Root separation of polynomials

Jan-Hendrik Evertse

Let $f=a_{0} X^{n}+\cdots+a_{n} \in \mathbb{Z}[X]$ (with $n \geqslant 2$) be a polynomial with n distinct roots in \mathbb{C}, say $\alpha_{1}, \ldots, \alpha_{n}$. Define the minimal root distance of f by $\operatorname{sep}(f):=\min _{i<j}\left|\alpha_{i}-\alpha_{j}\right|$ and define the height of f by $H(f):=\max _{i}\left|a_{i}\right|$. According to an elementary inequality of Mahler, we have

$$
\operatorname{sep}(f) \geqslant c(n) H(f)^{1-n}
$$

where $c(n)$ is an effectively computable number, depending on n only. In 2006, Schönhage proved that in terms of $H(f)$ this is best possible if $n \geqslant 3$, i.e., for $n=2,3$ there are $c_{1}>0$ and polynomials $f \in \mathbb{Z}[X]$ of degree n and of arbitrarily height, such that $\operatorname{sep}(f) \leqslant c_{1} H(f)^{1-n}$. Schönhage's proof uses continued fractions. On the other hand, for polynomials $f \in \mathbb{Z}[X]$ of degree $n \geqslant 4$ one has $\operatorname{sep}(f) \geqslant c_{2}(n) H(f)^{1-n}(\log 2 H(f))^{1 /(10 n-6)}$, with $c_{2}(n)$ effectively computable in terms of n. Here, the proof is based on Baker's method.

We would like to discuss generalizations for the minimal m-cluster distance $\operatorname{sep}_{m}(f):=\min _{I} \prod_{\{i, j\} \subset I}\left|\alpha_{i}-\alpha_{j}\right|$, where the minimum is taken over all subsets I of $\{1, \ldots, n\}$ of cardinality m, and for p-adic analogues where we take distances with respect to the p-adic absolute value instead of the ordinary absolute value.

