Results and open problems related to Schmidt's Subspace Theorem

Jan-Hendrik Evertse Universiteit Leiden

BIRS workshop on Vojta's conjectures

September 30, 2014, Banff

Slides can be downloaded from http://pub.math.leidenuniv.nl/ \sim evertsejh/lectures.shtml

Define

$$H(\xi) = \max(|p|, |q|)$$
, where $\xi = p/q$, $p, q \in \mathbb{Z}$, $\gcd(p, q) = 1$.

Theorem (Roth, 1955)

Let α be a real algebraic number and $\delta > 0$. Then the inequality

(1)
$$|\alpha - \xi| \le H(\xi)^{-2-\delta}$$
 in $\xi \in \mathbb{Q}$

has only finitely many solutions.

Roth's proof, and later proofs of his Theorem, are ineffective, i.e., they do not give a method to determine the solutions.

A semi-effective result

The minimal polynomial of an algebraic number α is the irreducible polynomial $F \in \mathbb{Z}[X]$ with coprime coefficients such that $F(\alpha) = 0$.

We define the height $H(\alpha) := \max |\text{coeff. of } F|$.

Theorem (Bombieri, van der Poorten, 1987)

Let $\delta > 0$, $K = \mathbb{Q}(\alpha)$, $[K : \mathbb{Q}] = d$. Then for the solutions $\xi \in \mathbb{Q}$ of

 $|\alpha - \xi| \le H(\xi)^{-2-\delta}$

we have $H(\xi) \leq \max \left(B^{\operatorname{ineff}}(\delta, K), H(\alpha)^{c^{\operatorname{eff}}(\delta, d)} \right).$

Here $c^{\rm eff}$, $B^{\rm ineff}$ are constants, effectively, resp. not effectively computable from the method of proof, depending on the parameters between the parentheses.

A semi-effective result

The minimal polynomial of an algebraic number α is the irreducible polynomial $F \in \mathbb{Z}[X]$ with coprime coefficients such that $F(\alpha) = 0$. We define the height $H(\alpha) := \max |\text{coeff. of } F|$.

Theorem (Bombieri, van der Poorten, 1987)

Let $\delta > 0$, $K = \mathbb{Q}(\alpha)$, $[K : \mathbb{Q}] = d$. Then for the solutions $\xi \in \mathbb{Q}$ of

 $|\alpha - \xi| \le H(\xi)^{-2-\delta}$

we have $H(\xi) \leq \max \left(B^{\operatorname{ineff}}(\delta, K), H(\alpha)^{c^{\operatorname{eff}}(\delta, d)} \right).$

Equivalent formulation, 'Roth's theorem with moving targets'

Let K be a number field of degree d and $\delta > 0$. Then there are only finitely many pairs $(\xi, \alpha) \in \mathbb{Q} \times K$ such that

 $|\alpha - \xi| \leq H(\xi)^{-2-\delta}, \quad H(\xi) > H(\alpha)^{c^{\operatorname{eff}}(\delta,d)}.$

A semi-effective result

The minimal polynomial of an algebraic number α is the irreducible polynomial $F \in \mathbb{Z}[X]$ with coprime coefficients such that $F(\alpha) = 0$. We define the height $H(\alpha) := \max |\text{coeff. of } F|$.

Theorem (Bombieri, van der Poorten, 1987)

Let $\delta > 0$, $K = \mathbb{Q}(\alpha)$, $[K : \mathbb{Q}] = d$. Then for the solutions $\xi \in \mathbb{Q}$ of

 $|\alpha - \xi| \le H(\xi)^{-2-\delta}$

we have $H(\xi) \leq \max \left(B^{\operatorname{ineff}}(\delta, K), H(\alpha)^{c^{\operatorname{eff}}(\delta, d)} \right).$

Similar results follow from work of Vojta (1995), Corvaja (1997), McQuillan $(c^{\text{eff}}(\delta, d) = O(d(1 + \delta^{-2}))$, published ?).

Let $\overline{\mathbb{Q}}$ denote the field of algebraic numbers in \mathbb{C} and let

$$L_i(\mathbf{X}) = \alpha_{i1}X_1 + \dots + \alpha_{in}X_n \quad (i = 1, \dots, n)$$

be linearly independent linear forms with coefficients $\alpha_{ij} \in \overline{\mathbb{Q}}$.

For $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{Z}^n$, put $\|\mathbf{x}\| := \max_i |x_i|$.

Theorem (W.M. Schmidt, 1972)

Let $\delta > 0$. Then the set of solutions of

(2)
$$|L_1(\mathbf{x})\cdots L_n(\mathbf{x})| \leq \|\mathbf{x}\|^{-\delta} \text{ in } \mathbf{x} \in \mathbb{Z}^n$$

is contained in finitely many proper linear subspaces of \mathbb{Q}^n .

There are generalizations where the unknowns are taken from a number field and various archimedean and non-archimedean absolute values are involved. (Schmidt, Schlickewei)

By a combinatorial argument, the inequality (2) $|L_1(\mathbf{x}) \cdots L_n(\mathbf{x})| \le ||\mathbf{x}||^{-\delta}$ can be reduced to finitely many systems of inequalities of the shape

$$|L_1(\mathbf{x})| \leq \|\mathbf{x}\|^{c_1}, \dots, |L_n(\mathbf{x})| \leq \|\mathbf{x}\|^{c_n} \quad \text{in } \mathbf{x} \in \mathbb{Z}^n,$$

where $c_1 + \cdots + c_n < 0$.

By a combinatorial argument, the inequality (2) $|L_1(\mathbf{x}) \cdots L_n(\mathbf{x})| \le ||\mathbf{x}||^{-\delta}$ can be reduced to finitely many systems of inequalities of the shape

$$(3) \qquad |L_1(\mathbf{x})| \leq \|\mathbf{x}\|^{c_1}, \ldots, |L_n(\mathbf{x})| \leq \|\mathbf{x}\|^{c_n} \quad \text{in } \mathbf{x} \in \mathbb{Z}^n,$$

where $c_1 + \cdots + c_n < 0$.

Idea.

Let $\mathbf{x} \in \mathbb{Z}^n$ be a solution of (2). Then

$$|L_1(\mathbf{x})| \leq \|\mathbf{x}\|^{c_1(\mathbf{x})}, \dots, |L_n(\mathbf{x})| \leq \|\mathbf{x}\|^{c_n(\mathbf{x})}$$

with

 $\mathbf{c}(\mathbf{x}) := (c_1(\mathbf{x}), \dots, c_n(\mathbf{x})) \in \text{bounded set } S.$

Cover S by a very fine, finite grid. Then x satisfies (3) with $\mathbf{c} = (c_1, \ldots, c_n)$ a grid point very close to $\mathbf{c}(\mathbf{x})$.

By a combinatorial argument, the inequality (2) $|L_1(\mathbf{x}) \cdots L_n(\mathbf{x})| \le ||\mathbf{x}||^{-\delta}$ can be reduced to finitely many systems of inequalities of the shape

$$(3) \qquad |L_1(\mathbf{x})| \leq \|\mathbf{x}\|^{c_1}, \ldots, |L_n(\mathbf{x})| \leq \|\mathbf{x}\|^{c_n} \quad \text{in } \mathbf{x} \in \mathbb{Z}^n,$$

where $c_1 + \cdots + c_n < 0$.

Thus, the following is equivalent to the Subspace Theorem:

Theorem

The solutions of (3) lie in finitely many proper linear subspaces of \mathbb{Q}^n .

Let again L_1, \ldots, L_n be linearly independent linear forms in X_1, \ldots, X_n with coefficients in $\overline{\mathbb{Q}}$ and c_1, \ldots, c_n reals with $c_1 + \cdots + c_n < 0$. Consider again

$$(3) |L_1(\mathbf{x})| \leq \|\mathbf{x}\|^{c_1}, \dots, |L_n(\mathbf{x})| \leq \|\mathbf{x}\|^{c_n} \text{ in } \mathbf{x} \in \mathbb{Z}^n.$$

Theorem (Vojta (1989), Schmidt (1993), Faltings-Wüstholz (1994))

There is an effectively computable, proper linear subspace T^{exc} of \mathbb{Q}^n such that (3) has only finitely many solutions outside T^{exc} .

The space T^{exc} belongs to a finite collection, depending only on L_1, \ldots, L_n and independent of c_1, \ldots, c_n .

This refinement can be deduced from Schmidt's basic Subspace Theorem, so it is in fact equivalent to Schmidt's basic Subspace Theorem.

About the exceptional subspace

Assume for simplicity that L_1, \ldots, L_n have real algebraic coefficients.

For a linear subspace T of \mathbb{Q}^n , we say that a subset $\{L_{i_1}, \ldots, L_{i_m}\}$ of $\{L_1, \ldots, L_n\}$ is linearly independent on T if no non-trivial \mathbb{R} -linear combination of L_{i_1}, \ldots, L_{i_m} vanishes identically on T.

For a linear subspace T of \mathbb{Q}^n define c(T) to be the minimum of the quantities $c_{i_1} + \cdots + c_{i_m}$, taken over all subsets $\{L_{i_1}, \ldots, L_{i_m}\}$ of $\{L_1, \ldots, L_n\}$ of cardinality $m = \dim T$ that are linearly independent on T.

 $\mathcal{T}^{\mathrm{exc}}$ is the unique proper linear subspace \mathcal{T} of \mathbb{Q}^n such that

 $\frac{c(\mathbb{Q}^n) - c(T)}{n - \dim T}$ is minimal, subject to this condition, dim T is minimal.

About the exceptional subspace

Lemma (E., Ferretti, 2013) Suppose that the coefficients of L_1, \ldots, L_n have heights $\leq H$. Then T^{exc} has a basis $\{\mathbf{x}_1, \ldots, \mathbf{x}_m\} \subset \mathbb{Z}^n$ with $\|\mathbf{x}_i\| \leq (\sqrt{n}H^n)^{4^n}$ $(i = 1, \ldots, m)$.

Open problem

Is there an efficient method to determine $T^{\rm exc}$ in general?

Easy combinatorial expression of T^{exc} in terms of $L_1, \ldots, L_n, c_1, \ldots, c_n$?

With the present methods of proof it is not possible to determine effectively the solutions of

$$(3) |L_1(\mathbf{x})| \le \|\mathbf{x}\|^{c_1}, \dots, |L_n(\mathbf{x})| \le \|\mathbf{x}\|^{c_n} \quad \text{in } \mathbf{x} \in \mathbb{Z}^n$$

outside T^{exc} .

It is possible to give an explicit upper bound for the minimal number of proper linear subspaces of \mathbb{Q}^n whose union contains all solutions of (3).

This bound depends on $n, \delta := -(c_1 + \cdots + c_n)$ and on the heights and degrees of the coefficients of L_1, \ldots, L_n (Schmidt (1989),..., E. and Ferretti (2013)).

With the present methods it is not possible to estimate from above the number of solutions of (3) outside T^{exc} .

A semi-effective version of the Subspace Theorem

Let L_1, \ldots, L_n be linearly independent linear forms in X_1, \ldots, X_n and c_1, \ldots, c_n reals such that:

• the coefficients of L_1, \ldots, L_n have heights $\leq H$ and generate a number field K of degree d;

•
$$c_1 + \cdots + c_n = -\delta < 0.$$

Theorem

For every solution \mathbf{x} of

$$(4) \qquad |L_1(\mathbf{x})| \le \|\mathbf{x}\|^{c_1}, \dots, |L_n(\mathbf{x})| \le \|\mathbf{x}\|^{c_n} \quad \text{with } \mathbf{x} \in \mathbb{Z}^n \setminus T^{\text{exc}}$$

we have $\|\mathbf{x}\| \leq \max\left(B^{\operatorname{ineff}}(n,\delta,K), H^{c^{\operatorname{eff}}(n,\delta,d)}\right)$.

Proof.

Small modification in the proof of the Subspace Theorem.

A semi-effective version of the Subspace Theorem

Let L_1, \ldots, L_n be linearly independent linear forms in X_1, \ldots, X_n and c_1, \ldots, c_n reals such that:

• the coefficients of L_1, \ldots, L_n have heights $\leq H$ and generate a number field K of degree d;

•
$$c_1 + \cdots + c_n = -\delta < 0.$$

Theorem

For every solution \mathbf{x} of

$$(4) \qquad |L_1(\mathbf{x})| \leq \|\mathbf{x}\|^{c_1}, \ldots, |L_n(\mathbf{x})| \leq \|\mathbf{x}\|^{c_n} \quad \text{with } \mathbf{x} \in \mathbb{Z}^n \setminus T^{\text{exc}}$$

we have $\|\mathbf{x}\| \leq \max\left(B^{\operatorname{ineff}}(n,\delta,K), H^{c^{\operatorname{eff}}(n,\delta,d)}\right)$.

We may take $c^{\text{eff}}(n, \delta, d) = \exp\left(10^{6n}(1+\delta^{-3})\log 4d\log\log 4d\right)$.

A semi-effective version of the Subspace Theorem

Let L_1, \ldots, L_n be linearly independent linear forms in X_1, \ldots, X_n and c_1, \ldots, c_n reals such that:

• the coefficients of L_1, \ldots, L_n have heights $\leq H$ and generate a number field K of degree d;

•
$$c_1 + \cdots + c_n = -\delta < 0$$
.

Theorem

For every solution \mathbf{x} of

$$(4) \qquad |L_1(\mathbf{x})| \leq \|\mathbf{x}\|^{c_1}, \dots, |L_n(\mathbf{x})| \leq \|\mathbf{x}\|^{c_n} \quad \text{with } \mathbf{x} \in \mathbb{Z}^n \setminus T^{\text{exc}}$$

we have $\|\mathbf{x}\| \leq \max\left(B^{\operatorname{ineff}}(n,\delta,K), H^{c^{\operatorname{eff}}(n,\delta,d)}\right)$.

This may be viewed as a version of the Subspace Theorem with moving targets, where we have only finitely many tuples $(\mathbf{x}, L_1, \ldots, L_n)$ with (4), such that the coefficients of L_1, \ldots, L_n lie in a given number field K and have small heights with respect to \mathbf{x} . (How to compare this with a result of Ru and Vojta?)

Keep the assumptions

• L_1, \ldots, L_n are linearly independent linear forms, whose coefficients have heights $\leq H$ and generate a number field of degree d;

• $c_1 + \cdots + c_n = -\delta < 0.$

Conjecture 1

There are an effectively computable constant $c^{\text{eff}}(n, \delta, d) > 0$ and a constant $B'(n, \delta, d) > 0$ such that for every solution **x** of (4) $|L_1(\mathbf{x})| \leq ||\mathbf{x}||^{c_1}, \dots, |L_n(\mathbf{x})| \leq ||\mathbf{x}||^{c_n}$ with $\mathbf{x} \in \mathbb{Z}^n \setminus T^{\text{exc}}$ we have $||\mathbf{x}|| \leq \max \left(B'(n, \delta, d), H^{c^{\text{eff}}(n, \delta, d)}\right)$.

(In moving targets terms: there are only finitely many tuples $(\mathbf{x}, L_1, \ldots, L_n)$ with (4) such that the coefficients of L_1, \ldots, L_n have bounded degree and have heights small compared with \mathbf{x}).

Keep the assumptions

• L_1, \ldots, L_n are linearly independent linear forms, whose coefficients have heights $\leq H$ and generate a number field of degree d;

• $c_1 + \cdots + c_n = -\delta < 0.$

Conjecture 1

There are an effectively computable constant $c^{\text{eff}}(n, \delta, d) > 0$ and a constant $B'(n, \delta, d) > 0$ such that for every solution **x** of (4) $|L_1(\mathbf{x})| \leq ||\mathbf{x}||^{c_1}, \dots, |L_n(\mathbf{x})| \leq ||\mathbf{x}||^{c_n}$ with $\mathbf{x} \in \mathbb{Z}^n \setminus T^{\text{exc}}$ we have $||\mathbf{x}|| \leq \max \left(B'(n, \delta, d), H^{c^{\text{eff}}(n, \delta, d)}\right)$.

This is hopeless with B' effective. But what if we allow B' to be ineffective?

abc-type inequalities

Let K be an algebraic number field of degree d and discriminant D_K . Let a, b, c be non-zero elements of O_K with a + b = c. Put $H_K(a, b, c) := \prod_{\sigma: K \hookrightarrow \mathbb{C}} \max(|\sigma(a)|, |\sigma(b)|, |\sigma(c)|)$.

Theorem 1 (Effective abc-inequality, Győry, 1978)

We have $H_{K}(a, b, c) \leq (2|N_{K/\mathbb{Q}}(abc)|)^{c_1(d)|D_{K}|^{c_2(d)}}$ with $c_1(d), c_2(d)$ effectively computable in terms of d.

Proof.

Baker-type logarithmic forms estimates.

abc-type inequalities

Let K be an algebraic number field of degree d and discriminant D_K . Let a, b, c be non-zero elements of O_K with a + b = c. Put $H_K(a, b, c) := \prod_{\sigma: K \hookrightarrow \mathbb{C}} \max(|\sigma(a)|, |\sigma(b)|, |\sigma(c)|)$.

Theorem 1 (Effective abc-inequality, Győry, 1978)

We have $H_{K}(a, b, c) \leq (2|N_{K/\mathbb{Q}}(abc)|)^{c_1(d)|D_{K}|^{c_2(d)}}$ with $c_1(d), c_2(d)$ effectively computable in terms of d.

Proof.

Baker-type logarithmic forms estimates.

Theorem 2 (Semi-effective abc-inequality, well-known)

For every $\delta > 0$ we have $H_{\mathcal{K}}(a, b, c) \leq C^{\operatorname{ineff}}(\mathcal{K}, \delta) |N_{\mathcal{K}/\mathbb{Q}}(abc)|^{1+\delta}$.

Proof.

Roth's Theorem over number fields.

A very weak abc-conjecture

Let again K be a number field of degree d and discriminant D_K .

Conjecture 2 (Very weak abc-conjecture)

There are a constant $C(d, \delta) > 0$ and an effectively computable constant $c^{\text{eff}}(d, \delta) > 0$ with the following property: for every non-zero a, b, $c \in O_K$ with a + b = c and every $\delta > 0$ we have

 $H_{\mathcal{K}}(a,b,c) \leq C(d,\delta) |D_{\mathcal{K}}|^{c^{\mathrm{eff}}(d,\delta)} |N_{\mathcal{K}/\mathbb{Q}}(abc)|^{1+\delta}.$

A very weak abc-conjecture

Let again K be a number field of degree d and discriminant D_K .

Conjecture 2 (Very weak abc-conjecture)

There are a constant $C(d, \delta) > 0$ and an effectively computable constant $c^{\text{eff}}(d, \delta) > 0$ with the following property: for every non-zero $a, b, c \in O_K$ with a + b = c and every $\delta > 0$ we have

 $H_{\mathcal{K}}(a,b,c) \leq C(d,\delta) |D_{\mathcal{K}}|^{c^{\mathrm{eff}}(d,\delta)} |N_{\mathcal{K}/\mathbb{Q}}(abc)|^{1+\delta}.$

Conjecture $1 \Longrightarrow$ Conjecture 2 (idea).

Choose a \mathbb{Z} -basis $\{\omega_1, \ldots, \omega_d\}$ of O_K with conjugates bounded from above in terms of D_K . Write $a = \sum_{i=1}^d x_i \omega_i$, $b = \sum_{i=1}^d y_i \omega_i$ with $x_i, y_i \in \mathbb{Z}$. Then $\mathbf{x} = (x_1, \ldots, y_d)$ satisfies one of finitely many systems of inequalities of the type

$$|L_i(\mathbf{x})| \le \|\mathbf{x}\|^{c_i}$$
 $(i = 1, ..., 2d)$

where the L_i are linear forms whose coefficients lie in the Galois closure of K and have heights bounded above in terms of $|D_K|$.

Definition

The discriminant of a binary form

$$F = a_0 X^n + a_1 X^{n-1} Y + \dots + a_n Y^n = \prod_{i=1}^n (\alpha_i X - \beta_i Y)$$

is given by $D(F) = \prod_{1 \le i < j \le n} (\alpha_i \beta_j - \alpha_j \beta_i)^2$.

This is a homogeneous polynomial in $\mathbb{Z}[a_0, \ldots, a_n]$ of degree 2n - 2.

Definition

The discriminant of a binary form

$$F = a_0 X^n + a_1 X^{n-1} Y + \dots + a_n Y^n = \prod_{i=1}^n (\alpha_i X - \beta_i Y)$$

is given by $D(F) = \prod_{1 \le i < j \le n} (\alpha_i \beta_j - \alpha_j \beta_i)^2$.

This is a homogeneous polynomial in $\mathbb{Z}[a_0, \ldots, a_n]$ of degree 2n - 2.

For a matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ we define $F_A(X, Y) = F(aX + bY, cX + dY)$. Two binary forms $F, G \in \mathbb{Z}[X, Y]$ are called equivalent if $G = \pm F_A$ for some $A \in GL(2, \mathbb{Z})$.

Equivalent binary forms have the same discriminant.

A finiteness result for binary forms of given discriminant

Theorem (Lagrange (n = 2, 1773), Hermite (n = 3, 1851), Birch and Merriman ($n \ge 4, 1972$))

For every $n \ge 2$ and $D \ne 0$, there are only finitely many equivalence classes of binary forms $F \in \mathbb{Z}[X, Y]$ of degree n and discriminant D.

The proofs of Lagrange and Hermite are effective (in that they allow to compute a full system of representatives for the equivalence classes), that of Birch and Merriman is ineffective.

An effective finiteness result

Define the height of $F = a_0 X^n + a_1 X^{n-1} Y + \cdots + a_n Y^n \in \mathbb{Z}[X, Y]$ by $H(F) := \max_i |a_i|$.

Theorem 3 (E., Győry, recent improvement of result from 1991) Let $F \in \mathbb{Z}[X, Y]$ be a binary form of degree $n \ge 4$ and discriminant $D \ne 0$. Then F is equivalent to a binary form G for which $H(G) \le \exp\left((16n^3)^{25n^2}|D|^{5n-3}\right).$

An effective finiteness result

Define the height of $F = a_0 X^n + a_1 X^{n-1} Y + \cdots + a_n Y^n \in \mathbb{Z}[X, Y]$ by $H(F) := \max_i |a_i|$.

Theorem 3 (E., Győry, recent improvement of result from 1991) Let $F \in \mathbb{Z}[X, Y]$ be a binary form of degree $n \ge 4$ and discriminant $D \ne 0$. Then F is equivalent to a binary form G for which $H(G) \le \exp\left((16n^3)^{25n^2}|D|^{5n-3}\right).$

More precise versions of the arguments of Lagrange and Hermite give a bound $H(G) \leq \text{constant} \cdot |D|$ in case that F has degree ≤ 3 .

An effective finiteness result

Define the height of $F = a_0 X^n + a_1 X^{n-1} Y + \cdots + a_n Y^n \in \mathbb{Z}[X, Y]$ by $H(F) := \max_i |a_i|$.

Theorem 3 (E., Győry, recent improvement of result from 1991) Let $F \in \mathbb{Z}[X, Y]$ be a binary form of degree $n \ge 4$ and discriminant $D \ne 0$. Then F is equivalent to a binary form G for which $H(G) \le \exp\left((16n^3)^{25n^2}|D|^{5n-3}\right).$

Proof (idea).

Let *L* be the splitting field of *F*. Assume for convenience that $F = \prod_{i=1}^{n} (\alpha_i X - \beta_i Y)$ with $\alpha_i, \beta_i \in O_L \forall i$. Put $\Delta_{ij} := \alpha_i \beta_j - \alpha_j \beta_i$ and apply an explicit version of the effective abc-inequality (Theorem 1) to the identities

$$\Delta_{ij}\Delta_{kl} + \Delta_{jk}\Delta_{il} = \Delta_{ik}\Delta_{jl} \ (1 \leq i, j, k, l \leq n).$$

Theorem 4 (E., 1993)

Let $F \in \mathbb{Z}[X, Y]$ be a binary form of degree $n \ge 4$, discriminant $D \ne 0$ and splitting field L. Then F is equivalent to a binary form G for which $H(G) \le C^{ineff}(n, L) \cdot |D|^{21/(n-1)}.$

Proof (idea).

Apply the semi-effective abc-inequality Theorem 2 to the identities

$$\Delta_{ij}\Delta_{kl} + \Delta_{jk}\Delta_{il} = \Delta_{ik}\Delta_{jl} \quad (1 \le i, j, k, l \le n).$$

Conjecture 3

Let $F \in \mathbb{Z}[X, Y]$ be a binary form of degree $n \ge 4$ and discriminant $D \ne 0$. Then F is equivalent to a binary form G for which $H(G) \le C_1(n)|D|^{c_2^{\text{eff}}(n)}.$

Conjecture 2 \implies Conjecture 3.

Let L be the splitting field of F. Following the proof of Theorem 4 and using the very weak abc-conjecture, one obtains that there is G equivalent to F such that

$$H(G) \leq C_3(n) |D_L|^{c_4^{\text{eff}}(n)} |D|^{21/(n-1)}.$$

Use that D_L divides $D^{n!}$.

Conjecture 3

Let $F \in \mathbb{Z}[X, Y]$ be a binary form of degree $n \ge 4$ and discriminant $D \ne 0$. Then F is equivalent to a binary form G for which $H(G) \le C_1(n)|D|^{c_2^{\text{eff}}(n)}.$

Problem

What is the right value of the exponent on |D|?

A function field analogue

Let k be an algebraically closed field of characteristic 0, K = k(t), R = k[t]. Define $|\cdot|$ on k(t) by $|f/g| := e^{\deg f - \deg g}$ for $f, g \in R$. Define the height of $F = a_0 X^n + a_1 X^{n-1} Y + \dots + a_n Y^n \in R[X, Y]$ by $H(F) := \max_i |a_i|$.

Call two binary forms $F, G \in R[X, Y]$ equivalent if $G = uF_A$ for some $u \in k^*$, $A \in GL(2, R)$.

Theorem 5 (W. Zhuang)

Let $F \in R[X, Y]$ be a binary form of degree $n \ge 4$ and discriminant $D \ne 0$. Then F is equivalent to a binary form G for which $H(G) \le e^{n^2 + 4n + 14} |D|^{20 + 7/(n-2)}.$

Proof.

Follow the proof over $\ensuremath{\mathbb{Z}}$ and apply Mason's abc-theorem for function fields.

Thank you for your attention!