finitely generated domains: fixed exponent

Let A = Z[X1, . . . ,Xr ]/(f1, . . . , fm) be a domain containing Z.

Let f (X ) =
∑n

i=0 aiX
i ∈ A[X ] and b ∈ A \ {0}.

Choose representatives ãi , b̃ for the ai and b.

Suppose that f1, . . . , fm, the ãi and b̃ have total degrees at most d and
logarithmic heights at most h.

Theorem 3 (Bérczes, Győry, E.)

Assume f has no multiple roots, and degree n ≥ 3 if m = 2 and n ≥ 2 if
m ≥ 3. Then each solution of

bym = f (x), x , y ∈ A

has representatives x̃ , ỹ with

deg x̃ , h(x̃), deg ỹ , h(ỹ) ≤ exp
{

m2n5(d + 2)κ
r
(h + 1)

}
,

where κ is an effectively computable absolute constant > 1.
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Hyper/superelliptic equations over arbitrary
finitely generated domains: varying exponent

Let A = Z[X1, . . . ,Xr ]/(f1, . . . , fm) be a domain containing Z.

Let f (X ) =
∑n

i=0 aiX
i ∈ A[X ] and b ∈ A \ {0}.

Choose representatives ãi , b̃ for the ai and b.

Suppose that f1, . . . , fm, the ãi and b̃ have total degrees at most d and
logarithmic heights at most h.

Theorem 4 (Bérczes, Győry, E.)

Assume f has no multiple zeros, and degree n ≥ 2. If

m > exp
{

n5(d + 2)κ
r
(h + 1)

}
then

bym = f (x)

has no solutions with x , y ∈ A, y 6= 0, y 6= root of unity.
Here κ is an effectively computable absolute constant > 1.
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An important tool: Aschenbrenner’s Theorem

Theorem (Aschenbrenner, 2004)

Let f1, . . . , fm, b ∈ Z[X1, . . . ,Xr ] \ {0} of total degrees at most d and
logarithmic heights at most h. Suppose there are g1, . . . , gm such that

(3) g1f1 + · · ·+ gmfm = b, g1, . . . , gm ∈ Z[X1, . . . ,Xr ].

Then there are such g1, . . . , gm with

deg gi ≤ (d + 2)κ
r log(r+1)

(h + 1),

h(gi ) ≤ (d + 2)κ
r log(r+1)

(h + 1)r+1

}
for i = 1, . . . ,m

where κ is an effectively computable absolute constant > 1.
Hence it can be decided effectively whether (3) is solvable.
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Outline of the proof of Theorem 2 on Thue
equations

Let A = Z[z1, . . . , zr ] = Z[X1, . . . ,Xr ]/(f1, . . . , fm) and

ϕ : A→ Q : zi 7→ ξi ∈ Q (i = 1, . . . , r)

a specialization homomorphism. Then ϕ(A) is contained in the ring of
S-integers OS for a finite set of prime ideals S in some number field K .

Thus, ϕ maps the solutions of the Thue equation F (x , y) = b in x , y ∈ A
to the solutions of a Thue equation over OS .

1. Apply ‘many’ specializations to A and apply existing effective results
to the resulting Thue equations over OS (e.g., Győry-Yu, 2006). This
gives, for each solution (x , y) and each of the specializations ϕ, effective
upper bounds for the heights H(ϕ(x)) and H(ϕ(y)).

2. View the equation as an equation over the algebraic function field
Q(z1, . . . , zr ) and apply effective results of Mason on Thue equations
over function fields, to get upper bounds for the total degrees of
representatives for x , y .

3. Combine 1) and 2) with Aschenbrenner’s theorem to get effective
upper bounds for the logarithmic heights of representatives for x , y .
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Other equations

Our method gives also effective finiteness results for various other classes
of Diophantine equations over finitely generated domains A over Z.

Examples:

I xm − yn = 1 in x , y ∈ A, m, n ∈ Z with m ≥ 2, n ≥ 2,mn ≥ 6
(extension of Tijdeman’s effective result on Catalan’s equation over
Z)

I special cases of f (x , y) = 0 in x , y ∈ A where f ∈ A[X ,Y ]
(special cases of Siegel’s finiteness theorem on integral points on
curves)
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Thank you for your
attention!


