Results and open problems related to Schmidt's Subspace Theorem

Jan-Hendrik Evertse
 Universiteit Leiden

BIRS workshop on Vojta's conjectures
September 30, 2014, Banff

Slides can be downloaded from
http: //pub.math.leidenuniv.nl/~evertsejh/lectures.shtml

Roth's Theorem

Define

$$
H(\xi)=\max (|p|,|q|), \text { where } \xi=p / q, p, q \in \mathbb{Z}, \operatorname{gcd}(p, q)=1
$$

Theorem (Roth, 1955)

Let α be a real algebraic number and $\delta>0$. Then the inequality

$$
\begin{equation*}
|\alpha-\xi| \leq H(\xi)^{-2-\delta} \text { in } \xi \in \mathbb{Q} \tag{1}
\end{equation*}
$$

has only finitely many solutions.

Roth's proof, and later proofs of his Theorem, are ineffective, i.e., they do not give a method to determine the solutions.

A semi-effective result

The minimal polynomial of an algebraic number α is the irreducible polynomial $F \in \mathbb{Z}[X]$ with coprime coefficients such that $F(\alpha)=0$.

We define the height $H(\alpha):=\max \mid$ coeff. of $F \mid$.

Theorem (Bombieri, van der Poorten, 1987)

Let $\delta>0, K=\mathbb{Q}(\alpha),[K: \mathbb{Q}]=d$. Then for the solutions $\xi \in \mathbb{Q}$ of

$$
|\alpha-\xi| \leq H(\xi)^{-2-\delta}
$$

we have $H(\xi) \leq \max \left(B^{\text {ineff }}(\delta, K), H(\alpha)^{c^{\text {efff }}(\delta, d)}\right)$.
Here $c^{\text {eff }}, B^{\text {ineff }}$ are constants, effectively, resp. not effectively computable from the method of proof, depending on the parameters between the parentheses.

A semi-effective result

The minimal polynomial of an algebraic number α is the irreducible polynomial $F \in \mathbb{Z}[X]$ with coprime coefficients such that $F(\alpha)=0$.
We define the height $H(\alpha):=\max \mid$ coeff. of $F \mid$.
Theorem (Bombieri, van der Poorten, 1987)
Let $\delta>0, K=\mathbb{Q}(\alpha),[K: \mathbb{Q}]=d$. Then for the solutions $\xi \in \mathbb{Q}$ of

$$
|\alpha-\xi| \leq H(\xi)^{-2-\delta}
$$

we have $H(\xi) \leq \max \left(B^{\text {ineff }}(\delta, K), H(\alpha)^{c^{\text {eff }}(\delta, d)}\right)$.

Equivalent formulation, 'Roth's theorem with moving targets'

Let K be a number field of degree d and $\delta>0$. Then there are only finitely many pairs $(\xi, \alpha) \in \mathbb{Q} \times K$ such that

$$
|\alpha-\xi| \leq H(\xi)^{-2-\delta}, \quad H(\xi)>H(\alpha)^{\mathrm{c}^{\text {eff }}(\delta, d)} .
$$

A semi-effective result

The minimal polynomial of an algebraic number α is the irreducible polynomial $F \in \mathbb{Z}[X]$ with coprime coefficients such that $F(\alpha)=0$.

We define the height $H(\alpha):=\max \mid$ coeff. of $F \mid$.

Theorem (Bombieri, van der Poorten, 1987)

Let $\delta>0, K=\mathbb{Q}(\alpha),[K: \mathbb{Q}]=d$. Then for the solutions $\xi \in \mathbb{Q}$ of

$$
|\alpha-\xi| \leq H(\xi)^{-2-\delta}
$$

we have $H(\xi) \leq \max \left(B^{\text {ineff }}(\delta, K), H(\alpha)^{c^{\text {efff }}(\delta, d)}\right)$.

Similar results follow from work of Vojta (1995), Corvaja (1997), McQuillan $\left(c^{\mathrm{eff}}(\delta, d)=O\left(d\left(1+\delta^{-2}\right)\right)\right.$, published ?).

Schmidt's Subspace Theorem

Let $\overline{\mathbb{Q}}$ denote the field of algebraic numbers in \mathbb{C} and let

$$
L_{i}(\mathbf{X})=\alpha_{i 1} X_{1}+\cdots+\alpha_{i n} X_{n} \quad(i=1, \ldots, n)
$$

be linearly independent linear forms with coefficients $\alpha_{i j} \in \overline{\mathbb{Q}}$.
For $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}^{n}$, put $\|\mathbf{x}\|:=\max _{i}\left|x_{i}\right|$.

Theorem (W.M. Schmidt, 1972)

Let $\delta>0$. Then the set of solutions of

$$
\begin{equation*}
\left|L_{1}(\mathbf{x}) \cdots L_{n}(\mathbf{x})\right| \leq\|\mathbf{x}\|^{-\delta} \text { in } \mathbf{x} \in \mathbb{Z}^{n} \tag{2}
\end{equation*}
$$

is contained in finitely many proper linear subspaces of \mathbb{Q}^{n}.
There are generalizations where the unknowns are taken from a number field and various archimedean and non-archimedean absolute values are involved. (Schmidt, Schlickewei)

Systems of inequalities

By a combinatorial argument, the inequality (2) $\left|L_{1}(\mathbf{x}) \cdots L_{n}(\mathbf{x})\right| \leq\|\mathbf{x}\|^{-\delta}$ can be reduced to finitely many systems of inequalities of the shape

$$
\begin{equation*}
\left|L_{1}(\mathbf{x})\right| \leq\|\mathbf{x}\|^{c_{1}}, \ldots,\left|L_{n}(\mathbf{x})\right| \leq\|\mathbf{x}\|^{c_{n}} \quad \text { in } \mathbf{x} \in \mathbb{Z}^{n} \tag{3}
\end{equation*}
$$

where $c_{1}+\cdots+c_{n}<0$.

Systems of inequalities

By a combinatorial argument, the inequality (2) $\left|L_{1}(\mathbf{x}) \cdots L_{n}(\mathbf{x})\right| \leq\|\mathbf{x}\|^{-\delta}$ can be reduced to finitely many systems of inequalities of the shape

$$
\begin{equation*}
\left|L_{1}(\mathbf{x})\right| \leq\|\mathbf{x}\|^{c_{1}}, \ldots,\left|L_{n}(\mathbf{x})\right| \leq\|\mathbf{x}\|^{c_{n}} \quad \text { in } \mathbf{x} \in \mathbb{Z}^{n} \tag{3}
\end{equation*}
$$

where $c_{1}+\cdots+c_{n}<0$.

Idea.

Let $\mathbf{x} \in \mathbb{Z}^{n}$ be a solution of (2). Then

$$
\left|L_{1}(\mathbf{x})\right| \leq\|\mathbf{x}\|^{c_{1}(\mathbf{x})}, \ldots,\left|L_{n}(\mathbf{x})\right| \leq\|\mathbf{x}\|^{c_{n}(\mathbf{x})}
$$

with

$$
\mathbf{c}(\mathbf{x}):=\left(c_{1}(\mathbf{x}), \ldots, c_{n}(\mathbf{x})\right) \in \text { bounded set } S
$$

Cover S by a very fine, finite grid. Then \mathbf{x} satisfies (3) with $\mathbf{c}=\left(c_{1}, \ldots, c_{n}\right)$ a grid point very close to $\mathbf{c}(\mathbf{x})$.

Systems of inequalities

By a combinatorial argument, the inequality (2) $\left|L_{1}(\mathbf{x}) \cdots L_{n}(\mathbf{x})\right| \leq\|\mathbf{x}\|^{-\delta}$ can be reduced to finitely many systems of inequalities of the shape

$$
\begin{equation*}
\left|L_{1}(\mathbf{x})\right| \leq\|\mathbf{x}\|^{c_{1}}, \ldots,\left|L_{n}(\mathbf{x})\right| \leq\|\mathbf{x}\|^{c_{n}} \quad \text { in } \mathbf{x} \in \mathbb{Z}^{n} \tag{3}
\end{equation*}
$$

where $c_{1}+\cdots+c_{n}<0$.
Thus, the following is equivalent to the Subspace Theorem:

Theorem

The solutions of (3) lie in finitely many proper linear subspaces of \mathbb{Q}^{n}.

A refinement of the Subspace Theorem

Let again L_{1}, \ldots, L_{n} be linearly independent linear forms in X_{1}, \ldots, X_{n} with coefficients in $\overline{\mathbb{Q}}$ and c_{1}, \ldots, c_{n} reals with $c_{1}+\cdots+c_{n}<0$.
Consider again

$$
\begin{equation*}
\left|L_{1}(\mathbf{x})\right| \leq\|\mathbf{x}\|^{c_{1}}, \ldots,\left|L_{n}(\mathbf{x})\right| \leq\|\mathbf{x}\|^{c_{n}} \quad \text { in } \mathbf{x} \in \mathbb{Z}^{n} . \tag{3}
\end{equation*}
$$

Theorem (Vojta (1989), Schmidt (1993), Faltings-Wüstholz (1994))

There is an effectively computable, proper linear subspace $T^{\text {exc }}$ of \mathbb{Q}^{n} such that (3) has only finitely many solutions outside T^{exc}.
The space $T^{\text {exc }}$ belongs to a finite collection, depending only on L_{1}, \ldots, L_{n} and independent of c_{1}, \ldots, c_{n}.

This refinement can be deduced from Schmidt's basic Subspace Theorem, so it is in fact equivalent to Schmidt's basic Subspace Theorem.

About the exceptional subspace

Assume for simplicity that L_{1}, \ldots, L_{n} have real algebraic coefficients.
For a linear subspace T of \mathbb{Q}^{n}, we say that a subset $\left\{L_{i_{1}}, \ldots, L_{i_{m}}\right\}$ of $\left\{L_{1}, \ldots, L_{n}\right\}$ is linearly independent on T if no non-trivial \mathbb{R}-linear combination of $L_{i_{1}}, \ldots, L_{i_{m}}$ vanishes identically on T.

For a linear subspace T of \mathbb{Q}^{n} define $c(T)$ to be the minimum of the quantities $c_{i_{1}}+\cdots+c_{i_{m}}$, taken over all subsets $\left\{L_{i_{1}}, \ldots, L_{i_{m}}\right\}$ of $\left\{L_{1}, \ldots, L_{n}\right\}$ of cardinality $m=\operatorname{dim} T$ that are linearly independent on T.
$T^{\text {exc }}$ is the unique proper linear subspace T of \mathbb{Q}^{n} such that

$$
\frac{c\left(\mathbb{Q}^{n}\right)-c(T)}{n-\operatorname{dim} T} \text { is minimal, }
$$

subject to this condition, $\operatorname{dim} T$ is minimal.

About the exceptional subspace

An effective estimate

Lemma (E., Ferretti, 2013)

Suppose that the coefficients of L_{1}, \ldots, L_{n} have heights $\leq H$.
Then $T^{\text {exc }}$ has a basis $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{m}\right\} \subset \mathbb{Z}^{n}$ with

$$
\left\|\mathbf{x}_{i}\right\| \leq\left(\sqrt{n} H^{n}\right)^{4^{n}} \quad(i=1, \ldots, m)
$$

Open problem

Is there an efficient method to determine $T^{\text {exc }}$ in general?
Easy combinatorial expression of $T^{\text {exc }}$ in terms of $L_{1}, \ldots, L_{n}, c_{1}, \ldots, c_{n}$?

Remarks

With the present methods of proof it is not possible to determine effectively the solutions of

$$
\begin{equation*}
\left|L_{1}(\mathbf{x})\right| \leq\|\mathbf{x}\|^{c_{1}}, \ldots,\left|L_{n}(\mathbf{x})\right| \leq\|\mathbf{x}\|^{c_{n}} \quad \text { in } \mathbf{x} \in \mathbb{Z}^{n} \tag{3}
\end{equation*}
$$

outside $T^{\text {exc }}$.

It is possible to give an explicit upper bound for the minimal number of proper linear subspaces of \mathbb{Q}^{n} whose union contains all solutions of (3).
This bound depends on $n, \delta:=-\left(c_{1}+\cdots+c_{n}\right)$ and on the heights and degrees of the coefficients of L_{1}, \ldots, L_{n} (Schmidt (1989), ..., E. and Ferretti (2013)).

With the present methods it is not possible to estimate from above the number of solutions of (3) outside $T^{\text {exc }}$.

A semi-effective version of the Subspace Theorem

Let L_{1}, \ldots, L_{n} be linearly independent linear forms in X_{1}, \ldots, X_{n} and c_{1}, \ldots, c_{n} reals such that:

- the coefficients of L_{1}, \ldots, L_{n} have heights $\leq H$ and generate a number field K of degree d;
- $c_{1}+\cdots+c_{n}=-\delta<0$.

Theorem

For every solution \mathbf{x} of
(4) $\quad\left|L_{1}(\mathbf{x})\right| \leq\|\mathbf{x}\|^{c_{1}}, \ldots,\left|L_{n}(\mathbf{x})\right| \leq\|\mathbf{x}\|^{c_{n}} \quad$ with $\mathbf{x} \in \mathbb{Z}^{n} \backslash T^{\text {exc }}$
we have $\|\mathbf{x}\| \leq \max \left(B^{\text {ineff }}(n, \delta, K), H^{c^{\text {eff }}(n, \delta, d)}\right)$.

Proof.

Small modification in the proof of the Subspace Theorem.

A semi-effective version of the Subspace Theorem

Let L_{1}, \ldots, L_{n} be linearly independent linear forms in X_{1}, \ldots, X_{n} and c_{1}, \ldots, c_{n} reals such that:

- the coefficients of L_{1}, \ldots, L_{n} have heights $\leq H$ and generate a number field K of degree d;
- $c_{1}+\cdots+c_{n}=-\delta<0$.

Theorem

For every solution \mathbf{x} of
(4) $\quad\left|L_{1}(\mathbf{x})\right| \leq\|\mathbf{x}\|^{c_{1}}, \ldots,\left|L_{n}(\mathbf{x})\right| \leq\|\mathbf{x}\|^{c_{n}} \quad$ with $\mathbf{x} \in \mathbb{Z}^{n} \backslash T^{\text {exc }}$
we have $\|\mathbf{x}\| \leq \max \left(B^{\text {ineff }}(n, \delta, K), H^{c^{\text {eff }}(n, \delta, d)}\right)$.
We may take $c^{\text {eff }}(n, \delta, d)=\exp \left(10^{6 n}\left(1+\delta^{-3}\right) \log 4 d \log \log 4 d\right)$.

A semi-effective version of the Subspace Theorem

Let L_{1}, \ldots, L_{n} be linearly independent linear forms in X_{1}, \ldots, X_{n} and c_{1}, \ldots, c_{n} reals such that:

- the coefficients of L_{1}, \ldots, L_{n} have heights $\leq H$ and generate a number field K of degree d;
- $c_{1}+\cdots+c_{n}=-\delta<0$.

Theorem

For every solution \mathbf{x} of
(4) $\quad\left|L_{1}(\mathbf{x})\right| \leq\|\mathbf{x}\|^{c_{1}}, \ldots,\left|L_{n}(\mathbf{x})\right| \leq\|\mathbf{x}\|^{c_{n}} \quad$ with $\mathbf{x} \in \mathbb{Z}^{n} \backslash T^{\text {exc }}$ we have $\|\mathbf{x}\| \leq \max \left(B^{\text {ineff }}(n, \delta, K), H^{\mathrm{c}^{\text {eff }}(n, \delta, d)}\right)$.

This may be viewed as a version of the Subspace Theorem with moving targets, where we have only finitely many tuples ($\mathbf{x}, L_{1}, \ldots, L_{n}$) with (4), such that the coefficients of L_{1}, \ldots, L_{n} lie in a given number field K and have small heights with respect to \mathbf{x}. (How to compare this with a result of Ru and Vojta?)

A conjectural improvement

Keep the assumptions

- L_{1}, \ldots, L_{n} are linearly independent linear forms, whose coefficients have heights $\leq H$ and generate a number field of degree d;
- $c_{1}+\cdots+c_{n}=-\delta<0$.

Conjecture 1

There are an effectively computable constant $c^{\text {eff }}(n, \delta, d)>0$ and a constant $B^{\prime}(n, \delta, d)>0$ such that for every solution \mathbf{x} of
(4) $\quad\left|L_{1}(\mathbf{x})\right| \leq\|\mathbf{x}\|^{c_{1}}, \ldots,\left|L_{n}(\mathbf{x})\right| \leq\|\mathbf{x}\|^{c_{n}} \quad$ with $\mathbf{x} \in \mathbb{Z}^{n} \backslash T^{\text {exc }}$
we have $\|\mathbf{x}\| \leq \max \left(B^{\prime}(n, \delta, d), H^{\mathrm{c}^{\text {eff }}(n, \delta, d)}\right)$.
(In moving targets terms: there are only finitely many tuples ($\mathbf{x}, L_{1}, \ldots, L_{n}$) with (4) such that the coefficients of L_{1}, \ldots, L_{n} have bounded degree and have heights small compared with \mathbf{x}).

A conjectural improvement

Keep the assumptions

- L_{1}, \ldots, L_{n} are linearly independent linear forms, whose coefficients have heights $\leq H$ and generate a number field of degree d;
- $c_{1}+\cdots+c_{n}=-\delta<0$.

Conjecture 1

There are an effectively computable constant $c^{\text {eff }}(n, \delta, d)>0$ and a constant $B^{\prime}(n, \delta, d)>0$ such that for every solution \mathbf{x} of
(4) $\quad\left|L_{1}(\mathbf{x})\right| \leq\|\mathbf{x}\|^{c_{1}}, \ldots,\left|L_{n}(\mathbf{x})\right| \leq\|\mathbf{x}\|^{c_{n}} \quad$ with $\mathbf{x} \in \mathbb{Z}^{n} \backslash T^{\text {exc }}$
we have $\|\mathbf{x}\| \leq \max \left(B^{\prime}(n, \delta, d), H^{\mathrm{c}^{\text {eff }}(n, \delta, d)}\right)$.
This is hopeless with B^{\prime} effective. But what if we allow B^{\prime} to be ineffective?

abc-type inequalities

Let K be an algebraic number field of degree d and discriminant D_{K}. Let a, b, c be non-zero elements of O_{K} with $a+b=c$.
Put $H_{K}(a, b, c):=\prod_{\sigma: K \hookrightarrow \mathbb{C}} \max (|\sigma(a)|,|\sigma(b)|,|\sigma(c)|)$.
Theorem 1 (Effective abc-inequality, Györy, 1978)
We have $H_{K}(a, b, c) \leq\left(2\left|N_{K / \mathbb{Q}}(a b c)\right|\right)^{c_{1}(d)\left|D_{K}\right|^{\mid c^{2}(d)}}$ with $c_{1}(d), c_{2}(d)$ effectively computable in terms of d.

Proof.

Baker-type logarithmic forms estimates.

abc-type inequalities

Let K be an algebraic number field of degree d and discriminant D_{K}. Let a, b, c be non-zero elements of O_{K} with $a+b=c$.
Put $H_{K}(a, b, c):=\prod_{\sigma: K \hookrightarrow \mathbb{C}} \max (|\sigma(a)|,|\sigma(b)|,|\sigma(c)|)$.

Theorem 1 (Effective abc-inequality, Györy, 1978)

We have $H_{K}(a, b, c) \leq\left(2\left|N_{K / \mathbb{Q}}(a b c)\right|\right)^{c_{1}(d)\left|D_{K}\right|^{c_{2}(d)}}$ with $c_{1}(d), c_{2}(d)$ effectively computable in terms of d.

Proof.

Baker-type logarithmic forms estimates.

Theorem 2 (Semi-effective abc-inequality, well-known)

For every $\delta>0$ we have $H_{K}(a, b, c) \leq C^{\text {ineff }}(K, \delta)\left|N_{K / \mathbb{Q}}(a b c)\right|^{1+\delta}$.

Proof.

Roth's Theorem over number fields.

A very weak abc-conjecture

Let again K be a number field of degree d and discriminant D_{K}.

Conjecture 2 (Very weak abc-conjecture)

There are a constant $C(d, \delta)>0$ and an effectively computable constant $c^{\text {eff }}(d, \delta)>0$ with the following property: for every non-zero $a, b, c \in O_{K}$ with $a+b=c$ and every $\delta>0$ we have

$$
H_{K}(a, b, c) \leq\left. C(d, \delta)\left|D_{K}\right|\right|^{\mathrm{e}^{\mathrm{eff}}(d, \delta)}\left|N_{K / \mathbb{Q}}(a b c)\right|^{1+\delta} .
$$

A very weak abc-conjecture

Let again K be a number field of degree d and discriminant D_{K}.

Conjecture 2 (Very weak abc-conjecture)

There are a constant $C(d, \delta)>0$ and an effectively computable constant $c^{\text {eff }}(d, \delta)>0$ with the following property: for every non-zero $a, b, c \in O_{K}$ with $a+b=c$ and every $\delta>0$ we have

$$
H_{K}(a, b, c) \leq C(d, \delta)\left|D_{K}\right|^{\mathrm{e}^{\mathrm{eff}}(d, \delta)}\left|N_{K / \mathbb{Q}}(a b c)\right|^{1+\delta} .
$$

Conjecture $1 \Longrightarrow$ Conjecture 2 (idea).

Choose a \mathbb{Z}-basis $\left\{\omega_{1}, \ldots, \omega_{d}\right\}$ of O_{K} with conjugates bounded from above in terms of D_{K}. Write $a=\sum_{i=1}^{d} x_{i} \omega_{i}, b=\sum_{i=1}^{d} y_{i} \omega_{i}$ with $x_{i}, y_{i} \in \mathbb{Z}$. Then $\mathbf{x}=\left(x_{1}, \ldots, y_{d}\right)$ satisfies one of finitely many systems of inequalities of the type

$$
\left|L_{i}(\mathbf{x})\right| \leq\|\mathbf{x}\|^{c_{i}} \quad(i=1, \ldots, 2 d)
$$

where the L_{i} are linear forms whose coefficients lie in the Galois closure of K and have heights bounded above in terms of $\left|D_{K}\right|$.

Discriminants of binary forms

Definition

The discriminant of a binary form

$$
\begin{aligned}
& \quad F=a_{0} X^{n}+a_{1} X^{n-1} Y+\cdots+a_{n} Y^{n}=\prod_{i=1}^{n}\left(\alpha_{i} X-\beta_{i} Y\right) \\
& \text { is given by } D(F)=\prod_{1 \leq i<j \leq n}\left(\alpha_{i} \beta_{j}-\alpha_{j} \beta_{i}\right)^{2} .
\end{aligned}
$$

This is a homogeneous polynomial in $\mathbb{Z}\left[a_{0}, \ldots, a_{n}\right]$ of degree $2 n-2$.

Discriminants of binary forms

Definition

The discriminant of a binary form

$$
F=a_{0} X^{n}+a_{1} X^{n-1} Y+\cdots+a_{n} Y^{n}=\prod_{i=1}^{n}\left(\alpha_{i} X-\beta_{i} Y\right)
$$

is given by $D(F)=\prod_{1 \leq i<j \leq n}\left(\alpha_{i} \beta_{j}-\alpha_{j} \beta_{i}\right)^{2}$.
This is a homogeneous polynomial in $\mathbb{Z}\left[a_{0}, \ldots, a_{n}\right]$ of degree $2 n-2$.

For a matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ we define $F_{A}(X, Y)=F(a X+b Y, c X+d Y)$.
Two binary forms $F, G \in \mathbb{Z}[X, Y]$ are called equivalent if $G= \pm F_{A}$ for some $A \in \operatorname{GL}(2, \mathbb{Z})$.
Equivalent binary forms have the same discriminant.

A finiteness result for binary forms of given discriminant

> Theorem (Lagrange ($n=2,1773$), Hermite ($n=3$, 1851), Birch and Merriman ($n \geq 4,1972$))

For every $n \geq 2$ and $D \neq 0$, there are only finitely many equivalence classes of binary forms $F \in \mathbb{Z}[X, Y]$ of degree n and discriminant D.

The proofs of Lagrange and Hermite are effective (in that they allow to compute a full system of representatives for the equivalence classes), that of Birch and Merriman is ineffective.

An effective finiteness result

Define the height of $F=a_{0} X^{n}+a_{1} X^{n-1} Y+\cdots+a_{n} Y^{n} \in \mathbb{Z}[X, Y]$ by $H(F):=\max _{i}\left|a_{i}\right|$.

Theorem 3 ($E .$, Györy, recent improvement of result from 1991)
Let $F \in \mathbb{Z}[X, Y]$ be a binary form of degree $n \geq 4$ and discriminant
$D \neq 0$. Then F is equivalent to a binary form G for which

$$
H(G) \leq \exp \left(\left(16 n^{3}\right)^{25 n^{2}}|D|^{5 n-3}\right)
$$

An effective finiteness result

Define the height of $F=a_{0} X^{n}+a_{1} X^{n-1} Y+\cdots+a_{n} Y^{n} \in \mathbb{Z}[X, Y]$ by $H(F):=\max _{i}\left|a_{i}\right|$.

Theorem 3 (E., Győry, recent improvement of result from 1991)
Let $F \in \mathbb{Z}[X, Y]$ be a binary form of degree $n \geq 4$ and discriminant
$D \neq 0$. Then F is equivalent to a binary form G for which

$$
H(G) \leq \exp \left(\left(16 n^{3}\right)^{25 n^{2}}|D|^{5 n-3}\right)
$$

More precise versions of the arguments of Lagrange and Hermite give a bound $H(G) \leq$ constant $\cdot|D|$ in case that F has degree ≤ 3.

An effective finiteness result

Define the height of $F=a_{0} X^{n}+a_{1} X^{n-1} Y+\cdots+a_{n} Y^{n} \in \mathbb{Z}[X, Y]$ by $H(F):=\max _{i}\left|a_{i}\right|$.

Theorem 3 (E., Győry, recent improvement of result from 1991)
Let $F \in \mathbb{Z}[X, Y]$ be a binary form of degree $n \geq 4$ and discriminant
$D \neq 0$. Then F is equivalent to a binary form G for which

$$
H(G) \leq \exp \left(\left(16 n^{3}\right)^{25 n^{2}}|D|^{5 n-3}\right)
$$

Proof (idea).

Let L be the splitting field of F. Assume for convenience that $F=\prod_{i=1}^{n}\left(\alpha_{i} X-\beta_{i} Y\right)$ with $\alpha_{i}, \beta_{i} \in O_{L} \forall i$. Put $\Delta_{i j}:=\alpha_{i} \beta_{j}-\alpha_{j} \beta_{i}$ and apply an explicit version of the effective abc-inequality (Theorem 1) to the identities

$$
\Delta_{i j} \Delta_{k l}+\Delta_{j k} \Delta_{i l}=\Delta_{i k} \Delta_{j l} \quad(1 \leq i, j, k, l \leq n) .
$$

A semi-effective finiteness result

Theorem 4 (E., 1993)

Let $F \in \mathbb{Z}[X, Y]$ be a binary form of degree $n \geq 4$, discriminant $D \neq 0$ and splitting field L. Then F is equivalent to a binary form G for which

$$
H(G) \leq C^{\text {ineff }}(n, L) \cdot|D|^{21 /(n-1)}
$$

Proof (idea).

Apply the semi-effective abc-inequality Theorem 2 to the identities

$$
\Delta_{i j} \Delta_{k l}+\Delta_{j k} \Delta_{i l}=\Delta_{i k} \Delta_{j l} \quad(1 \leq i, j, k, I \leq n) .
$$

A conjecture

Conjecture 3

Let $F \in \mathbb{Z}[X, Y]$ be a binary form of degree $n \geq 4$ and discriminant $D \neq 0$. Then F is equivalent to a binary form G for which

$$
H(G) \leq C_{1}(n)|D|^{c_{2}^{\text {eff }}(n)} .
$$

Conjecture $2 \Longrightarrow$ Conjecture 3.

Let L be the splitting field of F. Following the proof of Theorem 4 and using the very weak abc-conjecture, one obtains that there is G equivalent to F such that

$$
H(G) \leq C_{3}(n)\left|D_{L}\right|^{c_{4}^{\text {efff }}(n)}|D|^{21 /(n-1)}
$$

Use that D_{L} divides $D^{n!}$.

A conjecture

Conjecture 3

Let $F \in \mathbb{Z}[X, Y]$ be a binary form of degree $n \geq 4$ and discriminant $D \neq 0$. Then F is equivalent to a binary form G for which

$$
H(G) \leq C_{1}(n)|D|^{c_{2}^{\text {eff }}(n)} .
$$

Problem

What is the right value of the exponent on $|D|$?

A function field analogue

Let k be an algebraically closed field of characteristic $0, K=k(t)$, $R=k[t]$.
Define $|\cdot|$ on $k(t)$ by $|f / g|:=e^{\operatorname{deg} f-\operatorname{deg} g}$ for $f, g \in R$.
Define the height of $F=a_{0} X^{n}+a_{1} X^{n-1} Y+\cdots+a_{n} Y^{n} \in R[X, Y]$ by $H(F):=\max _{i}\left|a_{i}\right|$.
Call two binary forms $F, G \in R[X, Y]$ equivalent if $G=u F_{A}$ for some $u \in k^{*}, A \in \operatorname{GL}(2, R)$.

Theorem 5 (W. Zhuang)

Let $F \in R[X, Y]$ be a binary form of degree $n \geq 4$ and discriminant $D \neq 0$. Then F is equivalent to a binary form G for which

$$
H(G) \leq e^{n^{2}+4 n+14}|D|^{20+7 /(n-2)} .
$$

Proof.

Follow the proof over \mathbb{Z} and apply Mason's abc-theorem for function fields.

Thank you for your attention!

