On monogenic orders

Jan-Hendrik Evertse

Universiteit Leiden

Joint work with Attila Bérczes, Kálmán Győry (Debrecen)

ERC Research Period on Diophantine Geometry,
Pisa, October 19, 2012

Introduction

Let K be an algebraic number field. Denote by O_{K} its ring of integers.
An order in K is a subring of O_{K} with quotient field K.
An order O in K of the form $\mathbb{Z}[\alpha]$ is called monogenic.

For a given order O we consider the "Diophantine equation"
(1)

$$
\mathbb{Z}[\alpha]=O \quad \text { in } \alpha \in O .
$$

The solutions of (1) can be divided into equivalence classes, where two solutions α, β are called equivalent if

$$
\beta= \pm \alpha+a \text { for some } a \in \mathbb{Z}
$$

Györy's theorem

Every order in a quadratic number field is monogenic.
In number fields of degree ≥ 3 there may be non-monogenic orders
(Dedekind).

Theorem (Győry, 1976)

Let K be an algebraic number field, and O an order in K. Then there are only finitely many equivalence classes of $\alpha \in O$ with

$$
\begin{equation*}
\mathbb{Z}[\alpha]=0 . \tag{1}
\end{equation*}
$$

Moreover, there exists an algorithm which, for any explicitly given K, O, decides if O is monogenic and if so, determines a full system of representatives for the equivalence classes of α.

Proof.

Baker's Theorem on linear forms in logarithms.

Multiply monogenic orders

Let K be an algebraic number field, and O an order in K.
We focus on the number of equivalence classes of solutions of $\mathbb{Z}[\alpha]=0$.

Definition

The order O is called k times monogenic, if

$$
\begin{equation*}
\mathbb{Z}[\alpha]=O \quad \text { in } \alpha \in O \tag{1}
\end{equation*}
$$

has at least k equivalence classes of solutions, i.e., if there are $\alpha_{1}, \ldots, \alpha_{k}$ with

$$
\mathbb{Z}\left[\alpha_{1}\right]=\cdots=\mathbb{Z}\left[\alpha_{k}\right]=O, \quad \alpha_{i} \pm \alpha_{j} \notin \mathbb{Z} \text { for } 1 \leq i \neq j \leq k .
$$

The order O is called at most/precisely k times monogenic if (1) has at most/precisely k equivalence classes of solutions.

Multiply monogenic orders

Let K be an algebraic number field, and O an order in K.
We focus on the number of equivalence classes of solutions of $\mathbb{Z}[\alpha]=0$.

Definition

The order O is called k times monogenic, if

$$
\begin{equation*}
\mathbb{Z}[\alpha]=O \quad \text { in } \alpha \in O \tag{1}
\end{equation*}
$$

has at least k equivalence classes of solutions, i.e., if there are $\alpha_{1}, \ldots, \alpha_{k}$ with

$$
\mathbb{Z}\left[\alpha_{1}\right]=\cdots=\mathbb{Z}\left[\alpha_{k}\right]=O, \quad \alpha_{i} \pm \alpha_{j} \notin \mathbb{Z} \text { for } 1 \leq i \neq j \leq k .
$$

The order O is called at most/precisely k times monogenic if (1) has at most/precisely k equivalence classes of solutions.

Facts:

- Every order in a quadratic n.f. is precisely one time monogenic.
- Every order in a cubic n.f. is at most 10 times monogenic (Bennett, 2001).
- $\mathbb{Z}\left[e^{2 \pi i / 7}+e^{-2 \pi i / 7}\right]$ is precisely 9 times monogenic (Baulin, 1960).

Multiply monogenic orders of higher degree

Theorem (Györy, E., 1985)
Let K be an algebraic number field of degree $d \geq 4$. Then every order O in K is at most $c(d)$ times monogenic.

Győry, E. (1985): $c(d)=\left(3 \times 7^{4 d!}\right)^{d-2}$;
E. (2012): $c(d)=2^{5 d^{2}}$

Multiply monogenic orders of higher degree

Theorem (Györy, E., 1985)

Let K be an algebraic number field of degree $d \geq 4$. Then every order O in K is at most $c(d)$ times monogenic.

Györy, E. (1985): $c(d)=\left(3 \times 7^{4 d!}\right)^{d-2}$;
E. (2012): $c(d)=2^{5 d^{2}}$

Example (Miller-Sims, Robertson, 2005).
Let $p \geq 11$ be a prime and $\zeta_{p}=e^{2 \pi i / p}$.
Then $O_{p}:=\mathbb{Z}\left[\zeta_{p}+\zeta_{p}^{-1}\right]$ is $\frac{5}{2}(p-1)$ times monogenic.
In fact, $\mathbb{Z}[\alpha]=O_{p}$ has the solutions
$\alpha=\zeta_{p}^{m}+\zeta_{p}^{-m}, \frac{1}{\zeta_{p}^{m}+\zeta_{p}^{-m}+a} \quad\left(m=1, \ldots, \frac{1}{2}(p-1), a=-1,0,1,2\right)$.
These are pairwise inequivalent if $p \geq 11$.

Multiply monogenic orders in a given number field

Question

Can a number field have infinitely many k times monogenic orders for $k=2,3, \ldots$?

Multiply monogenic orders in a given number field

Question

Can a number field have infinitely many k times monogenic orders for $k=2,3, \ldots$?

Example.

Assume that $[K: \mathbb{Q}] \geq 3$ and that K is not a totally complex quadratic extension of a totally real field.

Then O_{K} has infinitely many units ε such that $K=\mathbb{Q}(\varepsilon)$.
These give rise to infinitely many two times monogenic orders $\mathbb{Z}[\varepsilon]=\mathbb{Z}\left[\varepsilon^{-1}\right]$ in K.

Multiply monogenic orders in a given number field

Question

Can a number field have infinitely many k times monogenic orders for $k=2,3, \ldots$?

Example.

Assume that $[K: \mathbb{Q}] \geq 3$ and that K is not a totally complex quadratic extension of a totally real field.
Then O_{K} has infinitely many units ε such that $K=\mathbb{Q}(\varepsilon)$.
These give rise to infinitely many two times monogenic orders $\mathbb{Z}[\varepsilon]=\mathbb{Z}\left[\varepsilon^{-1}\right]$ in K.

Theorem 1 (Bérczes, Győry, E., 2011)

Let K be an algebraic number field of degree ≥ 3. Then K has only finitely many three times monogenic orders.

The proof is ineffective.

Two times monogenic orders

A number field K may have infinitely many two times monogenic orders, e.g., $\mathbb{Z}[\varepsilon]=\mathbb{Z}\left[\varepsilon^{-1}\right]$, ε a unit.

There may be other infinite classes of two times monogenic orders, but these are all rather special.

Vague belief

Every number field K of degree ≥ 3 has finitely many infinite classes of 'special' two times monogenic orders, and only finitely many two times monogenic orders outside these classes.

We have proved a precise result of this type for a special class of number fields.

Orders of type I and II

Type I orders

Let K be an algebraic number field of degree ≥ 3. An order O in K is of type \mathbf{I} if there are $\alpha, \beta \in O$ such that $O=\mathbb{Z}[\alpha]=\mathbb{Z}[\beta]$, and

$$
\beta=\frac{a+b \alpha}{c+d \alpha} \text { for some }\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in G L(2, \mathbb{Z}) \text { with } d \neq 0 .
$$

If K is not a totally complex quadratic extension of a totally real field, it has infinitely many orders of type I.

Orders of type I and II

Type I orders

Let K be an algebraic number field of degree ≥ 3. An order O in K is of type \mathbf{I} if there are $\alpha, \beta \in O$ such that $O=\mathbb{Z}[\alpha]=\mathbb{Z}[\beta]$, and

$$
\beta=\frac{a+b \alpha}{c+d \alpha} \text { for some }\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in G L(2, \mathbb{Z}) \text { with } d \neq 0
$$

If K is not a totally complex quadratic extension of a totally real field, it has infinitely many orders of type I.

Type II orders

Let K be a quartic number field. An order O in K is of type II if there are $\alpha, \beta \in O$ such that $O=\mathbb{Z}[\alpha]=\mathbb{Z}[\beta]$, and

$$
\beta= \pm \alpha^{2}+a \alpha+b, \alpha= \pm \beta^{2}+c \beta+d \text { for some } a, b, c, d \in \mathbb{Z} .
$$

There are infinitely many quartic fields K with infinitely many orders of type II.

The theorem for two times monogenic orders

Fact.
If K has degree 3 then every two times monogenic order of K is of type I.

We denote by S_{d} the permutation group on d elements.

Theorem 2 (Bérczes, Györy, E., 2011)

Let K be a number field of degree $d \geq 4$. Assume that the normal closure of K has Galois group $\cong S_{d}$.
(i) If $d=4$ then K has only finitely many two times monogenic orders which are not of type I or II.
(ii) If $d \geq 5$ then K has only finitely many two times monogenic orders which are not of type l.

Connection with unit equations

Let K be an algebraic number field of degree $d \geq 3$, and N its normal closure. Denote the conjugates of $\alpha \in K$ in N by $\alpha^{(1)}, \ldots, \alpha^{(d)}$.

Lemma

Let α, β be elements of O_{K} such that $\mathbb{Q}(\alpha)=\mathbb{Q}(\beta)=K$ and $\mathbb{Z}[\alpha]=\mathbb{Z}[\beta]$. Then for $1 \leq i<j \leq d$,

$$
\varepsilon_{i j}:=\frac{\beta^{(i)}-\beta^{(j)}}{\alpha^{(i)}-\alpha^{(j)}} \in O_{N}^{*} .
$$

Proof.

$\beta=f(\alpha), \alpha=g(\beta)$ for some $f, g \in \mathbb{Z}[X]$.

Connection with unit equations

Let K be an algebraic number field of degree $d \geq 3$, and N its normal closure. Denote the conjugates of $\alpha \in K$ in N by $\alpha^{(1)}, \ldots, \alpha^{(d)}$.

Lemma

Let α, β be elements of O_{K} such that $\mathbb{Q}(\alpha)=\mathbb{Q}(\beta)=K$ and $\mathbb{Z}[\alpha]=\mathbb{Z}[\beta]$. Then for $1 \leq i<j \leq d$,

$$
\varepsilon_{i j}:=\frac{\beta^{(i)}-\beta^{(j)}}{\alpha^{(i)}-\alpha^{(j)}} \in O_{N}^{*} .
$$

Proof.

$$
\beta=f(\alpha), \alpha=g(\beta) \text { for some } f, g \in \mathbb{Z}[X] .
$$

We have for all distinct $i, j, k \in\{1, \ldots, d\}$,

$$
\frac{\alpha^{(i)}-\alpha^{(j)}}{\alpha^{(i)}-\alpha^{(k)}} \cdot \frac{\varepsilon_{i j}}{\varepsilon_{i k}}+\frac{\alpha^{(j)}-\alpha^{(k)}}{\alpha^{(i)}-\alpha^{(k)}} \cdot \frac{\varepsilon_{j k}}{\varepsilon_{i k}}=\frac{\beta^{(i)}-\beta^{(j)}}{\beta^{(i)}-\beta^{(k)}}+\frac{\beta^{(j)}-\beta^{(k)}}{\beta^{(i)}-\beta^{(k)}}=1 .
$$

This leads to unit equations $a x+b y=1$ in $x, y \in O_{N}^{*}$.

Unit equations

Let F be a field of characteristic 0 . We consider equations

$$
\begin{equation*}
a x+b y=1 \text { in } x, y \in \Gamma \tag{2}
\end{equation*}
$$

where $a, b \in F^{*}$ and Γ is a finitely generated subgroup of F^{*}.
Such equations have only finitely many solutions (Siegel, Mahler, Lang, 1960).

Unit equations

Let F be a field of characteristic 0 . We consider equations

$$
\begin{equation*}
a x+b y=1 \text { in } x, y \in \Gamma \tag{2}
\end{equation*}
$$

where $a, b \in F^{*}$ and Γ is a finitely generated subgroup of F^{*}.
Such equations have only finitely many solutions (Siegel, Mahler, Lang, 1960).

We call (a, b) normalized if $a+b=1$.
If (2) has a solution $u, v \in \Gamma$, then $\left(a^{\prime}, b^{\prime}\right)=(a u, b v)$ is normalized, and $a^{\prime} x+b^{\prime} y=1$ in $x, y \in \Gamma$ has the same number of solutions as (2).

Theorem (Györy, Stewart, Tijdeman, E., 1988)

There are only finitely many normalized pairs $(a, b) \in F^{*} \times F^{*}$ such that eq. (2) has more than two solutions.

Sketch of the proof of Theorem 1

Let K be a number field of degree $d \geq 3$.
Let $O=\mathbb{Z}[\alpha]=\mathbb{Z}[\beta]=\mathbb{Z}[\gamma]$ with α, β, γ inequivalent. Put

$$
\varepsilon_{i j}:=\frac{\beta^{(i)}-\beta^{(j)}}{\alpha^{(i)}-\alpha^{(j)}}, \quad \eta_{i j}:=\frac{\gamma^{(i)}-\gamma^{(j)}}{\alpha^{(i)}-\alpha^{(j)}} \quad(i, j, k \in\{1, \ldots, d\} \text { distinct }) .
$$

Sketch of the proof of Theorem 1

Let K be a number field of degree $d \geq 3$.
Let $O=\mathbb{Z}[\alpha]=\mathbb{Z}[\beta]=\mathbb{Z}[\gamma]$ with α, β, γ inequivalent. Put

$$
\varepsilon_{i j}:=\frac{\beta^{(i)}-\beta^{(j)}}{\alpha^{(i)}-\alpha^{(j)}}, \quad \eta_{i j}:=\frac{\gamma^{(i)}-\gamma^{(j)}}{\alpha^{(i)}-\alpha^{(j)}} \quad(i, j, k \in\{1, \ldots, d\} \text { distinct }) .
$$

1) For each i, j, k, the equation

$$
\frac{\alpha^{(i)}-\alpha^{(j)}}{\alpha^{(i)}-\alpha^{(k)}} \cdot x+\frac{\alpha^{(j)}-\alpha^{(k)}}{\alpha^{(i)}-\alpha^{(k)}} \cdot y=1 \text { in } x, y \in O_{N}^{*}
$$

has solutions $(1,1),\left(\varepsilon_{i j} / \varepsilon_{i k}, \varepsilon_{j k} / \varepsilon_{i k}\right),\left(\eta_{i j} / \eta_{i k}, \eta_{j k} / \eta_{i k}\right)$.

Sketch of the proof of Theorem 1

Let K be a number field of degree $d \geq 3$.
Let $O=\mathbb{Z}[\alpha]=\mathbb{Z}[\beta]=\mathbb{Z}[\gamma]$ with α, β, γ inequivalent. Put

$$
\varepsilon_{i j}:=\frac{\beta^{(i)}-\beta^{(j)}}{\alpha^{(i)}-\alpha^{(j)}}, \quad \eta_{i j}:=\frac{\gamma^{(i)}-\gamma^{(j)}}{\alpha^{(i)}-\alpha^{(j)}} \quad(i, j, k \in\{1, \ldots, d\} \text { distinct })
$$

1) For each i, j, k, the equation

$$
\frac{\alpha^{(i)}-\alpha^{(j)}}{\alpha^{(i)}-\alpha^{(k)}} \cdot x+\frac{\alpha^{(j)}-\alpha^{(k)}}{\alpha^{(i)}-\alpha^{(k)}} \cdot y=1 \text { in } x, y \in O_{N}^{*}
$$

has solutions $(1,1),\left(\varepsilon_{i j} / \varepsilon_{i k}, \varepsilon_{j k} / \varepsilon_{i k}\right),\left(\eta_{i j} / \eta_{i k}, \eta_{j k} / \eta_{i k}\right)$.
2) The Theorem of GSTE + combinatorics (to dispose of the problem that for some i, j, k two solutions may coincide) imply that there are only finitely many possible values for the quotients

$$
\frac{\alpha^{(i)}-\alpha^{(j)}}{\alpha^{(i)}-\alpha^{(k)}} \text { for all distinct } i, j, k \in\{1, \ldots, d\}
$$

3) There are only finitely many orders $O=\mathbb{Z}[\alpha]=\mathbb{Z}[\beta]=\mathbb{Z}[\gamma]$ with prescribed values for these quotients.

Sketch of the proof of Theorem 2 (I)

Assume $[K: \mathbb{Q}]=d \geq 4$. Let N be the normal closure of K. By assumption $\operatorname{Gal}(N / \mathbb{Q}) \cong S_{d}$.

Let $O=\mathbb{Z}[\alpha]=\mathbb{Z}[\beta]$ with α, β inequivalent. Put $\varepsilon_{i j}:=\frac{\beta^{(i)}-\beta^{(i)}}{\alpha^{(i)}-\alpha^{(j)}}$.
From

$$
\frac{\alpha^{(i)}-\alpha^{(j)}}{\alpha^{(k)}-\alpha^{(j)}} \cdot \frac{\varepsilon_{i j}}{\varepsilon_{j k}}+\frac{\alpha^{(k)}-\alpha^{(i)}}{\alpha^{(k)}-\alpha^{(j)}} \cdot \frac{\varepsilon_{i k}}{\varepsilon_{j k}}=1
$$

we infer

$$
\frac{\alpha^{(i)}-\alpha^{(j)}}{\alpha^{(i)}-\alpha^{(k)}}=\frac{\varepsilon_{i k} / \varepsilon_{j k}-1}{\varepsilon_{i j} / \varepsilon_{j k}-1} \quad(i, j, k \in\{1, \ldots, d\} \text { distinct }) .
$$

Sketch of the proof of Theorem 2 (I)

Assume $[K: \mathbb{Q}]=d \geq 4$. Let N be the normal closure of K.
By assumption $\operatorname{Gal}(N / \mathbb{Q}) \cong S_{d}$.
Let $O=\mathbb{Z}[\alpha]=\mathbb{Z}[\beta]$ with α, β inequivalent. Put $\varepsilon_{i j}:=\frac{\beta^{(i)}-\beta^{(j)}}{\alpha^{(i)}-\alpha^{(i)}}$.
From

$$
\frac{\alpha^{(i)}-\alpha^{(j)}}{\alpha^{(k)}-\alpha^{(j)}} \cdot \frac{\varepsilon_{i j}}{\varepsilon_{j k}}+\frac{\alpha^{(k)}-\alpha^{(i)}}{\alpha^{(k)}-\alpha^{(j)}} \cdot \frac{\varepsilon_{i k}}{\varepsilon_{j k}}=1
$$

we infer

$$
\frac{\alpha^{(i)}-\alpha^{(j)}}{\alpha^{(i)}-\alpha^{(k)}}=\frac{\varepsilon_{i k} / \varepsilon_{j k}-1}{\varepsilon_{i j} / \varepsilon_{j k}-1} \quad(i, j, k \in\{1, \ldots, d\} \text { distinct })
$$

Hence for all distinct $i, j, k, l \in\{1, \ldots, d\}$,

$$
\begin{aligned}
& \frac{\left(\varepsilon_{i k} / \varepsilon_{j k}-1\right)}{\left(\varepsilon_{i j} / \varepsilon_{j k}-1\right)} \cdot \frac{\left(\varepsilon_{i l} / \varepsilon_{k l}-1\right)}{\left(\varepsilon_{i k} / \varepsilon_{k l}-1\right)} \cdot \frac{\left(\varepsilon_{i j} / \varepsilon_{l j}-1\right)}{\left(\varepsilon_{i l} / \varepsilon_{l j}-1\right)} \\
& \quad=\frac{\left(\alpha^{(i)}-\alpha^{(j)}\right)}{\left(\alpha^{(i)}-\alpha^{(k)}\right)} \cdot \frac{\left(\alpha^{(i)}-\alpha^{(k)}\right)}{\left(\alpha^{(i)}-\alpha^{(I)}\right)} \cdot \frac{\left(\alpha^{(i)}-\alpha^{(I)}\right)}{\left(\alpha^{(i)}-\alpha^{(j)}\right)}=1
\end{aligned}
$$

Sketch of the proof of Theorem 2 (II)

Let $O=\mathbb{Z}[\alpha]=\mathbb{Z}[\beta]$ with α, β inequivalent, and $\varepsilon_{i j}:=\frac{\beta^{(i)}-\beta^{(j)}}{\alpha^{(i)}-\alpha^{(i)}}$. Then

$$
\mathbf{u}:=\left(\varepsilon_{i j}: 1 \leq i<j \leq d\right) \in X \cap \Gamma
$$

where $\Gamma=\left(O_{N}^{*}\right)^{d(d-1) / 2}$ and X is the algebraic subvariety of $\mathbb{G}_{m}^{d(d-1) / 2}$ given by

$$
\frac{\left(\varepsilon_{i k} / \varepsilon_{j k}-1\right)}{\left(\varepsilon_{i j} / \varepsilon_{j k}-1\right)} \cdot \frac{\left(\varepsilon_{i l} / \varepsilon_{k l}-1\right)}{\left(\varepsilon_{i k} / \varepsilon_{k l}-1\right)} \cdot \frac{\left(\varepsilon_{i j} / \varepsilon_{l j}-1\right)}{\left(\varepsilon_{i l} / \varepsilon_{l j}-1\right)}=1 \quad \forall i, j, k, l .
$$

We apply:

Theorem (Laurent, 1984)

Let F be a field of characteristic $0, X$ an algebraic subvariety of \mathbb{G}_{m}^{R} defined over F and Γ a finitely generated multiplicative subgroup of $\mathbb{G}_{m}^{R}(F)=\left(F^{*}\right)^{R}$.
Then $X \cap \Gamma$ is contained in a finite union $\mathbf{u}_{1} H_{1} \cup \cdots \cup \mathbf{u}_{t} H_{t}$ of cosets of algebraic subgroups of \mathbb{G}_{m}^{R} with $\mathbf{u}_{i} H_{i} \subseteq X$ for $i=1, \ldots, t$.

Sketch of the proof of Theorem 2 (III)

Let $O=\mathbb{Z}[\alpha]=\mathbb{Z}[\beta]$ and $\varepsilon_{i j}:=\frac{\beta^{(i)}-\beta^{(j)}}{\alpha^{(i)}-\alpha^{(j)}}(1 \leq i<j \leq d)$.

Lemma

There is a finite set \mathcal{S} depending only on K such that at least one of the three following assertions is true:
(i) $\varepsilon_{i j} / \varepsilon_{i k} \in \mathcal{S}$ for all distinct $i, j, k \in\{1, \ldots, d\}$;
(ii) $\varepsilon_{i j} \varepsilon_{k l}=\varepsilon_{i k} \varepsilon_{j l}$ for all distinct $i, j, k, l \in\{1, \ldots, d\}$;
(iii) $d=4$ and $\varepsilon_{12}=-\varepsilon_{34}, \varepsilon_{13}=-\varepsilon_{24}, \varepsilon_{14}=-\varepsilon_{23}$.

Proof.

1) Apply Laurent's Theorem.
2) Use the relations between the $\varepsilon_{i j}$ following from our assumption $\operatorname{Gal}(N / \mathbb{Q}) \cong S_{d}$.

Sketch of the proof of Theorem 2 (III)

Let $O=\mathbb{Z}[\alpha]=\mathbb{Z}[\beta]$ and $\varepsilon_{i j}:=\frac{\beta^{(i)}-\beta^{(j)}}{\alpha^{(i)}-\alpha^{(j)}}(1 \leq i<j \leq d)$.

Lemma

There is a finite set \mathcal{S} depending only on K such that at least one of the three following assertions is true:
(i) $\varepsilon_{i j} / \varepsilon_{i k} \in \mathcal{S}$ for all distinct $i, j, k \in\{1, \ldots, d\}$;
(ii) $\varepsilon_{i j} \varepsilon_{k l}=\varepsilon_{i k} \varepsilon_{j l}$ for all distinct $i, j, k, l \in\{1, \ldots, d\}$;
(iii) $d=4$ and $\varepsilon_{12}=-\varepsilon_{34}, \varepsilon_{13}=-\varepsilon_{24}, \varepsilon_{14}=-\varepsilon_{23}$.

Completion of the proof of Theorem 2.

(i) gives rise to only finitely many possibilities for O;
(ii) implies that $O=\mathbb{Z}[\alpha]=\mathbb{Z}[\beta]$ is of type I ;
(iii) implies that O is of type II.

This proves Theorem 2.

Extension to non-integers

Let K be a number field of degree d.
For α with $K=\mathbb{Q}(\alpha)$ define the \mathbb{Z}-module and order

$$
M_{\alpha}:=\left\{\sum_{i=0}^{d-1} x_{i} \alpha^{i}: x_{i} \in \mathbb{Z}\right\}, \quad O_{\alpha}:=\left\{\lambda \in K: \lambda M_{\alpha} \subseteq M_{\alpha}\right\} .
$$

If α is an algebraic integer, then $O_{\alpha}=\mathbb{Z}[\alpha]$.

We call $\alpha, \beta \in K G L(2, \mathbb{Z})$-equivalent if

$$
\beta=\frac{a+b \alpha}{c+d \alpha} \text { for some }\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in G L(2, \mathbb{Z}) \text {. }
$$

If $\alpha, \beta \in K$ are $G L(2, \mathbb{Z})$-equivalent then $O_{\alpha}=O_{\beta}$.

An open problem

Given an order O in a number field K, denote by $N(O)$ the number of $G L(2, \mathbb{Z})$-equivalence classes of α with

$$
\mathbb{Q}(\alpha)=K, \quad O_{\alpha}=O .
$$

Theorem

Let K be a number field of degree $d \geq 3$. Then for every order O in K we have
$N(O)=1$ if $d=3$ (Delone, Faddeev, 1940);
$N(O) \leq 2^{24 d^{3}}$ if $d \geq 4$ (Bérczes, Györy, E., 2004).

Open problem.

Is there an absolute constant N ($=2$?) such that for every number field K of degree ≥ 4 we have $N(O) \leq N$ for all but finitely many orders O in K ?

Thank you for your attention!

