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Discriminants of binary forms

The discriminant of a binary form

F (X ,Y ) = a0X
n + a1X

n−1Y + · · ·+ anY
n =

n∏
i=1

(αiX − βiY )

is given by D(F ) =
∏

1≤i<j≤n

(αiβj − αjβi )
2.

For U =
( a b

c d

)
we define FU(X ,Y ) := F (aX + bY , cX + dY ).

Properties:

(i) D(F ) ∈ Z[a0, . . . , an];

(ii) D(λFU) = λ2n−2(detU)n(n−1)D(F ) for every scalar λ and
2× 2-matrix U.
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GL(2,A)-equivalence of binary forms

Definition

Let A be a non-zero commutative ring. Two binary forms
F ,G ∈ A[X ,Y ] are called GL(2,A)-equivalent if there are ε ∈ A∗ and
U ∈ GL(2,A) such that G = εFU .

Let F ,G ∈ A[X ,Y ] be two GL(2,A)-equivalent binary forms. Then
D(G ) = ηD(F ) for some η ∈ A∗.

Thus, the solutions of the “discriminant equation”

D(F ) ∈ δA∗ := {δη : η ∈ A∗} in binary forms F ∈ A[X ,Y ]

can be divided into GL(2,A)-equivalence classes.
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Finiteness results over the S-integers

Let K be an algebraic number field and S a finite set of places of K ,
containing all infinite places. Denote by OS the ring of S-integers of K .

Theorem (Birch and Merriman, 1972)

Let n ≥ 2 and δ ∈ OS \ {0}. Then there are only finitely many
GL(2,OS)-equivalence classes of binary forms F ∈ OS [X ,Y ] with

D(F ) ∈ δO∗
S , deg F = n.

The proof of Birch and Merriman is ineffective, i.e., it does not give a
method to determine the equivalence classes.

E. and Győry (1991) gave an effective proof (based on Baker type lower
bounds for logarithmic forms and on geometry of numbers).
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The number of equivalence classes

The splitting field of a binary form F ∈ K [X ,Y ] over a field K is the
smallest extension of K over which F factors into linear forms.

Theorem (Bérczes, E., Győry, 2004)

Let K be a number field, S a finite set of places of K containing all
infinite places, L a finite normal extension of K , n ≥ 3 and δ ∈ OS \ {0}.
Then the number of GL(2,OS)-equivalence classes of binary forms
F ∈ OS [X ,Y ] such that

(1) D(F ) ∈ δO∗
S , deg F = n, F has splitting field L over K

is at most

C eff(n,K ,#S , ε) · (#OS/δOS)(1/n(n−1))+ε for all ε > 0,

where C eff is effectively computable in terms of n,K ,#S , ε.
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The number of equivalence classes

Theorem (Bérczes, E., Győry, 2004)

Let K be a number field, S a finite set of places of K containing all
infinite places, L a finite normal extension of K , n ≥ 3 and δ ∈ OS \ {0}.
Then the number of GL(2,OS)-eq. classes of binary forms F ∈ OS [X ,Y ]
with

(1) D(F ) ∈ δO∗
S , deg F = n, F has splitting field L over K

is at most C eff(n,K ,#S , ε) · (#OS/δOS)(1/n(n−1))+ε for all ε > 0.

The result is almost optimal in terms of δ:

For every K ,S and n ≥ 2 there are L and δ ∈ OS \{0} with #OS/δOS arbi-
trarily large, such that (1) is satisfied by� (#OS/δOS)1/n(n−1) GL(2,OS)-
eq. classes of binary forms F ∈ OS [X ,Y ].
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The number of equivalence classes

Theorem (Bérczes, E., Győry, 2004)

Let K be a number field, S a finite set of places of K containing all
infinite places, L a finite normal extension of K , n ≥ 3 and δ ∈ OS \ {0}.
Then the number of GL(2,OS)-eq. classes of binary forms F ∈ OS [X ,Y ]
with

(1) D(F ) ∈ δO∗
S , deg F = n, F has splitting field L over K

is at most C eff(n,K ,#S , ε) · (#OS/δOS)(1/n(n−1))+ε for all ε > 0.

Open problem: Can we get a similar upper bound without fixing the
splitting field L of the binary forms under consideration?

For this, we need a very good upper bound for the number of L for which
(1) is solvable.
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The invariant order of a binary form

Let A be a non-zero commutative ring. An A-order of rank n is a
commutative ring O whose additive structure is a free A-module of rank
n, i.e., O has a basis {1, ω1, . . . , ωn−1} such that every element of O can
be written uniquely as x0 + x1ω1 + · · ·+ xn−1ωn−1 with xi ∈ A and such
that ωiωj is an A-linear combination of 1, ω1, . . . , ωn−1 for all i , j .

One can attach to every binary form F ∈ A[X ,Y ] of degree n an A-order
of rank n, its invariant A-order AF .

This was introduced and studied by Nakagawa (1989) and Simon (2001)
(over Z) and Wood (2011) (in general).

We will consider “equations”

AF
∼= O (as A-algebras)

to be solved in binary forms F ∈ A[X ,Y ], where O is a given A-order.
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Definition of the invariant order AF

Let for the moment A be an integral domain with quotient field K , and
F (X ,Y ) = a0X

n + a1X
n−1Y + · · ·+ anY

n ∈ A[X ,Y ] a binary form that
is irreducible over K .

Let θ be a zero of F (X , 1). Define AF ⊂ K (θ) to be the free A-module
with basis {1, ω1, . . . , ωn−1} where

ωi := a0θ
i + a1θ

i−1 + · · ·+ ai−1θ (i = 1, . . . , n − 1),

and let ωn := −an. Then for 1 ≤ i , j ≤ n − 1,

(*) ωiωj = −
∑

max(i+j−n,1)≤k≤i

ai+j−kωk +
∑

j<k≤min(i+j,n)

ai+j−kωk .

Thus AF is an A-order, the invariant A-order of F .

Now for arbitrary non-zero commutative rings A and binary forms
F =

∑n
i=0 aiX

n−iY i ∈ A[X ,Y ] we define AF to be the free A-module
with basis {1, ω1, . . . , ωn−1} with multiplication table (*).

This is an A-order (commutative and associative).
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Properties of the invariant order

(i) Let A be any non-zero commutative ring and F ,G ∈ A[X ,Y ] two
GL(2,A)-eq. binary forms. Then AF

∼= AG (as A-algebras).

(ii) Let A be an integral domain and F ∈ A[X ,Y ] a binary form.
Then AF determines D(F ) up to a factor from A∗, i.e., there is
δ ∈ A depending only on AF such that D(F ) ∈ δA∗

(in fact, if 1, ω1, . . . , ωn−1 is the basis of AF from the definition,
then D(F ) = DAF/A(1, ω1, . . . , ωn−1)).

(iii) Let A be an integral domain with quotient field K of characteristic 0
and F ∈ A[X ,Y ] a binary form. Then

F irreducible over K ⇐⇒ AF integral domain;
D(F ) 6= 0 ⇐⇒ AF reduced (without nilpotents).
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Orders of rank 3

Theorem (Delone and Faddeev; Gan, Gross and Savin; Deligne)

Let A be an arbitrary non-zero commutative ring. Then for every A-order
O of rank 3 there is precisely one GL(2,A)-equivalence class of binary
cubic forms F ∈ A[X ,Y ] with AF

∼= O.

Delone and Faddeev (1940) proved this for A = Z, O an integral domain;
Gan, Gross and Savin (2002) and Deligne extended this.

The proof uses only elementary algebra.



12/21

Orders of rank ≥ 4

Let K be a number field and S a finite set of places of K , containing the
infinite places. Denote by OS,F the invariant OS -order of a binary form
F ∈ OS [X ,Y ].

Let O be a reduced OS -order of rank ≥ 4.
Then every binary form F ∈ OS [X ,Y ] with OS,F

∼= O satisfies
D(F ) ∈ δO∗

S for some non-zero δ depending only on O.

By the result of Birch and Merriman, the binary forms F ∈ OS [X ,Y ]
with OS,F

∼= O lie in only finitely many GL(2,OS)-equivalence classes.

The condition OS,F
∼= O is much more restrictive than D(F ) ∈ δO∗

S .
So we expect a much better upper bound for the number of eq. classes
of binary forms F with OS,F

∼= O.
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Quantitative results for orders of rank ≥ 4

Let K be a number field and S a finite set of places of K , containing the
infinite places. Denote by h2(OS) the number of ideal classes of OS of
order dividing 2.

Theorem 1 (Bérczes, E. and Győry, 2004; E. and Győry, 2016)

Let O be a reduced OS -order of rank n ≥ 4. Then the number of
GL(2,OS)-eq. classes of binary forms F ∈ OS [X ,Y ] with

(2) OS,F
∼= O

has a uniform upper bound c(n,OS) depending only on OS and n.

For c(n,OS) we may take

25n2#S if n is odd, 25n2#S · h2(OS) if n is even.

BEG proved this with O an integral domain and with a larger upper bound;
EG proved the general result.
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Quantitative results for orders of rank ≥ 4

Let K be a number field and S a finite set of places of K , containing the
infinite places. Denote by h2(OS) the number of ideal classes of OS of
order dividing 2.

Theorem 1 (Bérczes, E. and Győry, 2004; E. and Győry, 2016)

Let O be a reduced OS -order of rank n ≥ 4. Then the number of
GL(2,OS)-eq. classes of binary forms F ∈ OS [X ,Y ] with

(2) OS,F
∼= O

has a uniform upper bound c(n,OS) depending only on OS and n.

For c(n,OS) we may take

25n2#S if n is odd, 25n2#S · h2(OS) if n is even.

The factor h2(OS) is necessary.

For every K ,S and every even n ≥ 4 there are OS -orders O of rank n
such that (2) is satisfied by �n h2(OS) GL(2,OS)-eq. cl. of binary forms
F ∈ OS [X ,Y ].
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Generalizations to other integral domains

Various finiteness results for Diophantine equations to be solved in
S-integers of number fields have been extended to equations with
solutions taken from integral domains of characteristic 0 that are finitely
generated as a Z-algebra, i.e., domains A = Z[z1, . . . , zt ] with possibly
some of the zi transcendental.

Question

Given such a domain A, a non-zero δ ∈ A, and a reduced A-order O of
rank n, do the binary forms F ∈ A[X ,Y ] of degree n with

D(F ) ∈ δA∗, resp. AF
∼= O

lie in only finitely many GL(2,A)-equivalence classes?

NO IN GENERAL for D(F ) ∈ δA∗;

YES for AF
∼= O (if A is integrally closed).
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D(F ) ∈ δA∗

Assume that A has non-zero elements b such that A/bA is infinite (e.g.,
A = Z[z ] with z transcendental and b = z).

Take such b and choose a binary form F ∗ ∈ A[X ,Y ] of degree n with
D(F ∗) 6= 0.

Then the binary forms Fm(X ,Y ) := F ∗(bX ,mX + Y ) (m ∈ A) have
degree n and discriminant

D(Fm) = bn(n−1)D(F ∗) =: δ

and do not lie in finitely many GL(2,A)-equivalence classes.
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AF
∼= O

Theorem 2 (E.)

Let A be an integral domain of characteristic 0. Assume that A is finitely
generated as a Z-algebra and that A is integrally closed.

Further, let O be a reduced A-order of rank n ≥ 4.

Then the binary forms F ∈ A[X ,Y ] with AF
∼= O lie in at most

exp
(
c(A)n5

)
GL(2,A)-equivalence classes, where c(A) depends on A only.
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The main tool

The main tool in the proof of Theorem 2 is:

Theorem (Beukers and Schlickewei, 1996)

Let F be a field of characteristic 0 and let Γ be a multiplicative subgroup
of F∗ of finite rank r . Then the equation

x + y = 1

has at most 216(r+1) solutions in x , y ∈ Γ.
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A brief outline of the proof of Theorem 2

Let K be the quotient field of A. Take a binary form F ∈ A[X ,Y ] with

AF
∼= O. Write F =

n∏
i=1

(αiX − βiY ) over the splitting field of F over K

and put ∆pq := αpβq − αqβp. Then

(*)
∆ij∆kl

∆ik∆jl
+

∆jk∆il

∆ik∆jl
= 1, (i , j , k , l distinct).

I Show that λijkl(F ) := ∆ij∆kl/∆ik∆jl belongs to a multiplicative
group Γ(O) depending only on O of rank ≤ c1(A)n4.

I Apply the theorem of BS to (*) and deduce an upper bound
exp(c2(A)n4) for the number of possible values for λijkl(F ), ∀ i , j , k, l .

I Deduce from this an upper bound exp(c(A)n5) for the number of
GL(2,A)-eq. classes of binary forms F ∈ A[X ,Y ] with AF

∼= O
(requires some work).
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Thanks for your attention.


