Root distance of polynomials

Jan-Hendrik Evertse

Universiteit Leiden

Kálmán Győry 75 symposium

July 10, 2015, Debrecen

 $Slides \ can \ be \ downloaded \ from \\ http://pub.math.leidenuniv.nl/\sim evertsejh/lectures.shtml$

Mahler's Lemma

Let $f = a_0 \prod_{i=1}^n (X - \alpha_i) \in \mathbb{Z}[X]$ of degree $n \ge 2$ with $a_0 \in \mathbb{Z}$ and distinct $\alpha_1, \ldots, \alpha_n \in \mathbb{C}$ and define

$$\begin{split} & \operatorname{sep}(f) & := \min_{1 \le i < j \le n} |\alpha_i - \alpha_j| \quad (\text{minimal root distance of } f), \\ & \mathcal{M}(f) & := |a_0| \prod_{i=1}^n \max(1, |\alpha_i|) \quad (\text{Mahler measure of } f), \\ & \mathcal{D}(f) & := a_0^{2n-2} \prod_{1 \le i < j \le n} (\alpha_i - \alpha_j)^2 \quad (\text{discriminant of } f). \end{split}$$

Lemma 1 (Mahler, 1964) $sep(f) \ge c(n)|D(f)|^{1/2}M(f)^{1-n}$ (with $c(n) = \sqrt{3} \cdot n^{-(n+2)/2}$).

Mahler's Lemma

Let $f = a_0 \prod_{i=1}^n (X - \alpha_i) \in \mathbb{Z}[X]$ of degree $n \ge 2$ with $a_0 \in \mathbb{Z}$ and distinct $\alpha_1, \ldots, \alpha_n \in \mathbb{C}$ and define

$$\begin{split} & \operatorname{sep}(f) & := \min_{1 \le i < j \le n} |\alpha_i - \alpha_j| \quad (\text{minimal root distance of } f), \\ & \mathcal{M}(f) & := |a_0| \prod_{i=1}^n \max(1, |\alpha_i|) \quad (\text{Mahler measure of } f), \\ & \mathcal{D}(f) & := a_0^{2n-2} \prod_{1 \le i < j \le n} (\alpha_i - \alpha_j)^2 \quad (\text{discriminant of } f). \end{split}$$

Lemma 1 (Mahler, 1964) $\operatorname{sep}(f) \ge c(n)|D(f)|^{1/2}M(f)^{1-n}$ (with $c(n) = \sqrt{3} \cdot n^{-(n+2)/2}$).

Proof (ignoring value of c(n)). $\operatorname{sep}(f) \gg_n \prod_{1 \le i < j \le n} \frac{|\alpha_i - \alpha_j|}{\max(1, |\alpha_i|) \max(1, |\alpha_j|)} \gg_n |D(f)|^{1/2} M(f)^{1-n}. \square$

Lemma 1 (Mahler, 1964)

Let $f \in \mathbb{Z}[X]$ be a separable polynomial of degree $n \ge 2$. Then $sep(f) \ge c(n)|D(f)|^{1/2}M(f)^{1-n}$ with c(n) > 0.

Since $D(f) \in \mathbb{Z} \setminus \{0\}$, this implies

Corollary

 $\operatorname{sep}(f) \geq c(n)M(f)^{1-n}.$

Can this be improved to an inequality with something larger in terms of M(f) on the right-hand side?

Lemma 1 (Mahler, 1964)

Let $f \in \mathbb{Z}[X]$ be a separable polynomial of degree $n \ge 2$. Then $sep(f) \ge c(n)|D(f)|^{1/2}M(f)^{1-n}$ with c(n) > 0.

Since $D(f) \in \mathbb{Z} \setminus \{0\}$, this implies

Corollary

 $\operatorname{sep}(f) \ge c(n)M(f)^{1-n}.$

Can this be improved to an inequality with something larger in terms of M(f) on the right-hand side?

NO if n = 2, 3; **YES** if $n \ge 4$.

Polynomials of degree at most 3

For a polynomial f(X) of degree $n \ge 2$ and $U = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ define $f_U(X) := (cX + d)^n f(\frac{aX+b}{cX+d}).$

Call two polynomials $f, g \in \mathbb{Z}[X]$ equivalent if $g = f_U$ for some $U \in GL_2(\mathbb{Z})$.

Theorem 1

Let $f \in \mathbb{Z}[X]$ be a separable polynomial of degree $n \in \{2, 3\}$. In case that n = 3, assume that f has a real, irrational zero. Then there are infinitely many polynomials $g \in \mathbb{Z}[X]$ such that g is equivalent to f and $\operatorname{sep}(g) \ll_f M(g)^{1-n}$.

For n = 2 the proof is straightforward, for n = 3 this is a result of Schönhage (2006). His proof uses the convergents of a real irrational zero of f.

Theorem 1 is false for cubic f with three rational roots or one rational and two non-real roots.

Lemma 2

Let $n \geq 3$ and let $\alpha_1, \ldots, \alpha_n \in \mathbb{C}$ be distinct, with $\alpha_1 \in \mathbb{R} \setminus \mathbb{Q}$. Then \mathbb{Z}^2 has infinitely many bases $\{\mathbf{z}_1 = (a, b), \mathbf{z}_2 = (c, d)\}$ such that

$$\begin{aligned} |\mathbf{a} - \alpha_1 \mathbf{b}|, \, |\mathbf{c} - \alpha_1 \mathbf{d}| &\ll \max(|\mathbf{a}|, |\mathbf{b}|, |\mathbf{c}|, |\mathbf{d}|)^{-1} \\ |\mathbf{a} - \alpha_i \mathbf{b}| &\ll |\mathbf{c} - \alpha_i \mathbf{d}| \quad \text{for } i = 2, \dots, n. \end{aligned}$$

Here the implied constants depend on $\alpha_1, \ldots, \alpha_n$.

Proof (idea).

Apply Minkowski's Theorem on successive minima to the convex bodies $C_Q := \{(x, y) \in \mathbb{R}^2 : |x - \alpha_1 y| \le Q^{-1}, |y| \le Q\} \ (Q \ge 1).$

An alternative proof of Schönhage's Theorem (ctd)

Let $f = a_0(X - \alpha_1)(X - \alpha_2)(X - \alpha_3) \in \mathbb{Z}[X]$ with $\alpha_1, \alpha_2, \alpha_3$ distinct and $\alpha_1 \in \mathbb{R} \setminus \mathbb{Q}$. Choose a basis $\{\mathbf{z}_1 = (a, b), \mathbf{z}_2 = (c, d)\}$ of \mathbb{Z}^2 according to Lemma 2 and let $g(X) := a_0 \prod_{i=1}^{3} ((c - \alpha_i d)X - (a - \alpha_i b)), \quad \beta_i := \frac{a - \alpha_i b}{c - \alpha_i d} \quad (i = 1, 2, 3).$

Then g is equivalent to f.

An alternative proof of Schönhage's Theorem (ctd)

Let $f = a_0(X - \alpha_1)(X - \alpha_2)(X - \alpha_3) \in \mathbb{Z}[X]$ with $\alpha_1, \alpha_2, \alpha_3$ distinct and $\alpha_1 \in \mathbb{R} \setminus \mathbb{Q}$. Choose a basis $\{\mathbf{z}_1 = (a, b), \mathbf{z}_2 = (c, d)\}$ of \mathbb{Z}^2 according to Lemma 2 and let

$$g(X) := a_0 \prod_{i=1}^{n} \left((c - \alpha_i d) X - (a - \alpha_i b) \right), \quad \beta_i := \frac{a - \alpha_i b}{c - \alpha_i d} \quad (i = 1, 2, 3).$$

Then g is equivalent to f.

Put
$$A_i := \max(|a - \alpha_i b|, |c - \alpha_i d|)$$
 $(i = 1, 2, 3)$. Then
 $A_1 \ll_f \max(|a|, |b|, |c|, |d|)^{-1} \ll_f A_2^{-1}, A_3^{-1},$
 $A_i \ll_f |c - \alpha_i d|$ for $i = 2, 3,$
 $M(g) = |a_0| \cdot A_1 A_2 A_3,$

An alternative proof of Schönhage's Theorem (ctd)

Let $f = a_0(X - \alpha_1)(X - \alpha_2)(X - \alpha_3) \in \mathbb{Z}[X]$ with $\alpha_1, \alpha_2, \alpha_3$ distinct and $\alpha_1 \in \mathbb{R} \setminus \mathbb{Q}$. Choose a basis $\{\mathbf{z}_1 = (a, b), \mathbf{z}_2 = (c, d)\}$ of \mathbb{Z}^2 according to Lemma 2 and let

$$g(X) := a_0 \prod_{i=1}^{3} \left((c - \alpha_i d) X - (a - \alpha_i b) \right), \quad \beta_i := \frac{a - \alpha_i b}{c - \alpha_i d} \quad (i = 1, 2, 3).$$

Then g is equivalent to f.

Put
$$A_i := \max(|a - \alpha_i b|, |c - \alpha_i d|)$$
 $(i = 1, 2, 3)$. Then
 $A_1 \ll_f \max(|a|, |b|, |c|, |d|)^{-1} \ll_f A_2^{-1}, A_3^{-1},$
 $A_i \ll_f |c - \alpha_i d|$ for $i = 2, 3,$
 $M(g) = |a_0| \cdot A_1 A_2 A_3,$
hence $\sup(g) \leq |\beta_2 - \beta_3| = \frac{|ad - bc|}{|c - \alpha_2 d| \cdot |c - \alpha_3 d|}$
 $\ll_f (A_2 A_3)^{-1} \ll_f (A_1 A_2 A_3)^{-2} \ll_f M(g)^{-2}.$

Polynomials of degree at least 4

For polynomials $f \in \mathbb{Z}[X]$ of degree ≤ 3 , Mahler's inequality is best possible in terms of M(f).

For polynomials of degree \geq 4 we can do slightly better.

Theorem 2 (Ev. and Győry)

Let $f \in \mathbb{Z}[X]$ be a separable polynomial of degree $n \ge 4$. Then

 $sep(f) \ge c(n)M(f)^{1-n}(\log 2M(f))^{1/(10n-6)},$

where c(n) > 0 is effectively computable.

Polynomials of degree at least 4

For polynomials $f \in \mathbb{Z}[X]$ of degree ≤ 3 , Mahler's inequality is best possible in terms of M(f).

For polynomials of degree \geq 4 we can do slightly better.

Theorem 2 (Ev. and Győry)

Let $f \in \mathbb{Z}[X]$ be a separable polynomial of degree $n \ge 4$. Then

 $sep(f) \ge c(n)M(f)^{1-n}(\log 2M(f))^{1/(10n-6)},$

where c(n) > 0 is effectively computable.

Conjecture

For $f \in \mathbb{Z}[X]$ a separable polynomial of degree $n \ge 4$ we have

```
\operatorname{sep}(f) \ge c_1(n) M(f)^{1-n+c_2(n)}
```

with $c_1(n) > 0$, $c_2(n) > 0$.

Mignotte, Bugeaud and Mignotte, and Bugeaud and Dujella gave explicit examples of polynomials $f \in \mathbb{Z}[X]$ of arbitrary degree $n \ge 4$ such that sep(f) is small compared with M(f). We recall the best results to date.

Theorem (Bugeaud and Dujella, 2011, 2014)

Let $n \ge 4$, $\epsilon > 0$. Then there are infinitely many irreducible $f \in \mathbb{Z}[X]$ of degree n such that

$$\operatorname{sep}(f) \leq M(f)^{-a(n)+\epsilon}$$
 with $a(n) = \frac{n}{2} + \frac{n-2}{4(n-1)},$

and also infinitely many reducible, separable $f \in \mathbb{Z}[X]$ of degree n such that

$$\operatorname{sep}(f) \le M(f)^{-b(n)+\epsilon}$$
 with $b(n) = \frac{2n-1}{3}$

On the proof of Theorem 2

▶ Recall Mahler's Lemma $sep(f) \gg_n |D(f)|^{1/2} M(f)^{1-n}$, $n = \deg f$.

To get a lower bound for sep(f) better than $M(f)^{1-n}$ in terms of M(f), we need a non-trivial lower bound for |D(f)|.

 |D(f)| can not be estimated from below in terms of M(f): Recall that two polynomials f, g ∈ Z[X] of degree n are called equivalent if there is U ∈ GL(2, Z) such that g = f_U, i.e., if U = (^a/_c ^b/_d) then g(X) = (cX + d)ⁿf(^{aX+b}/_{cX+d}).

Equivalent polynomials have the same discriminant.

So by varying f in an equivalence class one can make M(f) arbitrarily large while fixing D(f).

But by means of Baker theory we can show that there is g ∈ Z[X] equivalent to f with small Mahler measure in terms of |D(f)|.
 This provides a useful lower bound for |D(f)|.

Polynomials of small Mahler measure in an equivalence class

Theorem 3 (Ev. and Győry, recent improvement of result from 1991)

Let $f \in \mathbb{Z}[X]$ be a separable polynomial of degree $n \ge 4$. Then there is $g \in \mathbb{Z}[X]$ such that g is equivalent to f and

$$M(g) \le \exp\left((17n^3)^{25n^2}|D(f)|^{5n-3}
ight).$$

Polynomials of small Mahler measure in an equivalence class

Theorem 3 (Ev. and Győry, recent improvement of result from 1991)

Let $f \in \mathbb{Z}[X]$ be a separable polynomial of degree $n \ge 4$. Then there is $g \in \mathbb{Z}[X]$ such that g is equivalent to f and $M(g) \le \exp\left((17n^3)^{25n^2}|D(f)|^{5n-3}\right).$

For polynomials of degree \leq 3 much sharper results follow from classical work of Lagrange, Gauss and Hermite.

Let K be a number field. Denote by O_K its ring of integers, by D_K its discriminant and d its degree. For non-zero $a, b, c \in O_K$ define

$$H_{\mathcal{K}}(a,b,c) := \prod_{\sigma:\mathcal{K} \hookrightarrow \mathbb{C}} \max (|\sigma(a)|, |\sigma(b)|, |\sigma(c)|).$$

Proposition 4 (Győry, 1978)

There are effectively computable $c_1(d), c_2(d) > 0$ such that for all $a, b, c \in O_K$ with a + b = c, $abc \neq 0$ we have

$$H_{\mathcal{K}}(\mathsf{a},\mathsf{b},\mathsf{c}) \leq (2|\mathcal{N}_{\mathcal{K}/\mathbb{Q}}(\mathsf{abc})|)^{c_1(d)|D_{\mathcal{K}}|^{c_2(d)}}$$

Proof.

Baker type lower bounds for linear forms in logarithms. The sharpest, completely explicit version of Proposition 4 to date is due to Győry and Yu (2006).

Idea of proof of Theorem 3

Theorem 3

Let $f \in \mathbb{Z}[X]$ be a separable polynomial of degree $n \ge 4$. Then there is $g \in \mathbb{Z}[X]$ such that g is equivalent to f and

$$M(g) \leq \exp\left((17n^3)^{25n^2}|D(f)|^{5n-3}\right).$$

Proof (idea).

Let K be the splitting field of f and write $f = \prod_{i=1}^{n} (\beta_i X - \gamma_i)$ with β_i, γ_i "almost" in O_K . Put $\Delta_{ij} := \beta_i \gamma_j - \beta_j \gamma_i$ and apply Győry's and Yu's explicit version of Proposition 4 to

$$\Delta_{ij}\Delta_{kl} + \Delta_{jk}\Delta_{il} = \Delta_{ik}\Delta_{jl} \quad \forall i, j, k, l.$$

Theorem 3

Let $f \in \mathbb{Z}[X]$ be a separable polynomial of degree $n \ge 4$. Then there is $g \in \mathbb{Z}[X]$ such that g is equivalent to f and

$$M(g) \leq \exp\left((17n^3)^{25n^2}|D(f)|^{5n-3}
ight).$$

Proof (idea).

Let K be the splitting field of f and write $f = \prod_{i=1}^{n} (\beta_i X - \gamma_i)$ with β_i, γ_i "almost" in O_K . Put $\Delta_{ij} := \beta_i \gamma_j - \beta_j \gamma_i$ and apply Győry's and Yu's explicit version of Proposition 4 to

$$\Delta_{ij}\Delta_{kl}+\Delta_{jk}\Delta_{il}=\Delta_{ik}\Delta_{jl} \quad \forall i,j,k,l.$$

Together with geometry of numbers, this implies that there is g equivalent to f with an upper bound for M(g) which is polynomial in |D(f)| but with $|D_{K}|$ in the exponent.

Estimating $|D_K|$ in terms of D(f), this leads to an upper bound for M(g) which is exponential in |D(f)|.

Theorem 2

Let $f \in \mathbb{Z}[X]$ be a separable polynomial of degree $n \ge 4$. Then

```
sep(f) \ge c(n)M(f)^{1-n}(\log 2M(f))^{1/(10n-6)},
```

where c(n) > 0 is effectively computable.

This is proved by combining Theorem 3 with the following improvement of Mahler's Lemma.

Lemma (Ev., 1993)

Let $f \in \mathbb{Z}[X]$ be a separable polynomial of degree $n \ge 4$ and let $g \in \mathbb{Z}[X]$ be equivalent to f. Then

$$\sup(f) \ge c(n)|D(f)|^{1/2}M(f)^{-1}M(g)^{2-n},$$

where c(n) > 0 is effectively computable.

Proof of Theorem 2

Theorem 2

Let $f \in \mathbb{Z}[X]$ be a separable polynomial of degree $n \ge 4$. Then

$$\operatorname{sep}(f) \ge c(n) M(f)^{1-n} (\log 2M(f))^{1/(10n-6)},$$

where c(n) > 0 is effectively computable.

Proof of Theorem 2.

Choose g equivalent to f of minimal Mahler measure. Then

$$\begin{split} \sup(f) & \gg_n & |D(f)|^{1/2} M(f)^{-1} M(g)^{2-n} \\ & \gg_n & M(f)^{-1} M(g)^{2-n} (\log 2M(g))^{1/(10n-6)} \\ & \gg_n & M(f)^{1-n} (\log 2M(f))^{1/(10n-6)}. \end{split}$$

Clusters of p-adic roots

We generalize the previous results to other absolute values and also to estimates for clusters of roots.

Let $M_{\mathbb{Q}} := \{\infty\} \cup \{\text{primes}\}, |\cdot|_{\infty} \text{ ordinary absolute value, } |\cdot|_{p} p\text{-adic absolute value with } |p|_{p} = p^{-1} \text{ for } p \text{ a prime.}$ For $p \in M_{\mathbb{Q}}$ we extend $|\cdot|_{p}$ to $\overline{\mathbb{Q}_{p}}$, where $\mathbb{Q}_{\infty} = \mathbb{R}$, $\overline{\mathbb{Q}_{\infty}} = \mathbb{C}$.

Let $f \in \mathbb{Z}[X]$ be a separable polynomial of degree n and $p \in M_{\mathbb{Q}}$. Write $f(X) = a_0 \prod_{i=1}^{n} (X - \alpha_{i,p})$ with $a_0 \in \mathbb{Z}$, $\alpha_{i,p} \in \overline{\mathbb{Q}_p}$ and define $\sup_p(f) = \sup_{2,p}(f) := \min_{1 \le i < j \le n} |\alpha_{i,p} - \alpha_{j,p}|_p \quad (n \ge 2),$ $\sup_{k,p}(f) := \min_{|I|=k} \prod_{\{i,j\} \in I} |\alpha_{i,p} - \alpha_{j,p}|_p \quad (k \ge 2, n \ge k),$

where the minimum is taken over all k-element subsets I of $\{1, ..., n\}$ and the product over all 2-element subsets of I.

A generalization of Mahler's Lemma

Recall
$$\sup_{k,p}(f) := \min_{|I|=k} \prod_{\{i,j\}\subset I} |\alpha_{i,p} - \alpha_{j,p}|_p$$
 for $f(X) = a_0 \prod_{i=1}^n (X - \alpha_{i,p})$.

Lemma 3

Let $S = \{\infty, p_1, \dots, p_t\}$, $k \in \mathbb{Z}_{\geq 2}$, and $f \in \mathbb{Z}[X]$ a separable polynomial of degree $n \geq k$. Then

$$\prod_{p \in S} \min \left(1, \sup_{k, p}(f)\right) \ge c(n) \left(\prod_{p \in S} |D(f)|_p\right)^{1/2} \cdot M(f)^{1-n}$$

where c(n) > 0 is effectively computable.

A generalization of Mahler's Lemma

Recall
$$\sup_{k,p}(f) := \min_{|I|=k} \prod_{\{i,j\}\subset I} |\alpha_{i,p} - \alpha_{j,p}|_p$$
 for $f(X) = a_0 \prod_{i=1}^n (X - \alpha_{i,p})$.

Lemma 3

Let $S = \{\infty, p_1, \dots, p_t\}$, $k \in \mathbb{Z}_{\geq 2}$, and $f \in \mathbb{Z}[X]$ a separable polynomial of degree $n \geq k$. Then

$$\prod_{p \in S} \min \left(1, \sup_{k,p} (f) \right) \ge c(n) \Big(\prod_{p \in S} |D(f)|_p \Big)^{1/2} \cdot M(f)^{1-n}$$

where c(n) > 0 is effectively computable.

Corollary

$$\prod_{p\in S} \min\left(1, \sup_{k,p}(f)\right) \ge c(n) M(f)^{1-n}.$$

Can this be improved in terms of M(f)?

A generalization of Mahler's Lemma

Recall
$$\sup_{k,p}(f) := \min_{|I|=k} \prod_{\{i,j\}\subset I} |\alpha_{i,p} - \alpha_{j,p}|_p$$
 for $f(X) = a_0 \prod_{i=1}^n (X - \alpha_{i,p})$.

Lemma 3

Let $S = \{\infty, p_1, \dots, p_t\}$, $k \in \mathbb{Z}_{\geq 2}$, and $f \in \mathbb{Z}[X]$ a separable polynomial of degree $n \geq k$. Then

$$\prod_{p \in S} \min \left(1, \sup_{k,p} (f) \right) \ge c(n) \Big(\prod_{p \in S} |D(f)|_p \Big)^{1/2} \cdot M(f)^{1-n}$$

where c(n) > 0 is effectively computable.

Corollary

$$\prod_{p\in S} \min\left(1, \sup_{k,p}(f)\right) \ge c(n) M(f)^{1-n}.$$

Can this be improved in terms of M(f)?

NO if $n \in \{k, k+1\}$; **YES** if $n \ge k+2$.

A polynomial $f \in \mathbb{Z}[X]$ is called *primitive* if its coefficients have gcd 1.

We call two polynomials $f, g \in \mathbb{Z}[X]$ $\operatorname{GL}_2(\mathbb{Q})$ -equivalent if $g = \lambda f_U$ for some $\lambda \in \mathbb{Q}^*$, $U \in \operatorname{GL}_2(\mathbb{Q})$.

Theorem 5

Let $p \in M_{\mathbb{Q}}$, $k \in \mathbb{Z}_{\geq 2}$ and $f \in \mathbb{Z}[X]$ a primitive, separable polynomial of degree $n \in \{k, k+1\}$. In case that n = k + 1, assume that f has a zero in $\mathbb{Q}_p \setminus \mathbb{Q}$.

Then there are infinitely many $g \in \mathbb{Z}[X]$, such that g is primitive, $\operatorname{GL}(2,\mathbb{Q})$ -equivalent to f, and

$$\operatorname{sep}_{k,p}(g) \ll_{p,f} M(g)^{1-n}$$

Proof.

Adèlic geometry of numbers.

A polynomial $f \in \mathbb{Z}[X]$ is called *primitive* if its coefficients have gcd 1.

We call two polynomials $f, g \in \mathbb{Z}[X]$ $\operatorname{GL}_2(\mathbb{Q})$ -equivalent if $g = \lambda f_U$ for some $\lambda \in \mathbb{Q}^*$, $U \in \operatorname{GL}_2(\mathbb{Q})$.

Theorem 5

Let $p \in M_{\mathbb{Q}}$, $k \in \mathbb{Z}_{\geq 2}$ and $f \in \mathbb{Z}[X]$ a primitive, separable polynomial of degree $n \in \{k, k+1\}$. In case that n = k + 1, assume that f has a zero in $\mathbb{Q}_p \setminus \mathbb{Q}$.

Then there are infinitely many $g\in\mathbb{Z}[X],$ such that g is primitive, ${\rm GL}(2,\mathbb{Q})\text{-equivalent to }f,$ and

 $\operatorname{sep}_{k,p}(g) \ll_{p,f} M(g)^{1-n}.$

Pejkovic (2012, PhD-thesis) constructed in another way, for every prime p, an infinite class of separable cubic $g \in \mathbb{Z}[X]$ with $\sup_{\rho}(g) \ll M(g)^{-2}$.

Theorem 6

Let $k \in \mathbb{Z}_{\geq 2}$, $n \geq k + 2$, $S = \{\infty, p_1, \dots, p_t\}$. There is an effectively computable number c(n, S) > 0 such that for every separable polynomial $f \in \mathbb{Z}[X]$ of degree n we have

$$\prod_{p \in S} \min(1, \sup_{k, p}(f)) \ge c(n, S) M(f)^{1-n} (\log 2M(f))^{1/(10n-6)}$$

Proof.

p-adic generalization of arguments sketched above.

Theorem 7

Assuming the abc-conjecture over number fields, the following holds: Let $S = \{\infty, p_1, \dots, p_t\}$, $k \in \mathbb{Z}_{\geq 2}$, $f \in \mathbb{Z}[X]$ a separable polynomial of degree $n \geq k + 2$. Then

$$\prod_{p\in S}\min(1, \sup_{k,p}(f)) \ge c(n, S)M(f)^{1-n+\gamma(1-k/n)^2},$$

where c(n, S) > 0 depends only on n, S, and $\gamma > 0$ is an absolute constant.

This lower bound is probably far from the truth.

Congratulations Kálmán!