Equivalence relations for polynomials

Jan-Hendrik Evertse

Universiteit Leiden

Joint work with Manjul Bhargava, Kálmán Györy, László Remete, Ashvin Swaminathan

Number Theory Conference 2022
in honour of Kálmán Györy, János Pintz and András Sárközy July 4, 2022

Preprint: arXiv:2109.02932v2
Slides: https://pub.math.leidenuniv.nl/~evertsejh/lectures.shtml

Aim of the lecture

In the 1850-s, Hermite introduced an equivalence relation for univariate polynomials with integer coefficients, henceforth called 'Hermite equivalence', which was largely unnoticed.

We compare this with better known equivalence relations for polynomials, i.e., $G L_{2}(\mathbb{Z})$-equivalence and order equivalence (invariant orders of the polynomials being isomorphic).

Aim of the lecture

In the 1850-s, Hermite introduced an equivalence relation for univariate polynomials with integer coefficients, henceforth called 'Hermite equivalence', which was largely unnoticed.

We compare this with better known equivalence relations for polynomials, i.e., $G L_{2}(\mathbb{Z})$-equivalence and order equivalence (invariant orders of the polynomials being isomorphic).

It will turn out that
$G L_{2}(\mathbb{Z})$-equivalence \Rightarrow Hermite equivalence \Rightarrow order equivalence.
Our aim is the following:

- show that the implication arrows cannot be reversed, i.e., to give examples of Hermite equivalent polynomials that are not $G L_{2}(\mathbb{Z})$-equivalent, and order equivalent polynomials that are not Hermite equivalent.

$G L_{n}(\mathbb{Z})$-equivalence of decomposable forms

Hermite equivalence of univariate polynomials is defined by means of decomposable forms associated to these polynomials.

$G L_{n}(\mathbb{Z})$-equivalence of decomposable forms

Consider decomposable forms of degree $n \geq 2$ in n variables

$$
F(\underline{\mathrm{X}})=c \prod_{i=1}^{n}\left(\alpha_{i, 1} X_{1}+\cdots+\alpha_{i, n} X_{n}\right) \in \mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]
$$

where $c \in \mathbb{Q}^{*}$ and $\alpha_{i, j} \in \overline{\mathbb{Q}}$ for $i, j=1, \ldots, n$.
The discriminant of F is given by $D(F):=c^{2}\left(\operatorname{det}\left(\alpha_{i, j}\right)_{1 \leq i, j \leq n}\right)^{2}$.
We have $D(F) \in \mathbb{Z}$.

$G L_{n}(\mathbb{Z})$-equivalence of decomposable forms

Consider decomposable forms of degree $n \geq 2$ in n variables

$$
F(\underline{\mathrm{X}})=c \prod_{i=1}^{n}\left(\alpha_{i, 1} X_{1}+\cdots+\alpha_{i, n} X_{n}\right) \in \mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]
$$

where $c \in \mathbb{Q}^{*}$ and $\alpha_{i, j} \in \overline{\mathbb{Q}}$ for $i, j=1, \ldots, n$.
The discriminant of F is given by $D(F):=c^{2}\left(\operatorname{det}\left(\alpha_{i, j}\right)_{1 \leq i, j \leq n}\right)^{2}$.
We have $D(F) \in \mathbb{Z}$.
Two decomposable forms F, G as above are called $G L_{n}(\mathbb{Z})$-equivalent if

$$
G(\underline{X})= \pm F(U \underline{X}) \quad \text { for some } U \in G L_{n}(\mathbb{Z})
$$

(here $\underline{X}=\left(X_{1}, \ldots, X_{n}\right)^{T}$ is a column vector).
Two $G L_{n}(\mathbb{Z})$-equivalent decomposable forms have the same discriminant.

$G L_{n}(\mathbb{Z})$-equivalence of decomposable forms

Consider decomposable forms of degree $n \geq 2$ in n variables

$$
F(\underline{X})=c \prod_{i=1}^{n}\left(\alpha_{i, 1} X_{1}+\cdots+\alpha_{i, n} X_{n}\right) \in \mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]
$$

where $c \in \mathbb{Q}^{*}$ and $\alpha_{i, j} \in \overline{\mathbb{Q}}$ for $i, j=1, \ldots, n$.
The discriminant of F is given by $D(F):=c^{2}\left(\operatorname{det}\left(\alpha_{i, j}\right)_{1 \leq i, j \leq n}\right)^{2}$.
We have $D(F) \in \mathbb{Z}$.
Two decomposable forms F, G as above are called $G L_{n}(\mathbb{Z})$-equivalent if

$$
G(\underline{X})= \pm F(U \underline{X}) \quad \text { for some } U \in G L_{n}(\mathbb{Z})
$$

(here $\underline{X}=\left(X_{1}, \ldots, X_{n}\right)^{T}$ is a column vector).
Two $G L_{n}(\mathbb{Z})$-equivalent decomposable forms have the same discriminant.

Theorem (Hermite, 1850)

Let $n \geq 2, D \neq 0$. Then the decomposable forms in $\mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]$ of degree n and discriminant D lie in finitely many $G L_{n}(\mathbb{Z})$-equivalence classes.

Hermite equivalence of univariate polynomials

Let $f=c\left(X-\alpha_{1}\right) \cdots\left(X-\alpha_{n}\right) \in \mathbb{Z}[X] \quad$ (with $c \in \mathbb{Z}_{\neq 0}, \alpha_{1}, \ldots, \alpha_{n} \in \overline{\mathbb{Q}}$).
Define the discriminant of f by $D(f):=c^{2 n-2} \prod_{1 \leq i<j \leq n}\left(\alpha_{i}-\alpha_{j}\right)^{2}$.

Hermite equivalence of univariate polynomials

Let $f=c\left(X-\alpha_{1}\right) \cdots\left(X-\alpha_{n}\right) \in \mathbb{Z}[X] \quad$ (with $c \in \mathbb{Z}_{\neq 0}, \alpha_{1}, \ldots, \alpha_{n} \in \overline{\mathbb{Q}}$).
Define the discriminant of f by $D(f):=c^{2 n-2} \prod_{1 \leq i<j \leq n}\left(\alpha_{i}-\alpha_{j}\right)^{2}$.
To f we associate the decomposable form

$$
[f](\underline{X}):=c^{n-1} \prod_{i=1}^{n}\left(X_{1}+\alpha_{i} X_{2}+\cdots+\alpha_{i}^{n-1} X_{n}\right) \in \mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]
$$

Fact. $D(f)=D([f])$ (Vandermonde).

Hermite equivalence of univariate polynomials

Let $f=c\left(X-\alpha_{1}\right) \cdots\left(X-\alpha_{n}\right) \in \mathbb{Z}[X] \quad$ (with $c \in \mathbb{Z}_{\neq 0}, \alpha_{1}, \ldots, \alpha_{n} \in \overline{\mathbb{Q}}$).
Define the discriminant of f by $D(f):=c^{2 n-2} \prod_{1 \leq i<j \leq n}\left(\alpha_{i}-\alpha_{j}\right)^{2}$.
To f we associate the decomposable form

$$
[f](\underline{X}):=c^{n-1} \prod_{i=1}^{n}\left(X_{1}+\alpha_{i} X_{2}+\cdots+\alpha_{i}^{n-1} X_{n}\right) \in \mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]
$$

Fact. $D(f)=D([f])$ (Vandermonde).
Hermite introduced in 1857 the following equivalence relation:
Two polynomials $f, g \in \mathbb{Z}[X]$ of degree n are called Hermite equivalent if the associated decomposable forms $[f]$ and $[g]$ are $G L_{n}(\mathbb{Z})$-equivalent, i.e., $[g](\underline{X})= \pm[f](U \underline{X})$ for some $U \in G L_{n}(\mathbb{Z})$.

Hermite equivalence of univariate polynomials

Let $f=c\left(X-\alpha_{1}\right) \cdots\left(X-\alpha_{n}\right) \in \mathbb{Z}[X] \quad$ (with $c \in \mathbb{Z}_{\neq 0}, \alpha_{1}, \ldots, \alpha_{n} \in \overline{\mathbb{Q}}$).
Define the discriminant of f by $D(f):=c^{2 n-2} \prod_{1 \leq i<j \leq n}\left(\alpha_{i}-\alpha_{j}\right)^{2}$.
To f we associate the decomposable form

$$
[f](\underline{X}):=c^{n-1} \prod_{i=1}^{n}\left(X_{1}+\alpha_{i} X_{2}+\cdots+\alpha_{i}^{n-1} X_{n}\right) \in \mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]
$$

Fact. $D(f)=D([f])$ (Vandermonde).
Hermite introduced in 1857 the following equivalence relation:
Two polynomials $f, g \in \mathbb{Z}[X]$ of degree n are called Hermite equivalent if the associated decomposable forms $[f]$ and $[g]$ are $G L_{n}(\mathbb{Z})$-equivalent, i.e., $[g](\underline{X})= \pm[f](U \underline{X})$ for some $U \in G L_{n}(\mathbb{Z})$.

Hermite's theorem on decomposable forms and the above fact imply:

Theorem (Hermite, 1857)

Let $n \geq 2, D \neq 0$. Then the polynomials $f \in \mathbb{Z}[X]$ of degree n and of discriminant D lie in finitely many Hermite equivalence classes.

$G L_{2}(\mathbb{Z})$-equivalence

We want to compare Hermite equivalence with $G L_{2}(\mathbb{Z})$-equivalence.

Two polynomials $f, g \in \mathbb{Z}[X]$ of degree n are called $G L_{2}(\mathbb{Z})$-equivalent if there is $\left(\begin{array}{ll}a & b \\ d & e\end{array}\right) \in G L_{2}(\mathbb{Z})$ such that

$$
g(X)= \pm(d X+e)^{n} f\left(\frac{a X+b}{d X+e}\right)
$$

$G L_{2}(\mathbb{Z})$-equivalence

We want to compare Hermite equivalence with $G L_{2}(\mathbb{Z})$-equivalence.

Two polynomials $f, g \in \mathbb{Z}[X]$ of degree n are called $G L_{2}(\mathbb{Z})$-equivalent if there is $\left(\begin{array}{ll}a & b \\ d & e\end{array}\right) \in G L_{2}(\mathbb{Z})$ such that

$$
g(X)= \pm(d X+e)^{n} f\left(\frac{a X+b}{d X+e}\right) .
$$

Lemma

Let $f, g \in \mathbb{Z}[X]$ be two $G L_{2}(\mathbb{Z})$-equivalent polynomials of equal degree. Then they are Hermite equivalent.

The converse is in general not true.

Proof of Lemma

We have to prove that any two $G L_{2}(\mathbb{Z})$-equivalent polynomials f, g in $\mathbb{Z}[X]$ are Hermite equivalent.

Proof of Lemma

We have to prove that any two $G L_{2}(\mathbb{Z})$-equivalent polynomials f, g in $\mathbb{Z}[X]$ are Hermite equivalent.
Let $f(X)=c \prod_{i=1}^{n}\left(X-\alpha_{i}\right) \in \mathbb{Z}[X]$ and $g(X)= \pm(d X+e)^{n} f\left(\frac{a X+b}{d X+e}\right)$, where $A:=\left(\begin{array}{cc}a & b \\ d & e\end{array}\right) \in G L_{2}(\mathbb{Z})$.
Then $g(X)= \pm c \prod_{i=1}^{n}\left(\beta_{i} X-\gamma_{i}\right), \quad \beta_{i}=d-a \alpha_{i}, \gamma_{i}=-e+b \alpha_{i}$.

Proof of Lemma

We have to prove that any two $G L_{2}(\mathbb{Z})$-equivalent polynomials f, g in $\mathbb{Z}[X]$ are Hermite equivalent.
Let $f(X)=c \prod_{i=1}^{n}\left(X-\alpha_{i}\right) \in \mathbb{Z}[X]$ and $g(X)= \pm(d X+e)^{n} f\left(\frac{a X+b}{d X+e}\right)$, where $A:=\left(\begin{array}{cc}a & b \\ d & e\end{array}\right) \in G L_{2}(\mathbb{Z})$.
Then $g(X)= \pm c \prod_{i=1}^{n}\left(\beta_{i} X-\gamma_{i}\right), \quad \beta_{i}=d-a \alpha_{i}, \gamma_{i}=-e+b \alpha_{i}$.
Define the inner product of two column vectors $\underline{\mathrm{x}}=\left(x_{1}, \ldots, x_{n}\right)^{T}, \underline{\mathrm{y}}=\left(y_{1}, \ldots, y_{n}\right)^{T}$ by $\langle\underline{\mathrm{x}}, \underline{\mathrm{y}}\rangle:=x_{1} y_{1}+\cdots+x_{n} y_{n}$. Let as before $\left.\underline{X}=\overline{(} X_{1}, \ldots, X_{n}\right)^{T}$. Thus,

$$
\begin{aligned}
& {[f](\underline{\mathrm{X}})=c^{n-1} \prod_{i=1}^{n}\left\langle\underline{\mathrm{a}}_{i}, \underline{\mathrm{X}}\right\rangle, \text { where } \underline{\mathrm{a}}_{i}=\left(1, \alpha_{i}, \ldots, \alpha_{i}^{n-1}\right)^{T},} \\
& {[g](\underline{\mathrm{X}})= \pm c^{n-1} \prod_{i=1}^{n}\left\langle\underline{\mathrm{~b}}_{i}, \underline{\mathrm{X}}\right\rangle \text {, where } \underline{\mathrm{b}}_{i}=\left(\beta_{i}^{n-1}, \beta_{i}^{n-2} \gamma_{i}, \ldots, \gamma_{i}^{n-1}\right)^{T} .}
\end{aligned}
$$

Proof of Lemma

We have to prove that any two $G L_{2}(\mathbb{Z})$-equivalent polynomials f, g in $\mathbb{Z}[X]$ are Hermite equivalent.
Let $f(X)=c \prod_{i=1}^{n}\left(X-\alpha_{i}\right) \in \mathbb{Z}[X]$ and $g(X)= \pm(d X+e)^{n} f\left(\frac{a X+b}{d X+e}\right)$,
where $A:=\left(\begin{array}{cc}a & b \\ d & e\end{array}\right) \in G L_{2}(\mathbb{Z})$.
Then $g(X)= \pm c \prod_{i=1}^{n}\left(\beta_{i} X-\gamma_{i}\right), \quad \beta_{i}=d-a \alpha_{i}, \quad \gamma_{i}=-e+b \alpha_{i}$.
Define the inner product of two column vectors $\underline{\mathrm{x}}=\left(x_{1}, \ldots, x_{n}\right)^{T}, \underline{\mathrm{y}}=\left(y_{1}, \ldots, y_{n}\right)^{T}$ by $\langle\underline{\mathrm{x}}, \underline{\mathrm{y}}\rangle:=x_{1} y_{1}+\cdots+x_{n} y_{n}$. Let as before $\left.\underline{X}=\overline{(} X_{1}, \ldots, X_{n}\right)^{T}$. Thus,

$$
\begin{aligned}
& {[f](\underline{\mathrm{X}})=c^{n-1} \prod_{i=1}^{n}\left\langle\underline{\mathrm{a}}_{i}, \underline{\mathrm{X}}\right\rangle, \text { where } \underline{\mathrm{a}}_{i}=\left(1, \alpha_{i}, \ldots,, \alpha_{i}^{n-1}\right)^{T},} \\
& {[g](\underline{\mathrm{X}})= \pm c^{n-1} \prod_{i=1}^{n}\left\langle\underline{\mathrm{~b}}_{i}, \underline{\mathrm{X}}\right\rangle, \text { where } \underline{\mathrm{b}}_{i}=\left(\beta_{i}^{n-1}, \beta_{i}^{n-2} \gamma_{i}, \ldots, \gamma_{i}^{n-1}\right)^{T} .}
\end{aligned}
$$

Then $\underline{\mathrm{b}}_{i}=t(A) \underline{\mathrm{a}}_{i}$ with $t(A) \in G L_{n}(\mathbb{Z})$ for $i=1, \ldots, n$. So

$$
[g](\underline{\mathrm{X}})= \pm c^{n-1} \prod_{i=1}^{n}\left\langle t(A) \underline{\mathrm{a}}_{i}, \underline{\mathrm{X}}\right\rangle= \pm c^{n-1} \prod_{i=1}^{n}\left\langle\underline{\mathrm{a}}_{i}, t(A)^{T} \underline{\mathbf{X}}\right\rangle= \pm[f]\left(t(A)^{T} \underline{\mathrm{X}}\right)
$$

Finiteness results for $G L_{2}(\mathbb{Z})$-equivalence

Recall that two polynomials $f, g \in \mathbb{Z}[X]$ of the same degree are $G L_{2}(\mathbb{Z})$-equivalent if $g(X)= \pm(d X+e)^{\operatorname{deg} f} f\left(\frac{a X+b}{d X+e}\right)$ for some $\left(\begin{array}{ll}a & b \\ d & e\end{array}\right) \in G L_{2}(\mathbb{Z})$.

Theorem (Birch and Merriman, 1972)

Let $n \geq 2, D \neq 0$. Then there are only finitely many $G L_{2}(\mathbb{Z})$-equivalence classes of polynomials $f \in \mathbb{Z}[X]$ of degree n and discriminant D.

The proof of Birch and Merriman is ineffective.

Finiteness results for $G L_{2}(\mathbb{Z})$-equivalence

Recall that two polynomials $f, g \in \mathbb{Z}[X]$ of the same degree are $G L_{2}(\mathbb{Z})$-equivalent if $g(X)= \pm(d X+e)^{\operatorname{deg} f} f\left(\frac{a X+b}{d X+e}\right)$ for some $\left(\begin{array}{ll}a & b \\ d & e\end{array}\right) \in G L_{2}(\mathbb{Z})$.

Theorem (Ev. and Györy, 1991)

Let $n \geq 2, D \neq 0$. Then there is an effective $C=C(n, D)$ such that every $f \in \mathbb{Z}[X]$ of degree n and discriminant D is $G L_{2}(\mathbb{Z})$-equivalent to a polynomial f^{*} with $H\left(f^{*}\right):=\max \mid$ coeff. $f^{*} \mid \leq C$.
In 2017, Ev. and Györy proved this with $C=\exp \left(\left(16 n^{3}\right)^{25 n^{2}}|D|^{5 n-3}\right)$.
This extends work of Győry from the late 1970-s on monic polynomials.

The theorems of Birch and Merriman and Ev. and Győry on $G L_{2}(\mathbb{Z})$ equivalence use finiteness results for unit equations and Baker's theory on logarithmic forms, and thus are much deeper than Hermite's.

An algebraic criterion for Hermite equivalence

In what follows, we restrict ourselves to polynomials in $\mathbb{Z}[X]$ that are irreducible and primitive, i.e., with coefficients having gcd 1.

For an algebraic number α of degree n define the free \mathbb{Z}-module generated by $1, \alpha, \ldots, \alpha^{n-1}$,

$$
\mathcal{M}_{\alpha}:=\left\{x_{1}+x_{2} \alpha+\cdots+x_{n} \alpha^{n-1}: x_{1}, \ldots, x_{n} \in \mathbb{Z}\right\}
$$

Lemma

Let $f, g \in \mathbb{Z}[X]$ be primitive, irreducible polynomials of degree ≥ 2. Then f, g are Hermite equivalent if and only if there are $\lambda \neq 0$, a root α of f and a root β of g such that $\mathcal{M}_{\beta}=\lambda \mathcal{M}_{\alpha}=\left\{\lambda \xi: \xi \in \mathcal{M}_{\alpha}\right\}$.

Connection with invariant orders

$$
\begin{aligned}
& \text { Let } \mathcal{M}_{\alpha}:=\left\{x_{1}+x_{2} \alpha+\cdots+x_{n} \alpha^{n-1}: x_{1}, \ldots, x_{n} \in \mathbb{Z}\right\} \text { for } \alpha \text { of degree } n, \\
& \qquad \mathbb{Z}_{\alpha}:=\left\{\xi \in \mathbb{Q}(\alpha): \xi \mathcal{M}_{\alpha} \subseteq \mathcal{M}_{\alpha}\right\}, \text { the ring of scalars of } \mathcal{M}_{\alpha}
\end{aligned}
$$

It can be shown that $\mathbb{Z}_{\alpha}=\mathbb{Z}[\alpha] \cap \mathbb{Z}\left[\alpha^{-1}\right]$. It is an order in $\mathbb{Q}(\alpha)$.
Let $f \in \mathbb{Z}[X]$ be a primitive, irreducible polynomial and α a root of f. Then \mathbb{Z}_{α} is called the invariant order of f; it is up to isomorphism uniquely determined.
The discriminant of \mathbb{Z}_{α} is equal to $D(f)$.

Connection with invariant orders

Let $\mathcal{M}_{\alpha}:=\left\{x_{1}+x_{2} \alpha+\cdots+x_{n} \alpha^{n-1}: x_{1}, \ldots, x_{n} \in \mathbb{Z}\right\}$ for α of degree n, $\mathbb{Z}_{\alpha}:=\left\{\xi \in \mathbb{Q}(\alpha): \xi \mathcal{M}_{\alpha} \subseteq \mathcal{M}_{\alpha}\right\}$, the ring of scalars of \mathcal{M}_{α}.

It can be shown that $\mathbb{Z}_{\alpha}=\mathbb{Z}[\alpha] \cap \mathbb{Z}\left[\alpha^{-1}\right]$. It is an order in $\mathbb{Q}(\alpha)$.
Let $f \in \mathbb{Z}[X]$ be a primitive, irreducible polynomial and α a root of f. Then \mathbb{Z}_{α} is called the invariant order of f; it is up to isomorphism uniquely determined.
The discriminant of \mathbb{Z}_{α} is equal to $D(f)$.
We saw that if f, g are primitive, irreducible, Hermite equivalent polynomials then there are $\lambda \neq 0$, a root α of f and a root β of g such that $\mathcal{M}_{\beta}=\lambda \mathcal{M}_{\alpha}$. This implies $\mathbb{Z}_{\alpha}=\mathbb{Z}_{\beta}$.

Corollary

If f, g are irreducible, primitive, Hermite equivalent polynomials in $\mathbb{Z}[X]$, then f has a root α and g a root β such that $\mathbb{Z}_{\alpha}=\mathbb{Z}_{\beta}$, i.e., f and g have isomorphic invariant orders.

Summary

Let $f, g \in \mathbb{Z}[X]$ be two primitive, irreducible polynomials.
Then f, g are $G L_{2}(\mathbb{Z})$-equivalent
$\Rightarrow f, g$ are Hermite equivalent
$\Rightarrow f, g$ are order equivalent (have isomorphic invariant orders)
$\Rightarrow f, g$ have equal discriminant.

There are only finitely many $G L_{2}(\mathbb{Z})$-equivalence classes of polynomials of given degree and discriminant.
So each order equivalence class, resp. Hermite equivalence class is the union of finitely many $G L_{2}(\mathbb{Z})$-equivalence classes.

The monic case

We are interested in the problem whether or not two polynomials with isomorphic invariant orders are Hermite equivalent.
We first consider monic polynomials.
Let $f \in \mathbb{Z}[X]$ be irreducible and monic and α a root of f. Let $\operatorname{deg} f=n$. Recall that

$$
\mathcal{M}_{\alpha}=\left\{\sum_{i=1}^{n} x_{i} \alpha^{i-1}: x_{i} \in \mathbb{Z}\right\}, \mathbb{Z}_{\alpha}=\left\{\xi \in \mathbb{Q}(\alpha): \xi \mathcal{M}_{\alpha} \subseteq \mathcal{M}_{\alpha}\right\} .
$$

Since f is monic, $\alpha^{n}, \alpha^{n+1}, \ldots \in \mathcal{M}_{\alpha}$. Hence $\mathcal{M}_{\alpha}=\mathbb{Z}_{\alpha}=\mathbb{Z}[\alpha]$.

Corollary

Let $f, g \in \mathbb{Z}[X]$ be irreducible and monic. Then f, g are Hermite equivalent if and only if f has a root α and g a root β such that $\mathbb{Z}[\alpha]=\mathbb{Z}[\beta]$, i.e., if and only if f and g have isomorphic invariant orders.

The non-monic case

If $f, g \in \mathbb{Z}[X]$ are irreducible and monic, then
f, g are Hermite equivalent $\Longleftrightarrow f, g$ have isomorphic invariant orders.
If $f, g \in \mathbb{Z}[X]$ are irreducible, primitive and not both monic, then f, g are Hermite equivalent $\Longrightarrow f, g$ have isomorphic invariant orders.

What about \Longleftarrow ?

The non-monic case

If $f, g \in \mathbb{Z}[X]$ are irreducible and monic, then
f, g are Hermite equivalent $\Longleftrightarrow f, g$ have isomorphic invariant orders.
If $f, g \in \mathbb{Z}[X]$ are irreducible, primitive and not both monic, then f, g are Hermite equivalent $\Longrightarrow f, g$ have isomorphic invariant orders.

What about \Longleftarrow ?
Theorem (Delone and Faddeev, The theory of irrationalities of the third degree, 1940)
Let $f, g \in \mathbb{Z}[X]$ be two irreducible, primitive polynomials of degree 3. If f, g have isomorphic invariant orders then they are $G L_{2}(\mathbb{Z})$-equivalent, hence Hermite equivalent.
So for primitive, irreducible, cubic polynomials, $G L_{2}(\mathbb{Z})$-equivalence, Hermite equivalence and order equivalence coincide.

The non-monic case

If $f, g \in \mathbb{Z}[X]$ are irreducible and monic, then
f, g are Hermite equivalent $\Longleftrightarrow f, g$ have isomorphic invariant orders.
If $f, g \in \mathbb{Z}[X]$ are irreducible, primitive and not both monic, then f, g are Hermite equivalent $\Longrightarrow f, g$ have isomorphic invariant orders.

What about \Longleftarrow ?

Theorem (Delone and Faddeev, The theory of irrationalities of the third degree, 1940)

Let $f, g \in \mathbb{Z}[X]$ be two irreducible, primitive polynomials of degree 3. If f, g have isomorphic invariant orders then they are $G L_{2}(\mathbb{Z})$-equivalent, hence Hermite equivalent.
So for primitive, irreducible, cubic polynomials, $G L_{2}(\mathbb{Z})$-equivalence, Hermite equivalence and order equivalence coincide.

There are Hermite inequivalent polynomials of degree 4 with isomorphic invariant orders.

Likely, this is true for degree ≥ 5 as well, but we haven't been able to produce any counterexamples in this case yet.

Isomorphic invariant orders \nRightarrow Hermite equivalence

Let $f \in \mathbb{Z}[X]$ be irreducible and primitive and α a root of f. Let $\operatorname{deg} f=n$. Recall that

$$
\mathcal{M}_{\alpha}=\left\{\sum_{i=1}^{n} x_{i} \alpha^{i-1}: x_{i} \in \mathbb{Z}\right\}, \mathbb{Z}_{\alpha}=\left\{\xi \in \mathbb{Q}(\alpha): \xi \mathcal{M}_{\alpha} \subseteq \mathcal{M}_{\alpha}\right\}
$$

Define $I_{\alpha}:=\mathbb{Z}_{\alpha}+\alpha \mathbb{Z}_{\alpha}$ to be the fractional ideal of \mathbb{Z}_{α} generated by 1 and α.

Theorem (BEGRS, 2022)

Let $f, g \in \mathbb{Z}[X]$ be irreducible and primitive. Then f, g are Hermite equivalent if and only if f has a root α and g a root β such that $\mathbb{Z}_{\alpha}=\mathbb{Z}_{\beta}$ and the fractional ideals I_{α} and I_{β} belong to the same ideal class.

Isomorphic invariant orders \nRightarrow Hermite equivalence

Let $f \in \mathbb{Z}[X]$ be irreducible and primitive and α a root of f. Let $\operatorname{deg} f=n$. Recall that

$$
\mathcal{M}_{\alpha}=\left\{\sum_{i=1}^{n} x_{i} \alpha^{i-1}: x_{i} \in \mathbb{Z}\right\}, \mathbb{Z}_{\alpha}=\left\{\xi \in \mathbb{Q}(\alpha): \xi \mathcal{M}_{\alpha} \subseteq \mathcal{M}_{\alpha}\right\} .
$$

Define $I_{\alpha}:=\mathbb{Z}_{\alpha}+\alpha \mathbb{Z}_{\alpha}$ to be the fractional ideal of \mathbb{Z}_{α} generated by 1 and α.

Theorem (BEGRS, 2022)

Let $f, g \in \mathbb{Z}[X]$ be irreducible and primitive. Then f, g are Hermite equivalent if and only if f has a root α and g a root β such that $\mathbb{Z}_{\alpha}=\mathbb{Z}_{\beta}$ and the fractional ideals I_{α} and I_{β} belong to the same ideal class.

Example

Let $f=4 X^{4}-X^{3}-62 X^{2}+13 X+255, g=5 X^{4}-X^{3}-2 X^{2}-7 X-6$. Then f and g are irreducible, f has a root α and g a root β such that $\mathbb{Q}(\alpha)=\mathbb{Q}(\beta)$ and $\mathbb{Z}_{\alpha}=\mathbb{Z}_{\beta}$ is the maximal order of $\mathbb{Q}(\alpha)$.
But I_{α} is principal and I_{β} is not. So f and g are not Hermite equivalent.

Hermite equivalence $\nRightarrow G L_{2}(\mathbb{Z})$-inequivalence

For polynomials of degree 2 (trivial) and of degree 3 (Delone and Faddeev) Hermite equivalence and $G L_{2}(\mathbb{Z})$-equivalence coincide.

Hermite equivalence $\nRightarrow G L_{2}(\mathbb{Z})$-inequivalence

For polynomials of degree 2 (trivial) and of degree 3 (Delone and Faddeev) Hermite equivalence and $G L_{2}(\mathbb{Z})$-equivalence coincide.

Theorem (BEGRS, 2021)

For every $n \geq 4$ there are infinitely many pairs (f, g) of irreducible, primitive polynomials in $\mathbb{Z}[X]$ of degree n such that f, g are Hermite equivalent but $G L_{2}(\mathbb{Z})$-inequivalent.
These pairs lie in different Hermite equivalence classes.

The proof is by means of an explicit construction.

The construction (I)

Consider the formal power series $C(X):=\frac{1-\sqrt{1-4 X}}{2 X}=\sum_{i=0}^{\infty} C_{i} X^{i}$, with $C_{i}=\frac{1}{i+1}\binom{2 i}{i} \in \mathbb{Z}$ the i-th Catalan number.

The construction (I)

Consider the formal power series $C(X):=\frac{1-\sqrt{1-4 X}}{2 X}=\sum_{i=0}^{\infty} C_{i} X^{i}$, with $C_{i}=\frac{1}{i+1}\binom{2 i}{i} \in \mathbb{Z}$ the i-th Catalan number.
Let $n \geq 4$, and

$$
\begin{aligned}
a^{(n)}(X) & :=\sum_{i=0}^{n-2} C_{i} X^{i}, \\
b^{(n)}(X) & :=\frac{X\left(a^{(n)}(X)\right)^{2}-a^{(n)}(X)+1}{X^{n-1}}, \\
k^{(n)}(X) & :=\frac{1-X \cdot a^{(n)}\left(X-X^{2}\right)}{(1-X)^{n-1}} .
\end{aligned}
$$

The construction (I)

Consider the formal power series $C(X):=\frac{1-\sqrt{1-4 X}}{2 X}=\sum_{i=0}^{\infty} C_{i} X^{i}$, with $C_{i}=\frac{1}{i+1}\binom{2 i}{i} \in \mathbb{Z}$ the i-th Catalan number.
Let $n \geq 4$, and

$$
\begin{aligned}
& a^{(n)}(X):=\sum_{i=0}^{n-2} C_{i} X^{i} \\
& b^{(n)}(X):=\frac{X\left(a^{(n)}(X)\right)^{2}-a^{(n)}(X)+1}{X^{n-1}}, \\
& k^{(n)}(X):=\frac{1-X \cdot a^{(n)}\left(X-X^{2}\right)}{(1-X)^{n-1}} .
\end{aligned}
$$

Note $\quad X^{n-1} \mid X a^{(n)}(X)^{2}-a^{(n)}(X)+1$ since $X C(X)^{2}-C(X)+1=0$,

$$
\begin{aligned}
& X^{n-1} \mid 1-(1-X) a^{(n)}\left(X-X^{2}\right) \text { since } C\left(X-X^{2}\right)=\frac{1}{1-X} \\
& (1-X)^{n-1} \mid 1-X \cdot a^{(n)}\left(X-X^{2}\right)
\end{aligned}
$$

So $a^{(n)}(X), b^{(n)}(X), k^{(n)}(X)$ are polynomials in $\mathbb{Z}[X]$ of degree $n-2$.

The construction (II)

Let $a^{(n)}(X), b^{(n)}(X), k^{(n)}(X)$ be the polynomials from the previous slide, let c be either 1 or a prime and t a prime different from c, and put

$$
\begin{aligned}
& f_{t, c}^{(n)}(X):=c X^{n}+t k^{(n)}(c X), \\
& g_{t, c}^{(n)}(X):=c X^{n}+t\left(1-2 c X \cdot a^{(n)}(X)\right)-c^{n-1} t^{2} b^{(n)}(c X) .
\end{aligned}
$$

Note that both $f_{t, c}^{(n)}(X), g_{t, c}^{(n)}(X)$ are polynomials in $\mathbb{Z}[X]$ of degree n with leading coefficient c.
They are both primitive, and by Eisenstein's criterion, both irreducible.

The construction (II)

Let $a^{(n)}(X), b^{(n)}(X), k^{(n)}(X)$ be the polynomials from the previous slide, let c be either 1 or a prime and t a prime different from c, and put

$$
\begin{aligned}
& f_{t, c}^{(n)}(X):=c X^{n}+t k^{(n)}(c X) \\
& g_{t, c}^{(n)}(X):=c X^{n}+t\left(1-2 c X \cdot a^{(n)}(X)\right)-c^{n-1} t^{2} b^{(n)}(c X)
\end{aligned}
$$

Theorem

Let $n \geq 4$. Then there are infinitely many pairs (c, t) as above such that $f_{t, c}^{(n)}(X), g_{t, c}^{(n)}(X)$ have the following properties:
(i) $f_{t, c}^{(n)}(X), g_{t, c}^{(n)}(X)$ are irreducible, primitive polynomials in $\mathbb{Z}[X]$ of degree n with leading coefficient c;
(ii) $f_{t, c}^{(n)}(X), g_{t, c}^{(n)}(X)$ are Hermite equivalent;
(iii) $f_{t, c}^{(n)}(X), g_{t, c}^{(n)}(X)$ are not $G L_{2}(\mathbb{Z})$-equivalent.

Moreover, the pairs $\left(f_{t, c}^{(n)}, g_{t, c}^{(n)}\right)$ lie in different Hermite equivalence classes.

Special polynomials

A polynomial $f \in \mathbb{Z}[X]$ is called special if there is $g \in \mathbb{Z}[X]$ such that g is Hermite equivalent to f but $G L_{2}(\mathbb{Z})$-inequivalent to f.
All polynomials in $\mathbb{Z}[X]$ of degree 2 and 3 are non-special (trivial for $n=2$, Delone and Faddeev for $n=3$).
For every $n \geq 4$ we have constructed infinitely many primitive, irreducible special polynomials of degree n that lie in different Hermite equivalence classes (the polynomials $f_{t, c}^{(n)}$ from the previous slide).

Vague belief

Most polynomials are non-special.

Special polynomials

A polynomial $f \in \mathbb{Z}[X]$ is called special if there is $g \in \mathbb{Z}[X]$ such that g is Hermite equivalent to f but $G L_{2}(\mathbb{Z})$-inequivalent to f.
All polynomials in $\mathbb{Z}[X]$ of degree 2 and 3 are non-special (trivial for $n=2$, Delone and Faddeev for $n=3$).
For every $n \geq 4$ we have constructed infinitely many primitive, irreducible special polynomials of degree n that lie in different Hermite equivalence classes (the polynomials $f_{t, c}^{(n)}$ from the previous slide).

Question

Let K be a given number field. Consider the primitive, irreducible, special polynomials $f \in \mathbb{Z}[X]$ such that a root of f generates K. Do these polynomials lie in only finitely Hermite equivalence classes?

Special polynomials

A polynomial $f \in \mathbb{Z}[X]$ is called special if there is $g \in \mathbb{Z}[X]$ such that g is Hermite equivalent to f but $G L_{2}(\mathbb{Z})$-inequivalent to f.
All polynomials in $\mathbb{Z}[X]$ of degree 2 and 3 are non-special (trivial for $n=2$, Delone and Faddeev for $n=3$).
For every $n \geq 4$ we have constructed infinitely many primitive, irreducible special polynomials of degree n that lie in different Hermite equivalence classes (the polynomials $f_{t, c}^{(n)}$ from the previous slide).

Question

Let K be a given number field. Consider the primitive, irreducible, special polynomials $f \in \mathbb{Z}[X]$ such that a root of f generates K. Do these polynomials lie in only finitely Hermite equivalence classes?

There are number fields K of degree 4 for which this is false.
But we do not exclude that for number fields of degree ≥ 5 this is true.

A weaker result

For a number field K, let $\mathcal{P} \mathcal{I}(K)$ denote the set of primitive, irreducible polynomials $f \in \mathbb{Z}[X]$ such that K is generated by a root of f.

Recall that $f \in \mathcal{P I}(K)$ is special if there is $g \in \mathbb{Z}[X]$ such that g and f are Hermite equivalent but $G L_{2}(\mathbb{Z})$-inequivalent.
Call two polynomials $f, g \in \mathbb{Z}[X] G L_{2}(\mathbb{Q})$-equivalent if they have the same degree, say n, and $g(X)=u(d X+e)^{n} f\left(\frac{a X+b}{d X+e}\right)$ for some $u \in \mathbb{Q}^{*}$ and $\left(\begin{array}{ll}a & b \\ d & e\end{array}\right) \in G L_{2}(\mathbb{Q})$.

A weaker result

For a number field K, let $\mathcal{P} \mathcal{I}(K)$ denote the set of primitive, irreducible polynomials $f \in \mathbb{Z}[X]$ such that K is generated by a root of f.

Recall that $f \in \mathcal{P I}(K)$ is special if there is $g \in \mathbb{Z}[X]$ such that g and f are Hermite equivalent but $G L_{2}(\mathbb{Z})$-inequivalent.
Call two polynomials $f, g \in \mathbb{Z}[X] G L_{2}(\mathbb{Q})$-equivalent if they have the same degree, say n, and $g(X)=u(d X+e)^{n} f\left(\frac{a X+b}{d X+e}\right)$ for some $u \in \mathbb{Q}^{*}$ and $\left(\begin{array}{cc}a & b \\ d & e\end{array}\right) \in G L_{2}(\mathbb{Q})$.

Theorem (E.)

Let K be a number field of degree $n \geq 5$ whose normal closure has as Galois group the full symmetric group S_{n}.
Then the special polynomials in $\mathcal{P I}(K)$ lie in finitely many $G L_{2}(\mathbb{Q})$-equivalence classes.

There are number fields K of degree 4 for which this is false.

Outline of the proof

Assume $[K: \mathbb{Q}]=n \geq 5$ and its normal closure L has Galois group S_{n}. Let $f \in \mathcal{P} \mathcal{I}(K)$ be special. Choose $g \in \mathcal{P} \mathcal{I}(K)$ such that g and f are Hermite equivalent but $G L_{2}(\mathbb{Z})$-inequivalent.
Then $\exists \alpha, \beta$ such that $f(\alpha)=g(\beta)=0, K=\mathbb{Q}(\alpha)=\mathbb{Q}(\beta)$.

Outline of the proof

Assume $[K: \mathbb{Q}]=n \geq 5$ and its normal closure L has Galois group S_{n}.
Let $f \in \mathcal{P} \mathcal{I}(K)$ be special. Choose $g \in \mathcal{P} \mathcal{I}(K)$ such that g and f are Hermite equivalent but $G L_{2}(\mathbb{Z})$-inequivalent.
Then $\exists \alpha, \beta$ such that $f(\alpha)=g(\beta)=0, K=\mathbb{Q}(\alpha)=\mathbb{Q}(\beta)$.
Let $\xi \mapsto \xi^{(i)}(i=1, \ldots, n)$ be the embeddings $K \hookrightarrow \mathbb{C}$ and define the cross ratios of ξ,

$$
c r_{i j k l}(\xi)=\frac{\left(\xi^{(i)}-\xi^{(j)}\right)\left(\xi^{(k)}-\xi^{(l)}\right)}{\left(\xi^{(i)}-\xi^{(k)}\right)\left(\xi^{(j)}-\xi^{(l)}\right)}
$$

Lemma (\Leftarrow Hermite equivalence of f and g) $\frac{c r_{i j k l}(\alpha)}{c r_{i j k l}(\beta)} \in \mathcal{O}_{L}^{*}$ for all distinct $i, j, k, I \in\{1, \ldots, n\}$.

Outline of the proof

Assume $[K: \mathbb{Q}]=n \geq 5$ and its normal closure L has Galois group S_{n}.
Let $f \in \mathcal{P} \mathcal{I}(K)$ be special. Choose $g \in \mathcal{P} \mathcal{I}(K)$ such that g and f are Hermite equivalent but $G L_{2}(\mathbb{Z})$-inequivalent.
Then $\exists \alpha, \beta$ such that $f(\alpha)=g(\beta)=0, K=\mathbb{Q}(\alpha)=\mathbb{Q}(\beta)$.
Let $\xi \mapsto \xi^{(i)}(i=1, \ldots, n)$ be the embeddings $K \hookrightarrow \mathbb{C}$ and define the cross ratios of ξ,

$$
c r_{i j k l}(\xi)=\frac{\left(\xi^{(i)}-\xi^{(j)}\right)\left(\xi^{(k)}-\xi^{(l)}\right)}{\left(\xi^{(i)}-\xi^{(k)}\right)\left(\xi^{(j)}-\xi^{(l)}\right)} .
$$

Lemma (\Leftarrow Hermite equivalence of f and g)
$\frac{c r_{i j k l}(\alpha)}{c r_{i j k l}(\beta)} \in \mathcal{O}_{L}^{*}$ for all distinct $i, j, k, I \in\{1, \ldots, n\}$.
Using algebraic relations between the cross ratios and finiteness results for unit equations, one shows that there are only finitely many possibilities for the $c r_{i j k l}(\alpha)$.
Any given set of values for the $c r_{i j k l}(\alpha)$ fixes the $G L_{2}(\mathbb{Q})$-equivalence class of f.

Quantitative results

Theorem (Bérczes, Ev., Györy, 2004)
Let $n \geq 3$, and let \mathcal{O} be any order of a number field of degree n. Then the primitive, irreducible polynomials $f \in \mathbb{Z}[X]$ with invariant order \mathcal{O} lie in at most $C(n) G L_{2}(\mathbb{Z})$-equivalence classes.

Quantitative results

Theorem (Bérczes, Ev., Györy, 2004)
Let $n \geq 3$, and let \mathcal{O} be any order of a number field of degree n. Then the primitive, irreducible polynomials $f \in \mathbb{Z}[X]$ with invariant order \mathcal{O} lie in at most $C(n) G L_{2}(\mathbb{Z})$-equivalence classes.

The best bounds for $C(n)$ obtained so far:

$$
\begin{array}{rll}
n & C(n) & \\
3 & 1 & \text { (Delone, Faddeev, 1940) } \\
4 & 10 & \text { (Bhargava, 2021) } \\
\geq 5 & 2^{5 n^{2}} & \text { (Ev., Győry, 2017) }
\end{array}
$$

Quantitative results

Theorem (Bérczes, Ev., Györy, 2004)

Let $n \geq 3$, and let \mathcal{O} be any order of a number field of degree n. Then the primitive, irreducible polynomials $f \in \mathbb{Z}[X]$ with invariant order \mathcal{O} lie in at most $C(n) G L_{2}(\mathbb{Z})$-equivalence classes.

The best bounds for $C(n)$ obtained so far:

$$
\begin{array}{rll}
n & C(n) & \\
3 & 1 & \text { (Delone, Faddeev, 1940) } \\
4 & 10 & \text { (Bhargava, 2021) } \\
\geq 5 & 2^{5 n^{2}} & \text { (Ev., Győry, 2017) }
\end{array}
$$

In the case $n=4$, Bhargava used an injection from the $G L_{2}(\mathbb{Z})$-equiv. classes of quartic polynomials f with invariant order \mathcal{O} to sols. of a cubic Thue equation $F(x, y)=1$ and used Bennett's upper bound 10 for the number of sols. of the latter.

Quantitative results

Theorem (Bérczes, Ev., Györy, 2004)

Let $n \geq 3$, and let \mathcal{O} be any order of a number field of degree n. Then the primitive, irreducible polynomials $f \in \mathbb{Z}[X]$ with invariant order \mathcal{O} lie in at most $C(n) G L_{2}(\mathbb{Z})$-equivalence classes.

The best bounds for $C(n)$ obtained so far:

$$
\begin{array}{rll}
n & C(n) & \\
3 & 1 & \text { (Delone, Faddeev, 1940) } \\
4 & 10 & \text { (Bhargava, 2021) } \\
\geq 5 & 2^{5 n^{2}} & \text { (Ev., Győry, 2017) }
\end{array}
$$

In the case $n=4$, Bhargava used an injection from the $G L_{2}(\mathbb{Z})$-equiv. classes of quartic polynomials f with invariant order \mathcal{O} to sols. of a cubic Thue equation $F(x, y)=1$ and used Bennett's upper bound 10 for the number of sols. of the latter.
The case $n \geq 5$ was deduced from Beukers' and Schlickewei's upper bound $2^{16 r+8}$ for the number of solutions of $x+y=1$ in $x, y \in \Gamma$, with Γ a multiplicative group of rank r.

Quantitative results

Theorem

Let $n \geq 3$, and let \mathcal{O} be any order of a number field of degree n. Then the primitive, irreducible polynomials $f \in \mathbb{Z}[X]$ with invariant order \mathcal{O} lie in at most $C(n) G L_{2}(\mathbb{Z})$-equivalence classes.

```
    n C(n)
    3 1 (Delone, Faddeev, 1940)
    4 1 0 ~ ( B h a r g a v a , ~ 2 0 2 1 ) ~
\geq5 25n\mp@subsup{n}{}{2}}\quad\mathrm{ (Ev., Györy, 2017)
```


Open problems

- Improve $C(n)$ (to something polynomial in n ?)
- Lower bounds growing to infinity with n.

Quantitative results

Theorem

Let $n \geq 3$, and let \mathcal{O} be any order of a number field of degree n. Then the primitive, irreducible polynomials $f \in \mathbb{Z}[X]$ with invariant order \mathcal{O} lie in at most $C(n) G L_{2}(\mathbb{Z})$-equivalence classes.

```
    n C(n)
    3 1 (Delone, Faddeev, 1940)
    410 (Bhargava, 2021)
\geq5 2 5n
```


Corollary

The primitive, irreducible polynomials $f \in \mathbb{Z}[X]$ of degree n in a given Hermite equivalence class lie in at most $C(n) G L_{2}(\mathbb{Z})$-equivalence classes.

Congratulations, Kálmán, János, András.

