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László Remete, Ashvin Swaminathan

Oberwolfach workshop ‘Diophantische Approximationen’
April 22, 2022

Preprint: arXiv:2109.02932v2
Slides: https://pub.math.leidenuniv.nl/∼evertsejh/lectures.shtml



2/50

Aim of the lecture

In the 1850-s, Hermite introduced an equivalence relation for univariate
polynomials with integer coefficients, henceforth called ’Hermite
equivalence’, which was largely unnoticed.

We compare this with a better known equivalence relation, i.e.,
GL2(Z)-equivalence.

It will turn out that GL2(Z)-equivalence implies Hermite equivalence.

Our aims are the following:

I show that Hermite equivalence is weaker than GL2(Z)-equivalence,
i.e., to give examples of Hermite equivalent polynomials that are not
GL2(Z)-equivalent;

I say something about the number of GL2(Z)-equivalence classes
going into a Hermite equivalence class.
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GLn(Z)-equivalence of decomposable forms

Consider decomposable forms of degree n ≥ 2 in n variables

F (X) = c
n∏

i=1

(αi,1X1 + · · ·+ αi,nXn) ∈ Z[X1, . . . ,Xn],

where c ∈ Q∗ and αi,j ∈ Q for i , j = 1, . . . , n.

The discriminant of F is given by D(F ) := c2
(

det(αi,j)1≤i,j≤n
)2

.
We have D(F ) ∈ Z.

Two decomposable forms F ,G as above are called GLn(Z)-equivalent if

G (X) = ±F (UX) for some U ∈ GLn(Z)

(here X = (X1, . . . ,Xn)T is a column vector).

Two GLn(Z)-equivalent decomposable forms have the same discriminant.

Theorem (Hermite, 1850)

Let n ≥ 2, D 6= 0. Then the decomposable forms in Z[X1, . . . ,Xn] of
degree n and discriminant D lie in finitely many GLn(Z)-equivalence
classes.
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Hermite equivalence of univariate polynomials

Let f = c(X −α1) · · · (X −αn) ∈ Z[X ] (with c ∈ Z6=0, α1, . . . , αn ∈ Q).

Define the discriminant of f by D(f ) := c2n−2
∏

1≤i<j≤n(αi − αj)
2.

To f we associate the decomposable form

[f ](X) := cn−1
n∏

i=1

(X1 + αiX2 + · · ·+ αn−1
i Xn) ∈ Z[X1, . . . ,Xn].

Fact. D(f ) = D([f ]) (Vandermonde).

Hermite introduced in 1857 the following equivalence relation:

Two polynomials f , g ∈ Z[X ] of degree n are called Hermite equivalent if
the associated decomposable forms [f ] and [g ] are GLn(Z)-equivalent,
i.e., [g ](X) = ±[f ](UX) for some U ∈ GLn(Z).

Hermite’s theorem on decomposable forms and the above fact imply:

Theorem (Hermite, 1857)

Let n ≥ 2, D 6= 0. Then the polynomials f ∈ Z[X ] of degree n and of
discriminant D lie in finitely many Hermite equivalence classes.
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GL2(Z)-equivalence

We want to compare Hermite equivalence with GL2(Z)-equivalence.

Two polynomials f , g ∈ Z[X ] of degree n are called GL2(Z)-equivalent if
there is

(
a b
d e

)
∈ GL2(Z) such that

g(X ) = ±(dX + e)nf
(aX+b
dX+e

)
.

Lemma

Let f , g ∈ Z[X ] be two GL2(Z)-equivalent polynomials of equal degree.
Then they are Hermite equivalent.

The converse is in general not true.
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Proof of Lemma

We have to prove that any two GL2(Z)-equivalent polynomials f , g in
Z[X ] are Hermite equivalent.

Let f (X ) = c
∏n

i=1(X − αi ) ∈ Z[X ] and g(X ) = ±(dX + e)nf
(
aX+b
dX+e

)
,

where A :=
(
a b
d e

)
∈ GL2(Z).

Then g(X ) = ±c
∏n

i=1(βiX − γi ), βi = d − aαi , γi = −e + bαi .

Define the inner product of two column vectors
x = (x1, . . . , xn)T , y = (y1, . . . , yn)T by 〈x, y〉 := x1y1 + · · ·+ xnyn.

Let as before X = (X1, . . . ,Xn)T . Thus,

[f ](X) = cn−1
n∏

i=1

〈ai ,X〉, where ai = (1, αi , . . . , , α
n−1
i )T ,

[g ](X) = ±cn−1
n∏

i=1

〈bi ,X〉, where bi = (βn−1
i , βn−2

i γi , . . . , γ
n−1
i )T .

Then bi = t(A)ai with t(A) ∈ GLn(Z) for i = 1, . . . , n. So

[g ](X) = ±cn−1
n∏

i=1

〈t(A)ai ,X〉 = ±cn−1
n∏

i=1

〈ai , t(A)TX〉 = ±[f ](t(A)TX).
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Finiteness results for GL2(Z)-equivalence

Recall that two polynomials f , g ∈ Z[X ] of the same degree are
GL2(Z)-equivalent if g(X ) = ±(dX + e)deg f f

(
aX+b
dX+e

)
for some(

a b
d e

)
∈ GL2(Z).

Theorem (Birch and Merriman, 1972)

Let n ≥ 2, D 6= 0. Then there are only finitely many GL2(Z)-equivalence
classes of polynomials f ∈ Z[X ] of degree n and discriminant D.

The proof of Birch and Merriman is ineffective.
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Recall that two polynomials f , g ∈ Z[X ] of the same degree are
GL2(Z)-equivalent if g(X ) = ±(dX + e)deg f f

(
aX+b
dX+e

)
for some(

a b
d e

)
∈ GL2(Z).

Theorem (Ev. and Győry, 1991)

Let n ≥ 2, D 6= 0. Then there is an effective C = C (n,D) such that
every f ∈ Z[X ] of degree n and discriminant D is GL2(Z)-equivalent to a
polynomial f ∗ with H(f ∗) := max |coeff. f ∗| ≤ C .

In 2017, Ev. and Győry proved this with C = exp
(

(16n3)25n
2 |D|5n−3

)
.

The theorems of Birch and Merriman and Ev. and Győry on GL2(Z)-
equivalence use finiteness results for unit equations and Baker’s theory on
logarithmic forms, and thus are much deeper than Hermite’s.
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An algebraic criterion for Hermite equivalence

In what follows, we restrict ourselves to polynomials in Z[X ] that are
irreducible and primitive, i.e., with coefficients having gcd 1.

For an algebraic number α of degree n define the free Z-module
generated by 1, α, . . . , αn−1,

Mα :=
{
x1 + x2α + · · ·+ xnα

n−1 : x1, . . . , xn ∈ Z
}

Lemma

Let f , g ∈ Z[X ] be primitive, irreducible polynomials of degree ≥ 2. Then
f , g are Hermite equivalent if and only if there are λ 6= 0, a root α of f
and a root β of g such that Mβ = λMα = {λξ : ξ ∈Mα}.
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Connection with invariant orders

Let Mα :=
{
x1 + x2α+ · · ·+ xnα

n−1 : x1, . . . , xn ∈ Z
}

for α of degree n,

Zα := {ξ ∈ Q(α) : ξMα ⊆Mα}, the ring of scalars of Mα.

It can be shown that Zα = Z[α] ∩ Z[α−1]. It is an order in Q(α).

Let f ∈ Z[X ] be a primitive, irreducible polynomial and α a root of f .
Then Zα is called the invariant order of f ; it is up to isomorphism
uniquely determined.

We saw that if f , g are primitive, irreducible, Hermite equivalent
polynomials then there are λ 6= 0, a root α of f and a root β of g such
that Mβ = λMα. This implies Zα = Zβ .

Corollary 1

If f , g are irreducible, primitive, Hermite equivalent polynomials in Z[X ],
then f has a root α and g a root β such that Zα = Zβ , i.e., f and g
have isomorphic invariant orders.
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The monic case

Let f ∈ Z[X ] be irreducible and monic and α a root of f . Let deg f = n.
Recall that

Mα =
{ n∑

i=1

xiα
i−1 : xi ∈ Z

}
, Zα = {ξ ∈ Q(α) : ξMα ⊆Mα}.

Since f is monic, αn, αn+1, . . . ∈Mα. Hence Mα = Zα = Z[α].

Corollary 2

Let f , g ∈ Z[X ] be irreducible and monic. Then f , g are Hermite
equivalent if and only if f has a root α and g a root β such that
Z[α] = Z[β], i.e., if and only if f and g have isomorphic invariant orders.
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The non-monic case

If f , g ∈ Z[X ] are irreducible and monic, then
f , g are Hermite equivalent ⇐⇒ f , g have isomorphic invariant orders.

If f , g ∈ Z[X ] are irreducible, primitive and not both monic, then
f , g are Hermite equivalent =⇒ f , g have isomorphic invariant orders.

What about ⇐=?

Any two irreducible, primitive polynomials of degree 3 with isomorphic
invariant orders are GL2(Z)-equivalent (Delone and Faddeev, The theory
of irrationalities of the third degree, 1940).

Hence any two irreducible, primitive, Hermite equivalent polynomials of
degree 3 are GL2(Z)-equivalent.

For degree 4 this is no longer true (and very likely neither for degree ≥ 5
but we haven’t been able to produce any counterexamples in this case
yet).
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The non-monic case

Let f ∈ Z[X ] be irreducible and primitive and α a root of f . Let
deg f = n. Recall that

Mα =
{ n∑

i=1

xiα
i−1 : xi ∈ Z

}
, Zα = {ξ ∈ Q(α) : ξMα ⊆Mα}.

Define Iα := Zα + αZα to be the fractional ideal of Zα generated by 1
and α.

Theorem (BEGRS, 2022)

Let f , g ∈ Z[X ] be irreducible and primitive. Then f , g are Hermite
equivalent if and only if f has a root α and g a root β such that Zα = Zβ
and the fractional ideals Iα and Iβ belong to the same ideal class.

Example

Let f = 4X 4 − X 3 − 62X 2 + 13X + 255, g = 5X 4 − X 3 − 2X 2 − 7X − 6.
Then f and g are irreducible, f has a root α and g a root β such that
Q(α) = Q(β) and Zα = Zβ is the maximal order of Q(α).

But Iα is principal and Iβ is not. So f and g are not Hermite equivalent.
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Quantitative results

Theorem (Bérczes, Ev., Győry, 2004)

Let n ≥ 3, and let O be any order of a number field of degree n. Then
the primitive, irreducible polynomials f ∈ Z[X ] with invariant order O lie
in at most C (n) GL2(Z)-equivalence classes.

The best bounds for C (n) obtained so far:

n C (n)

3 1 (Delone, Faddeev, 1940)
4 10 (Bhargava, 2021)

≥ 5 25n2 (Ev., Győry, 2017)

In the case n = 4, Bhargava used an injection from the GL2(Z)-equiv.
classes of quartic polynomials f with invariant order O to sols. of a cubic
Thue equation F (x , y) = 1 and used Bennett’s upper bound 10 for the
number of sols. of the latter.

The case n ≥ 5 was deduced from Beukers’ and Schlickewei’s upper
bound 216r+8 for the number of solutions of x + y = 1 in x , y ∈ Γ, with Γ
a multiplicative group of rank r .
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Theorem (Bérczes, Ev., Győry, 2004)

Let n ≥ 3, and let O be any order of a number field of degree n. Then
the primitive, irreducible polynomials f ∈ Z[X ] with invariant order O lie
in at most C (n) GL2(Z)-equivalence classes.

The best bounds for C (n) obtained so far:

n C (n)

3 1 (Delone, Faddeev, 1940)
4 10 (Bhargava, 2021)

≥ 5 25n2 (Ev., Győry, 2017)

In the case n = 4, Bhargava used an injection from the GL2(Z)-equiv.
classes of quartic polynomials f with invariant order O to sols. of a cubic
Thue equation F (x , y) = 1 and used Bennett’s upper bound 10 for the
number of sols. of the latter.

The case n ≥ 5 was deduced from Beukers’ and Schlickewei’s upper
bound 216r+8 for the number of solutions of x + y = 1 in x , y ∈ Γ, with Γ
a multiplicative group of rank r .
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Quantitative results

Theorem

Let n ≥ 3, and let O be any order of a number field of degree n. Then
the primitive, irreducible polynomials f ∈ Z[X ] with invariant order O lie
in at most C (n) GL2(Z)-equivalence classes.

n C (n)

3 1 (Delone, Faddeev, 1940)
4 10 (Bhargava, 2021)

≥ 5 25n2 (Ev., Győry, 2017)

Open problems

I Improve C (n) (to something polynomial in n?)

I Lower bounds growing to infinity with n.
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Quantitative results

Theorem

Let n ≥ 3, and let O be any order of a number field of degree n. Then
the primitive, irreducible polynomials f ∈ Z[X ] with invariant order O lie
in at most C (n) GL2(Z)-equivalence classes.

n C (n)

3 1 (Delone, Faddeev, 1940)
4 10 (Bhargava, 2021)

≥ 5 25n2 (Ev., Győry, 2017)

Corollary

The primitive, irreducible polynomials f ∈ Z[X ] of degree n in a given
Hermite equivalence class lie in at most C (n) GL2(Z)-equivalence classes.
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Hermite equivalent but GL2(Z)-inequivalent
polynomials

For polynomials of degree 2 (trivial) and of degree 3 (Delone and
Faddeev) Hermite equivalence and GL2(Z)-equivalence coincide.

Theorem (BEGRS, 2021)

For every n ≥ 4 there are infinitely many pairs (f , g) of irreducible,
primitive polynomials in Z[X ] of degree n such that f , g are Hermite
equivalent but GL2(Z)-inequivalent.
These pairs lie in different Hermite equivalence classes.

The proof is by means of an explicit construction.
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The construction (I)

Consider the formal power series C (X ) :=
1−
√

1− 4X

2X
=
∞∑
i=0

CiX
i ,

with Ci = 1
i+1

(
2i
i

)
∈ Z the i-th Catalan number.

Let n ≥ 4, and a(n)(X ) :=
n−2∑
i=0

CiX
i ,

b(n)(X ) :=
X (a(n)(X ))2 − a(n)(X ) + 1

X n−1 ,

k(n)(X ) :=
1− X · a(n)(X − X 2)

(1− X )n−1
.

Note X n−1|Xa(n)(X )2 − a(n)(X ) + 1 since XC (X )2 − C (X ) + 1 = 0,

X n−1|1− (1− X )a(n)(X − X 2) since C (X − X 2) = 1
1−X

,

(1− X )n−1|1− X · a(n)(X − X 2).

So a(n)(X ), b(n)(X ), k(n)(X ) are polynomials in Z[X ] of degree n − 2.
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The construction (II)

Let a(n)(X ), b(n)(X ), k(n)(X ) be the polynomials from the previous slide,
let c be either 1 or a prime and t a prime different from c , and put

f
(n)
t,c (X ) := cX n + tk(n)(cX ),

g
(n)
t,c (X ) := cX n + t(1− 2cX · a(n)(X ))− cn−1t2b(n)(cX ).

Note that both f
(n)
t,c (X ), g

(n)
t,c (X ) are polynomials in Z[X ] of degree n

with leading coefficient c .
They are both primitive, and by Eisenstein’s criterion, both irreducible.

Lemma

Let α be a root of f
(n)
t,c (X ). Then β := α− cα2 is a root of g

(n)
t,c (X ) and

moreover, α = p
(n)
t,c (β), where

p
(n)
t,c (X ) := X · a(n)(cX ) + t · cn−2b(n)(cX ).

Proposition

Mα =Mβ , so f
(n)
t,c (X ) and g

(n)
t,c (X ) are Hermite equivalent.
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The final result

Theorem (BEGRS, 2021)

Let n ≥ 4, and let p > Cn−1 = n−1
(
2n−2
n−1

)
be a prime such that

k(n+1)(X ) has no zeros modulo p.
Further, let c be either 1 or a prime, and t a prime, such that

(*) c ≡ 1 (mod np), Cn−1t ≡ 1 (mod p), t 6= c .

Then the polynomials f
(n)
t,c (X ), g

(n)
t,c (X ) have the following properties:

(i) f
(n)
t,c (X ), g

(n)
t,c (X ) are irreducible, primitive polynomials in Z[X ] of

degree n with leading coefficient c ;

(ii) f
(n)
t,c (X ), g

(n)
t,c (X ) are Hermite equivalent;

(iii) f
(n)
t,c (X ), g

(n)
t,c (X ) are not GL2(Z)-equivalent.



43/50

The final result

Theorem (BEGRS, 2021)

Let n ≥ 4, and let p > Cn−1 = n−1
(
2n−2
n−1

)
be a prime such that

k(n+1)(X ) has no zeros modulo p.
Further, let c be either 1 or a prime, and t a prime, such that

(*) c ≡ 1 (mod np), Cn−1t ≡ 1 (mod p), t 6= c .

Then the polynomials f
(n)
t,c (X ), g

(n)
t,c (X ) have the following properties:

(i) f
(n)
t,c (X ), g

(n)
t,c (X ) are irreducible, primitive polynomials in Z[X ] of

degree n with leading coefficient c ;

(ii) f
(n)
t,c (X ), g

(n)
t,c (X ) are Hermite equivalent;

(iii) f
(n)
t,c (X ), g

(n)
t,c (X ) are not GL2(Z)-equivalent.

Using Newton polygons with various primes one shows that the polynomials
k(n+1)(X ) (n ≥ 4) are irreducible.

Then by Chebotarev’s density theorem there are infinitely many primes p
such that k(n+1)(X ) has no zeros modulo p.
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t,c (X ), g

(n)
t,c (X ) are Hermite equivalent;

(iii) f
(n)
t,c (X ), g

(n)
t,c (X ) are not GL2(Z)-equivalent.

By Dirichlet’s theorem on primes in arithmetic progressions, there are in-
finitely many pairs (c , t) with (*).

This gives for every n ≥ 4, infinitely many pairs (f , g) of irreducible, prim-
itive polynomials of degree n that are Hermite equivalent but not GL2(Z)-
equivalent. By making a further selection, we get infinitely many pairs
lying in different Hermite equivalence classes.
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Special polynomials

A polynomial f ∈ Z[X ] is called special if there is a polynomial g ∈ Z[X ]
that is Hermite equivalent to f , but GL2(Z)-inequivalent to f .

For every n ≥ 4 there are infinitely many primitive, irreducible, special
polynomials f ∈ Z[X ] of degree n that are pairwise Hermite inequivalent.

Vague belief

For a given number field K , let PI(K ) denote the set of primitive,
irreducible polynomials that have a root that generates K .

Then ‘most’ polynomials in PI(K ) are non-special.

Perhaps they lie in only finitely many GL2(Z)-equivalence classes?
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A result on special polynomials (work in progress)

Recall that a polynomial f ∈ Z[X ] is called special if there is a polynomial
g ∈ Z[X ] that is Hermite equivalent to f but GL2(Z)-inequivalent to f .

For a given number field K , we denote by PI(K ) the set of primitive,
irreducible polynomials f ∈ Z[X ] with Q[X ]/(f ) ∼= K .

We call two polynomials f , g ∈ Z[X ] of degree n GL2(Q)-equivalent if

g(X ) = λ(dx + e)nf
(aX+b
dX+e

)
for some λ ∈ Q∗ and

(
a b
d e

)
∈ GL2(Q).
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Recall that a polynomial f ∈ Z[X ] is called special if there is a polynomial
g ∈ Z[X ] that is Hermite equivalent to f but GL2(Z)-inequivalent to f .

For a given number field K , we denote by PI(K ) the set of primitive,
irreducible polynomials f ∈ Z[X ] with Q[X ]/(f ) ∼= K .
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g(X ) = λ(dx + e)nf
(aX+b
dX+e

)
for some λ ∈ Q∗ and

(
a b
d e

)
∈ GL2(Q).

Theorem

Let K be a number field of degree n ≥ 5 whose normal closure has as
Galois group the full symmetric group Sn.

Then the special polynomials in PI(K ) lie in finitely many
GL2(Q)-equivalence classes.
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Recall that a polynomial f ∈ Z[X ] is called special if there is a polynomial
g ∈ Z[X ] that is Hermite equivalent to f but GL2(Z)-inequivalent to f .

For a given number field K , we denote by PI(K ) the set of primitive,
irreducible polynomials f ∈ Z[X ] with Q[X ]/(f ) ∼= K .

We call two polynomials f , g ∈ Z[X ] of degree n GL2(Q)-equivalent if

g(X ) = λ(dx + e)nf
(aX+b
dX+e

)
for some λ ∈ Q∗ and

(
a b
d e

)
∈ GL2(Q).

Theorem

Let K be a number field of degree n ≥ 5 whose normal closure has as
Galois group the full symmetric group Sn.

Then the special polynomials in PI(K ) lie in finitely many
GL2(Q)-equivalence classes.

For number fields of degree 4 this is in general not true.

The proof uses finiteness results for unit equations.
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A result on special polynomials (work in progress)

Recall that a polynomial f ∈ Z[X ] is called special if there is a polynomial
g ∈ Z[X ] that is Hermite equivalent to f but GL2(Z)-inequivalent to f .

For a given number field K , we denote by PI(K ) the set of primitive,
irreducible polynomials f ∈ Z[X ] with Q[X ]/(f ) ∼= K .

We call two polynomials f , g ∈ Z[X ] of degree n GL2(Q)-equivalent if

g(X ) = λ(dx + e)nf
(aX+b
dX+e

)
for some λ ∈ Q∗ and

(
a b
d e

)
∈ GL2(Q).

Theorem

Let K be a number field of degree n ≥ 5 whose normal closure has as
Galois group the full symmetric group Sn.

Then the special polynomials in PI(K ) lie in finitely many
GL2(Q)-equivalence classes.

Question

In the above theorem, can GL2(Q)-equivalence be replaced by
GL2(Z)-equivalence?
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Thank you for your
attention.


