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Mahler’s Lemma

Let f = a0
∏n

i=1(X − αi ) ∈ Z[X ] of degree n ≥ 2 with a0 ∈ Z and
distinct α1, . . . , αn ∈ C and define

sep(f ) := min
1≤i<j≤n

|αi − αj | (minimal root distance of f ),

M(f ) := |a0|
n∏

i=1

max(1, |αi |) (Mahler measure of f ),

D(f ) := a2n−20

∏
1≤i<j≤n

(αi − αj)
2 (discriminant of f ).

Lemma 1 (Mahler, 1964)

sep(f ) ≥ c(n)|D(f )|1/2M(f )1−n (with c(n) =
√

3 · n−(n+2)/2).

Proof (ignoring value of c(n)).

sep(f )�n

∏
1≤i<j≤n

|αi − αj |
max(1, |αi |) max(1, |αj |)

�n |D(f )|1/2M(f )1−n.
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Mahler’s Lemma (II)

Lemma 1 (Mahler, 1964)

Let f ∈ Z[X ] be a separable polynomial of degree n ≥ 2. Then

sep(f ) ≥ c(n)|D(f )|1/2M(f )1−n with c(n) > 0.

Since D(f ) ∈ Z \ {0}, this implies

Corollary

sep(f ) ≥ c(n)M(f )1−n.

Can this be improved to an inequality with something larger in terms of
M(f ) on the right-hand side?

NO if n = 2, 3; YES if n ≥ 4.
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Polynomials of degree at most 3

For a polynomial f (X ) of degree n ≥ 2 and U =
(
a b
c d

)
define

fU(X ) := (cX + d)nf ( aX+b
cX+d

).

Call two polynomials f , g ∈ Z[X ] equivalent if g = fU for some
U ∈ GL2(Z).

Theorem 1

Let f ∈ Z[X ] be a separable polynomial of degree n ∈ {2, 3}. In case
that n = 3, assume that f has a real, irrational zero. Then there are
infinitely many polynomials g ∈ Z[X ] such that g is equivalent to f and

sep(g)�f M(g)1−n.

For n = 2 the proof is straightforward, for n = 3 this is a result of
Schönhage (2006). His proof uses the convergents of a real irrational
zero of f .

Theorem 1 is false for cubic f with three rational roots or one rational
and two non-real roots.
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An alternative proof of Schönhage’s Theorem

Lemma 2

Let n ≥ 3 and let α1, . . . , αn ∈ C be distinct, with α1 ∈ R \Q. Then Z2

has infinitely many bases
{

z1 = (a, b), z2 = (c , d)
}

such that

|a− α1b|, |c − α1d | � max(|a|, |b|, |c |, |d |)−1,
|a− αib| � |c − αid | for i = 2, . . . , n.

Here the implied constants depend on α1, . . . , αn.

Proof (idea).

Apply Minkowski’s Theorem on successive minima to the convex bodies
CQ := {(x , y) ∈ R2 : |x − α1y | ≤ Q−1, |y | ≤ Q} (Q ≥ 1).



8/30

An alternative proof of Schönhage’s Theorem (ctd)

Let f = a0(X − α1)(X − α2)(X − α3) ∈ Z[X ] with α1, α2, α3 distinct
and α1 ∈ R \Q.

Choose a basis {z1 = (a, b), z2 = (c , d)} of Z2 according to Lemma 2
and let

g(X ) := a0

3∏
i=1

(
(c − αid)X − (a− αib)

)
, βi :=

a− αib

c − αid
(i = 1, 2, 3).

Then g is equivalent to f .

Put Ai := max(|a− αib|, |c − αid |) (i = 1, 2, 3). Then

A1 �f max(|a|, |b|, |c |, |d |)−1 �f A
−1
2 ,A−13 ,

Ai �f |c − αid | for i = 2, 3,

M(g) = |a0| · A1A2A3,

hence sep(g) ≤ |β2 − β3| =
|ad − bc|

|c − α2d | · |c − α3d |
�f (A2A3)−1 �f (A1A2A3)−2 �f M(g)−2.
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Polynomials of degree at least 4

For polynomials f ∈ Z[X ] of degree ≤ 3, Mahler’s inequality is best
possible in terms of M(f ).

For polynomials of degree ≥ 4 we can do slightly better.

Theorem 2 (Ev. and Győry)

Let f ∈ Z[X ] be a separable polynomial of degree n ≥ 4. Then

sep(f ) ≥ c(n)M(f )1−n(log 2M(f ))1/(10n−6),

where c(n) > 0 is effectively computable.

Conjecture

For f ∈ Z[X ] a separable polynomial of degree n ≥ 4 we have

sep(f ) ≥ c1(n)M(f )1−n+c2(n)

with c1(n) > 0, c2(n) > 0.
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Polynomials with small minimal root distance

Mignotte, Bugeaud and Mignotte, and Bugeaud and Dujella gave explicit
examples of polynomials f ∈ Z[X ] of arbitrary degree n ≥ 4 such that
sep(f ) is small compared with M(f ). We recall the best results to date.

Theorem (Bugeaud and Dujella, 2011, 2014)

Let n ≥ 4, ε > 0. Then there are infinitely many irreducible f ∈ Z[X ] of
degree n such that

sep(f ) ≤ M(f )−a(n)+ε with a(n) =
n

2
+

n − 2

4(n − 1)
,

and also infinitely many reducible, separable f ∈ Z[X ] of degree n such
that

sep(f ) ≤ M(f )−b(n)+ε with b(n) =
2n − 1

3
.
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On the proof of Theorem 2

I Recall Mahler’s Lemma sep(f )�n |D(f )|1/2M(f )1−n, n = deg f .

To get a lower bound for sep(f ) better than M(f )1−n in terms of
M(f ), we need a non-trivial lower bound for |D(f )|.

I |D(f )| can not be estimated from below in terms of M(f ):

Recall that two polynomials f , g ∈ Z[X ] of degree n are called
equivalent if there is U ∈ GL(2,Z) such that g = fU , i.e., if

U =
(
a b
c d

)
then g(X ) = (cX + d)nf ( aX+b

cX+d
).

Equivalent polynomials have the same discriminant.

So by varying f in an equivalence class one can make M(f )
arbitrarily large while fixing D(f ).

I But by means of Baker theory we can show that there is g ∈ Z[X ]
equivalent to f with small Mahler measure in terms of |D(f )|.
This provides a useful lower bound for |D(f )|.
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Polynomials of small Mahler measure in an
equivalence class

Theorem 3 (Ev. and Győry, recent improvement of result from
1991)

Let f ∈ Z[X ] be a separable polynomial of degree n ≥ 4. Then there is
g ∈ Z[X ] such that g is equivalent to f and

M(g) ≤ exp
(

(17n3)25n
2 |D(f )|5n−3

)
.

For polynomials of degree ≤ 3 much sharper results follow from classical
work of Lagrange, Gauss and Hermite.
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The main tool

Let K be a number field. Denote by OK its ring of integers, by DK its
discriminant and d its degree. For non-zero a, b, c ∈ OK define

HK (a, b, c) :=
∏

σ:K ↪→C
max

(
|σ(a)|, |σ(b)|, |σ(c)|

)
.

Proposition 4 (Győry, 1978)

There are effectively computable c1(d), c2(d) > 0 such that for all
a, b, c ∈ OK with a + b = c , abc 6= 0 we have

HK (a, b, c) ≤ (2|NK/Q(abc)|)c1(d)|DK |c2(d) .

Proof.

Baker type lower bounds for linear forms in logarithms. The sharpest,
completely explicit version of Proposition 4 to date is due to Győry and
Yu (2006).
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Idea of proof of Theorem 3

Theorem 3

Let f ∈ Z[X ] be a separable polynomial of degree n ≥ 4. Then there is
g ∈ Z[X ] such that g is equivalent to f and

M(g) ≤ exp
(

(17n3)25n
2 |D(f )|5n−3

)
.

Proof (idea).

Let K be the splitting field of f and write f =
∏n

i=1(βiX − γi ) with βi , γi
“almost” in OK . Put ∆ij := βiγj − βjγi and apply Győry’s and Yu’s
explicit version of Proposition 4 to

∆ij∆kl + ∆jk∆il = ∆ik∆jl ∀i , j , k , l .

Together with geometry of numbers, this implies that there is g
equivalent to f with an upper bound for M(g) which is polynomial in
|D(f )| but with |DK | in the exponent.

Estimating |DK | in terms of D(f ), this leads to an upper bound for M(g)
which is exponential in |D(f )|.
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Proof of Theorem 2

Theorem 2

Let f ∈ Z[X ] be a separable polynomial of degree n ≥ 4. Then

sep(f ) ≥ c(n)M(f )1−n(log 2M(f ))1/(10n−6),

where c(n) > 0 is effectively computable.

This is proved by combining Theorem 3 with the following improvement
of Mahler’s Lemma.

Lemma (Ev., 1993)

Let f ∈ Z[X ] be a separable polynomial of degree n ≥ 4 and let g ∈ Z[X ]
be equivalent to f . Then

sep(f ) ≥ c(n)|D(f )|1/2M(f )−1M(g)2−n,

where c(n) > 0 is effectively computable.
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sep(f ) ≥ c(n)M(f )1−n(log 2M(f ))1/(10n−6),

where c(n) > 0 is effectively computable.

Proof of Theorem 2.

Choose g equivalent to f of minimal Mahler measure. Then

sep(f ) �n |D(f )|1/2M(f )−1M(g)2−n

�n M(f )−1M(g)2−n
(

log 2M(g)
)1/(10n−6)

�n M(f )1−n
(

log 2M(f )
)1/(10n−6)

.
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Clusters of p-adic roots

We generalize the previous results to other absolute values and also to
estimates for clusters of roots.

Let MQ := {∞} ∪ {primes}, | · |∞ ordinary absolute value, | · |p p-adic
absolute value with |p|p = p−1 for p a prime.

For p ∈ MQ we extend | · |p to Qp, where Q∞ = R, Q∞ = C.

Let f ∈ Z[X ] be a separable polynomial of degree n and p ∈ MQ.

Write f (X ) = a0

n∏
i=1

(X − αi,p) with a0 ∈ Z, αi,p ∈ Qp and define

sepp(f ) = sep2,p(f ) := min
1≤i<j≤n

|αi,p − αj,p|p (n ≥ 2),

sepk,p(f ) := min
|I |=k

∏
{i,j}⊂I

|αi,p − αj,p|p (k ≥ 2, n ≥ k),

where the minimum is taken over all k-element subsets I of {1, . . . , n}
and the product over all 2-element subsets of I .
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A generalization of Mahler’s Lemma

Recall sepk,p(f ) := min
|I |=k

∏
{i,j}⊂I

|αi,p − αj,p|p for f (X ) = a0

n∏
i=1

(X − αi,p).

Lemma 3

Let S = {∞, p1, . . . , pt}, k ∈ Z≥2, and f ∈ Z[X ] a separable polynomial
of degree n ≥ k. Then∏

p∈S

min
(
1, sepk,p(f )

)
≥ c(n)

(∏
p∈S

|D(f )|p
)1/2

·M(f )1−n,

where c(n) > 0 is effectively computable.

Corollary∏
p∈S

min
(
1, sepk,p(f )

)
≥ c(n)M(f )1−n.

Can this be improved in terms of M(f )?

NO if n ∈ {k, k + 1}; YES if n ≥ k + 2.
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A generalization of Schönhage’s Theorem

A polynomial f ∈ Z[X ] is called primitive if its coefficients have gcd 1.

We call two polynomials f , g ∈ Z[X ] GL2(Q)-equivalent if g = λfU for
some λ ∈ Q∗, U ∈ GL2(Q).

Theorem 5

Let p ∈ MQ, k ∈ Z≥2 and f ∈ Z[X ] a primitive, separable polynomial of
degree n ∈ {k, k + 1}. In case that n = k + 1, assume that f has a zero
in Qp \Q.

Then there are infinitely many g ∈ Z[X ], such that g is primitive,
GL(2,Q)-equivalent to f , and

sepk,p(g)�p,f M(g)1−n.

Proof.

Adèlic geometry of numbers.
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Let p ∈ MQ, k ∈ Z≥2 and f ∈ Z[X ] a primitive, separable polynomial of
degree n ∈ {k, k + 1}. In case that n = k + 1, assume that f has a zero
in Qp \Q.

Then there are infinitely many g ∈ Z[X ], such that g is primitive,
GL(2,Q)-equivalent to f , and

sepk,p(g)�p,f M(g)1−n.

Pejkovic (2012, PhD-thesis) constructed in another way, for every prime
p, an infinite class of separable cubic g ∈ Z[X ] with sepp(g)� M(g)−2.
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Polynomials of degree at least k + 2

Theorem 6

Let k ∈ Z≥2, n ≥ k + 2, S = {∞, p1, . . . , pt}. There is an effectively
computable number c(n,S) > 0 such that for every separable polynomial
f ∈ Z[X ] of degree n we have∏

p∈S

min
(
1, sepk,p(f )

)
≥ c(n,S)M(f )1−n(log 2M(f ))1/(10n−6).

Proof.

p-adic generalization of arguments sketched above.
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A conditional result

Theorem 7

Assuming the abc-conjecture over number fields, the following holds:

Let S = {∞, p1, . . . , pt}, k ∈ Z≥2, f ∈ Z[X ] a separable polynomial of
degree n ≥ k + 2. Then∏

p∈S

min(1, sepk,p(f )) ≥ c(n,S)M(f )1−n+γ(1−k/n)
2

,

where c(n,S) > 0 depends only on n,S , and γ > 0 is an absolute
constant.

This lower bound is probably far from the truth.
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Congratulations Kálmán!


