Orders with few rational monogenizations

Jan-Hendrik Evertse Universiteit Leiden

Analytic Number Theory Seminar

Utrecht, October 18, 2024

Contents

We discuss part of

J.-H. Evertse, Orders with few rational monogenizations, Acta Arithmetica 210 (2023), 307–335.

Organization of the lecture:

- 1 Some results on monogenic orders
- 2 Introduction of rationally monogenic orders (generalization of monogenic orders, special case of so-called invariant rings of polynomials, introduced and studied by Birch and Merriman (1972), Nakagawa (1989), Simon (2001), Del Corso, Dvornicich and Simon (2005), Wood (2011))
- 3 Analogues of results in 1) for rationally monogenic orders
- 4 Brief outline of the proof of the main new result

Let K be a number field of degree n, and denote by O_K its ring of integers.

An order of K is a subring of O_K which has quotient field K.

An order O of K is called *monogenic* if there is $\alpha \in O_K$ such that

$$
O=\mathbb{Z}[\alpha]=\{f(\alpha): f\in\mathbb{Z}[X]\}.
$$

Then O has $\mathbb Z$ -module basis $1, \alpha, \ldots, \alpha^{n-1}.$ Such an α is called a *monogenic generator* of O.

Given an order O, we are interested in the set of α such that $O = \mathbb{Z}[\alpha]$.

Let K be a number field of degree n, and denote by O_K its ring of integers.

An order of K is a subring of O_K which has quotient field K.

An order O of K is called *monogenic* if there is $\alpha \in O_K$ such that

$$
O=\mathbb{Z}[\alpha]=\{f(\alpha): f\in \mathbb{Z}[X]\}.
$$

Then O has $\mathbb Z$ -module basis $1, \alpha, \ldots, \alpha^{n-1}.$ Such an α is called a *monogenic generator* of O.

Given an order O, we are interested in the set of α such that $O = \mathbb{Z}[\alpha]$.

Two algebraic integers α, β are called Z-equivalent if $\beta = \pm \alpha + a$ for some $a \in \mathbb{Z}$. For such α, β we have $\mathbb{Z}[\alpha] = \mathbb{Z}[\beta]$.

Thus, the set of α with $O = \mathbb{Z}[\alpha]$ can be partitioned into \mathbb{Z} -equivalence classes. Such a $\mathbb Z$ -equivalence class is called a *monogenization* of O .

A finiteness result

Every order of a quadratic number field K has precisely one monogenization, i.e., for every order O of K there is α with $O = \mathbb{Z}[\alpha]$ and up to $\mathbb Z$ -equivalence it is unique.

But orders of number fields of degree > 3 may have more than one monogenization, or no monogenization at all.

A finiteness result

Every order of a quadratic number field K has precisely one monogenization, i.e., for every order O of K there is α with $O = \mathbb{Z}[\alpha]$ and up to $\mathbb Z$ -equivalence it is unique.

But orders of number fields of degree > 3 may have more than one monogenization, or no monogenization at all.

Theorem (Győry, 1973)

Let K be a number field of degree > 3 . Then every order of K has at most finitely many monogenizations, i.e., for every such order O there are up to Z-equivalence at most finitely many α with $O = \mathbb{Z}[\alpha]$.

Győry gave in fact an *effective* proof, this means that his proof provides an algorithm that decides in principle whether O is monogenic and if so, to find all monogenizations. In various situations, there are practical algorithms to find all monogenizations.

We go into another direction, and consider upper bounds for the *number* of monogenizations of an order.

Theorem (Ev., Győry, 1985)

Let K be a number field of degree $n \geq 3$. Then every order of K has at most $C(n) = (4 \times 7^{3n \times n!})^{n-2}$ monogenizations.

Improvements:

 $C(3) = 10$ (Bennett, 2001) $C(4) = 2760$ (Bhargava, Akhtari, 2021) $C(n) = 2^{4(n+5)(n-2)}$ for $n \ge 5$ (Ev., 2011) Theorem (Ev., Győry, 1985)

Let K be a number field of degree $n > 3$. Then every order of K has at most $C(n) = (4 \times 7^{3n \times n!})^{n-2}$ monogenizations.

Improvements:

 $C(3) = 10$ (Bennett, 2001) $C(4) = 2760$ (Bhargava, Akhtari, 2021) $C(n) = 2^{4(n+5)(n-2)}$ for $n \ge 5$ (Ev., 2011)

For $n = 3$ there is an order with 9 monogenizations, namely the ring of integers of $\mathbb{Q}(\cos 2\pi/7)$.

For $n > 4$ the present bounds for $C(n)$ are probably far too large.

There are examples of orders of number fields of arbitrarily large degree n with \gg *n* monogenizations (e.g., rings of integers of cyclotomic or real cyclotomic fields).

But most orders have much fewer monogenizations.

Theorem (Bérczes, Ev., Győry, 2013)

Let K be a number field of degree > 3 . Then K has at most finitely many orders with more than two monogenizations.

This is best possible.

Theorem (Bérczes, Ev., Győry, 2013)

Let K be a number field of degree > 3 . Then K has at most finitely many orders with more than two monogenizations.

This is best possible.

Example 1. Suppose O_K has infinitely many units ε such that $\mathbb{Q}(\varepsilon) = K$. Then $\mathbb{Z}[\varepsilon]=\mathbb{Z}[\varepsilon^{-1}]$ give infinitely many orders of K with two monogenizations (for there is no $a \in \mathbb{Z}$ with $\varepsilon^{-1} = \pm \varepsilon + a$).

Theorem (Bérczes, Ev., Győry, 2013)

Let K be a number field of degree > 3 . Then K has at most finitely many orders with more than two monogenizations.

This is best possible.

Example 1. Suppose O_K has infinitely many units ε such that $\mathbb{Q}(\varepsilon) = K$. Then $\mathbb{Z}[\varepsilon]=\mathbb{Z}[\varepsilon^{-1}]$ give infinitely many orders of K with two monogenizations (for there is no $a \in \mathbb{Z}$ with $\varepsilon^{-1} = \pm \varepsilon + a$).

Example 2. Let $\alpha, \beta \in O_K$ with $K = \mathbb{Q}(\alpha) = \mathbb{Q}(\beta)$ be $GL_2(\mathbb{Z})$ -equivalent, i.e., $\beta = \frac{a\alpha+b}{c\alpha+d}$ $\frac{a\alpha+b}{c\alpha+d}$ for some $\left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\right) \in GL_2(\mathbb{Z})$ (i.e., a, b, c, $d \in \mathbb{Z}$ and $ad - bc = \pm 1$). Suppose $c \neq 0$. Then $\mathbb{Z}[\alpha] = \mathbb{Z}[\beta]$ is an order of K with two monogenizations.

Theorem (Bérczes, Ev., Győry, 2013)

Let K be a number field of degree > 3 . Then K has at most finitely many orders with more than two monogenizations.

This is best possible.

Example 1. Suppose O_K has infinitely many units ε such that $\mathbb{Q}(\varepsilon) = K$. Then $\mathbb{Z}[\varepsilon]=\mathbb{Z}[\varepsilon^{-1}]$ give infinitely many orders of K with two monogenizations (for there is no $a \in \mathbb{Z}$ with $\varepsilon^{-1} = \pm \varepsilon + a$).

Example 2. Let $\alpha, \beta \in O_K$ with $K = \mathbb{Q}(\alpha) = \mathbb{Q}(\beta)$ be $GL_2(\mathbb{Z})$ -equivalent, i.e., $\beta = \frac{a\alpha+b}{c\alpha+d}$ $\frac{a\alpha+b}{c\alpha+d}$ for some $\left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\right) \in GL_2(\mathbb{Z})$ (i.e., a, b, c, $d \in \mathbb{Z}$ and $ad - bc = \pm 1$). Suppose $c \neq 0$. Then $\mathbb{Z}[\alpha] = \mathbb{Z}[\beta]$ is an order of K with two monogenizations.

The examples suggest, that for a given order O one should consider the $GL_2(\mathbb{Z})$ -equivalence classes of α with $O = \mathbb{Z}[\alpha]$.

$GL_2(\mathbb{Z})$ -equivalence classes

Recall that α,β are called $GL_2(\mathbb{Z})$ -equivalent if $\beta=\frac{a\alpha+b}{c\alpha+d}$ $\frac{a\alpha+b}{c\alpha+d}$ for some $\left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\right) \in GL_2(\mathbb{Z}).$

Theorem (Bérczes, Ev., Győry, 2013)

Let K be a number field of degree $n \geq 5$ whose Galois closure has Galois group S_n (the permutation group on n elements).

Then for all orders O of K with at most finitely many exceptions, the set of α with $O = \mathbb{Z}[\alpha]$ is contained in at most one $GL_2(\mathbb{Z})$ -equivalence class.

$\overline{GL_2}(\mathbb{Z})$ -equivalence classes

Recall that α,β are called $GL_2(\mathbb{Z})$ -equivalent if $\beta=\frac{a\alpha+b}{c\alpha+d}$ $\frac{a\alpha+b}{c\alpha+d}$ for some $\left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\right) \in GL_2(\mathbb{Z}).$

Theorem (Bérczes, Ev., Győry, 2013)

Let K be a number field of degree $n \geq 5$ whose Galois closure has Galois group S_n (the permutation group on n elements).

Then for all orders O of K with at most finitely many exceptions, the set of α with $O = \mathbb{Z}[\alpha]$ is contained in at most one $GL_2(\mathbb{Z})$ -equivalence class.

The condition on the Galois group of the Galois closure of K is technical; it can be weakened somewhat, but we do not know whether it can be removed completely.

If K has degree 3 then the assertion of the theorem holds true for all orders of K , without exceptions (elementary fact).

For number fields of degree 4 the theorem is false.

Theorem (Bérczes, Ev., Győry, 2013)

Let r, s be integers such that $f(X) = (X^2 - r)^2 - X - s$ is irreducible, and let $K = \mathbb{Q}(\alpha)$, where α is a root of f.

Then K has infinitely many orders O_m (m = 1, 2, ...) with the following property: $O_m = \mathbb{Z}[\alpha_m] = \mathbb{Z}[\beta_m]$, where $\beta_m = \alpha_m^2 - r_m$, $\alpha_m = \beta_m^2 - s_m$ for certain integers r_m , s_m .

Clearly, α_m, β_m are not $GL_2(\mathbb{Z})$ -equivalent. For otherwise, $\beta_m = \frac{a\alpha_m+b}{C\alpha_m+d}$ $c\alpha_m+d$ with $\left(\begin{smallmatrix} a & b \ c & d \end{smallmatrix}\right) \in GL_2(\mathbb{Z})$ and α_m would have degree 3.

Our aim is to generalize the previous results from monogenic orders $\mathbb{Z}[\alpha]$ to so-called rationally monogenic orders \mathbb{Z}_{α} , attached to not necessarily integral algebraic numbers α .

Rationally monogenic orders

Let α be a not necessarily integral algebraic number of degree n. Let $f_\alpha(X) := a_0 X^n + \cdots + a_n \in \mathbb{Z}[X]$ be its minimal polynomial, with $a_0 > 0$, $gcd(a_0, ..., a_n) = 1.$

Definition. Write $f_{\alpha}(X) = (X - \alpha)(a_0X^{n-1} + \omega_1X^{n-2} + \cdots + \omega_{n-1}).$ Then \mathbb{Z}_{α} is the \mathbb{Z} -module with basis $1, \omega_1, \ldots, \omega_{n-1}$.

This module was introduced by Birch and Merriman (1972). Nakagawa (1989) showed that it is an order of $\mathbb{Q}(\alpha)$, i.e., contained in the ring of integers of $\mathbb{Q}(\alpha)$ and closed under multiplication.

Rationally monogenic orders

Let α be a not necessarily integral algebraic number of degree n. Let $f_\alpha(X) := a_0 X^n + \cdots + a_n \in \mathbb{Z}[X]$ be its minimal polynomial, with $a_0 > 0$, $gcd(a_0, ..., a_n) = 1.$

Definition. Write $f_{\alpha}(X) = (X - \alpha)(a_0X^{n-1} + \omega_1X^{n-2} + \cdots + \omega_{n-1}).$ Then \mathbb{Z}_{α} is the \mathbb{Z} -module with basis $1, \omega_1, \ldots, \omega_{n-1}$.

This module was introduced by Birch and Merriman (1972). Nakagawa (1989) showed that it is an order of $\mathbb{Q}(\alpha)$, i.e., contained in the ring of integers of $\mathbb{Q}(\alpha)$ and closed under multiplication.

Equivalent definitions:

\n- **1.**
$$
\mathbb{Z}_{\alpha} = \mathbb{Z}[\alpha] \cap \mathbb{Z}[\alpha^{-1}]
$$
 (Del Corso, Dvornicich, Simon, 2005).
\n- **2.** Let $\mathcal{M}_{\alpha} := \{x_0 + x_1\alpha + \cdots + x_{n-1}\alpha^{n-1} : x_0, \ldots, x_{n-1} \in \mathbb{Z}\}$. Then $\mathbb{Z}_{\alpha} = \{\xi \in \mathbb{Q}(\alpha) : \xi \mathcal{M}_{\alpha} \subseteq \mathcal{M}_{\alpha}\} = \{\xi \in \mathbb{Q}(\alpha) : \xi \mu \in \mathcal{M}_{\alpha} \,\forall \mu \in \mathcal{M}_{\alpha}\}.$
\n

We call orders of the shape \mathbb{Z}_{α} rationally monogenic orders.

{Monogenic orders} $\subsetneq\ \{\textsf{Rationally monogenic orders}\}$

For a non-zero algebraic number α of degree *n* define

$$
\mathcal{M}_{\alpha} = \{x_0 + x_1\alpha + \dots + x_{n-1}\alpha^{n-1} : x_0, \dots, x_{n-1} \in \mathbb{Z}\},
$$

$$
\mathbb{Z}_{\alpha} = \{\xi \in \mathbb{Q}(\alpha) : \xi \mathcal{M}_{\alpha} \subseteq \mathcal{M}_{\alpha}\}.
$$

Orders of the shape \mathbb{Z}_{α} are called rationally monogenic orders.

If α is an algebraic integer, then $\mathbb{Z}_{\alpha} = \mathcal{M}_{\alpha} = \mathbb{Z}[\alpha]$. So monogenic orders are rationally monogenic.

The following was probably known before:

Theorem 1 (Ev., 2023)

Every number field of degree ≥ 3 has infinitely many orders that are rationally monogenic but not monogenic.

Let α be a non-zero algebraic number of degree n. Recall

$$
\mathcal{M}_{\alpha} = \{x_0 + x_1\alpha + \dots + x_{n-1}\alpha^{n-1} : x_0, \dots, x_{n-1} \in \mathbb{Z}\},
$$

$$
\mathbb{Z}_{\alpha} = \{\xi \in \mathbb{Q}(\alpha) : \xi \mathcal{M}_{\alpha} \subseteq \mathcal{M}_{\alpha}\}.
$$

Lemma

Let α, β be two GL₂(\mathbb{Z})-equivalent algebraic numbers, i.e., $\beta = \frac{a\alpha+b}{c\alpha+d}$ $\frac{a\alpha+b}{c\alpha+d}$ for some $(\begin{smallmatrix} a & b \ c & d \end{smallmatrix}) \in GL_2(\mathbb{Z})$. Then $\mathbb{Z}_{\alpha} = \mathbb{Z}_{\beta}$.

Proof.

Suppose α,β have degree $n.$ Then $\mathcal{M}_\beta=(c\alpha+d)^{1-n}\mathcal{M}_\alpha.$ Hence $\mathbb{Z}_{\beta}=\mathbb{Z}_{\alpha}$.

Given an order O of a number field K , a *rational monogenization* of O is a $GL_2(\mathbb{Z})$ -equivalence class of α such that $\mathbb{Z}_{\alpha} = O$.

Г

Finiteness results

Every order of a cubic number field has at most one rational monogenization, that is, for every such order O there is up to $GL_2(\mathbb{Z})$ -equivalence at most one α with $O = \mathbb{Z}_{\alpha}$.

Orders of number fields of degree $>$ 4 may not be rationally monogenic, or have more than one rational monogenization.

Finiteness results

Every order of a cubic number field has at most one rational monogenization, that is, for every such order O there is up to $GL_2(\mathbb{Z})$ -equivalence at most one α with $\mathcal{O} = \mathbb{Z}_{\alpha}$.

Orders of number fields of degree $>$ 4 may not be rationally monogenic, or have more than one rational monogenization.

Work of Birch and Merriman (1972) implies the following:

Theorem

Let K be a number field of degree $>$ 4. Then every order of K has at most finitely many rational monogenizations, i.e., for every such order O there are up to $GL_2(\mathbb{Z})$ -equivalence at most finitely many α such that $\mathbb{Z}_{\alpha}=O.$

The original proof of Birch and Merriman is ineffective. Ev. and Gy˝ory (1991) gave an effective proof, i.e., it allows to determine the rational monogenizations in principle.

Theorem (Bérczes, Ev., Győry, 2004)

Let K be a number field of degree $n \geq 4$. Then every order of K has at most $C'(n) := n \times 2^{24n^3}$ rational monogenizations.

Improvements:

$$
C'(4) = 40 \text{ (Bhargava, 2021)}
$$

$$
C'(n) = 2^{5n^2} \text{ for } n \ge 5 \text{ (Ev., Győry, 2017)}
$$

Similarly as in the monogenic case, for most orders the actual number of rational monogenizations is much smaller.

Theorem 2 (Ev., 2023)

- (i) Let K be a number field of degree 4. Then K has at most finitely many orders with more than two rational monogenizations.
- (ii) Let K be a number field of degree $n \geq 5$ whose Galois closure has Galois group S_n . Then K has at most finitely many orders with more than one rational monogenization.

Theorem 2 (Ev., 2023)

- (i) Let K be a number field of degree 4. Then K has at most finitely many orders with more than two rational monogenizations.
- (ii) Let K be a number field of degree $n > 5$ whose Galois closure has Galois group S_n . Then K has at most finitely many orders with more than one rational monogenization.

We saw that there are quartic number fields with infinitely many orders $\mathbb{Z}[\alpha_m] = \mathbb{Z}[\beta_m]$ such that α_m , β_m are not $GL_2(\mathbb{Z})$ -equivalent. Hence (i) is best possible.

For number fields of degree > 5 , the condition on the Galois group of the Galois closure of K is technical; it can be weakened somewhat but we don't know whether it can be removed completely.

Theorem 2 (Ev., 2023)

- (i) Let K be a number field of degree 4. Then K has at most finitely many orders with more than two rational monogenizations.
- (ii) Let K be a number field of degree $n > 5$ whose Galois closure has Galois group S_n . Then K has at most finitely many orders with more than one rational monogenization.

We saw that there are quartic number fields with infinitely many orders $\mathbb{Z}[\alpha_m] = \mathbb{Z}[\beta_m]$ such that α_m , β_m are not $GL_2(\mathbb{Z})$ -equivalent. Hence (i) is best possible.

For number fields of degree > 5 , the condition on the Galois group of the Galois closure of K is technical; it can be weakened somewhat but we don't know whether it can be removed completely.

The proofs of (i) and (ii) are different. We briefly outline the proof of (ii).

Let K be a number field of degree $n > 5$.

We consider the orders $O = \mathbb{Z}_{\alpha} = \mathbb{Z}_{\beta}$ of K with α , β not $GL_2(\mathbb{Z})$ -equivalent and want to prove that there are only finitely many such orders.

The proof uses cross ratios.

Let L be the Galois closure of K , and $x \mapsto x^{(i)}$ $(i = 1, \ldots, n)$ the embeddings $K \hookrightarrow L$.

Denote by O_L the ring of integers of L, and by O_L^* the unit group of O_L .

Define the *cross ratios*
$$
\text{cr}_{ijkl}(\alpha) := \frac{(\alpha^{(i)} - \alpha^{(j)})(\alpha^{(k)} - \alpha^{(l)})}{(\alpha^{(i)} - \alpha^{(k)})(\alpha^{(j)} - \alpha^{(l)})}
$$

for $\alpha \in K$ and distinct $i, j, k, l \in \{1, ..., n\}.$

Let K be a number field of degree $n > 5$.

We consider the orders $O = \mathbb{Z}_{\alpha} = \mathbb{Z}_{\beta}$ of K with α , β not $GL_2(\mathbb{Z})$ -equivalent and want to prove that there are only finitely many

such orders.

The proof uses cross ratios.

Let L be the Galois closure of K , and $x \mapsto x^{(i)}$ $(i = 1, \ldots, n)$ the embeddings $K \hookrightarrow L$.

Denote by O_L the ring of integers of L, and by O_L^* the unit group of O_L .

Define the *cross ratios*
$$
\text{cr}_{ijkl}(\alpha) := \frac{(\alpha^{(i)} - \alpha^{(j)})(\alpha^{(k)} - \alpha^{(l)})}{(\alpha^{(i)} - \alpha^{(k)})(\alpha^{(j)} - \alpha^{(l)})}
$$

for $\alpha \in K$ and distinct $i, j, k, l \in \{1, ..., n\}$.

Proposition

Let α, β be such that $\mathbb{Q}(\alpha) = \mathbb{Q}(\beta) = K$ and $\mathbb{Z}_{\alpha} = \mathbb{Z}_{\beta}$. Then for all distinct i, j, k, l we have $\mathrm{cr}_{ijkl}(\alpha)/\mathrm{cr}_{ijkl}(\beta) \in O_L^*$.

Outline of the proof of Theorem [2](#page-22-0) (ii)

Let K be a number field of degree $n \geq 5$ and L its Galois closure. Assume that L has Galois group S_n .

There are results from Diophantine geometry, giving precise information on the structure of the set of solutions of polynomial unit equations

 $f(x_1,\ldots,x_m)=0$ in $x_1,\ldots,x_m\in O_L^*$, where $f\in L[X_1,\ldots,X_m]$

(Ev., van der Poorten and Schlickewei, Laurent, 1980-s).

Outline of the proof of Theorem [2](#page-22-0) (ii)

Let K be a number field of degree $n > 5$ and L its Galois closure. Assume that L has Galois group S_n .

There are results from Diophantine geometry, giving precise information on the structure of the set of solutions of polynomial unit equations

$$
f(x_1,\ldots,x_m)=0\ \text{ in } x_1,\ldots,x_m\in O_L^*, \ \text{ where } f\in L[X_1,\ldots,X_m]
$$

(Ev., van der Poorten and Schlickewei, Laurent, 1980-s).

The quantities $\varepsilon_{ijkl}:=\text{cr}_{ijkl}(\alpha)/\text{cr}_{ijkl}(\beta)$ with $\mathbb{Z}_\alpha=\mathbb{Z}_\beta$ belong to O_l^* and satisfy polynomial relations, e.g., for any five distinct i, j, k, l, m ,

$$
(\varepsilon_{jklm}-1)(\varepsilon_{imkj}-1)(\varepsilon_{iljk}-1)=(\varepsilon_{jkml}-1)(\varepsilon_{imjk}-1)(\varepsilon_{ilkj}-1).
$$

An application of the general result on polynomial unit equations gives that the tuple $\varepsilon = (\varepsilon_{ijkl})_{i,j,k,l}$ belongs to a finite set depending only on K.

Outline of the proof of Theorem [2](#page-22-0) (ii)

Let K be a number field of degree $n > 5$ and L its Galois closure. Assume that L has Galois group S_n .

There are results from Diophantine geometry, giving precise information on the structure of the set of solutions of polynomial unit equations

$$
f(x_1,\ldots,x_m)=0\ \text{ in } x_1,\ldots,x_m\in O_L^*, \ \text{ where } f\in L[X_1,\ldots,X_m]
$$

(Ev., van der Poorten and Schlickewei, Laurent, 1980-s).

The quantities $\varepsilon_{ijkl}:=\text{cr}_{ijkl}(\alpha)/\text{cr}_{ijkl}(\beta)$ with $\mathbb{Z}_\alpha=\mathbb{Z}_\beta$ belong to O_l^* and satisfy polynomial relations, e.g., for any five distinct i, j, k, l, m ,

$$
(\varepsilon_{jklm}-1)(\varepsilon_{imkj}-1)(\varepsilon_{iljk}-1)=(\varepsilon_{jkml}-1)(\varepsilon_{imjk}-1)(\varepsilon_{ilkj}-1).
$$

An application of the general result on polynomial unit equations gives that the tuple $\varepsilon = (\varepsilon_{ijkl})_{i,i,k,l}$ belongs to a finite set depending only on K.

An elementary (but somewhat complicated) argument shows that each tuple ε gives rise to at most finitely many orders of K. QED

[Thank you for your](#page-0-0) [attention.](#page-0-0)