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Organization of the lecture:

1 Some results on monogenic orders

2 Introduction of rationally monogenic orders
(generalization of monogenic orders, special case of so-called
invariant rings of polynomials, introduced and studied by Birch and
Merriman (1972), Nakagawa (1989), Simon (2001), Del Corso,
Dvornicich and Simon (2005), Wood (2011))

3 Analogues of results in 1) for rationally monogenic orders

4 Brief outline of the proof of the main new result
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Monogenic orders

Let K be a number field of degree n, and denote by OK its ring of
integers.
An order of K is a subring of OK which has quotient field K .

An order O of K is called monogenic if there is α ∈ OK such that

O = Z[α] = {f (α) : f ∈ Z[X ]}.

Then O has Z-module basis 1, α, . . . , αn−1.
Such an α is called a monogenic generator of O.

Given an order O, we are interested in the set of α such that O = Z[α].

Two algebraic integers α, β are called Z-equivalent if β = ±α + a for
some a ∈ Z. For such α, β we have Z[α] = Z[β].

Thus, the set of α with O = Z[α] can be partitioned into Z-equivalence
classes. Such a Z-equivalence class is called a monogenization of O.
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A finiteness result

Every order of a quadratic number field K has precisely one
monogenization, i.e., for every order O of K there is α with O = Z[α]
and up to Z-equivalence it is unique.

But orders of number fields of degree ≥ 3 may have more than one
monogenization, or no monogenization at all.

Theorem (Győry, 1973)

Let K be a number field of degree ≥ 3. Then every order of K has at
most finitely many monogenizations, i.e., for every such order O there are
up to Z-equivalence at most finitely many α with O = Z[α].

Győry gave in fact an effective proof, this means that his proof provides
an algorithm that decides in principle whether O is monogenic and if so,
to find all monogenizations. In various situations, there are practical
algorithms to find all monogenizations.

We go into another direction, and consider upper bounds for the number
of monogenizations of an order.
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Number of monogenizations

Theorem (Ev., Győry, 1985)

Let K be a number field of degree n ≥ 3. Then every order of K has at
most C (n) = (4× 73n×n!)n−2 monogenizations.

Improvements:

C (3) = 10 (Bennett, 2001)

C (4) = 2760 (Bhargava, Akhtari, 2021)

C (n) = 24(n+5)(n−2) for n ≥ 5 (Ev., 2011)

For n = 3 there is an order with 9 monogenizations, namely the ring of
integers of Q(cos 2π/7).
For n ≥ 4 the present bounds for C (n) are probably far too large.

There are examples of orders of number fields of arbitrarily large degree n
with � n monogenizations (e.g., rings of integers of cyclotomic or real
cyclotomic fields).

But most orders have much fewer monogenizations.
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Almost all orders in a given number field have only
few monogenizations

Theorem (Bérczes, Ev., Győry, 2013)

Let K be a number field of degree ≥ 3.
Then K has at most finitely many orders with more than two
monogenizations.

This is best possible.

Example 1. Suppose OK has infinitely many units ε such that Q(ε) = K .
Then Z[ε] = Z[ε−1] give infinitely many orders of K with two
monogenizations (for there is no a ∈ Z with ε−1 = ±ε+ a).

Example 2. Let α, β ∈ OK with K = Q(α) = Q(β) be

GL2(Z)-equivalent, i.e., β= aα+b
cα+d

for some
(
a b
c d

)
∈GL2(Z) (i.e.,

a, b, c , d ∈ Z and ad − bc = ±1). Suppose c 6= 0.
Then Z[α] = Z[β] is an order of K with two monogenizations.

The examples suggest, that for a given order O one should consider the
GL2(Z)-equivalence classes of α with O = Z[α].
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Let K be a number field of degree ≥ 3.
Then K has at most finitely many orders with more than two
monogenizations.

This is best possible.

Example 1. Suppose OK has infinitely many units ε such that Q(ε) = K .
Then Z[ε] = Z[ε−1] give infinitely many orders of K with two
monogenizations (for there is no a ∈ Z with ε−1 = ±ε+ a).

Example 2. Let α, β ∈ OK with K = Q(α) = Q(β) be

GL2(Z)-equivalent, i.e., β= aα+b
cα+d

for some
(
a b
c d

)
∈GL2(Z) (i.e.,

a, b, c , d ∈ Z and ad − bc = ±1). Suppose c 6= 0.
Then Z[α] = Z[β] is an order of K with two monogenizations.

The examples suggest, that for a given order O one should consider the
GL2(Z)-equivalence classes of α with O = Z[α].



12/31

Almost all orders in a given number field have only
few monogenizations
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GL2(Z)-equivalence classes

Recall that α, β are called GL2(Z)-equivalent if β = aα+b
cα+d

for some(
a b
c d

)
∈ GL2(Z).

Theorem (Bérczes, Ev., Győry, 2013)

Let K be a number field of degree n ≥ 5 whose Galois closure has Galois
group Sn (the permutation group on n elements).

Then for all orders O of K with at most finitely many exceptions, the set
of α with O = Z[α] is contained in at most one GL2(Z)-equivalence class.

The condition on the Galois group of the Galois closure of K is technical;
it can be weakened somewhat, but we do not know whether it can be
removed completely.

If K has degree 3 then the assertion of the theorem holds true for all
orders of K , without exceptions (elementary fact).

For number fields of degree 4 the theorem is false.
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Let K be a number field of degree n ≥ 5 whose Galois closure has Galois
group Sn (the permutation group on n elements).

Then for all orders O of K with at most finitely many exceptions, the set
of α with O = Z[α] is contained in at most one GL2(Z)-equivalence class.

The condition on the Galois group of the Galois closure of K is technical;
it can be weakened somewhat, but we do not know whether it can be
removed completely.

If K has degree 3 then the assertion of the theorem holds true for all
orders of K , without exceptions (elementary fact).

For number fields of degree 4 the theorem is false.



15/31

GL2(Z)-equivalence classes, degree 4

Theorem (Bérczes, Ev., Győry, 2013)

Let r , s be integers such that f (X ) = (X 2 − r)2 − X − s is irreducible,
and let K = Q(α), where α is a root of f .

Then K has infinitely many orders Om (m = 1, 2, . . .) with the following
property: Om = Z[αm] = Z[βm], where βm = α2

m − rm, αm = β2
m − sm for

certain integers rm, sm.

Clearly, αm, βm are not GL2(Z)-equivalent. For otherwise, βm = aαm+b
cαm+d

with
(
a b
c d

)
∈ GL2(Z) and αm would have degree 3.

Our aim is to generalize the previous results from monogenic orders Z[α]
to so-called rationally monogenic orders Zα, attached to not necessarily
integral algebraic numbers α.
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Rationally monogenic orders

Let α be a not necessarily integral algebraic number of degree n. Let
fα(X ) := a0X

n + · · ·+ an ∈ Z[X ] be its minimal polynomial, with a0 > 0,
gcd(a0, . . . , an) = 1.

Definition. Write fα(X ) = (X − α)(a0X
n−1 + ω1X

n−2 + · · ·+ ωn−1).

Then Zα is the Z-module with basis 1, ω1, . . . , ωn−1.

This module was introduced by Birch and Merriman (1972).
Nakagawa (1989) showed that it is an order of Q(α), i.e., contained in
the ring of integers of Q(α) and closed under multiplication.

Equivalent definitions:

1. Zα = Z[α] ∩ Z[α−1] (Del Corso, Dvornicich, Simon, 2005).

2. Let Mα := {x0 + x1α + · · ·+ xn−1α
n−1 : x0, . . . , xn−1 ∈ Z}. Then

Zα = {ξ ∈ Q(α) : ξMα ⊆Mα} = {ξ ∈ Q(α) : ξµ ∈Mα ∀µ ∈Mα}.

We call orders of the shape Zα rationally monogenic orders.
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{Monogenic orders}
⊂
6=
{Rationally monogenic orders}

For a non-zero algebraic number α of degree n define

Mα = {x0 + x1α + · · ·+ xn−1α
n−1 : x0, . . . , xn−1 ∈ Z},

Zα = {ξ ∈ Q(α) : ξMα ⊆Mα}.

Orders of the shape Zα are called rationally monogenic orders.

If α is an algebraic integer, then Zα =Mα = Z[α].

So monogenic orders are rationally monogenic.

The following was probably known before:

Theorem 1 (Ev., 2023)

Every number field of degree ≥ 3 has infinitely many orders that are
rationally monogenic but not monogenic.
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Rational monogenizations

Let α be a non-zero algebraic number of degree n. Recall

Mα = {x0 + x1α + · · ·+ xn−1α
n−1 : x0, . . . , xn−1 ∈ Z},

Zα = {ξ ∈ Q(α) : ξMα ⊆Mα}.

Lemma

Let α, β be two GL2(Z)-equivalent algebraic numbers, i.e., β = aα+b
cα+d

for

some
(
a b
c d

)
∈ GL2(Z). Then Zα = Zβ .

Proof.

Suppose α, β have degree n. Then Mβ = (cα + d)1−nMα. Hence
Zβ = Zα.

Given an order O of a number field K , a rational monogenization of O is
a GL2(Z)-equivalence class of α such that Zα = O.
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Finiteness results

Every order of a cubic number field has at most one rational
monogenization, that is, for every such order O there is up to
GL2(Z)-equivalence at most one α with O = Zα.

Orders of number fields of degree ≥ 4 may not be rationally monogenic,
or have more than one rational monogenization.

Work of Birch and Merriman (1972) implies the following:

Theorem

Let K be a number field of degree ≥ 4. Then every order of K has at
most finitely many rational monogenizations, i.e., for every such order O
there are up to GL2(Z)-equivalence at most finitely many α such that
Zα = O.

The original proof of Birch and Merriman is ineffective. Ev. and Győry
(1991) gave an effective proof, i.e., it allows to determine the rational
monogenizations in principle.
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Number of rational monogenizations

Theorem (Bérczes, Ev., Győry, 2004)

Let K be a number field of degree n ≥ 4. Then every order of K has at
most C ′(n) := n × 224n3 rational monogenizations.

Improvements:

C ′(4) = 40 (Bhargava, 2021)

C ′(n) = 25n2 for n ≥ 5 (Ev., Győry, 2017)

Similarly as in the monogenic case, for most orders the actual number of
rational monogenizations is much smaller.
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Almost all orders in a given number field have only
few rational monogenizations

Theorem 2 (Ev., 2023)

(i) Let K be a number field of degree 4. Then K has at most finitely
many orders with more than two rational monogenizations.

(ii) Let K be a number field of degree n ≥ 5 whose Galois closure has
Galois group Sn. Then K has at most finitely many orders with more
than one rational monogenization.

We saw that there are quartic number fields with infinitely many orders
Z[αm] = Z[βm] such that αm, βm are not GL2(Z)-equivalent.
Hence (i) is best possible.

For number fields of degree ≥ 5, the condition on the Galois group of the
Galois closure of K is technical; it can be weakened somewhat but we
don’t know whether it can be removed completely.

The proofs of (i) and (ii) are different. We briefly outline the proof of (ii).
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Cross ratios and units

Let K be a number field of degree n ≥ 5.

We consider the orders O = Zα = Zβ of K with α, β not
GL2(Z)-equivalent and want to prove that there are only finitely many
such orders.
The proof uses cross ratios.

Let L be the Galois closure of K , and x 7→ x (i) (i = 1, . . . , n) the
embeddings K ↪→ L.
Denote by OL the ring of integers of L, and by O∗L the unit group of OL.

Define the cross ratios crijkl(α) :=
(α(i) − α(j))(α(k) − α(l))

(α(i) − α(k))(α(j) − α(l))
for α ∈ K and distinct i , j , k , l ∈ {1, . . . , n}.

Proposition

Let α, β be such that Q(α) = Q(β) = K and Zα = Zβ .
Then for all distinct i , j , k, l we have crijkl(α)/crijkl(β) ∈ O∗L .



27/31

Cross ratios and units

Let K be a number field of degree n ≥ 5.

We consider the orders O = Zα = Zβ of K with α, β not
GL2(Z)-equivalent and want to prove that there are only finitely many
such orders.
The proof uses cross ratios.

Let L be the Galois closure of K , and x 7→ x (i) (i = 1, . . . , n) the
embeddings K ↪→ L.
Denote by OL the ring of integers of L, and by O∗L the unit group of OL.

Define the cross ratios crijkl(α) :=
(α(i) − α(j))(α(k) − α(l))

(α(i) − α(k))(α(j) − α(l))
for α ∈ K and distinct i , j , k , l ∈ {1, . . . , n}.

Proposition

Let α, β be such that Q(α) = Q(β) = K and Zα = Zβ .
Then for all distinct i , j , k , l we have crijkl(α)/crijkl(β) ∈ O∗L .



28/31

Outline of the proof of Theorem 2 (ii)

Let K be a number field of degree n ≥ 5 and L its Galois closure.
Assume that L has Galois group Sn.

There are results from Diophantine geometry, giving precise information
on the structure of the set of solutions of polynomial unit equations

f (x1, . . . , xm) = 0 in x1, . . . , xm ∈ O∗L , where f ∈ L[X1, . . . ,Xm]

(Ev., van der Poorten and Schlickewei, Laurent, 1980-s).

The quantities εijkl := crijkl(α)/crijkl(β) with Zα = Zβ belong to O∗L and
satisfy polynomial relations, e.g., for any five distinct i , j , k, l ,m,

(εjklm − 1)(εimkj − 1)(εiljk − 1) = (εjkml − 1)(εimjk − 1)(εilkj − 1).

An application of the general result on polynomial unit equations gives
that the tuple ε = (εijkl)i,j,k,l belongs to a finite set depending only on K .

An elementary (but somewhat complicated) argument shows that each
tuple ε gives rise to at most finitely many orders of K . QED
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Thank you for your
attention.


