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Introduction

Let K be an algebraic number field. Denote by OK its ring of integers.

An order in K is a subring of OK with quotient field K .

An order O in K of the form Z[α] is called monogenic.

For a given order O we consider the “Diophantine equation”

(1) Z[α] = O in α ∈ O.

The solutions of (1) can be divided into equivalence classes, where two
solutions α, β are called equivalent if

β = ±α + a for some a ∈ Z.
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Győry’s theorem

Every order in a quadratic number field is monogenic.

In number fields of degree ≥ 3 there may be non-monogenic orders
(Dedekind).

Theorem (Győry, 1976)

Let K be an algebraic number field, and O an order in K . Then there are
only finitely many equivalence classes of α ∈ O with

(1) Z[α] = O.

Moreover, there exists an algorithm which, for any explicitly given K , O,
decides if O is monogenic and if so, determines a full system of
representatives for the equivalence classes of α.

Proof.

Baker’s Theorem on linear forms in logarithms.
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Multiply monogenic orders

Let K be an algebraic number field, and O an order in K .
We focus on the number of equivalence classes of solutions of Z[α] = O.

Definition

The order O is called k times monogenic, if

(1) Z[α] = O in α ∈ O

has at least k equivalence classes of solutions, i.e., if there are α1, . . . , αk

with

Z[α1] = · · · = Z[αk ] = O, αi ± αj 6∈ Z for 1 ≤ i 6= j ≤ k.

The order O is called at most/precisely k times monogenic if (1) has at
most/precisely k equivalence classes of solutions.

Facts:
I Every order in a quadratic n.f. is precisely one time monogenic.
I Every order in a cubic n.f. is at most 10 times monogenic (Bennett,

2001).
I Z[e2πi/7 + e−2πi/7] is precisely 9 times monogenic (Baulin, 1960).
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Multiply monogenic orders of higher degree

Theorem (Győry, E., 1985)

Let K be an algebraic number field of degree d ≥ 4. Then every order O
in K is at most c(d) times monogenic.

Győry, E. (1985): c(d) = (3× 74d!)d−2;

E. (2012): c(d) = 25d2

Example (Miller-Sims, Robertson, 2005).
Let p ≥ 11 be a prime and ζp = e2πi/p.

Then Op := Z[ζp + ζ−1p ] is 5
2 (p − 1) times monogenic.

In fact, Z[α] = Op has the solutions

α = ζmp + ζ−mp ,
1

ζmp + ζ−mp + a
(m = 1, . . . , 12 (p− 1), a = −1, 0, 1, 2).

These are pairwise inequivalent if p ≥ 11.
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Multiply monogenic orders in a given number field

Question

Can a number field have infinitely many k times monogenic orders for
k = 2, 3, . . .?

Example.
Assume that [K : Q] ≥ 3 and that K is not a totally complex quadratic
extension of a totally real field.

Then OK has infinitely many units ε such that K = Q(ε).

These give rise to infinitely many two times monogenic orders
Z[ε] = Z[ε−1] in K .

Theorem 1 (Bérczes, Győry, E., 2011)

Let K be an algebraic number field of degree ≥ 3. Then K has only
finitely many three times monogenic orders.

The proof is ineffective.
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Two times monogenic orders

A number field K may have infinitely many two times monogenic orders,
e.g., Z[ε] = Z[ε−1], ε a unit.

There may be other infinite classes of two times monogenic orders, but
these are all rather special.

Vague belief

Every number field K of degree ≥ 3 has finitely many infinite classes of
’special’ two times monogenic orders, and only finitely many two times
monogenic orders outside these classes.

We have proved a precise result of this type for a special class of number
fields.
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Orders of type I and II

Type I orders

Let K be an algebraic number field of degree ≥ 3. An order O in K is of
type I if there are α, β ∈ O such that O = Z[α] = Z[β], and

β =
a + bα

c + dα
for some

( a b
c d

)
∈ GL(2,Z) with d 6= 0.

If K is not a totally complex quadratic extension of a totally real field, it
has infinitely many orders of type I.

Type II orders

Let K be a quartic number field. An order O in K is of type II if there
are α, β ∈ O such that O = Z[α] = Z[β], and

β = ±α2 + aα + b, α = ±β2 + cβ + d for some a, b, c , d ∈ Z.

There are infinitely many quartic fields K with infinitely many orders of
type II.
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The theorem for two times monogenic orders

Fact.
If K has degree 3 then every two times monogenic order of K is of type I.

We denote by Sd the permutation group on d elements.

Theorem 2 (Bérczes, Győry, E., 2011)

Let K be a number field of degree d ≥ 4. Assume that the normal
closure of K has Galois group ∼= Sd .

(i) If d = 4 then K has only finitely many two times monogenic orders
which are not of type I or II.

(ii) If d ≥ 5 then K has only finitely many two times monogenic orders
which are not of type I.
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Connection with unit equations

Let K be an algebraic number field of degree d ≥ 3, and N its normal
closure. Denote the conjugates of α ∈ K in N by α(1), . . . , α(d).

Lemma

Let α, β be elements of OK such that Q(α) = Q(β) = K and
Z[α] = Z[β]. Then for 1 ≤ i < j ≤ d,

εij :=
β(i) − β(j)

α(i) − α(j)
∈ O∗N .

Proof.

β = f (α), α = g(β) for some f , g ∈ Z[X ].

We have for all distinct i , j , k ∈ {1, . . . , d},

α(i) − α(j)

α(i) − α(k)
· εij
εik

+
α(j) − α(k)

α(i) − α(k)
· εjk
εik

=
β(i) − β(j)

β(i) − β(k)
+
β(j) − β(k)

β(i) − β(k)
= 1.

This leads to unit equations ax + by = 1 in x , y ∈ O∗N .
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Unit equations

Let F be a field of characteristic 0. We consider equations

(2) ax + by = 1 in x , y ∈ Γ

where a, b ∈ F ∗ and Γ is a finitely generated subgroup of F ∗.

Such equations have only finitely many solutions (Siegel, Mahler, Lang,
1960).

We call (a, b) normalized if a + b = 1.

If (2) has a solution u, v ∈ Γ, then (a′, b′) = (au, bv) is normalized, and
a′x + b′y = 1 in x , y ∈ Γ has the same number of solutions as (2).

Theorem (Győry, Stewart, Tijdeman, E., 1988)

There are only finitely many normalized pairs (a, b) ∈ F ∗ × F ∗ such that
eq. (2) has more than two solutions.
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Sketch of the proof of Theorem 1

Let K be a number field of degree d ≥ 3.
Let O = Z[α] = Z[β] = Z[γ] with α, β, γ inequivalent. Put

εij :=
β(i) − β(j)

α(i) − α(j)
, ηij :=

γ(i) − γ(j)

α(i) − α(j)
(i , j , k ∈ {1, . . . , d} distinct).

1) For each i , j , k, the equation

α(i) − α(j)

α(i) − α(k)
· x +

α(j) − α(k)

α(i) − α(k)
· y = 1 in x , y ∈ O∗N

has solutions (1, 1),
(
εij/εik , εjk/εik

)
,
(
ηij/ηik , ηjk/ηik

)
.

2) The Theorem of GSTE + combinatorics (to dispose of the problem
that for some i , j , k two solutions may coincide) imply that there are only
finitely many possible values for the quotients

α(i) − α(j)

α(i) − α(k)
for all distinct i , j , k ∈ {1, . . . , d}.

3) There are only finitely many orders O = Z[α] = Z[β] = Z[γ] with
prescribed values for these quotients.
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Sketch of the proof of Theorem 2 (I)

Assume [K : Q] = d ≥ 4. Let N be the normal closure of K .
By assumption Gal(N/Q) ∼= Sd .

Let O = Z[α] = Z[β] with α, β inequivalent. Put εij := β(i)−β(j)

α(i)−α(j) .

From
α(i) − α(j)

α(k) − α(j)
· εij
εjk

+
α(k) − α(i)

α(k) − α(j)
· εik
εjk

= 1

we infer

α(i) − α(j)

α(i) − α(k)
=

εik/εjk − 1

εij/εjk − 1
(i , j , k ∈ {1, . . . , d} distinct).

Hence for all distinct i , j , k, l ∈ {1, . . . , d},

(εik/εjk − 1)

(εij/εjk − 1)
· (εil/εkl − 1)

(εik/εkl − 1)
· (εij/εlj − 1)

(εil/εlj − 1)

=
(α(i) − α(j))

(α(i) − α(k))
· (α(i) − α(k))

(α(i) − α(l))
· (α(i) − α(l))

(α(i) − α(j))
= 1.
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Sketch of the proof of Theorem 2 (II)

Let O = Z[α] = Z[β] with α, β inequivalent, and εij := β(i)−β(j)

α(i)−α(j) . Then

u := (εij : 1 ≤ i < j ≤ d) ∈ X ∩ Γ

where Γ = (O∗N)d(d−1)/2 and X is the algebraic subvariety of Gd(d−1)/2
m

given by

(εik/εjk − 1)

(εij/εjk − 1)
· (εil/εkl − 1)

(εik/εkl − 1)
· (εij/εlj − 1)

(εil/εlj − 1)
= 1 ∀i , j , k, l .

We apply:

Theorem (Laurent, 1984)

Let F be a field of characteristic 0, X an algebraic subvariety of GR
m

defined over F and Γ a finitely generated multiplicative subgroup of
GR

m(F ) = (F ∗)R .

Then X ∩ Γ is contained in a finite union u1H1 ∪ · · · ∪ utHt of cosets of
algebraic subgroups of GR

m with uiHi ⊆ X for i = 1, . . . , t.
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Sketch of the proof of Theorem 2 (III)

Let O = Z[α] = Z[β] and εij := β(i)−β(j)

α(i)−α(j) (1 ≤ i < j ≤ d).

Lemma

There is a finite set S depending only on K such that at least one of the
three following assertions is true:
(i) εij/εik ∈ S for all distinct i , j , k ∈ {1, . . . , d};
(ii) εijεkl = εikεjl for all distinct i , j , k , l ∈ {1, . . . , d};
(iii) d = 4 and ε12 = −ε34, ε13 = −ε24, ε14 = −ε23.

Proof.

1) Apply Laurent’s Theorem.
2) Use the relations between the εij following from our assumption
Gal(N/Q) ∼= Sd .
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(i) gives rise to only finitely many possibilities for O;
(ii) implies that O = Z[α] = Z[β] is of type I;
(iii) implies that O is of type II.

This proves Theorem 2.
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Extension to non-integers

Let K be a number field of degree d .

For α with K = Q(α) define the Z-module and order

Mα :=
{ d−1∑

i=0

xiα
i : xi ∈ Z

}
, Oα :=

{
λ ∈ K : λMα ⊆ Mα

}
.

If α is an algebraic integer, then Oα = Z[α].

We call α, β ∈ K GL(2,Z)-equivalent if

β =
a + bα

c + dα
for some

( a b
c d

)
∈ GL(2,Z).

If α, β ∈ K are GL(2,Z)-equivalent then Oα = Oβ .
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An open problem

Given an order O in a number field K , denote by N(O) the number of
GL(2,Z)-equivalence classes of α with

Q(α) = K , Oα = O.

Theorem

Let K be a number field of degree d ≥ 3. Then for every order O in K
we have
N(O) = 1 if d = 3 (Delone, Faddeev, 1940);

N(O) ≤ 224d3

if d ≥ 4 (Bérczes, Győry, E., 2004).

Open problem.

Is there an absolute constant N (= 2?) such that for every number field
K of degree ≥ 4 we have N(O) ≤ N for all but finitely many orders O in
K ?
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Thank you for your
attention!


