Binary forms of given discriminant and given invariant order

Jan-Hendrik Evertse Universiteit Leiden

Current Trends in Diophantine Geometry and Transcendence Taipei, May 23, 2016

Slides will be posted on http://pub.math.leidenuniv.nl/ $\sim\!evertsejh/lectures.shtml$

Discriminants of binary forms

The discriminant of a binary form

$$F(X,Y) = a_0X^n + a_1X^{n-1}Y + \cdots + a_nY^n = \prod_{i=1}^n (\alpha_iX - \beta_iY)$$

is given by $D(F) = \prod_{1 \le i < j \le n} (\alpha_i \beta_j - \alpha_j \beta_i)^2$.

For
$$U = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 we define $F_U(X, Y) := F(aX + bY, cX + dY)$.

Properties:

(i) D(F) is a homogeneous polynomial in Z[a₀,..., a_n] of degree 2n-2;
(ii) D(λF_U) = λ²ⁿ⁻²(det U)ⁿ⁽ⁿ⁻¹⁾D(F) for every scalar λ and 2×2-matrix U.

GL(2, A)-equivalence of binary forms

Definition

Let A be a non-zero commutative ring. Two binary forms $F, G \in A[X, Y]$ are called GL(2, A)-equivalent if there are $\varepsilon \in A^*$ and $U \in GL(2, A)$ such that $G = \varepsilon F_U$.

Fact:

Let $F, G \in A[X, Y]$ be two GL(2, A)-equivalent binary forms. Then $D(G) = \eta D(F)$ for some $\eta \in A^*$.

For integral domains A of characteristic 0 and non-zero $\delta \in A,$ we consider the "discriminant equation"

$$D(F) \in \delta A^* := \{\delta \eta : \eta \in A^*\}$$
 in binary forms $F \in A[X, Y]$.

The solutions of this equation can be divided into GL(2, A)-equivalence classes.

A finiteness result over the S-integers

Let K be an algebraic number field and S a finite set of places of K, containing all infinite places. Denote by O_S the ring of S-integers of K.

Theorem (Birch and Merriman, 1972)

Let $n \ge 2$. Then there are only finitely many $GL(2, O_S)$ -equivalence classes of binary forms $F \in O_S[X, Y]$ of degree n with $D(F) \in O_S^*$.

The proof of Birch and Merriman is *ineffective*, in that it does not give a method to determine the equivalence classes.

E. and Győry (1991) proved in an effective way that for every $\delta \in O_S \setminus \{0\}$, the binary forms $F \in O_S[X, Y]$ with

 $D(F) \in \delta O_S^*$

lie in only finitely many $GL(2, O_S)$ -eq. classes. This was recently sharpened.

An effective result

For $\alpha \in \overline{\mathbb{Q}}$, denote by $h(\alpha)$ the absolute logarithmic Weil height of α . For a binary form $F \in \overline{\mathbb{Q}}[X, Y]$, define $h(F) := \max h(\text{coeff of } F)$.

Denote by $|\mathcal{A}|$ the cardinality of a set \mathcal{A} .

Let K be a number field of degree d and S a finite set of places of K, containing all infinite places.

Theorem 1 (E., Győry, 2016(?))

Let $n \ge 4$ and $\delta \in O_S \setminus \{0\}$. Then every binary form $F \in O_S[X, Y]$ of degree n with $D(F) \in \delta O_S^*$ is $GL(2, O_S)$ -equivalent to a binary form F^* for which

$$h(F^*) \leq C_1^{\operatorname{eff}}(K,S,n) \cdot |O_S/\delta O_S|^{5n-3},$$

where $C_1^{\text{eff}}(K, S, n)$ is an effectively computable number, depending only on K, S and n.

For binary forms of degree 2 or 3 one can deduce by elementary means a similar result with $h(F^*) \leq C_2^{\text{eff}}(K, S) + \frac{1}{d} \cdot \log |O_S/\delta O_S|$.

Let $F \in O_S[X, Y]$ be a binary form of degree $n \ge 4$ with $D(F) \in \delta O_S^*$. Denote by *L* its splitting field over *K*, i.e., the smallest extension over *K* over which *F* can be factorized into linear forms. Write $F(X, Y) = \prod_{i=1}^{n} (\alpha_i X - \beta_i Y)$ with $\alpha_i, \beta_i \in L$.

▶ Apply effective finiteness results for *S*-unit equations to the identities

$$\frac{\Delta_{ij}\Delta_{kl}}{\Delta_{ik}\Delta_{jl}} + \frac{\Delta_{jk}\Delta_{il}}{\Delta_{ik}\Delta_{jl}} = 1, \text{ where } \Delta_{pq} := \alpha_p\beta_q - \alpha_q\beta_p \text{ (} 1 \le p < q \le n\text{)}.$$

This leads to an effective upper bound in terms of K, S, n, δ for the heights of $cr_{ijkl}(F) := \Delta_{ij}\Delta_{kl}/\Delta_{ik}\Delta_{jl}$ $(1 \le i < j < k < l \le n)$. Notice that $cr_{ijkl}(F)$ is the cross ratio of the four zeros $P_i := (\beta_i : \alpha_i), P_j, P_k, P_l \in \mathbb{P}^1(L)$ of F.

We have an effective upper bound in terms of K, S, n, δ for the heights of the cross ratios cr_{ijkl}(F), for all binary forms F ∈ O_S[X, Y] of degree n with D(F) ∈ δO^{*}_S and all i, j, k, l ∈ {1,..., n}.

- We have an effective upper bound in terms of K, S, n, δ for the heights of the cross ratios cr_{ijkl}(F), for all binary forms F ∈ O_S[X, Y] of degree n with D(F) ∈ δO^s_S and all i, j, k, l ∈ {1,..., n}.
- ▶ Projective geometry and Galois invariance imply that if $F, G \in O_S[X, Y]$ are two binary forms of degree $n \ge 4$ such that $cr_{ijkl}(F) = cr_{ijkl}(G)$ for all i, j, k, l then there is a unique projective transformation defined over K mapping the zeros of F to those of G. This means that F, G are GL(2, K)-equivalent, i.e., $G = \lambda F_U$ for some $\lambda \in K^*$ and $U \in GL(2, K)$.

- We have an effective upper bound in terms of K, S, n, δ for the heights of the cross ratios cr_{ijkl}(F), for all binary forms F ∈ O_S[X, Y] of degree n with D(F) ∈ δO^s_S and all i, j, k, l ∈ {1,...,n}.
- ▶ Projective geometry and Galois invariance imply that if $F, G \in O_S[X, Y]$ are two binary forms of degree $n \ge 4$ such that $cr_{ijkl}(F) = cr_{ijkl}(G)$ for all i, j, k, l then there is a unique projective transformation defined over K mapping the zeros of F to those of G. This means that F, G are GL(2, K)-equivalent, i.e., $G = \lambda F_U$ for some $\lambda \in K^*$ and $U \in GL(2, K)$.
- Thus, the binary forms F ∈ O_S[X, Y] of degree n with D(F) ∈ δO^{*}_S lie in finitely many GL(2, K)-eq. classes, and each of them contains a binary form with height below an effective bound in terms of K, S, n, δ.

- We have an effective upper bound in terms of K, S, n, δ for the heights of the cross ratios cr_{ijkl}(F), for all binary forms F ∈ O_S[X, Y] of degree n with D(F) ∈ δO^s_S and all i, j, k, l ∈ {1,...,n}.
- ▶ Projective geometry and Galois invariance imply that if $F, G \in O_S[X, Y]$ are two binary forms of degree $n \ge 4$ such that $cr_{ijkl}(F) = cr_{ijkl}(G)$ for all i, j, k, l then there is a unique projective transformation defined over K mapping the zeros of F to those of G. This means that F, G are GL(2, K)-equivalent, i.e., $G = \lambda F_U$ for some $\lambda \in K^*$ and $U \in GL(2, K)$.
- ▶ Thus, the binary forms $F \in O_S[X, Y]$ of degree *n* with $D(F) \in \delta O_S^*$ lie in finitely many GL(2, K)-eq. classes, and each of them contains a binary form with height below an effective bound in terms of K, S, n, δ .
- ▶ Using adèlic geometry of numbers one shows that each of these GL(2, K)-eq. classes is the union of finitely many GL(2, O_S)-eq. classes, and that each of them contains a binary form with height below an effective bound in terms of K, S, n, δ.

A function field analogue

Let $A := \mathbb{C}[t]$, $K := \mathbb{C}(t)$ with t a variable. For a binary form $F(X, Y) = a_0 X^n + a_1 X^{n-1} Y + \cdots + a_n Y^n \in A[X, Y]$, put $h(F) := \max_i \deg a_i$.

Theorem (Zhuang, PhD-thesis, Leiden, 2015)

Let $\delta \in A \setminus \{0\}$ and $F \in A[X, Y]$ a binary form of degree $n \ge 4$ with $D(F) = \delta$. Then F is GL(2, A)-equivalent to a binary form F^* with $h(F^*) \le n^2 + 5n - 6 + (20 + n^{-1}) \deg \delta$.

A function field analogue

Let $A := \mathbb{C}[t]$, $K := \mathbb{C}(t)$ with t a variable. For a binary form $F(X, Y) = a_0 X^n + a_1 X^{n-1} Y + \cdots + a_n Y^n \in A[X, Y]$, put $h(F) := \max_i \deg a_i$.

Theorem (Zhuang, PhD-thesis, Leiden, 2015)

Let $\delta \in A \setminus \{0\}$ and $F \in A[X, Y]$ a binary form of degree $n \ge 4$ with $D(F) = \delta$. Then F is GL(2, A)-equivalent to a binary form F^* with $h(F^*) \le n^2 + 5n - 6 + (20 + n^{-1}) \deg \delta$.

Idea.

Write $F(X, Y) = \prod_{i=1}^{n} (\alpha_i X - \beta_i Y)$ with α_i, β_i in the splitting field *L* of *F* over *K*. Apply Mason's abc-theorem for function fields to the identities

$$\frac{\Delta_{ij}\Delta_{kl}}{\Delta_{ik}\Delta_{jl}} + \frac{\Delta_{jk}\Delta_{il}}{\Delta_{ik}\Delta_{jl}} = 1, \text{ where } \Delta_{pq} := \alpha_p\beta_q - \alpha_q\beta_p \text{ } (1 \le p < q \le n).$$

A conjecture over number fields

Zhuang's theorem can be translated into a *conjecture* over the ring of *S*-integers in a number field *K* by replacing deg δ by $\frac{1}{[K:\mathbb{O}]} \cdot \log |O_S/\delta O_S|$.

A conjecture over number fields

Zhuang's theorem can be translated into a *conjecture* over the ring of *S*-integers in a number field *K* by replacing deg δ by $\frac{1}{[K:\mathbb{O}]} \cdot \log |O_S/\delta O_S|$.

Conjecture

Let K be a number field of degree d and S a finite set of places of K, containing all infinite places. Further, let $n \ge 4$, $\delta \in O_S \setminus \{0\}$ and let $F \in O_S[X, Y]$ be a binary form of degree n with $D(F) \in \delta O_S^*$. Then F is $GL(2, O_S)$ -equivalent to a binary form F^* with

$$h(F^*) \leq C_3(n, K, S) + rac{C_4}{d} \cdot \log |O_S/\delta O_S|$$
 (C₄ absolute constant).

Proof, assuming abc over number fields.

Follow Zhuang's proof, and apply the abc-conjecture over number fields instead of Mason's abc-theorem to the identities

$$\frac{\Delta_{ij}\Delta_{kl}}{\Delta_{ik}\Delta_{jl}} + \frac{\Delta_{jk}\Delta_{il}}{\Delta_{ik}\Delta_{jl}} = 1.$$

Let as before K be a number field and S a finite set of places of K, containing all infinite places.

We now consider upper bounds for the *number* of $GL(2, O_S)$ -equivalence classes of binary forms $F \in O_S[X, Y]$ with

 $D(F) \in \delta O_S^*, \ \deg F = n.$

We focus on the dependence on δ of such bounds.

Theorem (Bérczes, E., Győry, 2004)

Let K be a number field, S a finite set of places of K containing all infinite places, L a finite normal extension of K, $n \ge 3$ and $\delta \in O_S \setminus \{0\}$.

Then the number of $GL(2, O_S)$ -equivalence classes of binary forms $F \in O_S[X, Y]$ such that

(1) $D(F) \in \delta O_S^*$, deg F = n, F has splitting field L over K

 $\text{ is at most } C^{\mathrm{eff}}(n, \mathcal{K}, |S|, \epsilon) \cdot |O_S / \delta O_S|^{(1/n(n-1)) + \epsilon} \ \text{ for all } \epsilon > 0.$

Idea of proof.

Write $F(X, Y) = \prod_{i=1}^{n} (\alpha_i X - \beta_i Y)$ with $\alpha_i, \beta_i \in L$. Put $\Delta_{pq} := \alpha_p \beta_q - \alpha_q \beta_p$ and apply estimates for the number of solutions of *S*-unit equations to

$$rac{\Delta_{ij}\Delta_{kl}}{\Delta_{ik}\Delta_{jl}}+rac{\Delta_{jk}\Delta_{il}}{\Delta_{ik}\Delta_{jl}}=1.$$

Theorem (Bérczes, E., Győry, 2004)

Let K be a number field, S a finite set of places of K containing all infinite places, L a finite normal extension of K, $n \ge 3$ and $\delta \in O_S \setminus \{0\}$.

Then the number of $GL(2, O_S)$ -equivalence classes of binary forms $F \in O_S[X, Y]$ such that

(1) $D(F) \in \delta O_S^*$, deg F = n, F has splitting field L over K

is at most $C^{\text{eff}}(n, \mathcal{K}, |S|, \epsilon) \cdot |O_S / \delta O_S|^{(1/n(n-1))+\epsilon}$ for all $\epsilon > 0$.

The exponent $\frac{1}{n(n-1)}$ is best possible.

For instance, fix a binary form $F_0 \in O_S[X, Y]$ of degree *n* with $D(F_0) \neq 0$ and some non-zero $a \in O_S$.

Then the binary forms $F_b(X, Y) := F_0(aX, bX + Y)$ $(b \in O_S)$ all have discriminant $a^{n(n-1)}D(F_0) =: \delta$, have the same splitting field, and lie in

$$\gg_{F_0} |O_S/aO_S| \gg_{F_0} |O_S/\delta O_S|^{1/n(n-1)} GL(2, O_S)$$
-eq. classes.

Theorem (Bérczes, E., Győry, 2004)

Let K be a number field, S a finite set of places of K containing all infinite places, L a finite normal extension of K, $n \ge 3$ and $\delta \in O_S \setminus \{0\}$.

Then the number of $GL(2, O_S)$ -equivalence classes of binary forms $F \in O_S[X, Y]$ such that

(1) $D(F) \in \delta O_S^*$, deg F = n, F has splitting field L over K

is at most $C^{\text{eff}}(n, K, |S|, \epsilon) \cdot |O_S / \delta O_S|^{(1/n(n-1))+\epsilon}$ for all $\epsilon > 0$.

Open problem: Can we get a similar upper bound without fixing the splitting field *L* of the binary forms under consideration?

Theorem (Bérczes, E., Győry, 2004)

Let K be a number field, S a finite set of places of K containing all infinite places, L a finite normal extension of K, $n \ge 3$ and $\delta \in O_S \setminus \{0\}$.

Then the number of $GL(2, O_S)$ -equivalence classes of binary forms $F \in O_S[X, Y]$ such that

(1) $D(F) \in \delta O_S^*$, deg F = n, F has splitting field L over K

is at most $C^{\text{eff}}(n, K, |S|, \epsilon) \cdot |O_S / \delta O_S|^{(1/n(n-1))+\epsilon}$ for all $\epsilon > 0$.

Open problem: Can we get a similar upper bound without fixing the splitting field *L* of the binary forms under consideration?

If there is a binary form $F \in O_S[X, Y]$ with (1), then g := [L : K] divides n! and $\delta^g \in \mathfrak{d}_{L/K}O_S$, where $\mathfrak{d}_{L/K}$ is the relative discriminant of L/K. What is the number of such L? Maybe $\ll_{K,S,n,\epsilon} |O_S/\delta O_S|^{\epsilon}$ for all $\epsilon > 0$?

The invariant order of a binary form

Let A be any commutative ring \neq {0}. An A-order of rank n is a commutative ring whose additive structure is a free A-module of rank n.

Following Nakagawa (1989) and Simon (2001), we attach to every binary form $F \in A[X, Y]$ of degree *n* an *A*-order A_F of rank *n*, called the *invariant A-order of F*, which has the following properties:

- (i) If $F, G \in A[X, Y]$ are two GL(2, A)-equivalent binary forms, then $A_F \cong A_G$ (as A-algebras);
- (ii) A_F determines D(F) up to a factor from A^* . That is, if $F, G \in A[X, Y]$ are binary forms with $A_F \cong A_G$, then $D(G) = \eta D(F)$ for some $\eta \in A^*$.

The invariant order of a binary form

Let A be any commutative ring \neq {0}. An A-order of rank n is a commutative ring whose additive structure is a free A-module of rank n.

Following Nakagawa (1989) and Simon (2001), we attach to every binary form $F \in A[X, Y]$ of degree *n* an *A*-order A_F of rank *n*, called the *invariant A-order of F*, which has the following properties:

- (i) If $F, G \in A[X, Y]$ are two GL(2, A)-equivalent binary forms, then $A_F \cong A_G$ (as A-algebras);
- (ii) A_F determines D(F) up to a factor from A^* . That is, if $F, G \in A[X, Y]$ are binary forms with $A_F \cong A_G$, then $D(G) = \eta D(F)$ for some $\eta \in A^*$.

We will consider "equations"

$$A_F \cong O$$
 in binary forms $F \in A[X, Y]$ (O given A-order).

Fix a solution $F_0 \in A[X, Y]$ and put $\delta := D(F_0)$. Then every other solution F satisfies $D(F) \in \delta A^*$.

Definition of the invariant order

Let for the moment A be an integral domain with quotient field K of characteristic 0.

Let $F(X, Y) = a_0 X^n + a_1 X^{n-1} Y + \dots + a_n Y^n \in A[X, Y]$ be a binary form that is irreducible over K.

Define $L = K(\theta)$ where $F(\theta, 1) = 0$, let A_F be the free A-module with basis $\{1, \omega_1, \ldots, \omega_{n-1}\}$ where

$$\omega_i := a_0 \theta^i + a_1 \theta^{i-1} + \cdots + a_{i-1} \theta \quad (i = 1, \ldots, n-1),$$

and let $\omega_n := -a_n$. Then for $1 \le i, j \le n - 1$,

$$(*) \quad \omega_i \omega_j = -\sum_{\max(i+j-n,1) \le k \le i} a_{i+j-k} \omega_k + \sum_{j < k \le \min(i+j,n)} a_{i+j-k} \omega_k.$$

We call A_F the invariant A-order of F.

We can use (*) to extend this to arbitrary commutative rings A and arbitrary binary forms F.

Extension to arbitrary rings and binary forms

Definition:

Let A be an arbitrary non-zero commutative ring and $F(X, Y) = a_0 X^n + a_1 X^{n-1} Y + \dots + a_n Y^n \in A[X, Y]$ any binary form. The *invariant A-order* A_F of F is the free A-module with basis $\{1, \omega_1, \dots, \omega_{n-1}\}$ with prescribed multiplication rules $\omega_i \omega_j = -\sum_{k=1}^{n} a_{i+j-k} \omega_k + \sum_{k=1}^{n} a_{i+j-k} \omega_k \quad \forall i, j.$

$$\max(i+j-n,1) \le k \le i \qquad j < k \le \min(i+j,n)$$

 A_F is indeed a commutative ring (commutative and associative).

Extension to arbitrary rings and binary forms

Definition:

Let A be an arbitrary non-zero commutative ring and $F(X, Y) = a_0 X^n + a_1 X^{n-1} Y + \dots + a_n Y^n \in A[X, Y]$ any binary form. The *invariant A-order* A_F of F is the free A-module with basis $\{1, \omega_1, \dots, \omega_{n-1}\}$ with prescribed multiplication rules

$$\omega_i \omega_j = -\sum_{\max(i+j-n,1) \le k \le i} a_{i+j-k} \omega_k + \sum_{j < k \le \min(i+j,n)} a_{i+j-k} \omega_k \quad \forall i,j.$$

Properties:

(i) Let $F, G \in A[X, Y]$ be binary forms. Then $F, G \ GL(2, A)$ -equivalent $\Longrightarrow A_F \cong A_G;$ $A_F \cong A_G \Longrightarrow D(G) = \eta D(F)$ for some $\eta \in A^*$.

(ii) Let A be an integral domain with quotient field K of characteristic 0 and F ∈ A[X, Y] a binary form. Then
F irreducible over K ⇔ A_F integral domain;
D(F) ≠ 0 ⇔ A_F nilpotent-free.

Binary cubic forms vs orders of rank 3

Theorem (Delone and Faddeev; Gan, Gross and Savin; Deligne)

Let A be an arbitrary non-zero commutative ring. Then for every A-order O of rank 3 there is precisely one GL(2, A)-equivalence class of cubic forms $F \in A[X, Y]$ with $A_F \cong O$.

Theorem (Delone and Faddeev; Gan, Gross and Savin; Deligne)

Let A be an arbitrary non-zero commutative ring. Then for every A-order O of rank 3 there is precisely one GL(2, A)-equivalence class of cubic forms $F \in A[X, Y]$ with $A_F \cong O$.

This was proved by Delone and Faddeev (1940) for $A = \mathbb{Z}$ and \mathbb{Z} -orders O that are integral domains, thus with binary forms F that are irreducible over \mathbb{Q} .

Then this was extended to arbitrary \mathbb{Z} -orders O of rank 3 by Gan, Gross and Savin (2002).

The extension to arbitrary rings A is straightforward (follows also from general unpublished work of Deligne).

The proof uses only elementary algebra.

Theorem (Delone and Faddeev; Gan, Gross and Savin; Deligne)

Let A be an arbitrary non-zero commutative ring. Then for every A-order O of rank 3 there is precisely one GL(2, A)-equivalence class of cubic forms $F \in A[X, Y]$ with $A_F \cong O$.

This was proved by Delone and Faddeev (1940) for $A = \mathbb{Z}$ and \mathbb{Z} -orders O that are integral domains, thus with binary forms F that are irreducible over \mathbb{Q} .

Then this was extended to arbitrary \mathbb{Z} -orders O of rank 3 by Gan, Gross and Savin (2002).

The extension to arbitrary rings A is straightforward (follows also from general unpublished work of Deligne).

The proof uses only elementary algebra.

Simon (2001) constructed number fields of degree n = 4 and of any prime degree ≥ 5 whose rings of integers are not the invariant \mathbb{Z} -order of a binary form.

Quantitative results for orders of rank \geq 4

Let K be a number field and S a finite set of places of K, containing the infinite places. Denote by $O_{S,F}$ the invariant O_S -order of a binary form $F \in O_S[X, Y]$.

Theorem 2 (Bérczes, E. and Győry, 2004; E. and Győry, 2016(?))

Let O be a nilpotent-free O_S -order of rank $n \ge 4$. Then the binary forms $F \in O_S[X, Y]$ with

$$O_{S,F}\cong O$$

where $h_2(S)$ denotes the number of ideal classes of O_S of order ≤ 2 .

This upper bound has no dependence on O other than its rank.

Quantitative results for orders of rank \geq 4

Let *K* be a number field and *S* a finite set of places of *K*, containing the infinite places. Denote by $O_{S,F}$ the invariant O_S -order of a binary form $F \in O_S[X, Y]$.

Theorem 2 (Bérczes, E. and Győry, 2004; E. and Győry, 2016(?))

Let O be a nilpotent-free O_S-order of rank $n \ge 4$. Then the binary forms $F \in O_S[X, Y]$ with

$$O_{S,F}\cong O$$

where $h_2(S)$ denotes the number of ideal classes of O_S of order ≤ 2 .

Bérczes, E. and Győry proved this result for O_S -orders O that are integral domains, and with a slightly larger upper bound for the number of equivalence classes. The general result is due to E. and Győry.

Quantitative results for orders of rank \geq 4

Let K be a number field and S a finite set of places of K, containing the infinite places. Denote by $O_{S,F}$ the invariant O_S -order of a binary form $F \in O_S[X, Y]$.

Theorem 2 (Bérczes, E. and Győry, 2004; E. and Győry, 2016(?))

Let O be a nilpotent-free O_S -order of rank $n \ge 4$. Then the binary forms $F \in O_S[X, Y]$ with

$$O_{S,F} \cong O$$

where $h_2(S)$ denotes the number of ideal classes of O_S of order ≤ 2 .

For every even $n \ge 4$ there are O_S -orders O of rank n such that the number of $GL(2, O_S)$ -equivalence classes of binary forms $F \in O_S[X, Y]$ with $O_{S,F} \cong O$ is at least $h_2(S)/n!$.

Many Diophantine results valid over rings of S-integers of number fields have been generalized to integral domains of characteristic 0 that are finitely generated as a \mathbb{Z} -algebra.

Does it hold that for every such domain A, and every $\delta \in A \setminus \{0\}$, resp. nilpotent-free A-order O of rank n, the solutions of

 $D(F) \in \delta A^*$, $A_F \cong O$ in binary forms $F \in A[X, Y]$ of degree *n*

lie in only finitely many GL(2, A)-equivalence classes?

Many Diophantine results valid over rings of S-integers of number fields have been generalized to integral domains of characteristic 0 that are finitely generated as a \mathbb{Z} -algebra.

Does it hold that for every such domain A, and every $\delta \in A \setminus \{0\}$, resp. nilpotent-free A-order O of rank n, the solutions of

 $D(F) \in \delta A^*$, $A_F \cong O$ in binary forms $F \in A[X, Y]$ of degree *n*

lie in only finitely many GL(2, A)-equivalence classes?

NO for $D(F) \in \delta A^*$; **YES** for $A_F \cong O$ (if A is integrally closed).

Assume that A has non-zero elements a such that A/aA is infinite (e.g., $A = \mathbb{Z}[t]$, a = t).

Fix such a and choose a binary form $F_0 \in A[X, Y]$ with $D(F_0) \neq 0$. Then the binary forms $F_b(X, Y) := F(aX, bX + Y)$ $(b \in A)$ satisfy

$$D(F_b) = \delta := a^{n(n-1)}D(F_0)$$

and lie in infinitely many GL(2, A)-equivalence classes.

Theorem 3 (E.)

Let A be an integral domain of characteristic 0. Assume that A is finitely generated as a \mathbb{Z} -algebra and that A is integrally closed. Further, let O be a nilpotent-free A-order of rank $n \ge 4$.

Then the binary forms $F \in A[X, Y]$ with $A_F \cong O$ lie in at most

 $\exp\left(c(A)n^{5}\right)$

GL(2, A)-equivalence classes, where c(A) depends on A only.

The main tool in the proof of Theorem 3 is:

Theorem (Beukers and Schlickewei, 1996)

Let \mathbb{F} be a field of characteristic 0, and let Γ be a subgroup of \mathbb{F}^* of finite rank r. Then the equation

$$x + y = 1$$

has at most $2^{16(r+1)}$ solutions in $x, y \in \Gamma$.

Let K be the quotient field of A. Take a binary form $F \in A[X, Y]$ with $A_F \cong O$. Write $F = \prod_{i=1}^{n} (\alpha_i X - \beta_i Y)$ over the splitting field of F and put $\Delta_{pq} := \alpha_p \beta_q - \alpha_q \beta_p$ $(1 \le p, q \le n)$.

Let K be the quotient field of A. Take a binary form $F \in A[X, Y]$ with $A_F \cong O$. Write $F = \prod_{i=1}^{n} (\alpha_i X - \beta_i Y)$ over the splitting field of F and put $\Delta_{pq} := \alpha_p \beta_q - \alpha_q \beta_p$ $(1 \le p, q \le n)$.

Prove that cr_{ijkl}(F) := Δ_{ij}Δ_{kl}/Δ_{ik}Δ_{jl} ∈ Γ_{ijkl}(O), where Γ_{ijkl}(O) is a multiplicative group of rank ≤ c₁(A)n⁴, depending only on O.

Let K be the quotient field of A. Take a binary form $F \in A[X, Y]$ with $A_F \cong O$. Write $F = \prod_{i=1}^{n} (\alpha_i X - \beta_i Y)$ over the splitting field of F and put $\Delta_{pq} := \alpha_p \beta_q - \alpha_q \beta_p$ $(1 \le p, q \le n)$.

- Prove that cr_{ijkl}(F) := Δ_{ij}Δ_{kl}/Δ_{ik}Δ_{jl} ∈ Γ_{ijkl}(O), where Γ_{ijkl}(O) is a multiplicative group of rank ≤ c₁(A)n⁴, depending only on O.
- Applying the theorem of Beukers and Schlickewei to the identities

$$rac{\Delta_{ij}\Delta_{kl}}{\Delta_{ik}\Delta_{jl}}+rac{\Delta_{jk}\Delta_{il}}{\Delta_{ik}\Delta_{jl}}=1$$

conclude that for each cross ratio $cr_{ijkl}(F)$ there are at most $\exp(c_2(A)n^4)$ possible values.

Let K be the quotient field of A. Take a binary form $F \in A[X, Y]$ with $A_F \cong O$. Write $F = \prod_{i=1}^{n} (\alpha_i X - \beta_i Y)$ over the splitting field of F and put $\Delta_{pq} := \alpha_p \beta_q - \alpha_q \beta_p$ $(1 \le p, q \le n)$.

- Prove that cr_{ijkl}(F) := Δ_{ij}Δ_{kl}/Δ_{ik}Δ_{jl} ∈ Γ_{ijkl}(O), where Γ_{ijkl}(O) is a multiplicative group of rank ≤ c₁(A)n⁴, depending only on O.
- Applying the theorem of Beukers and Schlickewei to the identities

$$rac{\Delta_{ij}\Delta_{kl}}{\Delta_{ik}\Delta_{jl}}+rac{\Delta_{jk}\Delta_{il}}{\Delta_{ik}\Delta_{jl}}=1$$

conclude that for each cross ratio $cr_{ijkl}(F)$ there are at most $\exp(c_2(A)n^4)$ possible values.

► The cross ratios cr₁₂₃(F) (I = 4,..., n) fix the GL(2, K)-equivalence class of F.

Deduce that the binary forms $F \in A[X, Y]$ with $A_F \cong O$ lie in at most $\exp(c_2(A)n^5)$ GL(2, K)-equivalence classes.

Let K be the quotient field of A. Take a binary form $F \in A[X, Y]$ with $A_F \cong O$. Write $F = \prod_{i=1}^{n} (\alpha_i X - \beta_i Y)$ over the splitting field of F and put $\Delta_{pq} := \alpha_p \beta_q - \alpha_q \beta_p$ $(1 \le p, q \le n)$.

- Prove that cr_{ijkl}(F) := Δ_{ij}Δ_{kl}/Δ_{ik}Δ_{jl} ∈ Γ_{ijkl}(O), where Γ_{ijkl}(O) is a multiplicative group of rank ≤ c₁(A)n⁴, depending only on O.
- Applying the theorem of Beukers and Schlickewei to the identities

$$rac{\Delta_{ij}\Delta_{kl}}{\Delta_{ik}\Delta_{jl}}+rac{\Delta_{jk}\Delta_{il}}{\Delta_{ik}\Delta_{jl}}=1$$

conclude that for each cross ratio $cr_{ijkl}(F)$ there are at most $\exp(c_2(A)n^4)$ possible values.

► The cross ratios cr₁₂₃(F) (I = 4,..., n) fix the GL(2, K)-equivalence class of F.

Deduce that the binary forms $F \in A[X, Y]$ with $A_F \cong O$ lie in at most $\exp(c_2(A)n^5)$ GL(2, K)-equivalence classes.

Prove that each of these GL(2, K)-equivalence classes is the union of at most c₃(A) GL(2, A)-equivalence classes.

Thank you for your attention!