Root distance of polynomials

Jan-Hendrik Evertse Universiteit Leiden

Kálmán Győry 75 symposium
July 10, 2015, Debrecen
Slides can be downloaded from
http://pub.math.leidenuniv.nl/~evertsejh/lectures.shtml

Mahler's Lemma

Let $f=a_{0} \prod_{i=1}^{n}\left(X-\alpha_{i}\right) \in \mathbb{Z}[X]$ of degree $n \geq 2$ with $a_{0} \in \mathbb{Z}$ and distinct $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{C}$ and define

$$
\begin{aligned}
\operatorname{sep}(f) & :=\min _{1 \leq i<j \leq n}\left|\alpha_{i}-\alpha_{j}\right| \quad(\text { minimal root distance of } f), \\
M(f) & :=\left|a_{0}\right| \prod_{i=1}^{n} \max \left(1,\left|\alpha_{i}\right|\right) \quad(\text { Mahler measure of } f), \\
D(f) & :=a_{0}^{2 n-2} \prod_{1 \leq i<j \leq n}\left(\alpha_{i}-\alpha_{j}\right)^{2} \quad(\text { discriminant of } f) .
\end{aligned}
$$

Lemma 1 (Mahler, 1964)

$$
\operatorname{sep}(f) \geq c(n)|D(f)|^{1 / 2} M(f)^{1-n}\left(\text { with } c(n)=\sqrt{3} \cdot n^{-(n+2) / 2}\right) .
$$

Mahler's Lemma

Let $f=a_{0} \prod_{i=1}^{n}\left(X-\alpha_{i}\right) \in \mathbb{Z}[X]$ of degree $n \geq 2$ with $a_{0} \in \mathbb{Z}$ and distinct $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{C}$ and define

$$
\begin{aligned}
\operatorname{sep}(f) & :=\min _{1 \leq i<j \leq n}\left|\alpha_{i}-\alpha_{j}\right| \quad(\text { minimal root distance of } f), \\
M(f) & :=\left|a_{0}\right| \prod_{i=1}^{n} \max \left(1,\left|\alpha_{i}\right|\right) \quad(\text { Mahler measure of } f), \\
D(f) & :=a_{0}^{2 n-2} \prod_{1 \leq i<j \leq n}\left(\alpha_{i}-\alpha_{j}\right)^{2} \quad(\text { discriminant of } f) .
\end{aligned}
$$

Lemma 1 (Mahler, 1964)

$$
\operatorname{sep}(f) \geq c(n)|D(f)|^{1 / 2} M(f)^{1-n}\left(\text { with } c(n)=\sqrt{3} \cdot n^{-(n+2) / 2}\right)
$$

Proof (ignoring value of $\boldsymbol{c}(\boldsymbol{n})$).

$$
\operatorname{sep}(f) \ggg_{n} \prod_{1 \leq i<j \leq n} \frac{\left|\alpha_{i}-\alpha_{j}\right|}{\max \left(1,\left|\alpha_{i}\right|\right) \max \left(1,\left|\alpha_{j}\right|\right)}>_{n}|D(f)|^{1 / 2} M(f)^{1-n} .
$$

Mahler's Lemma (II)

Lemma 1 (Mahler, 1964)

Let $f \in \mathbb{Z}[X]$ be a separable polynomial of degree $n \geq 2$. Then

$$
\operatorname{sep}(f) \geq c(n)|D(f)|^{1 / 2} M(f)^{1-n} \text { with } c(n)>0 .
$$

Since $D(f) \in \mathbb{Z} \backslash\{0\}$, this implies

Corollary

$\operatorname{sep}(f) \geq c(n) M(f)^{1-n}$.

Can this be improved to an inequality with something larger in terms of $M(f)$ on the right-hand side?

Mahler's Lemma (II)

Lemma 1 (Mahler, 1964)

Let $f \in \mathbb{Z}[X]$ be a separable polynomial of degree $n \geq 2$. Then

$$
\operatorname{sep}(f) \geq c(n)|D(f)|^{1 / 2} M(f)^{1-n} \text { with } c(n)>0 .
$$

Since $D(f) \in \mathbb{Z} \backslash\{0\}$, this implies

Corollary

$\operatorname{sep}(f) \geq c(n) M(f)^{1-n}$.

Can this be improved to an inequality with something larger in terms of $M(f)$ on the right-hand side?

NO if $n=2,3$;
YES if $n \geq 4$.

Polynomials of degree at most 3

For a polynomial $f(X)$ of degree $n \geq 2$ and $U=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ define $f_{U}(X):=(c X+d)^{n} f\left(\frac{a X+b}{c X+d}\right)$.
Call two polynomials $f, g \in \mathbb{Z}[X]$ equivalent if $g=f_{U}$ for some $U \in \mathrm{GL}_{2}(\mathbb{Z})$.

Theorem 1

Let $f \in \mathbb{Z}[X]$ be a separable polynomial of degree $n \in\{2,3\}$. In case that $n=3$, assume that f has a real, irrational zero. Then there are infinitely many polynomials $g \in \mathbb{Z}[X]$ such that g is equivalent to f and

$$
\operatorname{sep}(g)<_{f} M(g)^{1-n} .
$$

For $n=2$ the proof is straightforward, for $n=3$ this is a result of Schönhage (2006). His proof uses the convergents of a real irrational zero of f.

Theorem 1 is false for cubic f with three rational roots or one rational and two non-real roots.

An alternative proof of Schönhage's Theorem

Lemma 2

Let $n \geq 3$ and let $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{C}$ be distinct, with $\alpha_{1} \in \mathbb{R} \backslash \mathbb{Q}$. Then \mathbb{Z}^{2} has infinitely many bases $\left\{\mathbf{z}_{1}=(a, b), \mathbf{z}_{2}=(c, d)\right\}$ such that

$$
\begin{aligned}
& \left|a-\alpha_{1} b\right|,\left|c-\alpha_{1} d\right| \ll \max (|a|,|b|,|c|,|d|)^{-1}, \\
& \left|a-\alpha_{i} b\right| \ll\left|c-\alpha_{i} d\right| \text { for } i=2, \ldots, n .
\end{aligned}
$$

Here the implied constants depend on $\alpha_{1}, \ldots, \alpha_{n}$.

Proof (idea).

Apply Minkowski's Theorem on successive minima to the convex bodies $C_{Q}:=\left\{(x, y) \in \mathbb{R}^{2}:\left|x-\alpha_{1} y\right| \leq Q^{-1},|y| \leq Q\right\}(Q \geq 1)$.

An alternative proof of Schönhage's Theorem (ctd)

Let $f=a_{0}\left(X-\alpha_{1}\right)\left(X-\alpha_{2}\right)\left(X-\alpha_{3}\right) \in \mathbb{Z}[X]$ with $\alpha_{1}, \alpha_{2}, \alpha_{3}$ distinct and $\alpha_{1} \in \mathbb{R} \backslash \mathbb{Q}$.
Choose a basis $\left\{\mathbf{z}_{1}=(a, b), \mathbf{z}_{2}=(c, d)\right\}$ of \mathbb{Z}^{2} according to Lemma 2 and let

$$
g(X):=a_{0} \prod_{i=1}^{3}\left(\left(c-\alpha_{i} d\right) X-\left(a-\alpha_{i} b\right)\right), \quad \beta_{i}:=\frac{a-\alpha_{i} b}{c-\alpha_{i} d} \quad(i=1,2,3)
$$

Then g is equivalent to f.

An alternative proof of Schönhage's Theorem (ctd)

Let $f=a_{0}\left(X-\alpha_{1}\right)\left(X-\alpha_{2}\right)\left(X-\alpha_{3}\right) \in \mathbb{Z}[X]$ with $\alpha_{1}, \alpha_{2}, \alpha_{3}$ distinct and $\alpha_{1} \in \mathbb{R} \backslash \mathbb{Q}$.
Choose a basis $\left\{\mathbf{z}_{1}=(a, b), \mathbf{z}_{2}=(c, d)\right\}$ of \mathbb{Z}^{2} according to Lemma 2 and let

$$
g(X):=a_{0} \prod_{i=1}^{3}\left(\left(c-\alpha_{i} d\right) X-\left(a-\alpha_{i} b\right)\right), \quad \beta_{i}:=\frac{a-\alpha_{i} b}{c-\alpha_{i} d} \quad(i=1,2,3)
$$

Then g is equivalent to f.
Put $A_{i}:=\max \left(\left|a-\alpha_{i} b\right|,\left|c-\alpha_{i} d\right|\right)(i=1,2,3)$. Then

$$
A_{1} \ll_{f} \quad \max (|a|,|b|,|c|,|d|)^{-1}<_{f} A_{2}^{-1}, A_{3}^{-1},
$$

$$
A_{i}<_{f} \quad\left|c-\alpha_{i} d\right| \text { for } i=2,3
$$

$$
M(g)=\left|a_{0}\right| \cdot A_{1} A_{2} A_{3}
$$

An alternative proof of Schönhage's Theorem (ctd)

Let $f=a_{0}\left(X-\alpha_{1}\right)\left(X-\alpha_{2}\right)\left(X-\alpha_{3}\right) \in \mathbb{Z}[X]$ with $\alpha_{1}, \alpha_{2}, \alpha_{3}$ distinct and $\alpha_{1} \in \mathbb{R} \backslash \mathbb{Q}$.
Choose a basis $\left\{\mathbf{z}_{1}=(a, b), \mathbf{z}_{2}=(c, d)\right\}$ of \mathbb{Z}^{2} according to Lemma 2

$$
\begin{aligned}
& \text { and let } \\
& g(X):=a_{0} \prod_{i=1}^{3}\left(\left(c-\alpha_{i} d\right) X-\left(a-\alpha_{i} b\right)\right), \quad \beta_{i}:=\frac{a-\alpha_{i} b}{c-\alpha_{i} d} \quad(i=1,2,3) .
\end{aligned}
$$

Then g is equivalent to f.
Put $A_{i}:=\max \left(\left|a-\alpha_{i} b\right|,\left|c-\alpha_{i} d\right|\right)(i=1,2,3)$. Then

$$
A_{1}<_{f} \quad \max (|a|,|b|,|c|,|d|)^{-1}<_{f} A_{2}^{-1}, A_{3}^{-1}
$$

$$
A_{i} \ll_{f} \quad\left|c-\alpha_{i} d\right| \text { for } i=2,3
$$

$$
M(g)=\left|a_{0}\right| \cdot A_{1} A_{2} A_{3}
$$

hence $\operatorname{sep}(g) \leq\left|\beta_{2}-\beta_{3}\right|=\frac{|a d-b c|}{\left|c-\alpha_{2} d\right| \cdot\left|c-\alpha_{3} d\right|}$

$$
<_{f}\left(A_{2} A_{3}\right)^{-1}<_{f}\left(A_{1} A_{2} A_{3}\right)^{-2}<_{f} M(g)^{-2}
$$

Polynomials of degree at least 4

For polynomials $f \in \mathbb{Z}[X]$ of degree ≤ 3, Mahler's inequality is best possible in terms of $M(f)$.
For polynomials of degree ≥ 4 we can do slightly better.
Theorem 2 (Ev. and Györy)
Let $f \in \mathbb{Z}[X]$ be a separable polynomial of degree $n \geq 4$. Then

$$
\operatorname{sep}(f) \geq c(n) M(f)^{1-n}(\log 2 M(f))^{1 /(10 n-6)}
$$

where $c(n)>0$ is effectively computable.

Polynomials of degree at least 4

For polynomials $f \in \mathbb{Z}[X]$ of degree ≤ 3, Mahler's inequality is best possible in terms of $M(f)$.
For polynomials of degree ≥ 4 we can do slightly better.

Theorem 2 (Ev. and Györy)

Let $f \in \mathbb{Z}[X]$ be a separable polynomial of degree $n \geq 4$. Then

$$
\operatorname{sep}(f) \geq c(n) M(f)^{1-n}(\log 2 M(f))^{1 /(10 n-6)}
$$

where $c(n)>0$ is effectively computable.

Conjecture

For $f \in \mathbb{Z}[X]$ a separable polynomial of degree $n \geq 4$ we have

$$
\operatorname{sep}(f) \geq c_{1}(n) M(f)^{1-n+c_{2}(n)}
$$

with $c_{1}(n)>0, c_{2}(n)>0$.

Polynomials with small minimal root distance

Mignotte, Bugeaud and Mignotte, and Bugeaud and Dujella gave explicit examples of polynomials $f \in \mathbb{Z}[X]$ of arbitrary degree $n \geq 4$ such that $\operatorname{sep}(f)$ is small compared with $M(f)$. We recall the best results to date.

Theorem (Bugeaud and Dujella, 2011, 2014)

Let $n \geq 4, \epsilon>0$. Then there are infinitely many irreducible $f \in \mathbb{Z}[X]$ of degree n such that

$$
\operatorname{sep}(f) \leq M(f)^{-a(n)+\epsilon} \text { with } a(n)=\frac{n}{2}+\frac{n-2}{4(n-1)}
$$

and also infinitely many reducible, separable $f \in \mathbb{Z}[X]$ of degree n such that

$$
\operatorname{sep}(f) \leq M(f)^{-b(n)+\epsilon} \text { with } b(n)=\frac{2 n-1}{3}
$$

On the proof of Theorem 2

- Recall Mahler's Lemma $\operatorname{sep}(f) \gg_{n}|D(f)|^{1 / 2} M(f)^{1-n}, n=\operatorname{deg} f$. To get a lower bound for $\operatorname{sep}(f)$ better than $M(f)^{1-n}$ in terms of $M(f)$, we need a non-trivial lower bound for $|D(f)|$.
- $|D(f)|$ can not be estimated from below in terms of $M(f)$: Recall that two polynomials $f, g \in \mathbb{Z}[X]$ of degree n are called equivalent if there is $U \in \operatorname{GL}(2, \mathbb{Z})$ such that $g=f_{U}$, i.e., if $U=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ then $g(X)=(c X+d)^{n} f\left(\frac{a X+b}{c X+d}\right)$.
Equivalent polynomials have the same discriminant.
So by varying f in an equivalence class one can make $M(f)$ arbitrarily large while fixing $D(f)$.
- But by means of Baker theory we can show that there is $g \in \mathbb{Z}[X]$ equivalent to f with small Mahler measure in terms of $|D(f)|$.
This provides a useful lower bound for $|D(f)|$.

Polynomials of small Mahler measure in an equivalence class

Theorem 3 (Ev. and Györy, recent improvement of result from 1991)

Let $f \in \mathbb{Z}[X]$ be a separable polynomial of degree $n \geq 4$. Then there is $g \in \mathbb{Z}[X]$ such that g is equivalent to f and

$$
M(g) \leq \exp \left(\left(17 n^{3}\right)^{25 n^{2}}|D(f)|^{5 n-3}\right)
$$

Polynomials of small Mahler measure in an equivalence class

Theorem 3 (Ev. and Györy, recent improvement of result from 1991)

Let $f \in \mathbb{Z}[X]$ be a separable polynomial of degree $n \geq 4$. Then there is $g \in \mathbb{Z}[X]$ such that g is equivalent to f and

$$
M(g) \leq \exp \left(\left(17 n^{3}\right)^{25 n^{2}}|D(f)|^{5 n-3}\right)
$$

For polynomials of degree ≤ 3 much sharper results follow from classical work of Lagrange, Gauss and Hermite.

The main tool

Let K be a number field. Denote by O_{K} its ring of integers, by D_{K} its discriminant and d its degree. For non-zero $a, b, c \in O_{K}$ define

$$
H_{K}(a, b, c):=\prod_{\sigma: K \hookrightarrow \mathbb{C}} \max (|\sigma(a)|,|\sigma(b)|,|\sigma(c)|)
$$

Proposition 4 (Győry, 1978)

There are effectively computable $c_{1}(d), c_{2}(d)>0$ such that for all $a, b, c \in O_{K}$ with $a+b=c, a b c \neq 0$ we have

$$
H_{K}(a, b, c) \leq\left(2\left|N_{K / \mathbb{Q}}(a b c)\right|\right)^{c_{1}(d)\left|D_{K}\right|^{c 2(d)}} .
$$

Proof.

Baker type lower bounds for linear forms in logarithms. The sharpest, completely explicit version of Proposition 4 to date is due to Györy and Yu (2006).

Idea of proof of Theorem 3

Theorem 3

Let $f \in \mathbb{Z}[X]$ be a separable polynomial of degree $n \geq 4$. Then there is $g \in \mathbb{Z}[X]$ such that g is equivalent to f and

$$
M(g) \leq \exp \left(\left(17 n^{3}\right)^{25 n^{2}}|D(f)|^{5 n-3}\right)
$$

Proof (idea).

Let K be the splitting field of f and write $f=\prod_{i=1}^{n}\left(\beta_{i} X-\gamma_{i}\right)$ with β_{i}, γ_{i} "almost" in O_{K}. Put $\Delta_{i j}:=\beta_{i} \gamma_{j}-\beta_{j} \gamma_{i}$ and apply Györy's and Yu's explicit version of Proposition 4 to

$$
\Delta_{i j} \Delta_{k l}+\Delta_{j k} \Delta_{i l}=\Delta_{i k} \Delta_{j l} \quad \forall i, j, k, l
$$

Idea of proof of Theorem 3

Theorem 3

Let $f \in \mathbb{Z}[X]$ be a separable polynomial of degree $n \geq 4$. Then there is $g \in \mathbb{Z}[X]$ such that g is equivalent to f and

$$
M(g) \leq \exp \left(\left(17 n^{3}\right)^{25 n^{2}}|D(f)|^{5 n-3}\right)
$$

Proof (idea).

Let K be the splitting field of f and write $f=\prod_{i=1}^{n}\left(\beta_{i} X-\gamma_{i}\right)$ with β_{i}, γ_{i} "almost" in O_{K}. Put $\Delta_{i j}:=\beta_{i} \gamma_{j}-\beta_{j} \gamma_{i}$ and apply Györy's and Yu's explicit version of Proposition 4 to

$$
\Delta_{i j} \Delta_{k l}+\Delta_{j k} \Delta_{i l}=\Delta_{i k} \Delta_{j l} \quad \forall i, j, k, l
$$

Together with geometry of numbers, this implies that there is g equivalent to f with an upper bound for $M(g)$ which is polynomial in $|D(f)|$ but with $\left|D_{K}\right|$ in the exponent.
Estimating $\left|D_{K}\right|$ in terms of $D(f)$, this leads to an upper bound for $M(g)$ which is exponential in $|D(f)|$.

Proof of Theorem 2

Theorem 2

Let $f \in \mathbb{Z}[X]$ be a separable polynomial of degree $n \geq 4$. Then

$$
\operatorname{sep}(f) \geq c(n) M(f)^{1-n}(\log 2 M(f))^{1 /(10 n-6)}
$$

where $c(n)>0$ is effectively computable.
This is proved by combining Theorem 3 with the following improvement of Mahler's Lemma.

Lemma (Ev., 1993)

Let $f \in \mathbb{Z}[X]$ be a separable polynomial of degree $n \geq 4$ and let $g \in \mathbb{Z}[X]$ be equivalent to f. Then

$$
\operatorname{sep}(f) \geq c(n)|D(f)|^{1 / 2} M(f)^{-1} M(g)^{2-n}
$$

where $c(n)>0$ is effectively computable.

Proof of Theorem 2

Theorem 2

Let $f \in \mathbb{Z}[X]$ be a separable polynomial of degree $n \geq 4$. Then

$$
\operatorname{sep}(f) \geq c(n) M(f)^{1-n}(\log 2 M(f))^{1 /(10 n-6)}
$$

where $c(n)>0$ is effectively computable.

Proof of Theorem 2.

Choose g equivalent to f of minimal Mahler measure. Then

$$
\begin{array}{rl}
\operatorname{sep}(f) & \gg n \\
\gg_{n} & |D(f)|^{1 / 2} M(f)^{-1} M(g)^{2-n} \\
& M(f)^{-1} M(g)^{2-n}(\log 2 M(g))^{1 /(10 n-6)} \\
\gg_{n} & M(f)^{1-n}(\log 2 M(f))^{1 /(10 n-6)} .
\end{array}
$$

Clusters of p-adic roots

We generalize the previous results to other absolute values and also to estimates for clusters of roots.

Let $M_{\mathbb{Q}}:=\{\infty\} \cup\{$ primes $\},|\cdot|_{\infty}$ ordinary absolute value, $|\cdot|_{p} p$-adic absolute value with $|p|_{p}=p^{-1}$ for p a prime.
For $p \in M_{\mathbb{Q}}$ we extend $|\cdot|_{p}$ to $\overline{\mathbb{Q}_{p}}$, where $\mathbb{Q}_{\infty}=\mathbb{R}, \overline{\mathbb{Q}_{\infty}}=\mathbb{C}$.
Let $f \in \mathbb{Z}[X]$ be a separable polynomial of degree n and $p \in M_{\mathbb{Q}}$.
Write $f(X)=a_{0} \prod_{i=1}^{n}\left(X-\alpha_{i, p}\right)$ with $a_{0} \in \mathbb{Z}, \alpha_{i, p} \in \overline{\mathbb{Q}_{p}}$ and define

$$
\begin{aligned}
\operatorname{sep}_{p}(f)=\operatorname{sep}_{2, p}(f) & :=\min _{1 \leq i<j \leq n}\left|\alpha_{i, p}-\alpha_{j, p}\right|_{p} \quad(n \geq 2), \\
\operatorname{sep}_{k, p}(f) & :=\min _{||| |=k} \prod_{\{i, j\} \subset 1}\left|\alpha_{i, p}-\alpha_{j, p}\right|_{p} \quad(k \geq 2, n \geq k),
\end{aligned}
$$

where the minimum is taken over all k-element subsets $/$ of $\{1, \ldots, n\}$ and the product over all 2-element subsets of I.

A generalization of Mahler's Lemma

Recall $\operatorname{sep}_{k, p}(f):=\min _{|\rho|=k} \prod_{\{i, j\} \subset 1}\left|\alpha_{i, p}-\alpha_{j, p}\right|_{p}$ for $f(X)=a_{0} \prod_{i=1}^{n}\left(X-\alpha_{i, p}\right)$.

Lemma 3

Let $S=\left\{\infty, p_{1}, \ldots, p_{t}\right\}, k \in \mathbb{Z}_{\geq 2}$, and $f \in \mathbb{Z}[X]$ a separable polynomial of degree $n \geq k$. Then

$$
\prod_{p \in S} \min \left(1, \operatorname{sep}_{k, p}(f)\right) \geq c(n)\left(\prod_{p \in S}|D(f)|_{p}\right)^{1 / 2} \cdot M(f)^{1-n},
$$

where $c(n)>0$ is effectively computable.

A generalization of Mahler's Lemma

Recall $\operatorname{sep}_{k, p}(f):=\min _{|\rho|=k} \prod_{\{i, j\} \subset 1}\left|\alpha_{i, p}-\alpha_{j, p}\right|_{p}$ for $f(X)=a_{0} \prod_{i=1}^{n}\left(X-\alpha_{i, p}\right)$.

Lemma 3

Let $S=\left\{\infty, p_{1}, \ldots, p_{t}\right\}, k \in \mathbb{Z}_{\geq 2}$, and $f \in \mathbb{Z}[X]$ a separable polynomial of degree $n \geq k$. Then

$$
\prod_{p \in S} \min \left(1, \operatorname{sep}_{k, p}(f)\right) \geq c(n)\left(\prod_{p \in S}|D(f)|_{p}\right)^{1 / 2} \cdot M(f)^{1-n},
$$

where $c(n)>0$ is effectively computable.

Corollary

$\prod \min \left(1, \operatorname{sep}_{k, p}(f)\right) \geq c(n) M(f)^{1-n}$. $p \in S$

Can this be improved in terms of $M(f)$?

A generalization of Mahler's Lemma

Recall $\operatorname{sep}_{k, p}(f):=\min _{|\rho|=k} \prod_{\{i, j\} \subset 1}\left|\alpha_{i, p}-\alpha_{j, p}\right|_{p}$ for $f(X)=a_{0} \prod_{i=1}^{n}\left(X-\alpha_{i, p}\right)$.

Lemma 3

Let $S=\left\{\infty, p_{1}, \ldots, p_{t}\right\}, k \in \mathbb{Z}_{\geq 2}$, and $f \in \mathbb{Z}[X]$ a separable polynomial of degree $n \geq k$. Then

$$
\prod_{p \in S} \min \left(1, \operatorname{sep}_{k, p}(f)\right) \geq c(n)\left(\prod_{p \in S}|D(f)|_{p}\right)^{1 / 2} \cdot M(f)^{1-n},
$$

where $c(n)>0$ is effectively computable.

Corollary

$\prod \min \left(1, \operatorname{sep}_{k, p}(f)\right) \geq c(n) M(f)^{1-n}$. $p \in S$

Can this be improved in terms of $M(f)$?
NO if $n \in\{k, k+1\} ; \quad$ YES if $n \geq k+2$.

A generalization of Schönhage's Theorem

A polynomial $f \in \mathbb{Z}[X]$ is called primitive if its coefficients have gcd 1 .
We call two polynomials $f, g \in \mathbb{Z}[X] \mathrm{GL}_{2}(\mathbb{Q})$-equivalent if $g=\lambda f_{U}$ for some $\lambda \in \mathbb{Q}^{*}, U \in \mathrm{GL}_{2}(\mathbb{Q})$.

Theorem 5

Let $p \in M_{\mathbb{Q}}, k \in \mathbb{Z}_{\geq 2}$ and $f \in \mathbb{Z}[X]$ a primitive, separable polynomial of degree $n \in\{k, k+1\}$. In case that $n=k+1$, assume that f has a zero in $\mathbb{Q}_{p} \backslash \mathbb{Q}$.
Then there are infinitely many $g \in \mathbb{Z}[X]$, such that g is primitive, $\mathrm{GL}(2, \mathbb{Q})$-equivalent to f, and

$$
\operatorname{sep}_{k, p}(g) \ll_{p, f} M(g)^{1-n}
$$

Proof.

Adèlic geometry of numbers.

A generalization of Schönhage's Theorem

A polynomial $f \in \mathbb{Z}[X]$ is called primitive if its coefficients have gcd 1 .
We call two polynomials $f, g \in \mathbb{Z}[X] \mathrm{GL}_{2}(\mathbb{Q})$-equivalent if $g=\lambda f_{U}$ for some $\lambda \in \mathbb{Q}^{*}, U \in \mathrm{GL}_{2}(\mathbb{Q})$.

Theorem 5

Let $p \in M_{\mathbb{Q}}, k \in \mathbb{Z}_{\geq 2}$ and $f \in \mathbb{Z}[X]$ a primitive, separable polynomial of degree $n \in\{k, k+1\}$. In case that $n=k+1$, assume that f has a zero in $\mathbb{Q}_{p} \backslash \mathbb{Q}$.
Then there are infinitely many $g \in \mathbb{Z}[X]$, such that g is primitive, $\mathrm{GL}(2, \mathbb{Q})$-equivalent to f, and

$$
\operatorname{sep}_{k, p}(g) \ll_{p, f} M(g)^{1-n}
$$

Pejkovic (2012, PhD-thesis) constructed in another way, for every prime p, an infinite class of separable cubic $g \in \mathbb{Z}[X]$ with $\operatorname{sep}_{p}(g) \ll M(g)^{-2}$.

Polynomials of degree at least $k+2$

Theorem 6

Let $k \in \mathbb{Z}_{\geq 2}, n \geq k+2, S=\left\{\infty, p_{1}, \ldots, p_{t}\right\}$. There is an effectively computable number $c(n, S)>0$ such that for every separable polynomial $f \in \mathbb{Z}[X]$ of degree n we have

$$
\prod_{p \in S} \min \left(1, \operatorname{sep}_{k, p}(f)\right) \geq c(n, S) M(f)^{1-n}(\log 2 M(f))^{1 /(10 n-6)}
$$

Proof.

p-adic generalization of arguments sketched above.

A conditional result

Theorem 7

Assuming the abc-conjecture over number fields, the following holds:
Let $S=\left\{\infty, p_{1}, \ldots, p_{t}\right\}, k \in \mathbb{Z}_{\geq 2}, f \in \mathbb{Z}[X]$ a separable polynomial of degree $n \geq k+2$. Then

$$
\prod_{p \in S} \min \left(1, \operatorname{sep}_{k, p}(f)\right) \geq c(n, S) M(f)^{1-n+\gamma(1-k / n)^{2}}
$$

where $c(n, S)>0$ depends only on n, S, and $\gamma>0$ is an absolute constant.

This lower bound is probably far from the truth.

Congratulations Kálmán!

