Binary forms of given discriminant and given invariant order

Jan-Hendrik Evertse
 Universiteit Leiden

Current Trends in Diophantine Geometry and Transcendence
Taipei, May 23, 2016
Slides will be posted on http://pub.math.leidenuniv.nl/~evertsejh/lectures.shtml

Discriminants of binary forms

The discriminant of a binary form

$$
F(X, Y)=a_{0} X^{n}+a_{1} X^{n-1} Y+\cdots+a_{n} Y^{n}=\prod_{i=1}^{n}\left(\alpha_{i} X-\beta_{i} Y\right)
$$

is given by $D(F)=\prod_{1 \leq i<j \leq n}\left(\alpha_{i} \beta_{j}-\alpha_{j} \beta_{i}\right)^{2}$.
For $U=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ we define $F_{U}(X, Y):=F(a X+b Y, c X+d Y)$.

Properties:

(i) $D(F)$ is a homogeneous polynomial in $\mathbb{Z}\left[a_{0}, \ldots, a_{n}\right]$ of degree $2 n-2$;
(ii) $D\left(\lambda F_{U}\right)=\lambda^{2 n-2}(\operatorname{det} U)^{n(n-1)} D(F)$ for every scalar λ and 2×2-matrix U.

$G L(2, A)$-equivalence of binary forms

Definition

Let A be a non-zero commutative ring. Two binary forms $F, G \in A[X, Y]$ are called $G L(2, A)$-equivalent if there are $\varepsilon \in A^{*}$ and $U \in G L(2, A)$ such that $G=\varepsilon F_{U}$.

Fact:

Let $F, G \in A[X, Y]$ be two $G L(2, A)$-equivalent binary forms. Then $D(G)=\eta D(F)$ for some $\eta \in A^{*}$.

For integral domains A of characteristic 0 and non-zero $\delta \in A$, we consider the "discriminant equation"

$$
D(F) \in \delta A^{*}:=\left\{\delta \eta: \eta \in A^{*}\right\} \text { in binary forms } F \in A[X, Y] .
$$

The solutions of this equation can be divided into $G L(2, A)$-equivalence classes.

A finiteness result over the S-integers

Let K be an algebraic number field and S a finite set of places of K, containing all infinite places. Denote by O_{S} the ring of S-integers of K.

Theorem (Birch and Merriman, 1972)

Let $n \geq 2$. Then there are only finitely many $G L\left(2, O_{S}\right)$-equivalence classes of binary forms $F \in O_{S}[X, Y]$ of degree n with $D(F) \in O_{S}^{*}$.

The proof of Birch and Merriman is ineffective, in that it does not give a method to determine the equivalence classes.
E. and Györy (1991) proved in an effective way that for every $\delta \in O_{S} \backslash\{0\}$, the binary forms $F \in O_{S}[X, Y]$ with

$$
D(F) \in \delta O_{S}^{*}
$$

lie in only finitely many $G L\left(2, O_{S}\right)$-eq. classes. This was recently sharpened.

An effective result

For $\alpha \in \overline{\mathbb{Q}}$, denote by $h(\alpha)$ the absolute logarithmic Weil height of α. For a binary form $F \in \overline{\mathbb{Q}}[X, Y]$, define $h(F):=\max h($ coeff of F).
Denote by $|\mathcal{A}|$ the cardinality of a set \mathcal{A}.
Let K be a number field of degree d and S a finite set of places of K, containing all infinite places.

Theorem 1 (E., Győry, 2016(?))

Let $n \geq 4$ and $\delta \in O_{S} \backslash\{0\}$. Then every binary form $F \in O_{S}[X, Y]$ of degree n with $D(F) \in \delta O_{S}^{*}$ is $G L\left(2, O_{S}\right)$-equivalent to a binary form F^{*} for which

$$
h\left(F^{*}\right) \leq C_{1}^{\mathrm{eff}}(K, S, n) \cdot\left|O_{S} / \delta O_{S}\right|^{5 n-3},
$$

where $C_{1}^{\text {eff }}(K, S, n)$ is an effectively computable number, depending only on K, S and n.

For binary forms of degree 2 or 3 one can deduce by elementary means a similar result with $h\left(F^{*}\right) \leq C_{2}^{\text {eff }}(K, S)+\frac{1}{d} \cdot \log \left|O_{S} / \delta O_{S}\right|$.

An outline of the proof (I)

Let $F \in O_{S}[X, Y]$ be a binary form of degree $n \geq 4$ with $D(F) \in \delta O_{S}^{*}$. Denote by L its splitting field over K, i.e., the smallest extension over K over which F can be factorized into linear forms.
Write $F(X, Y)=\prod_{i=1}^{n}\left(\alpha_{i} X-\beta_{i} Y\right)$ with $\alpha_{i}, \beta_{i} \in L$.

- Apply effective finiteness results for S-unit equations to the identities

$$
\frac{\Delta_{i j} \Delta_{k l}}{\Delta_{i k} \Delta_{j l}}+\frac{\Delta_{j k} \Delta_{i l}}{\Delta_{i k} \Delta_{j l}}=1, \text { where } \Delta_{p q}:=\alpha_{p} \beta_{q}-\alpha_{q} \beta_{p}(1 \leq p<q \leq n) .
$$

This leads to an effective upper bound in terms of K, S, n, δ for the heights of $c r_{i j k l}(F):=\Delta_{i j} \Delta_{k l} / \Delta_{i k} \Delta_{j l}(1 \leq i<j<k<l \leq n)$.
Notice that $\operatorname{cr}_{i j k l}(F)$ is the cross ratio of the four zeros

$$
P_{i}:=\left(\beta_{i}: \alpha_{i}\right), P_{j}, P_{k}, P_{l} \in \mathbb{P}^{1}(L) \text { of } F .
$$

An outline of the proof (II)

- We have an effective upper bound in terms of K, S, n, δ for the heights of the cross ratios $c r_{i j k l}(F)$, for all binary forms $F \in O_{S}[X, Y]$ of degree n with $D(F) \in \delta O_{S}^{*}$ and all $i, j, k, l \in\{1, \ldots, n\}$.

An outline of the proof (II)

- We have an effective upper bound in terms of K, S, n, δ for the heights of the cross ratios $c r_{i j k l}(F)$, for all binary forms $F \in O_{S}[X, Y]$ of degree n with $D(F) \in \delta O_{S}^{*}$ and all $i, j, k, l \in\{1, \ldots, n\}$.
- Projective geometry and Galois invariance imply that if $F, G \in O_{S}[X, Y]$ are two binary forms of degree $n \geq 4$ such that $c r_{i j k l}(F)=c r_{i j k l}(G)$ for all $i, j, k, /$ then there is a unique projective transformation defined over K mapping the zeros of F to those of G. This means that F, G are $G L(2, K)$-equivalent, i.e., $G=\lambda F_{U}$ for some $\lambda \in K^{*}$ and $U \in G L(2, K)$.

An outline of the proof (II)

- We have an effective upper bound in terms of K, S, n, δ for the heights of the cross ratios $c r_{i j k l}(F)$, for all binary forms $F \in O_{S}[X, Y]$ of degree n with $D(F) \in \delta O_{S}^{*}$ and all $i, j, k, l \in\{1, \ldots, n\}$.
- Projective geometry and Galois invariance imply that if $F, G \in O_{S}[X, Y]$ are two binary forms of degree $n \geq 4$ such that $c r_{i j k l}(F)=c r_{i j k l}(G)$ for all $i, j, k, /$ then there is a unique projective transformation defined over K mapping the zeros of F to those of G. This means that F, G are $G L(2, K)$-equivalent, i.e., $G=\lambda F_{U}$ for some $\lambda \in K^{*}$ and $U \in G L(2, K)$.
- Thus, the binary forms $F \in O_{S}[X, Y]$ of degree n with $D(F) \in \delta O_{S}^{*}$ lie in finitely many $G L(2, K)$-eq. classes, and each of them contains a binary form with height below an effective bound in terms of K, S, n, δ.

An outline of the proof (II)

- We have an effective upper bound in terms of K, S, n, δ for the heights of the cross ratios $c r_{i j k l}(F)$, for all binary forms $F \in O_{S}[X, Y]$ of degree n with $D(F) \in \delta O_{S}^{*}$ and all $i, j, k, l \in\{1, \ldots, n\}$.
- Projective geometry and Galois invariance imply that if $F, G \in O_{S}[X, Y]$ are two binary forms of degree $n \geq 4$ such that $c r_{i j k l}(F)=c r_{i j k l}(G)$ for all $i, j, k, /$ then there is a unique projective transformation defined over K mapping the zeros of F to those of G. This means that F, G are $G L(2, K)$-equivalent, i.e., $G=\lambda F_{U}$ for some $\lambda \in K^{*}$ and $U \in G L(2, K)$.
- Thus, the binary forms $F \in O_{S}[X, Y]$ of degree n with $D(F) \in \delta O_{S}^{*}$ lie in finitely many $G L(2, K)$-eq. classes, and each of them contains a binary form with height below an effective bound in terms of K, S, n, δ.
- Using adèlic geometry of numbers one shows that each of these $G L(2, K)$-eq. classes is the union of finitely many $G L\left(2, O_{S}\right)$-eq. classes, and that each of them contains a binary form with height below an effective bound in terms of K, S, n, δ.

A function field analogue

Let $A:=\mathbb{C}[t], K:=\mathbb{C}(t)$ with t a variable.
For a binary form $F(X, Y)=a_{0} X^{n}+a_{1} X^{n-1} Y+\cdots+a_{n} Y^{n} \in A[X, Y]$, put $h(F):=\max _{i} \operatorname{deg} a_{i}$.

Theorem (Zhuang, PhD-thesis, Leiden, 2015)

Let $\delta \in A \backslash\{0\}$ and $F \in A[X, Y]$ a binary form of degree $n \geq 4$ with $D(F)=\delta$. Then F is $G L(2, A)$-equivalent to a binary form F^{*} with

$$
h\left(F^{*}\right) \leq n^{2}+5 n-6+\left(20+n^{-1}\right) \operatorname{deg} \delta .
$$

A function field analogue

Let $A:=\mathbb{C}[t], K:=\mathbb{C}(t)$ with t a variable.
For a binary form $F(X, Y)=a_{0} X^{n}+a_{1} X^{n-1} Y+\cdots+a_{n} Y^{n} \in A[X, Y]$, put $h(F):=\max _{i} \operatorname{deg} a_{i}$.

Theorem (Zhuang, PhD-thesis, Leiden, 2015)

Let $\delta \in A \backslash\{0\}$ and $F \in A[X, Y]$ a binary form of degree $n \geq 4$ with $D(F)=\delta$. Then F is $G L(2, A)$-equivalent to a binary form F^{*} with

$$
h\left(F^{*}\right) \leq n^{2}+5 n-6+\left(20+n^{-1}\right) \operatorname{deg} \delta .
$$

Idea.

Write $F(X, Y)=\prod_{i=1}^{n}\left(\alpha_{i} X-\beta_{i} Y\right)$ with α_{i}, β_{i} in the splitting field L of F over K. Apply Mason's abc-theorem for function fields to the identities

$$
\frac{\Delta_{i j} \Delta_{k l}}{\Delta_{i k} \Delta_{j l}}+\frac{\Delta_{j k} \Delta_{i l}}{\Delta_{i k} \Delta_{j l}}=1, \text { where } \Delta_{p q}:=\alpha_{p} \beta_{q}-\alpha_{q} \beta_{p}(1 \leq p<q \leq n) .
$$

A conjecture over number fields

Zhuang's theorem can be translated into a conjecture over the ring of S-integers in a number field K by replacing $\operatorname{deg} \delta$ by $\frac{1}{[K: \mathbb{Q}]} \cdot \log \left|O_{S} / \delta O_{S}\right|$.

A conjecture over number fields

Zhuang's theorem can be translated into a conjecture over the ring of S-integers in a number field K by replacing $\operatorname{deg} \delta$ by $\frac{1}{[K: \mathbb{Q}]} \cdot \log \left|O_{S} / \delta O_{S}\right|$.

Conjecture

Let K be a number field of degree d and S a finite set of places of K, containing all infinite places. Further, let $n \geq 4, \delta \in O_{S} \backslash\{0\}$ and let $F \in O_{S}[X, Y]$ be a binary form of degree n with $D(F) \in \delta O_{S}^{*}$.
Then F is $G L\left(2, O_{S}\right)$-equivalent to a binary form F^{*} with

$$
h\left(F^{*}\right) \leq C_{3}(n, K, S)+\frac{C_{4}}{d} \cdot \log \left|O_{S} / \delta O_{S}\right| \quad\left(C_{4} \text { absolute constant }\right) .
$$

Proof, assuming abc over number fields.

Follow Zhuang's proof, and apply the abc-conjecture over number fields instead of Mason's abc-theorem to the identities

$$
\frac{\Delta_{i j} \Delta_{k l}}{\Delta_{i k} \Delta_{j l}}+\frac{\Delta_{j k} \Delta_{i l}}{\Delta_{i k} \Delta_{j l}}=1
$$

The number of equivalence classes

Let as before K be a number field and S a finite set of places of K, containing all infinite places.

We now consider upper bounds for the number of $G L\left(2, O_{S}\right)$-equivalence classes of binary forms $F \in O_{S}[X, Y]$ with

$$
D(F) \in \delta O_{S}^{*}, \quad \operatorname{deg} F=n
$$

We focus on the dependence on δ of such bounds.

The number of equivalence classes

Theorem (Bérczes, E., Győry, 2004)
Let K be a number field, S a finite set of places of K containing all infinite places, L a finite normal extension of $K, n \geq 3$ and $\delta \in O_{S} \backslash\{0\}$.
Then the number of $G L\left(2, O_{S}\right)$-equivalence classes of binary forms $F \in O_{S}[X, Y]$ such that
(1) $D(F) \in \delta O_{S}^{*}, \operatorname{deg} F=n, \quad F$ has splitting field L over K is at most $C^{\text {eff }}(n, K,|S|, \epsilon) \cdot\left|O_{S} / \delta O_{S}\right|^{(1 / n(n-1))+\epsilon}$ for all $\epsilon>0$.

Idea of proof.

Write $F(X, Y)=\prod_{i=1}^{n}\left(\alpha_{i} X-\beta_{i} Y\right)$ with $\alpha_{i}, \beta_{i} \in L$.
Put $\Delta_{p q}:=\alpha_{p} \beta_{q}-\alpha_{q} \beta_{p}$ and apply estimates for the number of solutions of S-unit equations to

$$
\frac{\Delta_{i j} \Delta_{k l}}{\Delta_{i k} \Delta_{j l}}+\frac{\Delta_{j k} \Delta_{i l}}{\Delta_{i k} \Delta_{j l}}=1
$$

The number of equivalence classes

Theorem (Bérczes, E., Györy, 2004)

Let K be a number field, S a finite set of places of K containing all infinite places, L a finite normal extension of $K, n \geq 3$ and $\delta \in O_{S} \backslash\{0\}$.
Then the number of $G L\left(2, O_{S}\right)$-equivalence classes of binary forms $F \in O_{S}[X, Y]$ such that
(1) $D(F) \in \delta O_{S}^{*}, \quad \operatorname{deg} F=n, \quad F$ has splitting field L over K is at most $C^{\text {eff }}(n, K,|S|, \epsilon) \cdot\left|O_{S} / \delta O_{S}\right|^{(1 / n(n-1))+\epsilon}$ for all $\epsilon>0$.

The exponent $\frac{1}{n(n-1)}$ is best possible.
For instance, fix a binary form $F_{0} \in O_{S}[X, Y]$ of degree n with $D\left(F_{0}\right) \neq 0$ and some non-zero $a \in O_{S}$.
Then the binary forms $F_{b}(X, Y):=F_{0}(a X, b X+Y)\left(b \in O_{S}\right)$ all have discriminant $a^{n(n-1)} D\left(F_{0}\right)=: \delta$, have the same splitting field, and lie in

$$
\ggg_{F_{0}}\left|O_{S} / a O_{S}\right| \ggg F_{0}\left|O_{S} / \delta O_{S}\right|^{1 / n(n-1)} G L\left(2, O_{S}\right) \text {-eq. classes. }
$$

The number of equivalence classes

Theorem (Bérczes, E., Györy, 2004)
Let K be a number field, S a finite set of places of K containing all infinite places, L a finite normal extension of $K, n \geq 3$ and $\delta \in O_{S} \backslash\{0\}$.
Then the number of $G L\left(2, O_{S}\right)$-equivalence classes of binary forms $F \in O_{s}[X, Y]$ such that
(1) $D(F) \in \delta O_{S}^{*}, \operatorname{deg} F=n, \quad F$ has splitting field L over K is at most $C^{\text {eff }}(n, K,|S|, \epsilon) \cdot\left|O_{S} / \delta O_{S}\right|^{(1 / n(n-1))+\epsilon}$ for all $\epsilon>0$.

Open problem: Can we get a similar upper bound without fixing the splitting field L of the binary forms under consideration?

The number of equivalence classes

Theorem (Bérczes, E., Györy, 2004)

Let K be a number field, S a finite set of places of K containing all infinite places, L a finite normal extension of $K, n \geq 3$ and $\delta \in O_{S} \backslash\{0\}$.
Then the number of $G L\left(2, O_{S}\right)$-equivalence classes of binary forms $F \in O_{S}[X, Y]$ such that
(1) $D(F) \in \delta O_{S}^{*}, \operatorname{deg} F=n, \quad F$ has splitting field L over K is at most $C^{\text {eff }}(n, K,|S|, \epsilon) \cdot\left|O_{S} / \delta O_{S}\right|^{(1 / n(n-1))+\epsilon}$ for all $\epsilon>0$.

Open problem: Can we get a similar upper bound without fixing the splitting field L of the binary forms under consideration?

If there is a binary form $F \in O_{S}[X, Y]$ with (1), then $g:=[L: K]$ divides $n!$ and $\delta^{g} \in \mathfrak{d}_{L / K} O_{S}$, where $\mathfrak{d}_{L / K}$ is the relative discriminant of L / K.
What is the number of such L ? Maybe $\ll \kappa, S, n, \epsilon\left|O_{S} / \delta O_{S}\right|^{\epsilon}$ for all $\epsilon>0$?

The invariant order of a binary form

Let A be any commutative ring $\neq\{0\}$. An A-order of rank n is a commutative ring whose additive structure is a free A-module of rank n.
Following Nakagawa (1989) and Simon (2001), we attach to every binary form $F \in A[X, Y]$ of degree n an A-order A_{F} of rank n, called the invariant A-order of F, which has the following properties:
(i) If $F, G \in A[X, Y]$ are two $G L(2, A)$-equivalent binary forms, then $A_{F} \cong A_{G}$ (as A-algebras);
(ii) A_{F} determines $D(F)$ up to a factor from A^{*}. That is, if $F, G \in A[X, Y]$ are binary forms with $A_{F} \cong A_{G}$, then $D(G)=\eta D(F)$ for some $\eta \in A^{*}$.

The invariant order of a binary form

Let A be any commutative ring $\neq\{0\}$. An A-order of rank n is a commutative ring whose additive structure is a free A-module of rank n.
Following Nakagawa (1989) and Simon (2001), we attach to every binary form $F \in A[X, Y]$ of degree n an A-order A_{F} of rank n, called the invariant A-order of F, which has the following properties:
(i) If $F, G \in A[X, Y]$ are two $G L(2, A)$-equivalent binary forms, then $A_{F} \cong A_{G}$ (as A-algebras);
(ii) A_{F} determines $D(F)$ up to a factor from A^{*}. That is, if $F, G \in A[X, Y]$ are binary forms with $A_{F} \cong A_{G}$, then $D(G)=\eta D(F)$ for some $\eta \in A^{*}$.

We will consider "equations"

$$
A_{F} \cong O \text { in binary forms } F \in A[X, Y] \quad \text { (} O \text { given } A \text {-order). }
$$

Fix a solution $F_{0} \in A[X, Y]$ and put $\delta:=D\left(F_{0}\right)$. Then every other solution F satisfies $D(F) \in \delta A^{*}$.

Definition of the invariant order

Let for the moment A be an integral domain with quotient field K of characteristic 0 .
Let $F(X, Y)=a_{0} X^{n}+a_{1} X^{n-1} Y+\cdots+a_{n} Y^{n} \in A[X, Y]$ be a binary form that is irreducible over K.
Define $L=K(\theta)$ where $F(\theta, 1)=0$, let A_{F} be the free A-module with basis $\left\{1, \omega_{1}, \ldots, \omega_{n-1}\right\}$ where

$$
\omega_{i}:=a_{0} \theta^{i}+a_{1} \theta^{i-1}+\cdots+a_{i-1} \theta \quad(i=1, \ldots, n-1),
$$

and let $\omega_{n}:=-a_{n}$. Then for $1 \leq i, j \leq n-1$,
(*) $\quad \omega_{i} \omega_{j}=-\sum_{\max (i+j-n, 1) \leq k \leq i} a_{i+j-k} \omega_{k}+\sum_{j<k \leq \min (i+j, n)} a_{i+j-k} \omega_{k}$.
We call A_{F} the invariant A-order of F.
We can use $\left(^{*}\right)$ to extend this to arbitrary commutative rings A and arbitrary binary forms F.

Extension to arbitrary rings and binary forms

Definition:

Let A be an arbitrary non-zero commutative ring and $F(X, Y)=a_{0} X^{n}+a_{1} X^{n-1} Y+\cdots+a_{n} Y^{n} \in A[X, Y]$ any binary form.
The invariant A-order A_{F} of F is the free A-module with basis $\left\{1, \omega_{1}, \ldots, \omega_{n-1}\right\}$ with prescribed multiplication rules

$$
\omega_{i} \omega_{j}=-\sum_{\max (i+j-n, 1) \leq k \leq i} a_{i+j-k} \omega_{k}+\sum_{j<k \leq \min (i+j, n)} a_{i+j-k} \omega_{k} \forall i, j
$$

A_{F} is indeed a commutative ring (commutative and associative).

Extension to arbitrary rings and binary forms

Definition:

Let A be an arbitrary non-zero commutative ring and $F(X, Y)=a_{0} X^{n}+a_{1} X^{n-1} Y+\cdots+a_{n} Y^{n} \in A[X, Y]$ any binary form.
The invariant A-order A_{F} of F is the free A-module with basis
$\left\{1, \omega_{1}, \ldots, \omega_{n-1}\right\}$ with prescribed multiplication rules

$$
\omega_{i} \omega_{j}=-\sum_{\max (i+j-n, 1) \leq k \leq i} a_{i+j-k} \omega_{k}+\sum_{j<k \leq \min (i+j, n)} a_{i+j-k} \omega_{k} \forall i, j
$$

Properties:

(i) Let $F, G \in A[X, Y]$ be binary forms. Then

$$
\begin{aligned}
& F, G G L(2, A) \text {-equivalent } \Longrightarrow A_{F} \cong A_{G} ; \\
& A_{F} \cong A_{G} \Longrightarrow D(G)=\eta D(F) \text { for some } \eta \in A^{*} .
\end{aligned}
$$

(ii) Let A be an integral domain with quotient field K of characteristic 0 and $F \in A[X, Y]$ a binary form. Then
F irreducible over $K \Longleftrightarrow A_{\digamma}$ integral domain;
$D(F) \neq 0 \Longleftrightarrow A_{F}$ nilpotent-free.

Binary cubic forms vs orders of rank 3

Theorem (Delone and Faddeev; Gan, Gross and Savin; Deligne)
Let A be an arbitrary non-zero commutative ring. Then for every A-order O of rank 3 there is precisely one $G L(2, A)$-equivalence class of cubic forms $F \in A[X, Y]$ with $A_{F} \cong O$.

Binary cubic forms vs orders of rank 3

Theorem (Delone and Faddeev; Gan, Gross and Savin; Deligne)

Let A be an arbitrary non-zero commutative ring. Then for every A-order O of rank 3 there is precisely one $G L(2, A)$-equivalence class of cubic forms $F \in A[X, Y]$ with $A_{F} \cong O$.

This was proved by Delone and Faddeev (1940) for $A=\mathbb{Z}$ and \mathbb{Z}-orders O that are integral domains, thus with binary forms F that are irreducible over \mathbb{Q}.
Then this was extended to arbitrary \mathbb{Z}-orders O of rank 3 by Gan, Gross and Savin (2002).
The extension to arbitrary rings A is straightforward (follows also from general unpublished work of Deligne).
The proof uses only elementary algebra.

Binary cubic forms vs orders of rank 3

Theorem (Delone and Faddeev; Gan, Gross and Savin; Deligne)

Let A be an arbitrary non-zero commutative ring. Then for every A-order O of rank 3 there is precisely one $G L(2, A)$-equivalence class of cubic forms $F \in A[X, Y]$ with $A_{F} \cong O$.

This was proved by Delone and Faddeev (1940) for $A=\mathbb{Z}$ and \mathbb{Z}-orders O that are integral domains, thus with binary forms F that are irreducible over \mathbb{Q}.
Then this was extended to arbitrary \mathbb{Z}-orders O of rank 3 by Gan, Gross and Savin (2002).
The extension to arbitrary rings A is straightforward (follows also from general unpublished work of Deligne).
The proof uses only elementary algebra.
Simon (2001) constructed number fields of degree $n=4$ and of any prime degree ≥ 5 whose rings of integers are not the invariant \mathbb{Z}-order of a binary form.

Quantitative results for orders of rank ≥ 4

Let K be a number field and S a finite set of places of K, containing the infinite places. Denote by $O_{S, F}$ the invariant O_{S}-order of a binary form $F \in O_{s}[X, Y]$.

Theorem 2 (Bérczes, E. and Győry, 2004; E. and Győry, 2016(?))
Let O be a nilpotent-free O_{S}-order of rank $n \geq 4$. Then the binary forms $F \in O_{S}[X, Y]$ with

$$
O_{S, F} \cong O
$$

lie in at most

$$
\begin{array}{ll}
2^{5 n^{2}|S|} & G L\left(2, O_{S}\right) \text {-equivalence classes if } n \text { is odd, } \\
h_{2}(S) \cdot 2^{5 n^{2}|S|} & G L\left(2, O_{S}\right) \text {-equivalence classes if } n \text { is even }
\end{array}
$$

where $h_{2}(S)$ denotes the number of ideal classes of O_{S} of order ≤ 2.

This upper bound has no dependence on O other than its rank.

Quantitative results for orders of rank ≥ 4

Let K be a number field and S a finite set of places of K, containing the infinite places. Denote by $O_{S, F}$ the invariant O_{S}-order of a binary form $F \in O_{S}[X, Y]$.

Theorem 2 (Bérczes, E. and Győry, 2004; E. and Györy, 2016(?))
Let O be a nilpotent-free O_{S}-order of rank $n \geq 4$. Then the binary forms $F \in O_{S}[X, Y]$ with

$$
O_{S, F} \cong O
$$

lie in at most

$$
\begin{array}{ll}
2^{5 n^{2}|S|} & G L\left(2, O_{S}\right) \text {-equivalence classes if } n \text { is odd, } \\
h_{2}(S) \cdot 2^{5 n^{2}|S|} & G L\left(2, O_{S}\right) \text {-equivalence classes if } n \text { is even }
\end{array}
$$

where $h_{2}(S)$ denotes the number of ideal classes of O_{S} of order ≤ 2.

Bérczes, E. and Györy proved this result for O_{S}-orders O that are integral domains, and with a slightly larger upper bound for the number of equivalence classes. The general result is due to E . and Györy.

Quantitative results for orders of rank ≥ 4

Let K be a number field and S a finite set of places of K, containing the infinite places. Denote by $O_{S, F}$ the invariant O_{S}-order of a binary form $F \in O_{S}[X, Y]$.

Theorem 2 (Bérczes, E. and Győry, 2004; E. and Györy, 2016(?))
Let O be a nilpotent-free O_{S}-order of rank $n \geq 4$. Then the binary forms $F \in O_{S}[X, Y]$ with

$$
O_{S, F} \cong O
$$

lie in at most

$$
\begin{array}{ll}
2^{5 n^{2}|S|} & G L\left(2, O_{S}\right) \text {-equivalence classes if } n \text { is odd, } \\
h_{2}(S) \cdot 2^{5 n^{2}|S|} & G L\left(2, O_{S}\right) \text {-equivalence classes if } n \text { is even, }
\end{array}
$$

where $h_{2}(S)$ denotes the number of ideal classes of O_{S} of order ≤ 2.

For every even $n \geq 4$ there are O_{S}-orders O of rank n such that the number of $G L\left(2, O_{S}\right)$-equivalence classes of binary forms $F \in O_{S}[X, Y]$ with $O_{S, F} \cong O$ is at least $h_{2}(S) / n!$.

Generalizations to other integral domains

Many Diophantine results valid over rings of S-integers of number fields have been generalized to integral domains of characteristic 0 that are finitely generated as a \mathbb{Z}-algebra.

Does it hold that for every such domain A, and every $\delta \in A \backslash\{0\}$, resp. nilpotent-free A-order O of rank n, the solutions of

$$
D(F) \in \delta A^{*}, \quad A_{F} \cong O \text { in binary forms } F \in A[X, Y] \text { of degree } n
$$

lie in only finitely many $G L(2, A)$-equivalence classes?

Generalizations to other integral domains

Many Diophantine results valid over rings of S-integers of number fields have been generalized to integral domains of characteristic 0 that are finitely generated as a \mathbb{Z}-algebra.

Does it hold that for every such domain A, and every $\delta \in A \backslash\{0\}$, resp. nilpotent-free A-order O of rank n, the solutions of

$$
D(F) \in \delta A^{*}, \quad A_{F} \cong O \text { in binary forms } F \in A[X, Y] \text { of degree } n
$$

lie in only finitely many $G L(2, A)$-equivalence classes?

NO for $D(F) \in \delta A^{*} ; \quad$ YES for $A_{F} \cong O$ (if A is integrally closed).

$D(F) \in \delta A^{*}$

Assume that A has non-zero elements a such that $A / a A$ is infinite (e.g., $A=\mathbb{Z}[t], a=t)$.
Fix such a and choose a binary form $F_{0} \in A[X, Y]$ with $D\left(F_{0}\right) \neq 0$. Then the binary forms $F_{b}(X, Y):=F(a X, b X+Y)(b \in A)$ satisfy

$$
D\left(F_{b}\right)=\delta:=a^{n(n-1)} D\left(F_{0}\right)
$$

and lie in infinitely many $G L(2, A)$-equivalence classes.

$A_{F} \cong O$

Theorem 3 (E.)

Let A be an integral domain of characteristic 0 . Assume that A is finitely generated as a \mathbb{Z}-algebra and that A is integrally closed.
Further, let O be a nilpotent-free A-order of rank $n \geq 4$.
Then the binary forms $F \in A[X, Y]$ with $A_{F} \cong O$ lie in at most

$$
\exp \left(c(A) n^{5}\right)
$$

$G L(2, A)$-equivalence classes, where $c(A)$ depends on A only.

The main tool

The main tool in the proof of Theorem 3 is:

Theorem (Beukers and Schlickewei, 1996)
Let \mathbb{F} be a field of characteristic 0 , and let Γ be a subgroup of \mathbb{F}^{*} of finite rank r. Then the equation

$$
x+y=1
$$

has at most $2^{16(r+1)}$ solutions in $x, y \in \Gamma$.

An outline of the proof of Theorem 3

Let K be the quotient field of A. Take a binary form $F \in A[X, Y]$ with $A_{F} \cong O$. Write $F=\prod_{i=1}^{n}\left(\alpha_{i} X-\beta_{i} Y\right)$ over the splitting field of F and put $\Delta_{p q}:=\alpha_{p} \beta_{q}-\alpha_{q} \beta_{p} \quad(1 \leq p, q \leq n)$.

An outline of the proof of Theorem 3

Let K be the quotient field of A. Take a binary form $F \in A[X, Y]$ with $A_{F} \cong O$. Write $F=\prod_{i=1}^{n}\left(\alpha_{i} X-\beta_{i} Y\right)$ over the splitting field of F and put $\Delta_{p q}:=\alpha_{p} \beta_{q}-\alpha_{q} \beta_{p}(1 \leq p, q \leq n)$.

- Prove that $c r_{i j k l}(F):=\Delta_{i j} \Delta_{k l} / \Delta_{i k} \Delta_{j l} \in \Gamma_{i j k l}(O)$, where $\Gamma_{i j k l}(O)$ is a multiplicative group of rank $\leq c_{1}(A) n^{4}$, depending only on O.

An outline of the proof of Theorem 3

Let K be the quotient field of A. Take a binary form $F \in A[X, Y]$ with $A_{F} \cong O$. Write $F=\prod_{i=1}^{n}\left(\alpha_{i} X-\beta_{i} Y\right)$ over the splitting field of F and put $\Delta_{p q}:=\alpha_{p} \beta_{q}-\alpha_{q} \beta_{p}(1 \leq p, q \leq n)$.

- Prove that $c r_{i j k l}(F):=\Delta_{i j} \Delta_{k l} / \Delta_{i k} \Delta_{j l} \in \Gamma_{i j k l}(O)$, where $\Gamma_{i j k l}(O)$ is a multiplicative group of rank $\leq c_{1}(A) n^{4}$, depending only on O.
- Applying the theorem of Beukers and Schlickewei to the identities

$$
\frac{\Delta_{i j} \Delta_{k l}}{\Delta_{i k} \Delta_{j l}}+\frac{\Delta_{j k} \Delta_{i l}}{\Delta_{i k} \Delta_{j l}}=1
$$

conclude that for each cross ratio $c r_{i j k l}(F)$ there are at most $\exp \left(c_{2}(A) n^{4}\right)$ possible values.

An outline of the proof of Theorem 3

Let K be the quotient field of A. Take a binary form $F \in A[X, Y]$ with $A_{F} \cong O$. Write $F=\prod_{i=1}^{n}\left(\alpha_{i} X-\beta_{i} Y\right)$ over the splitting field of F and put $\Delta_{p q}:=\alpha_{p} \beta_{q}-\alpha_{q} \beta_{p} \quad(1 \leq p, q \leq n)$.

- Prove that $c r_{i j k l}(F):=\Delta_{i j} \Delta_{k l} / \Delta_{i k} \Delta_{j l} \in \Gamma_{i j k l}(O)$, where $\Gamma_{i j k l}(O)$ is a multiplicative group of rank $\leq c_{1}(A) n^{4}$, depending only on O.
- Applying the theorem of Beukers and Schlickewei to the identities

$$
\frac{\Delta_{i j} \Delta_{k l}}{\Delta_{i k} \Delta_{j l}}+\frac{\Delta_{j k} \Delta_{i l}}{\Delta_{i k} \Delta_{j l}}=1
$$

conclude that for each cross ratio $\mathrm{cr}_{i j k l}(F)$ there are at most $\exp \left(c_{2}(A) n^{4}\right)$ possible values.

- The cross ratios $c r_{123 /}(F)(I=4, \ldots, n)$ fix the $G L(2, K)$-equivalence class of F.
Deduce that the binary forms $F \in A[X, Y]$ with $A_{F} \cong O$ lie in at most $\exp \left(c_{2}(A) n^{5}\right) G L(2, K)$-equivalence classes.

An outline of the proof of Theorem 3

Let K be the quotient field of A. Take a binary form $F \in A[X, Y]$ with $A_{F} \cong O$. Write $F=\prod_{i=1}^{n}\left(\alpha_{i} X-\beta_{i} Y\right)$ over the splitting field of F and put $\Delta_{p q}:=\alpha_{p} \beta_{q}-\alpha_{q} \beta_{p} \quad(1 \leq p, q \leq n)$.

- Prove that $c r_{i j k l}(F):=\Delta_{i j} \Delta_{k l} / \Delta_{i k} \Delta_{j l} \in \Gamma_{i j k l}(O)$, where $\Gamma_{i j k l}(O)$ is a multiplicative group of rank $\leq c_{1}(A) n^{4}$, depending only on O.
- Applying the theorem of Beukers and Schlickewei to the identities

$$
\frac{\Delta_{i j} \Delta_{k l}}{\Delta_{i k} \Delta_{j l}}+\frac{\Delta_{j k} \Delta_{i l}}{\Delta_{i k} \Delta_{j l}}=1
$$

conclude that for each cross ratio $\mathrm{cr}_{i j k l}(F)$ there are at most $\exp \left(c_{2}(A) n^{4}\right)$ possible values.

- The cross ratios $c r_{123 /}(F)(I=4, \ldots, n)$ fix the $G L(2, K)$-equivalence class of F.
Deduce that the binary forms $F \in A[X, Y]$ with $A_{F} \cong O$ lie in at most $\exp \left(c_{2}(A) n^{5}\right) G L(2, K)$-equivalence classes.
- Prove that each of these $G L(2, K)$-equivalence classes is the union of at most $c_{3}(A) G L(2, A)$-equivalence classes.

Thank you for your attention!

