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Abstract. For polynomials in Z[X], the classical Z-equivalence (monic case) and
GL2(Z)-equivalence preserve the discriminant as an invariant. The e�ective reduc-
tion theory for polynomials of given degree and discriminant consists of results that
give, for a given polynomial f ∈ Z[X], a Z-equivalent (in the monic case) or GL2(Z)-
equivalent polynomial g whose coe�cients are e�ectively bounded above in terms of
only the degree and discriminant of f . We discuss the classical results of this type of
Lagrange (1773) and Hermite (1851) on quadratic and cubic polynomials, the gen-
eral ine�ective theorem of Birch and Merriman (1972), the general e�ective theorem
of Gy®ry (1973) for monic polynomials, obtained independently, and that of Evertse
and Gy®ry (1991) for arbitrary polynomials. The proofs of these two e�ective the-
orems use Gy®ry's e�ective results on unit equations, which were proved by means
of Baker's e�ective theory of logarithmic forms. Later Evertse, Gy®ry and others
obtained several applications and generalizations; see the book Evertse and Gy®ry
(2017). In his long-forgotten paper Hermite (1857), Hermite attempted to extend the
above results of Lagrange and Hermite to polynomials of arbitrary degree. However,
as was pointed out in our joint work BEGyRS (2023) with Bhargava, Remete and
Swaminathan, Hermite (1857) proved an important result but with a weaker equiv-
alence only. Thus, it was only by the above mentioned theorems of Gy®ry (1973)
and Evertse and Gy®ry (1991) that Hermite's problem from 1857 was settled in
full generality. This and many other recent results inspired us to write this survey
paper on the subject. We present here several older and recent generalizations and
applications of the e�ective reduction theory, e.g., to monogenic number �elds and
monogenic and rationally monogenic orders. We also give an overview of bounds
on the number of times a given order is monogenic or rationally monogenic. In the
Appendix we discuss further related topics not strictly belonging to the reduction
theory of integral polynomials.
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1. Introduction

We give an overview of older and recent results on the reduction theory of

integral polynomials of given discriminant, and its many consequences and

applications. We �rst recall some de�nitions and notation.

1.1. Preliminaries.

Two polynomials f, g ∈ Z[X] of degree n ≥ 2 are called Z-equivalent if

g(X) = f(X + a) or g(X) = (−1)nf(−X + a) for some a ∈ Z,

and GL2(Z)-equivalent if

g(X) = ±(cX + d)nf
(aX+b
cX+d

)
for some matrix

(
a b
c d

)
∈ GL2(Z),

i.e., a, b, c, d ∈ Z and ad − bc = ±1. Clearly, Z-equivalence implies GL2(Z)-

equivalence. Polynomials that are Z-equivalent to a monic polynomial are

also monic.

The discriminant of a polynomial

f = a0X
n + · · ·+ an = a0

n∏
i=1

(X − αi), with a0 6= 0

is de�ned by

D(f) := a2n−2
0

∏
1≤i<j≤n

(αi − αj)2.

This is a homogeneous polynomial of degree 2n − 2 in Z[a0, . . . , an]; thus,

if f ∈ Z[X] then D(f) ∈ Z. As one may easily verify, polynomials that are

Z-equivalent or GL2(Z)-equivalent have the same discriminant.

We de�ne the height H(f) of a polynomial f = a0X
n + · · · + an ∈ Z[X]

by

H(f) := max(|a0|, . . . , |an|).
An invariant is a function Z[X] → R that assumes the same value at

GL2(Z)-equivalent polynomials. In general, reduction theory of polynomials

is about results of the following type: given a set of invariants, I1, . . . , It,

say, there exists for any f ∈ Z[X] a polynomial g ∈ Z[X] that is GL2(Z)-

equivalent (or Z-equivalent in the monic case) to f and whose coe�cients

are bounded in terms of I1(f), . . . , It(f). In this paper, we focus on results in

which the heightH(g) of g is bounded above in terms of deg f and |D(f)|, i.e.,
on reduction theory for polynomials of given degree and given discriminant.

Such results imply that up to GL2(Z)-equivalence (resp. Z-equivalence if
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we restrict ourselves to monic polynomials) there are only �nitely many

polynomials f ∈ Z[X] of degree n and given discriminant D 6= 0.

In fact, most of the literature deals with reduction theory of binary forms

of given discriminant. Recall that any binary form F (X, Y ) ∈ Z[X, Y ] can be

factored as
∏n

i=1(αiX−βiY ) with algebraic αi, βi, and that its discriminant is

D(F ) :=
∏

1≤i<j≤n(αiβj−αjβi)2. Two binary forms F,G ∈ Z[X, Y ] are called

GL2(Z)-equivalent if G(X, Y ) = ±F (aX + bY, cX + dY ) for some
(
a b
c d

)
∈

GL2(Z), and clearly, GL2(Z)-equivalent binary forms have the same discrim-

inant. The results on reduction theory for binary forms F can be translated

immediately into similar results for univariate polynomials f and vice-versa,

using the correspondence f(X) = F (X, 1), F (X, Y ) = Y deg ff(X/Y ). As in

our joint paper BEGyRS (2023) with Bhargava, Remete and Swaminathan,

to unify the separate reduction theories of monic polynomials and binary

forms, we have formulated all our results in terms of univariate polynomials.

For de�nitions of e�ectively given concepts, structures and e�ective de-

termination, computation, one can consult e.g. the corresponding sections of

our books Evertse and Gy®ry (2015, 2017, 2022).

1.2. Summary.

Lagrange (1773) developed a reduction theory of integral binary quadratic

forms of given discriminant, which can be translated immediately into a re-

duction theory for quadratic polynomials of given non-zero discriminant. His

results imply that up to the classicalGL2(Z)-equivalence, resp. Z-equivalence
(monic case) there are only �nitely many quadratic polynomials in Z[X] of

given discriminant. Lagrange's result is e�ective in the sense that one can

e�ectively determine the reduced polynomials. This was later made more

precise by Gauss (1801).

Hermite (1848, 1851) introduced a reduction theory for binary forms, or

equivalently univariate polynomials of arbitrary degree but using another

invariant instead of the discriminant. In the case of cubic polynomials, Her-

mite's invariant is up to a constant a power of the absolute value of the

discriminant. Thus, Hermite's reduction theory implies that up to GL2(Z)-

equivalence there are only �nitely many cubic polynomials in Z[X] of given

discriminant. Hermite was apparently interested to extend this to polyno-

mials of arbitrary degree n ≥ 4. In Hermite (1857) he introduced a new

equivalence relation (called by us `Hermite equivalence', see Section 3) and
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proved in an ine�ective way a �niteness result on the corresponding equiv-

alence classes of integral polynomials of degree n and discriminant D. But

he did not compare his equivalence relation to the classical equivalence rela-

tions, i.e., to GL2(Z)-equivalence and Z-equivalence. The result of Hermite

(1857) does not appear to have been studied in the literature until the ex-

cellent book of Narkiewicz (2018), where Hermite equivalence was confused

with the classical equivalence relations.

Hermite's apparent goal, i.e., the �niteness result with GL2(Z)-equivalence

instead of Hermite equivalence, was �nally achieved more than a century later

by Birch and Merriman (1972) for arbitrary polynomials in an ine�ective

form and independently, for monic polynomials and in a more precise and

e�ective form by Gy®ry (1973). The general result of Birch and Merriman was

subsequently made e�ective by Evertse and Gy®ry (1991a). More precisely,

Gy®ry (1973) and Evertse and Gy®ry (1991a) proved that there exists an

e�ectively computable number c(n,D) depending only on n and D such that

every f ∈ Z[X] of degree n and discriminant D 6= 0 is GL2(Z)-equivalent

(and even Z-equivalent in the monic case) to a polynomial g with height

(1.1) H(g) ≤ c(n,D).

These results heavily depend on e�ective �niteness results for unit equations

ax+ by = 1 with solutions x, y from the unit group of the ring of integers of

a number �eld, which were derived in turn using Baker's theory of logarith-

mic forms. This solved the old problem of Hermite (1857) mentioned above

in an e�ective way, and further resulted in many signi�cant consequences

and applications. For example, in the 1970's, Gy®ry deduced from his pa-

per from 1973 the �rst general e�ective algorithm that decides monogenicity

and existence of power integral bases of number �elds, and in fact �nds all

power integral bases. For later applications and generalizations we refer to

the monograph Evertse and Gy®ry (2017) and Sections 4�9 of the present

paper.

In our recent paper BEGyRS (2023) with Bhargava, Remete and Swami-

nathan we provided a thorough treatment of the notion of Hermite equiva-

lence, and proved that Z-equivalence and GL2(Z)-equivalence are much more

precise than Hermite equivalence. This con�rmed that Hermite's result from

1857 was weaker than those of Birch and Merriman, Gy®ry, and that of Ev-

ertse and Gy®ry mentioned above. It should of course be mentioned that
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unlike the last authors, Hermite didn't have the powerful Baker's theory of

logarithmic forms and its application to unit equations at his disposal.

In Section 2 we brie�y recall the reduction theory of quadratic and cubic

polynomials of given non-zero discriminant. In Section 3, following BEGyRS

(2023), we deal with Hermite equivalence and compare it with Z-equivalence
and GL2(Z)-equivalence. In Section 4 we discuss in more detail the general

results of Birch and Merriman (1972), Gy®ry (1973), Evertse and Gy®ry

(1991a), and those from the paper BEGyRS (2023). We present the best

known e�ective height estimates for the solutions of unit equations and

S-unit equations. We sketch how to deduce results of the type (1.1). An

important part of Section 4 is Subsection 4.7, which gives much stronger

conjectural upper bounds for the height of g. These bounds follow from the

abc-conjecture and related conjectures. This is partly joint work with Rafael

von Känel. In Section 5 we present some consequences in algebraic number

theory. In particular, we give an overview of e�ective �niteness results con-

cerning algebraic numbers of given discriminant, resp. given index, and index

form equations. Further, we deduce applications to monogenic number �elds

and orders, and also generalizations to so-called rationally monogenic orders.

In Section 6 we discuss practical algorithms for solving index form equations,

i.e., determining all power integral bases in number �elds of degree ≤ 6. In

Section 7 we give applications to canonical number systems in number �elds

and orders, and in Section 8 to some classical Diophantine equations. Section

9 gives a brief overview of generalizations, among others to the number �eld

and p-adic case, and to results where the ground ring is of characteristic 0 and

�nitely generated as a Z-algebra. In Section 10 we give an overview of results

concerning multiply monogenic and rationally monogenic orders, where we

present uniform upper bounds for the multiplicity of (rational) monogenic-

ity of orders, depending only on the degree of the underlying number �eld.

In the Appendix we brie�y discuss related topics not strictly belonging to

reduction theory of integral polynomials, in particular statistical results for

monogenic and rationally monogenic number �elds, and Hasse's problem to

give an arithmetic characterization of the monogenic number �elds.

Remark. Since the 1970's, the reduction theory of integral polynomials of

given discriminant has been constantly developing, with a growing number

of results and applications. Except for Section 2, the other sections contain

results from this period. We propose some problems, whose solutions would
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yield considerable progress in the reduction theory.
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2. Reduction theory of integral quadratic and cubic

polynomials of given non-zero discriminant

As we mentioned, Lagrange (1773) was the �rst to develop a reduction

theory for binary quadratic forms with integral coe�cients. His theory was

made more precise by Gauss (1801). For integral polynomials, their theories

imply the following. Recall that the height H(g) of a polynomial with integral

coe�cients is the maximum of the absolute values of its coe�cients.

Theorem 2.1 (Lagrange, 1773; Gauss, 1801). For any quadratic polynomial

f ∈ Z[X] of discriminant D 6= 0, there exists g ∈ Z[X], GL2(Z)-equivalent

to f , such that H(g) ≤ c(D) with some e�ectively computable constant c(D)

depending only on D.

For monic polynomials, the following more precise variant is known.

Theorem 2.2. For any monic quadratic polynomial f ∈ Z[X] of discrimi-

nant D 6= 0, there exists g ∈ Z[X], Z-equivalent to f , such that H(g) ≤ c′(D)

with some e�ectively computable constant c′(D) depending only on D.

The above results have the following e�ective equivalent variants.

Theorem 2.3. There are only �nitely many GL2(Z)-equivalence (resp. Z-
equivalence) classes of quadratic (resp. monic quadratic) polynomials in Z[X]

of given discriminant D 6= 0. Further, each equivalence class has a represen-

tative of height at most c(D) (resp. c′(D)).

Later, mostly these equivalent versions were investigated, used and gener-

alized.

Hermite (1848, 1851) studied integral binary forms of degree larger than

2. He developed an e�ective reduction theory for such forms which implies,

among other things, the following:



8 J.-H. EVERTSE AND K. GY�RY

Theorem 2.4 (Hermite, 1848, 1851). There are only �nitely many GL2(Z)-

equivalence classes of cubic polynomials in Z[X] of given non-zero discrim-

inant, and a full set of representatives of these classes can be e�ectively

determined (in the sense that the proof provides an algorithm to determine,

at least in principle, a full system of representatives).

In fact, Hermite (1848, 1851) introduced another invariant for polynomials

f ∈ Z[X] of arbitrary degree, which is in fact the discriminant ∆f of a

positive de�nite binary quadratic form Φf (X, Y ) = AX2 + BXY + CY 2 ∈
R[X] associated with f . He called f reduced if Φf is reduced in Gauss' sense,

i.e., if |B| ≤ A ≤ C. He showed that f is GL2(Z)-equivalent to a reduced

polynomial g, and that the coe�cients of g are bounded e�ectively in terms

of ∆f . Hermite showed further that for cubic f , ∆f = |27D(f)|1/4, implying

Theorem 2.4. Hermite's theory was made more precise by Julia (1917).

For more details about reduction theories of integral binary forms and

polynomials of low degree we refer to Dickson, Vol. 3 (1919, reprinted 1971),

Cremona (1999), Evertse and Gy®ry (2017), Bhargava and Yang (2022), and

for more general results and applications, also to Section 4 of the present

paper and the references given there.

For the number of Z-equivalence classes of cubic monic integral polynomi-

als with given non-zero discriminant, no �niteness results were known before

1930. Then Delone and Nagell proved independently the following.

Theorem 2.5 (Delone, 1930; Nagell, 1930). Up to Z-equivalence, there are

only �nitely many irreducible cubic monic polynomials in Z[X] of given non-

zero discriminant.

The proofs of Delone and Nagell of Theorem 2.5 were both ine�ective, in

that they did not provide a method to determine the polynomials. In fact,

these proofs were based on a classical ine�ective �niteness theorem of Thue

(1909) on Thue equations, i.e. on equations of the form F (x, y) = m, x, y ∈ Z,
where F ∈ Z[X, Y ] is an irreducible binary form of degree ≥ 3 and m is an

integer. In some concrete cases Delone and Faddeev (1940) made e�ective

Theorem 2.5, and posed the problem to make it e�ective for any irreducible

cubic monic polynomial. An e�ective version of Theorem 2.5 follows from

the famous e�ective result of Baker (1968b) on Thue equations.
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3. Hermite's attempt (1857) to extend the reduction results

of polynomials of degree ≤ 3 to polynomials of arbitrary

degree

3.1. GLn(Z)-equivalence of decomposable forms.

Hermite tried to extend his theorem (1851) on cubic integral binary forms

resp. polynomials to the case of any degree n ≥ 4, but without success. In-

stead, he proved a �niteness theorem with a weaker equivalence, see Theorem

3.2 below. Hermite's notion of equivalence (called by us `Hermite equiva-

lence') is based on an equivalence relation for certain decomposable forms.

Consider decomposable forms of degree n ≥ 2 in the same number n of

variables

F (X) = a0

n∏
i=1

(αi,1X1 + · · ·+ αi,nXn) ∈ Z[X1, . . . , Xn],

where a0 is a non-zero rational number and αi,j are algebraic numbers, not

all zero, for i, j = 1, . . . , n. The discriminant of F is de�ned as

D(F ) := a2
0(det(αi,j))

2.

It is important to note that D(F ) is a rational integer.

Let GLn(Z) denote the multiplicative group of n × n integer matrices of

determinant ±1. Two decomposable forms F,G as above are called GLn(Z)-

equivalent if

G(X) = ±F (UX) for some U ∈ GLn(Z),

where X denotes the column vector of variables (X1, . . . , Xn)T .

It is easy to see that two GLn(Z)-equivalent decomposable forms in n

variables have the same discriminant.

Hermite proved the following.

Theorem 3.1 (Hermite, 1851). Let n and D be integers with n ≥ 2, D 6= 0.

Then the decomposable forms in Z[X1, . . . , Xn] of degree n and discriminant

D lie in �nitely many GLn(Z)-equivalence classes.

3.2. Hermite equivalence of polynomials and Hermite's �niteness

theorem.

Let

f(X) = a0(X − α1) · · · (X − αn) ∈ Z[X]
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be an integral polynomial with a0 ∈ Z \ {0}, and α1, . . . , αn ∈ Q. Then the

discriminant of f is

D(f) = a2n−2
0

∏
1≤i<j≤n

(αi − αj)2 ∈ Z.

To f we associate the decomposable form

[f ](X) := an−1
0

n∏
i=1

(X1 + αiX2 + · · ·+ αn−1
i Xn) ∈ Z[X1, . . . , Xn].

Using the properties of Vandermonde determinants, one can prove that

(3.1) D([f ]) = D(f).

The following equivalence relation was introduced by Hermite (1857):

• Two polynomials f, g ∈ Z[X] of degree n are said to be Hermite equivalent

if the associated decomposable forms [f ] and [g] are GLn(Z)-equivalent,

i.e.,

[g](X) = ±[f ](UX) for some U ∈ GLn(Z).

From (3.1) it follows directly that Hermite equivalent polynomials in Z[X]

have the same discriminant.

Hermite's Theorem 3.1 on decomposable forms and identity (3.1) imply

the following �niteness theorem on polynomials.

Theorem 3.2 (Hermite, 1854, 1857). Let n ≥ 2 and D 6= 0 be integers.

Then the polynomials f ∈ Z[X] of degree n and of discriminant D lie in

�nitely many Hermite equivalence classes.

Hermite's proof is ine�ective.

3.3. Comparison between Hermite equivalence and GL2(Z)-equival-

ence and Z-equivalence.
In our �ve authors paper with Bhargava, Remete and Swaminathan (BE-

GyRS, 2023) we have integrated Hermite's long-forgotten notion of equiv-

alence and his �niteness theorem in the reduction theory, have corrected a

faulty reference to Hermite's result in Narkiewicz' excellent book (2018) and

compared Hermite's theorem with the most signi�cant results of this area;

see the next Section 4.

In BEGyRS (2023) we proved that GL2(Z)-equivalence and, in the monic

case, Z-equivalence imply Hermite equivalence.
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Theorem 3.3 (BEGyRS, 2023). Let f, g ∈ Z[X] be two Z-equivalent, resp.
GL2(Z)-equivalent integral polynomials. Then they are Hermite equivalent.

Since Z-equivalence implies GL2(Z)-equivalence, it su�ces to prove The-

orem 3.3 for GL2(Z)-equivalence. We recall the proof from BEGyRS (2023).

Proof. Let f, g in Z[X] be any two GL2(Z)-equivalent polynomials. Then

they can be written in the form f(X) = a0

∏n
i=1(X − αi) and g(X) =

±(cX + d)nf
(
aX+b
cX+d

)
, where A := ( a bc d ) ∈ GL2(Z). Thus, we have

g(X) = ±a0

n∏
i=1

(βiX − γi), where βi = c− aαi, γi = −d+ bαi

for i = 1, . . . , n. De�ne the inner product of two column vectors

x = (x1, . . . , xn)T , y = (y1, . . . , yn)T by 〈x,y〉 := x1y1 + · · ·+ xnyn.

Let as before X = (X1, . . . , Xn)T . Thus,

[f ](X) = an−1
0

n∏
i=1

〈ai,X〉, where ai = (1, αi, . . . , α
n−1
i )T ,

[g](X) = ±an−1
0

n∏
i=1

〈bi,X〉, where bi = (βn−1
i , βn−2

i γi, . . . , γ
n−1
i )T .

Then bi = t(A)ai with some t(A) ∈ GLn(Z) for i = 1, . . . , n. So

[g](X) =± cn−1

n∏
i=1

〈t(A)ai,X〉 =

= ±cn−1

n∏
i=1

〈ai, t(A)TX〉 = ±[f ](t(A)TX),

i.e. f and g are indeed Hermite equivalent. �

For integral polynomials of degree 2 and 3, Hermite equivalence andGL2(Z)-

equivalence coincide. For quadratic polynomials this is trivial, while for cubic

polynomials this follows from a result of Delone and Faddeev (1940).

In BEGyRS (2023) we gave, for every n ≥ 4 and both for the non-monic

and for the monic case, in�nite collections of polynomials in Z[X] with degree

n that are Hermite equivalent but not GL2(Z)-equivalent. More precisely we

proved the following.

Theorem 3.4 (BEGyRS, 2023). Let n be an integer ≥ 4.
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(i) There exist in�nitely many Hermite equivalence classes of properly non-

monic1 primitive 2, irreducible polynomials of degree n that split into more

than one GL2(Z)-equivalence class.

(ii) There exist in�nitely many Hermite equivalence classes of monic irre-

ducible polynomials of degree n that split into more than one GL2(Z)-

equivalence class.

In the monic case every GL2(Z)-class contains a Z-equivalence class, hence
in (ii) GL2(Z)-equivalence can be replaced by Z-equivalence.

We proved Theorem 3.4 simultaneously for the cases (i) and (ii). We con-

structed, for every integer n ≥ 4, an in�nite parametric family of pairs

(f
(n)
t,c , g

(n)
t,c ) of primitive, irreducible polynomials f

(n)
t,c , g

(n)
t,c of degree n, where

c runs through 1 and an in�nite set of primes, and t runs through an in�nite

set of primes with t 6= c with the following properties:

for each n, f
(n)
t,c , g

(n)
t,c have leading coe�cient c and are(3.2)

properly non-monic if c > 1;

for each n, f
(n)
t,c , g

(n)
t,c are Hermite equivalent;(3.3)

for each n, f
(n)
t,c , g

(n)
t,c are not GL2(Z)-equivalent;(3.4)

the pairs (f
(n)
t,c , g

(n)
t,c ) (n = 1, 2, . . .) lie in di�erent Hermite(3.5)

equivalence classes.

The main steps of the proof are as follows. From the construction of f
(n)
t,c

and g
(n)
t,c it is easy to show that (3.2) and (3.3) hold. The proof of (3.4) is

more complicated. It requires the use of an irreducibility theorem of Dumas

(1906), Chebotarev's density theorem, and Dirichlet's theorem on primes in

arithmetic progressions. Finally, f
(n)
t,c is so chosen that if we �x n, c and let

t → ∞ then the absolute value of the discriminant of f
(n)
t,c tends to ∞. By

making a selection, we may assume that the discriminants of the polynomials

f
(n)
t,c are pairwise di�erent. Since Hermite equivalent polynomials have the

same discriminant, we obtain (3.5).

Remark. We note that in our paper BEGyRS (2023) it turned out that the

Hermite equivalence class of a polynomial has a very natural interpretation

1That is, not GL2(Z)-equivalent to any monic polynomial
2An integral polynomial is called primitive if its coe�cients have greatest common

divisor 1
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in terms of the so-called invariant order and invariant ideal associated with

the polynomial, see Theorem 5.11 in Subsection 5.6 for more details. This

fact turned out to be important in the above proofs.

Theorem 3.3 and Theorem 3.4 imply that GL2(Z)-equivalence, resp. Z-
equivalence are stronger than Hermite equivalence, and hence that Hermite's

Theorem 3.2 is weaker than the most signi�cant results of this area presented

in Section 4 below.

4. Reduction theory of integral polynomials of given

non-zero discriminant and of arbitrary degree

As was mentioned in the Introduction, the breakthroughs in the reduction

theory due to Birch and Merriman (1972), Gy®ry (1973), and Evertse and

Gy®ry (1991a) settled the old problem of Hermite (1857), to prove that for

every given n ≥ 2 and D 6= 0 there are up to GL2(Z)-equivalence only

�nitely many polynomials f ∈ Z[X] of degree n and discriminant D, and to

determine these e�ectively. We state the results in more detail.

4.1. The theorems of Birch and Merriman (1972), Gy®ry (1973)

and Evertse and Gy®ry (1991a).

Theorem 4.1 (Birch and Merriman, 1972). Let n ≥ 2 and D 6= 0. There

are only �nitely many GL2(Z)-equivalence classes of polynomials in Z[X] of

degree n and discriminant D.

Birch and Merriman established this theorem in an equivalent form, in

terms of integral binary forms. Their proof uses the �niteness of the number

of solutions of unit equations ax+ by = 1 in units x, y of the ring of integers

of a number �eld, for which at the time e�ective proofs were available, but

it combines this with some ine�ective arguments. Consequently, Birch's and

Merriman's proof of Theorem 4.1 is ine�ective.

For monic polynomials, the corresponding result with Z-equivalence was

proved independently by Gy®ry (1973) but in an e�ective form. This turned

out to be of crucial importance in many applications; see e.g. Sections 5 to

9 below and Evertse and Gy®ry (2017).

Theorem 4.2 (Gy®ry, 1973). Let f ∈ Z[X] be a monic polynomial of degree

n ≥ 2 with discriminant D 6= 0. Then

(i) n ≤ c1(|D|), and
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(ii) there is a monic g ∈ Z[X], Z-equivalent to f , such that

H(g) ≤ c2(n, |D|),

where c1 and c2 are e�ectively computable positive numbers depending on

|D|, resp. on n and |D|.

This theorem was �rst proved and published in Gy®ry's PhD dissertation

Gy®ry (1972a) and was utilized in Gy®ry (1972b) as well.

Corollary 4.3 (Gy®ry, 1973). There are only �nitely many Z-equivalence
classes of monic polynomials in Z[X] of given non-zero discriminant, and a

full set of representatives of these classes can be at least in principle deter-

mined.

In Gy®ry (1974), an explicit version was given; see below.

In his proof of Theorem 4.2, Gy®ry combined his own e�ective result

on unit equations obtained by Baker's method, with his so-called `graph

method'. We sketch below the proof of Theorem 4.2.

Theorem 4.1, resp. Theorem 4.2 and its Corollary 4.3 are generalizations

of the corresponding results presented in Section 2 for polynomials of degree

n ≤ 3; Theorem 4.1 gives an ine�ective generalization of Theorem 2.4 for

degree n ≥ 4 and Theorem 4.2 is an e�ective generalization of Theorem

2.3 in the monic case for degree n ≥ 3, and of Theorem 2.5 for any monic

polynomial of degree n ≥ 3.

In 1991, Evertse and Gy®ry gave a new, e�ective proof for Birch's and

Merriman's theorem, proving the following.

Theorem 4.4 (Evertse and Gy®ry, 1991a). Let f ∈ Z[X] be a polynomial of

degree n ≥ 2 and discriminant D 6= 0. There is g ∈ Z[X], GL2(Z)-equivalent

to f , such that

H(g) ≤ c3(n, |D|),

where c3(n, |D|) is an e�ectively computable number, given explicitly in terms

of n and |D|.

This theorem was stated and proved in Evertse and Gy®ry (1991a) in an

equivalent form, in terms of integral binary forms.

As was mentioned above, Theorems 4.2 and 4.4 led to a general e�ective

reduction theory of integral polynomials of given non-zero discriminant.



EFFECTIVE REDUCTION THEORY OF INTEGRAL POLYNOMIALS 15

The main tool in our proof of Theorem 4.4 is an e�ective result of Gy®ry

(1974) on homogeneous unit equations in three unknowns, whose proof is also

based on Baker's theory of logarithmic forms.

We note that Theorems 4.1 and 4.4 were established directly in a more

general form, in the number �eld and p-adic case. For such and other gener-

alizations of Theorem 4.2, (ii), see Gy®ry (1978b, 1984) and Section 9 below.

Theorems 4.2 and 4.4, their explicit versions below and their various gen-

eralizations have a great number of consequences and applications; see our

book Evertse and Gy®ry (2017) and Sections 5 to 9 below.

4.2. Explicit versions of theorems of Gy®ry (1973) and Evertse and

Gy®ry (1991a).

First we present explicit versions of Theorem 2.1, Theorem 2.2 and Theorem

2.4 in the quadratic and cubic cases. An explicit version of Theorem 2.1 is

the following.

Theorem 2.1*. Let f ∈ Z[X] be a quadratic polynomial of discriminant

D 6= 0. Then f is GL2(Z)-equivalent to a quadratic polynomial g ∈ Z[X]

such that

(i) H(g) ≤ |D|/3 if D < 0;

(ii) H(g) ≤ |D|/4 if D > 0 and f is irreducible;

(iii) H(g) ≤ D1/2 if D > 0 and f is reducible.

In the cubic case, we have the following.

Theorem 2.4*. Let f ∈ Z[X] be a cubic polynomial of discriminant D 6= 0.

Then f is GL2(Z)-equivalent to a cubic polynomial g ∈ Z[X] such that

(i) H(g) ≤ 64
27
|D|1/2 if f is irreducible;

(ii) H(g) ≤ 64
3
√

3
|D| if f is reducible.

We note that the arguments in the proofs of Theorems 2.1* and 2.4* are

a variation on the arguments in Julia (1917). For the details we refer to

Subsection 13.1 of the book of Evertse and Gy®ry (2017).

In the monic case, it is relatively simple to prove the following explicit

version of Theorem 2.2.

Theorem 2.2*. For any monic quadratic polynomial f ∈ Z[X] with dis-

criminant D 6= 0, there exist g ∈ Z[X], Z-equivalent to f , such that

H(g) ≤ |D|/4 + 1.
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As was mentioned above, the �rst explicit version of Theorem 4.2 was

given in Gy®ry (1974). The height estimate was improved in 2017 by the

authors.

We use the notation log∗ x := max(1, log x) for x > 0.

Theorem 4.2* (Evertse and Gy®ry, 2017). Let f ∈ Z[X] be a monic poly-

nomial of degree n ≥ 2 and discriminant D 6= 0. Then f is Z-equivalent to
a polynomial g ∈ Z[X] for which

H(g) ≤ exp{n208n
2+19(|D|(log∗ |D|)n)n−1}.(4.1)

This is in fact Theorem 6.6.2 from Evertse and Gy®ry (2017) with a slightly

larger, simpli�ed constant in terms of n.

A completely explicit, improved version of Theorem 4.4 was also estab-

lished by the authors.

Theorem 4.4* (Evertse and Gy®ry, 2017, Theorem 14.1.1). Let f ∈ Z[X]

be a polynomial of degree n ≥ 2 and discriminant D 6= 0. Then f is GL2(Z)-

equivalent to a polynomial g ∈ Z[X] for which

H(g) ≤ exp{(42n3)25n2 · |D|5n−3}.(4.2)

In both Theorems 4.2* and 4.4*, the degree n of f can also be explicitly

estimated from above in terms of |D|.

Theorem 4.5 (Gy®ry, 1974). Every polynomial f ∈ Z[X] with discriminant

D 6= 0 has degree at most

3 + 2 log |D|/ log 3.

For monic polynomials f ∈ Z[X], the upper bound can be improved

slightly to 2 + 2 log |D|/ log 3.

Theorem 4.4 together with Theorem 4.5 implies the following analogue of

Corollary 4.3.

Corollary 4.6 (Evertse and Gy®ry, 1991a). There are only �nitely many

GL2(Z)-equivalence classes of polynomials in Z[X] of given non-zero dis-

criminant, and a full set of representatives of these classes can be at least in

principle e�ectively determined.

4.3. Consequences of Theorems 4.4*, 4.2* and Theorem 3.3 for Her-

mite equivalence classes.
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As was pointed out in BEGyRS (2023),an important consequence of the

above Theorem 3.3 is that the e�ective �niteness theorems 4.4, 4.4* and 4.2,

4.2* for GL2(Z)-equivalence classes resp. Z-equivalence classes apply just as

well to Hermite equivalence classes.

We present here the following, more precise, explicit variant of Hermite's

result in Theorem 3.2.

Corollary 4.7 (of Theorems 4.4* and 4.2*; cf. BEGyRS, 2023).

(i) Every Hermite equivalence class of polynomials in Z[X] of degree n ≥
2 and of discriminant D 6= 0 has a representative with coe�cients not

exceeding

exp{(42n3)25n2|D|5n−3}
in absolute value.

(ii) Every Hermite equivalence class of monic polynomials in Z[X] with degree

n ≥ 2 and discriminant D 6= 0 has a representative with coe�cients not

exceeding

exp{n208n
2+19(|D|(log∗ |D|)n)n−1}

in absolute value.

It is an immediate consequence of Theorem 4.5 that in (i) above n ≤
3 + 2 log |D|/ log 3. Further, in (ii), the slightly better inequality n ≤ 2 +

2 log |D|/ log 3 holds.

The above result implies an e�ective version of Theorem 3.2, i.e., for given

n and a non-zero integer D, one can e�ectively determine a full system of

representatives for the Hermite equivalence classes of polynomials f ∈ Z[X]

of degree n and discriminant D. Indeed, one can make a �nite list of all

polynomials f ∈ Z[X] of height below one of the bounds in Corollary 4.7.

For each polynomial in the list one can check whether it has discriminant

D. Further, for each pair of polynomials in the list one can check whether

they are Hermite equivalent, by computing the corresponding decomposable

forms [f ], [g], and checking whether they are GLn(Z)-equivalent, using, e.g.,

Lemma 18 of Evertse and Gy®ry (1992a).

The similarity of Theorems 4.4* , 4.2* and Corollary 4.7 is only apparent.

As was seen in Section 3, the GL2(Z)-equivalence and Z-equivalence are in

fact much stronger than the Hermite equivalence.

Remark. Every improvement of the bounds in (4.1) or (4.2) would yield

the same improvement in the bounds of Corollary 4.7.
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4.4. Unit equations and S-unit equations.

The unit equations and more general S-unit equations play a fundamental

role in Diophantine number theory, and in particular in the e�ective reduc-

tion theory of integral polynomials of given discriminant.

First we recall unit equations and S-unit equations, and then brie�y out-

line how to apply Baker's theory of logarithmic forms to obtain e�ective

bonds for the solutions of these equations. Then we recall the best known

height bounds for the solutions of unit equations and S-unit equations over

number �elds.

For a detailed treatment of unit equations, S-unit equations and their

further generalizations and applications we refer to our books Evertse and

Gy®ry (2015, 2017, 2022).

Let K be an algebraic number �eld, OK its ring of integers, O∗K the unit

group of OK , and MK its set of places, consisting of the �nite set of in�nite

places S∞ of K (corresponding to the real embeddings and the pairs of

conjugate complex embeddings of K in C) and the �nite places, which we

may identify with the prime ideals of OK . To the places in MK we can

associate a set of absolute values {| · |v : v ∈MK}, normalized such that if v

lies above the place p ∈MQ := {∞}∪{primes}, then for a ∈ Q one has |a|v =

|a|[Kv :Qp]
p . These absolute values satisfy the product formula

∏
v∈MK

|α|v = 1

for α ∈ K∗.
Let a, b be given non-zero elements of K. Equations of the form

ax+ by = 1 in unknowns x, y ∈ O∗K(4.3)

are called unit equations (in two unknowns). More generally, let S be a

�nite subset of MK with S ⊇ S∞. Denote by OS the ring of S-integers, i.e.,

{x ∈ K : |x|v ≤ 1 for v 6∈ S} and by O∗S denote the unit group of OS, i.e.,
group of S-units. Thus, O∗S = {x ∈ K : |x|v = 1 for v 6∈ S}. For S = S∞ we

have O∗S = O∗K . Equations of the form

ax+ by = 1 in unknowns x, y ∈ O∗S(4.4)

are called S-unit equations (in two unknowns). In many cases it is more con-

venient to consider the unit equations and S-unit equations in homogeneous

form

ax+ by + cz = 0 in unknowns x, y, z ∈ O∗K , resp. O∗S,(4.4a)

where a, b, c denote �xed elements of K \ {0}.
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For a long time these equations were utilized merely in special cases and in

an implicit way. It was implicitly proved by Siegel (1921) for S = S∞ and by

Parry (1950) for any S that equation (4.4) has only �nitely many solutions.

This implies the �niteness of the number of solutions of equation (4.4a) up

to a common proportional factor. Lang (1960) gave a direct proof for a more

general version of these �niteness theorems. Their proofs were ine�ective.

Generalizing Gelfond's (1935) famous result obtained in the case m = 2,

in the 1960's Baker made a major breakthrough in number theory by giving

non-trivial explicit lower bounds for the absolute value of linear forms in

logarithms of the form

b1 logα1 + · · ·+ bm logαm 6= 0, m ≥ 2

where b1, . . . , bm are rational integers, resp. algebraic numbers, α1, . . . , αm
are algebraic numbers di�erent from 0 and 1, and logα1, . . . , logαm denote

�xed determination of the logarithms. In case of rational integers b1, . . . , bm,

this is equivalent to bounding |
∏
αbii − 1| non-trivially from below. Baker's

general e�ective estimates led to signi�cant applications, and opened a new

e�ective epoch in the theory of Diophantine equations. Baker's quantitative

results were later improved, generalized, extended to the p-adic case and

so on by himself and many other authors; for comprehensive overviews we

refer to Baker (1990), Wüstholz, ed. (2002), Baker and Wüstholz (2007), and

Bugeaud (2018), and for a shorter overview see Evertse and Gy®ry (2015),

Section 3.2. The last �ve decades saw the development of an e�ective theory

of Diophantine equations.

General e�ective upper bounds for the solutions of (4.3) and (4.4a) in the

case S = S∞ were deduced by Gy®ry (1972a,b, 1973) using an e�ective result

of Baker and Coates (1970), p. 601, on relative Thue equations over number

�elds. The �rst explicit upper bounds for the solutions of (4.3) and (4.4a) in

case S = S∞ were deduced by Gy®ry (1974) from an explicit inequality of

Baker (1968a, Part IV) for linear forms in logarithms of algebraic numbers.

For general S, Gy®ry (1979) derived the �rst explicit bound for the solutions

of (4.4), using also the p-adic version of Baker's theory. Independently, a

slightly weaker e�ective bound was given by Kotov and Trelina (1979).

Let K be an algebraic number �eld. Given α1, . . . , αn ∈ K, not all 0, we

de�ne the height of (α1, . . . , αn) relative to K by

HK(α1, . . . , αn) :=
∏
v∈K

max(|α1|v, . . . , |αn|v).
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Recall that the naive height H(α) of an algebraic number α is given by the

maximum of the absolute values of its minimal polynomial, with coe�cients

having gcd 1. Then we have

H(α) ≤ 2degαHQ(α)(1, α).

Following Section 1.3 from the paper "Solving Diophantine equations by

Baker's theory" by Gy®ry (2002), we brie�y sketch a proof of the following

theorem, by means of Baker's theory.

Theorem 4.8. Let K be a number �eld, S a �nite set of places of K con-

taining S∞, and a, b non-zero elements of K. Let x, y ∈ O∗S satisfy (4.4).

Then

max(H(x), H(y)) ≤ c4(K,S, a, b),

where c4 is an e�ectively computable number, depending only on K,S, a, b.

Sketch. Let s denote the cardinality of S. There is a system of fundamental

S-units {%1, . . . , %s−1} in O∗S with heights bounded in terms of K and S. Let

x, y be a solution of (4.4) in S-units. Then one can write

x = ξ1%
a11
1 · · · %

a1,s−1

s−1 , y = ξ2%
a21
1 · · · %

a2,s−1

s−1 ,

where ξ1, ξ2 are roots of unity in K and aij are unknown rational integer ex-

ponents. Assume without loss of generality that A := maxj |a1j| ≥ maxj |a2j|.
By elementary means one can show that

A ≤ c5 log max
v∈S
|x|v,

and combining this with
∏

v∈S |x|v = 1, one concludes that there is a v ∈ S
such that

|x|v ≤ c6 exp{−c7A},
where c5, c6, c7 can be given explicitly and depend only on K and S. This

implies

0 < |%a211 · · · %
a2,s−1

s−1 − α|v ≤ c8 exp{−c9A}(4.5)

with an appropriate α ∈ K of bounded height. The constants c8, c9 and c10

below depend at most on K,S and a, b and can be given explicitly.

One can now apply the complex or p-adic version of Baker's theory ac-

cording as v ∈ S∞ or v ∈ S \ S∞ and this yields

exp{−c10 logA} ≤ |%a211 · · · %
a2,s−1

s−1 − α|v.
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Comparing this with (4.5) we get

A ≤ A0(4.6)

where A0 can be given explicitly. Finally, we obtain an upper bound for H(x)

and H(y) which can also be given explicitly. �

Later, several improvements, e�ective generalizations, applications and al-

gorithmic results have been obtained for unit and S-unit equations by means

of Baker's theory; see among others Gy®ry (1980b, 2002, 2019, 2022), Shorey

and Tijdeman (1986), Sprindºuk (1993), Bugeaud and Gy®ry (1996), Smart

(1998), Gaál and Gy®ry (1999), Hindry and Silverman (2000), Wüstholz,

ed. (2002), Bilu (2002), Bilu, Gaál and Gy®ry (2004), Gy®ry and Yu (2006),

Baker and Wüstholz (2007), Zannier (2009), Hajdu (2009), Bérczes, Ev-

ertse and Gy®ry (2009), Evertse and Gy®ry (2013, 2015 2017, 2022), Bér-

czes (2015a, 2015b), Bertók and Hajdu (2015, 2018), Bugeaud (2018), Gaál

(2019), Le Fourn (2020), Alvarado et al. (2021), Gy®ry and Le Fourn (2024),

and the references given there.

The best known height bound for the solutions of (4.3) is due to Gy®ry and

Yu (2006). We formulate it in simpli�ed form. As above, let K be a number

�eld of degree d and r the rank of O∗K . Denote by hK , RK the class number

and regulator of K, respectively, and write again log∗ x := max(1, log x).

Then Gy®ry and Yu (2006) proved the following.

Theorem 4.9. Let a, b be non-zero elements of K. Then for all x, y ∈ O∗K
satisfying (4.3) we have

HK(1, x, y) ≤ (3HK(1, a, b))A,

where

A = d5(2r + 2)4r+40RK log∗RK .

Remark. The following inequality implies that A can be bounded abouve

in terms of d and DK only:

hKRK ≤ |DK |1/2(log∗ |DK |)d−1.

The �rst inequality of this type was proved by Landau (1918). For the above

version, see, e.g., Evertse and Gy®ry (2015, formula (1.5.2)).
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In this section we shall use only Theorem 4.9. Below we formulate a gener-

alization to S-unit equations, Theorem 4.10, which is not used in this section,

but will be needed in Section 9.

Consider the general case where S is an arbitrary �nite set of places con-

taining S∞. In terms of S, the best known bounds can be found in Gy®ry

(2019), Le Fourn (2020) and Gy®ry and Le Fourn (2024). We mention here

the bound from Gy®ry (2019) in simpli�ed form. We introduce the necessary

notation. Let as above K be a number �eld of degree d and r the rank of

O∗K . Denote by hK , RK the class number and regulator of K, respectively.

Further, let S = S∞ ∪{p1, . . . , pt}, where p1, . . . , pt with t ≥ 0 are the prime

ideals in S. Let s := #S, and denote by RS the S-regulator. It is known that

RS = RK if t = 0, RS = iSRK

t∏
i=1

logNKpi otherwise,

where iS is a divisor of hK and NKa denotes the norm of a non-zero ideal a

of OK , i.e., #OK/a. Let PS := 1 if t = 0 and PS := max1≤i≤tNKpi if t ≥ 1.

Further, put P ′S := 1 if t ≤ 2 and P ′S the third largest among the quantities

NKpi, i = 1, . . . , t if t ≥ 3. Finally, put TK := max(hK , 160r! · (r + 1)2RK).

Theorem 4.10. Let a, b be non-zero elements of K. Then for all x, y ∈ O∗S
with (4.4) we have

HK(1, x, y) ≤ (3HK(1, a, b))AS ,

where

AS := 2s5(16ed)4s+3T t+4
K · P ′S

log∗ P ′S

(
1 +

log∗ logPS
log∗ P ′S

)
RS.

Observe that for S = S∞, A is much smaller than AS. Further, AS can be

bounded above in terms of d, |DK |, t, and PS.
We compare Theorem 4.10 with the abc-conjecture over number �elds.

We �rst recall the abc-conjecture over Q, as proposed by Masser in 1985,

re�ning an earlier conjecture of Oesterlé, see Masser (2017) for a historical

account. De�ne the radical of a non-zero integer a by R(a) :=
∏

p|a p.

Conjecture 4.11 (Masser-Oesterlé abc-conjecture, 1985). There is a con-

stant C(ε) > 0 depending on ε such that for all ε > 0 and all non-zero

integers a, b, c with a+ b = c and gcd(a, b, c) = 1 we have max(|a|, |b|, |c|) ≤
C(ε)R(abc)1+ε.
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There are various proposals to extend this to number �elds. We recall a

version of Masser (2002). Let K be a number �eld and DK its discriminant.

Take a non-zero ideal a of OK . Masser de�ned the modi�ed radical of a by

RK(a) :=
∏

p|aNKp
ep , where the product is taken over all prime ideals divid-

ing a and ep is the rami�cation index of p. Masser considered this modi�ed

radical since it has a good behaviour under �eld extensions, e.g., if L is an

extension of K of degree m, then RL(aOL) = RK(a)m.

Recall that the di�erent of K can be expressed as DK =
∏

p p
wp , where

the product is taken over all prime ideals p of OK with ep > 1, and where

wp ≥ ep − 1. Further, |DK | = NKDK . This implies that for any ideal a of

OK ,

(4.7) R′K(a) |RK(a) |DK · R′K(a), where R′K(a) :=
∏
p|a

NKp.

Conjecture 4.12 (Masser's uniform abc conjecture over number �elds,

2002). There is a constant C(ε) > 0 depending on ε, such that for every

ε > 0 the following holds. For every number �eld K of discriminant DK and

every non-zero α, β, γ ∈ K with α + β = γ, we have

HK(α, β, γ) ≤ C(ε)[K:Q]
(
|DK | · RK(a−3αβγ)

)1+ε
,

where a is the fractional ideal generated by α, β, γ.

This implies the following bound for the solutions of the S-unit equation

(4.4) ax + by = 1 in x, y ∈ O∗S, where again S is a �nite set of places of

K, containing the in�nite places and a, b ∈ K∗: let RS := 1 if S = S∞ and

RS :=
∏t

i=1 NKp
epi
i , and put RK(a, b) :=

∏
pNpep , where the product is

taken over all p ∈ MK \ S such that |a|p and |b|p are not both equal to 1.

Then for every solution x, y ∈ O∗S of ax+ by = 1 we have

HK(1, x, y) ≤ C(ε)d
(
|DK | · RS · RK(a, b)

)1+ε
HK(1, a, b)2.

See also Gy®ry (2022), Theorem 3.

Some alternative e�ective methods were also developed to obtain e�ec-

tive bounds for the solutions of S-unit equations. Bombieri (1993, 2002)

and Bombieri and Cohen (1997, 2003) worked out such an e�ective method

in Diophantine approximation, based on an extended version of the Thue�

Siegel principle, the Dyson Lemma and some geometry of numbers. Bugeaud

(1998), following their approach and combining it with estimates for linear
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forms in logarithms, proved results which are in certain parameters sharper

than those of Bombieri and Cohen.

During 1983�95 Frey initiated and developed in several papers the modu-

lar degree approach for S-unit equations over Q; see e.g. Frey (1997) where

he gives height bounds which became unconditional around 2000 when mod-

ularity was proved. As is surveyed by von Känel (2024), e�ective bounds

over Q were proved in 2011 independently and simultaneously by von Känel

(2013, 2014b) and by Murty and Pasten (2013), Pasten (2014).

However, it should be remarked that for most applications of S-unit equa-

tions, including the reduction theory of integral polynomials treated in our

paper, more general results concerning S-unit equations of the form (4.4)

over arbitrary number �elds are needed.

4.5. A brief sketch of the proof of a less precise version of Theorem

4.2.

Consider a monic polynomial f ∈ Z[X] of degree n and discriminant D 6= 0.

In view of Theorem 2.3 we may assume that n ≥ 3.

First we sketch the proof of assertion (i). Assume that f is irreducible over

Q. Let K = Q(α) for a zero α of f , and denote by DK the discriminant of

K. Then combining the Minkowski inequality with the fact that DK divides

D(f), i.e. D, (i) follows with an appropriate c1. If now f is reducible and

f = f1 · · · ft with monic irreducible f1, . . . , ft, then using D(fj) | D(f) in Z
and applying the just proved (i) for j = 1, . . . , t, we obtain (i) in the general

case as well.

We now sketch the proof of (ii) in Theorem 4.2. Its main steps are as

follows.

1. Denote by α1, . . . , αn the zeros of f , and by G the splitting �eld of f over

Q. Then [G : Q] ≤ n! and the absolute value |DG| of the discriminant of

G can be estimated from above by a constant c11(n, |D|). Here and below

c11, . . . are e�ectively computable numbers depending only on n and |D|.
2. Putting ∆ij := αi − αj we have∏

1≤i<j≤n

∆2
ij = D,

which implies |NG/Q∆ij| ≤ c12(n, |D|). It follows that

∆ij = δijεij, where H(δij) ≤ c13(n, |D|)(4.8)

and εij is a unit in the ring of integers of G.
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3. The following identity plays a basic role in the proof:

∆ij + ∆jk = ∆ik for every i, j, k.(4.9)

Consider the graph, whose vertices are ∆ij (1 ≤ i 6= j ≤ n) and whose edges

are [∆ij,∆ik], [∆ij,∆jk] (1 ≤ i 6= j ≤ n, k 6= i, j). This graph is obviously

connected.

4. Equations (4.8) and (4.9) give rise to a `connected' system of unit equa-

tions

δijkεijk + τijkνijk = 1,(4.10)

where δijk := δij/δik, τijk := δjk/δik are non-zero elements of G with heights

e�ectively bounded above in terms of n and |D| only, and εijk := εij/εik,

νijk := εjk/εik are unknown units in the ring of integers of G.

5. Applying Theorem 4.9, together with the Remark following it, we get

upper bounds for the heights of the quotients ∆ij/∆ik = δijkεijk for each

triple {i, j, k} ⊂ {1, . . . , n}, depending on G, n and |D|, and so eventually

only on n and |D|, and likewise for ∆jk/∆ik.

6. Using the connectedness of the unit equations involved, this yields e�ective

upper bounds for the height of ∆ij for every i, j, depending only on n and

|D|. Indeed, one �rst obtains an upper bound for the height of any quotient

∆ij/∆kl via
∆ij

∆kl

=
∆ij

∆ik

· ∆ik

∆kl

(using the path ∆ij → ∆ik → ∆kl in the graph) and subsequently for the

height of each ∆ij via

∆
n(n−1)
ij = ±D ·

∏
1≤k 6=l≤n

∆ij

∆kl

.

7. Adding the di�erences ∆ij = αi−αj for �xed i and for j = 1, . . . , n, using

the fact that α1 + · · ·+αn ∈ Z, putting α1 + · · ·+αn = na+a′ with a, a′ ∈ Z,
0 ≤ a′ < n, and writing

βi := αi − a for i = 1, . . . , n,

g(X) =
n∏
i=1

(X − βi),

we have that g(X) = f(X + a) ∈ Z[X] and that the height of g has an

e�ective upper bound depending only on n and |D|. �
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Remark. We note that for cubic and quartic monic polynomials f ∈ Z[X] of

given non-zero discriminant, Klaska (2021, 2022) devised another approach

for proving Corollary 4.3 via the theory of integral points on elliptic curves.

4.6. A brief sketch of the proof of a less precise version of Theorem

4.4.

Take an integral polynomial f ∈ Z[X] of degree n and discriminantD 6= 0. In

view of Theorems 2.1, 2.2 and 2.4 we may assume that n ≥ 4. The absolute

value of the discriminant of the splitting �eld of f can be estimated from

above in terms of |D|, and by the Hermite-Minkowski Theorem, this leaves

only a �nite, e�ectively determinable collection of possible splitting �elds for

f . So we may restrict ourselves to polynomials f with given splitting �eld G

and ring of integers OG.
Take such f and pick a factorization of f ,

f =
n∏
i=1

(αiX − βi) over Q,(4.11)

such that the number of linear factors with real coe�cients is maximal,

and the factors with complex coe�cients fall apart into complex conjugate

pairs. After multiplying f by a small positive rational integer, which can be

e�ectively bounded in terms of G, hence in terms of n and |D| and which

is negligible compared with the other estimates arising from the application

of Baker's method, we may assume that f has such a factorization with

αi, βi ∈ OG for i = 1, . . . , n. Put

∆ij := αiβj − αjβi for 1 ≤ i, j ≤ n.

We now follow the approach of Evertse and Gy®ry (2017), chapters 13 and

14. We outline the main steps of the proof.

1.We start with a small variation on the reduction theory of Hermite (1848,

1851) and Julia (1917). Let t = (t1, . . . , tn) be a tuple of positive reals such

that ti = tj for each pair (i, j) such that αi, βi are the complex conjugates of

αj, βj. Consider the positive de�nite quadratic form

Φf,t(X, Y ) :=
n∑
i=1

t−2
i (αiX − βiY )(αiX − βiY ).

By Gauss' reduction theory for positive de�nite binary quadratic forms, there

is
(
a b
c d

)
∈ GL2(Z) such that Φf,t(aX + bY, cX + dY ) is reduced, i.e., equal
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to AX2 +BXY + CY 2 with |B| ≤ A ≤ C. De�ne the polynomial

g(X) = (cX + d)nf

(
aX + b

cX + d

)
,

which is GL2(Z)-equivalent to f . We denote by H(g) the height of g. We

recall Theorem 13.1.3 of Evertse and Gy®ry (2017), and refer for the elemen-

tary proof to section 13.1 of that book.

Proposition 4.13. Let

M := t1 · · · tn, R :=

( ∑
1≤i<j≤n

|∆ij|2

t2i t
2
j

)2

.

Then

H(g) ≤
(

4

n
√

3

)n
M2Rn

if f has no root in Q, and

H(g) ≤
(

2√
n

)n
·

(
2√

3(n− 1)

)n(n−1)/(n−2)

(M2Rn)(n−1)/(n−2)

if f does have a root in Q.

2. For any quadruple i, j, k, l of distinct indices we have the identity

∆ij∆kl + ∆jk∆il = ∆ik∆jl.(4.12)

Notice that all terms ∆ij are in OG and divide D. Hence |NG/Q(∆ij)| ≤
|D|[G:Q] for all i, j where [G : Q] ≤ n!. As above in Section 4.4, we can ex-

press each term ∆ij as a product of an element of height e�ectively bounded

in terms of n,D and a unit from OG. By substituting this into the identi-

ties (4.12) we obtain homogeneous unit equations in three terms. Dividing

(4.12) by ∆ik∆jl we get unit equations like in (4.10) above, and using The-

orem 4.9 we obtain e�ective upper bounds for the heights of the quotients

∆ij∆kl/∆ik∆jl.

3. To obtain an e�ective upper bound for the height of g in terms of n and

|D|, it su�ces to e�ectively estimate the quantities M and R from Proposi-

tion 4.13 from above in terms of n and |D|, for a suitable choice of the ti.
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For the ti we choose

ti :=

(
n∏

k=1,k 6=i

|∆ik|

)1/(n−2)

for i = 1, . . . , n.

With this choice,

M = |D|1/(n−2)

and

|∆ij|
titj

=

(
|D|−1 ·

∏
k,l

∣∣∣∣∆ij∆kl

∆ik∆jl

∣∣∣∣
)1/(n−1)(n−2)

,

where the product is taken over all pairs of indices k, l such that 1 ≤ k, l ≤ n,

k 6= i, j, l 6= i, j and k 6= l. By inserting the upper bounds for the heights of

the quantities ∆ij∆kl/∆ik∆jl obtained in the previous step, we can estimate

from above M and R, and subsequently H(g), e�ectively in terms of n and

|D| only. �

4.7. Conjectural improvements (partly joint work with von Känel).

This subsection contains important contributions by Rafael von Känel.

As was mentioned above, for n ≥ 4 resp. n ≥ 3 the proofs of Theorems 4.2,

4.4, 4.2* and 4.4* are based on e�ective results of Gy®ry on unit equations

whose proofs depend on Baker's theory of logarithmic forms. The exponential

feature of the bounds in (4.1) and (4.2) is a consequence of the use of Baker's

method. It is likely that the bounds in (4.1) and (4.2) can be replaced by

some bounds polynomial in terms of |D|. This can be achieved if we restrict

ourselves to polynomials f ∈ Z[X] having a �xed splitting �eld G over Q.
In this case the bounds in (4.1) and (4.2) can be replaced by bounds of the

form

c14(n,G)|D|c15(n,G),

where c14(n,G), c15(n,G) are e�ectively computable numbers which depend

only on n and the discriminant of G; see Gy®ry (1984, 1998) resp. Evertse

and Gy®ry (1991a). The following conjectures seem plausible.

Conjecture 4.14. Let f ∈ Z[X] be a monic polynomial of degree n ≥ 3

and discriminant D 6= 0. Then f is Z-equivalent to a monic polynomial g in

Z[X] such that

H(g) ≤ c16(n)|D|c17(n)

where c16(n), c17(n) depend only on n.
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Conjecture 4.15. Let f ∈ Z[X] be a polynomial of degree n ≥ 4 and of

discriminant D 6= 0. Then f is GL2(Z)-equivalent to a polynomial g in Z[X]

such that

H(g) ≤ c18(n)|D|c19(n)

where c18(n), c19(n) depend only on n.

Conjecture 4.15 has been formulated in Chapter 15 of Evertse and Gy®ry

(2017). In fact, Conjecture 4.15 implies Conjecture 4.14.

Conjecture 4.15 =⇒ Conjecture 4.14. Let f ∈ Z[X] be a monic polyno-

mial of degree n ≥ 3 and discriminant D 6= 0. Consider the polynomial

g(X) := (2X+1)n+1f( X
2X+1). Using that f is monic, one shows by means of a

straightforward computation that g has degree n+1 and D(g) = D. By Con-

jecture 4.15 there is
(
a b
c d

)
∈ GL2(Z) such that g∗(X) := (cX+d)n+1g(aX+b

cX+d)

has height at most c18(n+1)|D|c19(n+1). A straightforward computation shows

that

g∗(X) = (c′X + d′)f ∗(X),

with c′ = 2a+ c, d′ = 2b+ c, f ∗(X) = (c′X + d′)nf( aX+b
c′X+d′ ).

Note that |c′|, |d′|, H(f ∗) ≤ c20(n)H(g∗). Let r be an integer such that a′ :=

a+rc′ satis�es |a′| ≤ 1
2
|c′|. Then from ad′−bc′ = ±1 it follows that b′ := b′+

rd′ satis�es |b′| ≤ 1
2
|d′|+ 1. Now de�ne f ∗∗(X) := (−c′X + a′)nf ∗( d′X−b′

−c′X+a′ ).

One veri�es that f ∗∗(X) = f(±X ± r) and H(f ∗∗) ≤ c16(n)|D|c17(n). �

We give some evidence for the conjectures mentioned above. Evertse proved

the following what one may call semi-e�ective result.

Theorem 4.16 (Evertse, 1993). Let f ∈ Z[X] be a polynomial of degree

n ≥ 4 and of discriminant D 6= 0, having splitting �eld G over Q. Then f is

GL2(Z)-equivalent to a polynomial g of height

H(g) ≤ c21(n,G)|D|21/n.

Here c21(n,G) is a number depending only on n andG, which is not e�ectively

computable by the method of proof. For a proof, see also Evertse and Gy®ry

(2017, Chap. 15).

The main tool in Evertse's proof is the following theorem. The constant

in this theorem is ine�ective. Let K be a number �eld. Given α, β, γ ∈ K,

we de�ne the height HK(α, β, γ) :=
∏

v∈MK
max(|α|v, |β|v, |γ|v).
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Theorem 4.17. Let α, β, γ be non-zero elements of OK with α + β = γ.

Then for all ε > 0 we have

HK(α, β, γ) ≤ c22(K, ε)|NK/Q(αβγ)|1+ε,

where c22(K, ε) depends only on K and ε.

In fact, this is a special case of a general multivariable result of Evertse

(1984b, Theorem 1), see also Evertse and Gy®ry (2015, Theorem 6.1.1).

The proof of this general result is based on Schmidt's Subspace Theorem

over number �elds. For Theorem 4.17 one needs the two-dimensional case,

which is Roth's Theorem over number �elds. Theorem 4.16 was deduced

from Theorem 4.17 essentially by following the arguments in Subsection 4.6,

but with various re�nements to obtain a bound with an exponent O(1/n) on

|D|.
In order to prove Conjecture 4.15, the following variation on Theorem 4.17

would su�ce:

Conjecture 4.18. For all number �elds K of degree d ≥ 2 and discriminant

DK and all non-zero α, β, γ ∈ OK with α + β = γ we have

HK(α, β, γ) ≤ c23(d)|DK ·NK/Q(αβγ)|c24(d),

where c23(d), c24(d) depend only on d.

This obviously follows from Masser's uniform abc-conjecture over number

�elds, i.e. Conjecture 4.12, but is of course much weaker.

Conjecture 4.18 =⇒ Conjecture 4.15 (sketch). We follow the argument in

Subsection 4.6, and use the same notation. Let f ∈ Z[X] be a polynomial

of degree n ≥ 4 and discriminant D 6= 0. Denote by G the splitting �eld

of f . By e.g., Evertse and Gy®ry (2017, Corollary 13.3.4), there is a ∈ Q
with 1 ≤ |a| ≤ c25(n)|DG|c26(n) such that f1 := af =

∏n
i=1(αiX − βi) with

αi, βi ∈ OG for i = 1, . . . , n, and such that the non-real factors among the

αiX − βiY can be divided into complex conjugate pairs. Let D1 := D(f1).

Now de�ne ∆ij := αiβj − αjβi (1 ≤ i < j ≤ n) and apply Conjecture 4.18

to the identities

∆ij∆kl + ∆jk∆il = ∆ik∆jl.

Noting that |NG/Q(∆ij)| ≤ |D1|n!, it follows that for all quadruples i, j, k, l,

HG(∆ij∆kl,∆jk∆il,∆ik∆jl) ≤ c27(n)|DG ·D1|c28(n).
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This leads to upper bounds for the quantities |∆ij∆kl/∆ik∆jl|. Following the
arguments in part 3 of Subsection 4.6, applying Proposition 4.13, one obtains

that f1 is GL2(Z)-equivalent to a polynomial g1 with

H(g1) ≤ c29(n)|DG ·D1|c30(n).

One can show that DG divides D
c31(n)
1 . Taking g := a−1g1 one obtains that

g is GL2(Z)-equivalent to f and that H(g) ≤ c18(n)|D|c19(n). �

We are interested in upper bounds for H(g) that depend as much as possi-

ble on DG and the radical of D = D(f), and as little as possible on D itself.

Under assumption of Conjecture 4.12 (Masser's version of the abc-conjecture

over number �elds), we deduce the following result for monic polynomials. In

fact, it is a modi�cation of some ideas of Rafael von Känel, which he kindly

shared with us. Recall that the radical of a non-zero rational integer a is

de�ned by R(a) :=
∏

p|a p.

Theorem 4.19. Under assumption of Conjecture 4.12, the following holds.

Let f ∈ Z[X] be a monic polynomial of degree n ≥ 3 and of discriminant

D 6= 0. Let G be the splitting �eld of f and DG its discriminant. Then f is

Z-equivalent to a monic polynomial g ∈ Z[X] such that

H(g) ≤ c32(n)
(
|DG · R(D)|

)c33(n) · |D|1/(n−1),

where c32(n), c33(n) depend only on n.

Remark. With a more elaborate computation, c33(n) can be computed ex-

plicitly.

Proof. We use the following notation: we write A�∗ B if there are positive

numbers c′(n), c′′(n), depending only on n, such that

A ≤ c′(n)|DG·R(D)|c′′(n)B. At each occurrence of�∗, the constants c′(n), c′′(n)

may be di�erent.

Write f(X) = (X−α1) · · · (X−αn). Choose a rational integer a such that

|a − (α1 + · · · + αn)/n| ≤ 1
2
, and take g(X) := f(X + a). This g is clearly

Z-equivalent to a. Then

H(g) ≤ 2n
n∏
i=1

max(1, |αi − a|) ≤ 2n
n∏
i=1

max(1, 1
2

+ |αi − (α1 + · · ·+ αn)/n|),

hence

(4.13) H(g) ≤ 2n
n∏
i=1

(
1 + n−1

n∑
j=1

|αi − αj|
)
.
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We prove Theorem 4.17 by estimating the right-hand side from above, and

to this end we apply Conjecture 4.12 to the identities

(αi − αj) + (αj − αk) = (αi − αk) (i, j, k ∈ {1, . . . , n} pairwise distinct).

Note that all terms in this sum are algebraic integers in G, composed of

prime ideals in OG dividing D. So by Conjecture 4.12,

HG

(
1,
αi − αj
αi − αk

)
≤ HG(αi − αj, αj − αk, αi − αk)�∗ 1.

This implies ∣∣∣αi − αj
αi − αk

∣∣∣�∗ 1 for all pairwise distinct i, j, k

and subsequently, using
αi−αj

αk−αl
= −αi−αj

αi−αk
· αk−αi

αk−αl
,∣∣∣αi − αj

αk − αl

∣∣∣�∗ 1 for all pairwise distinct i, j, k, l.

This leads us to

|αi − αj| �∗
( ∏

1≤k 6=l≤n

|αk − αl|
)1/(n(n−1)

= |D|1/n(n−1) for all i 6= j.

By inserting this into (4.13), we arrive at H(g)�∗ |D|1/(n−1). This completes

our proof. �

Rafael von Känel kindly communicated to us a conjecture on monic cubic

polynomials of given discriminant that is equivalent to the Masser-Oesterlé

abc-conjecture overQ, i.e., Conjecture 4.11. To formulate von Känel's conjec-

ture, we introduce the weighted height of f = X3 +a1X
2 +a2X +a3 ∈ Z[X]

by

Ht(f) := max(|a1|, |a2|1/2, |a3|1/3).

Further, we introduce the quantity

δf := max{d ∈ Z : d2|P and d3|U},(4.14)

where P := a2
1 − 3a2, U := 2a3

1 + 27a3 − 9a1a2.

Here P and U are the usual two seminvariants of f , which satisfy 4P 3−U2 =

27D, where D = D(f). Note that δ6
f divides 27D.
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Conjecture 4.20 (von Känel). There is a constant c34(ε) > 0 depending on

ε, such that for every real ε > 0 the following holds:

For every monic cubic polynomial f ∈ Z[X] of discriminant D 6= 0, there is

a polynomial g ∈ Z[X] that is Z-equivalent to f and for which

Ht(g) ≤ c34(ε) · δf · R(27D/δ6
f )

1+ε.

Theorem 4.21 (von Känel). The Masser-Oesterlé abc-conjecture over Q is

equivalent to Conjecture 4.20.

Remark. It might be possible to extend the proof to prove a version for any

number �eld K without introducing substantial new ideas. However it will

be clear that the proof does not work for polynomials of degree ≥ 4.

Observing that δf · R(27D/δ6
f ) divides 27D, this implies at once the fol-

lowing:

Corollary 4.22. Assume the Masser-Oesterlé abc-conjecture over Q holds.

Then there is a constant c35(ε) > 0 depending on ε, such that for every real

ε > 0 the following holds:

For every monic cubic polynomial f ∈ Z[X] of discriminant D 6= 0, there is

a polynomial g ∈ Z[X] that is Z-equivalent to f and for which

Ht(g) ≤ c35(ε) · |D|1+ε.

Noting that H(g) ≤ Ht(g)3, Corollary 4.22 immediately implies a version

of Conjecture 4.14.

Proof of Theorem 4.21. We follow von Känel's argument.

It is known (see Bombieri-Gubler (2005, 12.5.12)) that the Masser-Oesterlé

abc-conjecture over Q is equivalent to the following

Conjecture 4.23. For every real ε > 0 there is a constant c36(ε) such that

all u, v ∈ Z with w := u3 − v2 6= 0 and gcd(u3, v2) sixth power-free satisfy

|u| ≤ c36(ε) · R(w)2+ε, |v| ≤ c36(ε) · R(w)3+ε.

Therefore it su�ces to show that Conjecture 4.20 is equivalent to Conjec-

ture 4.23. This equivalence is a consequence of Lemmas 4.24 and 4.25 that

we shall prove below. �

In what follows we write A�ε B if there is a constant c(ε) > 0 depending

only on ε such that A ≤ c(ε)B.

Lemma 4.24. Conjecture 4.23 implies Conjecture 4.20.
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Proof. We assume that Conjecture 4.23 holds and we let ε > 0 be a real

number.

Let f ∈ Z[X] be a cubic monic polynomial of discriminant D 6= 0. Write

f = X3 + a1X
2 + a2X + a3 with ai ∈ Z, and let δ = δf , P , U be as in (4.14).

We compute

(4.15) f(X− a1
3

) = X3+b2X+b3, b2 = −P
3
, b3 = U

27
, 4P 3−U2 = 27D.

The de�nition of δ assures that P0 = P/δ2 and U0 = U/δ3 lie in Z with

gcd(P 3
0 , U

2
0 ) sixth power-free. Moreover, it follows from (4.15) that P0 and

U0 satisfy

(4P0)3 − (4U0)2 = 16 · 27(D/δ6).

Next we de�ne ρ := max{d ∈ Z : d2 | 4P0 and d3 | 4U0}. Then we observe

that u = 4P0/ρ
2 and v = 4U0/ρ

3 lie in Z with gcd(u3, v2) sixth power-free,

and we obtain

u3 − v2 = w, w = 16·27
ρ6

(D/δ6) 6= 0.

Here we used our assumption thatD 6= 0. It holds thatR(w) ≤ 6·R(27D/δ6)

since ρ ∈ Z and then an application of Conjecture 4.23 with u, v leads to

(4.16) max(|u|3, |v|2)�ε R(w)6+ε �ε R(27D/δ6)6+ε.

As gcd(P 3
0 , U

2
0 ) is sixth power-free, the de�nition of ρ implies ρ | 2. Then, on

combining (4.16) with the de�nitions of b2, b3 and u, v, we deduce

(4.17) max(|b2|1/2, |b3|1/3) ≤ δ ·max(|u|1/2, |v|1/3)�ε δ · R(27D/δ6)1+ε.

In the case when −a1/3 ∈ Z, we can take g = f(X + τ) ∈ Z[X] for τ =

−a1/3 ∈ Z. Indeed Ht(g) = max(|b2|1/2, |b3|1/3) by (4.15) and thus (4.17)

gives Ht(g)�ε δ · R(27D/δ6)1+ε.

Suppose from now on that −a1/3 /∈ Z. Then we may and do choose σ ∈
{1

3
, 2

3
} such that τ ′ = −a1

3
+ σ ∈ Z. De�ne g = f(X + τ ′) and write g =

X3 + c1X
2 + c2X + c3 with ci ∈ Z. On using that g = f((X + σ) − a1

3
) =

(X + σ)3 + b2(X + σ) + b3, we obtain the identities

c1 = 3σ, c2 = 3σ2 + b2, c3 = σ3 + b2σ + b3.

The de�nition of σ gives |σ| ≤ 2/3, and our assumption D 6= 0 assures

that not both b2, b3 are zero. Hence we deduce Ht(g)�ε max(|b2|1/2, |b3|1/3)

which together with (4.17) implies Ht(g) �ε δ · R(27D/δ6)1+ε as desired.

This completes the proof of Lemma 4.24. �

Lemma 4.25. Conjecture 4.20 implies Conjecture 4.23.



EFFECTIVE REDUCTION THEORY OF INTEGRAL POLYNOMIALS 35

Proof. We assume that Conjecture 4.20 holds and we let ε > 0 be a real

number.

Let u, v ∈ Z with gcd(u3, v2) sixth power-free and w = u3 − v2 6= 0. We

consider the monic cubic f = X3 + a2X + a3 in Z[X] where a2 = −3u and

a3 = 2v. A direct computation shows that the discriminant D of f and the

seminvariants P,U of f are given by

D = 4 · 27w, P = 9u, U = 2 · 27v.

It follows that D 6= 0, since w 6= 0 by assumption. Moreover our assumption

that gcd(u3, v2) is sixth power-free implies that the quantity δ in (4.14)

satis�es δ | 6. Then an application of Conjecture 4.20 with f gives that there

is τ ∈ Z such that g = f(X + τ) satis�es

(4.18) Ht(g) = max
i
|ci|1/i �ε R(D)1+ε

where g = X3 + c1X
2 + c2X + c3 and ci ∈ Z. As f = X3 + 0 ·X2− 3uX + 2v

we obtain that c1 = 3τ and thus g(X − c1
3

) = f . This leads to the following

identities

−3u = a2 = − c21
3

+ c2, 2v = a3 = 2
27
c3

1 − c1c2
3

+ c3.

Thus (4.18) combined with D = 4 · 27w implies |u| �ε R(w)2+ε and |v| �ε

R(w)3+ε as desired. This completes the proof of Lemma 4.25. �

We �nish this subsection by recalling a function �eld analogue of Conjec-

ture 4.15 that has been proved unconditionally. Let k be an algebraically

closed �eld of characteristic 0. De�ne the polynomial ring A := k[t] and its

quotient �eld L := k(t).

De�ne an absolute value | · |∞ on L as follows: if a, b ∈ A are two non-

zero polynomials, then put |a/b|∞ := exp(deg a − deg b). Further, de�ne

the height of f(X) := a0X
n + a1X

n−1 + · · · + an ∈ A[X] by H(f) :=

max(|a0|∞, . . . , |an|∞). Call two polynomials f, g ∈ A[X] of degree n GL2(A)-

equivalent, if g(X) = u(cX + d)nf(aX+b
cX+d) for some u ∈ k∗ and

(
a b
c d

)
∈

GL2(A).

In his PhD-thesis, Zhuang (2015, Chap. 5, Theorem 5.3.2) proved the

following result (in fact, Zhuang formulated this in terms of binary forms

F ∈ A[X, Y ]; using the correspondence f(X) = F (X, 1) one obtains the

theorems below).
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Theorem 4.26. Let f ∈ A[X] be a polynomial of degree n ≥ 3 and discrim-

inant D 6= 0. Assume that f has splitting �eld G over L, and denote by gG
the genus of G. Then f is GL2(A)-equivalent to a polynomial g for which

H(g) ≤ exp
(
n2 + 6n− 7 +

(5n− 5)(2gG − 1)

24[G : K]

)
· |D|21/n

∞ .

By estimating gG from above in terms of n and |D(f)|∞, Zhuang (2015,

Chap. 5, Main Theorem) obtained the following, unconditional, function �eld

analogue of Conjecture 4.15:

Theorem 4.27. Let f ∈ A[X] be a polynomial of degree n ≥ 3 and discrim-

inant D 6= 0. Then f is GL2(A)-equivalent to a polynomial g for which

H(g) ≤ exp
(
(n− 1)(n+ 6)

)
· |D|20+(1/n)

∞ .

The proof of Theorem 4.26 is similar to that of Theorem 4.16, except that

instead of Theorem 4.17 Zhuang used the Stothers-Mason abc-Theorem for

function �elds.

We recall this theorem. Let K be a function �eld of transcendence degree

1 over an algebraically closed �eld k of characteristic 0. Let MK be the

set of normalized discrete valuations on K, i.e., with value group Z. These
valuations satisfy the sum formula

∑
v∈MK

v(x) = 0 for x ∈ K∗. Denote

by gK the genus of K. De�ne the height of a tuple (γ1, . . . , γn) ∈ Kn by

hK(γ1, . . . , γn) := −
∑

v∈MK
min(v(γ1), . . . , v(γn)).

Theorem 4.28. Let α, β, γ be elements of K \ k such that α + β = γ. Let

s denote the number of valuations v of K such that v(α), v(β), v(γ) are not

all equal. Then

hK(α, β, γ) ≤ s+ 2gK − 2.

For a proof, see Mason (1984).

5. Consequences in algebraic number theory, in particular

for monogenicity and rational monogenicity

We give some consequences of Theorems 4.1, 4.2 and 4.4 in algebraic num-

ber theory. Of particular interest are applications to monogenicity of number

�elds and (rational) monogenicity of orders.

Theorem 4.1 due to Birch and Merriman from 1972 has an important

ine�ective �niteness consequence for algebraic integers of given discriminant;

see Theorem 5.1 below.
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An e�ective version of Theorem 5.1 was obtained independently in Gy®ry

(1973), as a consequence of his e�ective Theorem 4.2 presented above; see

Theorem 5.2 below.

Theorem 5.2 as well as its various e�ective consequences, applications,

quantitative variants and generalizations in Gy®ry (1973, 1974, 1976, 1978a,b,

1980a,b, 1981) led to breakthroughs in the e�ective theory of number �elds.

These furnished among others general e�ective �niteness results for integral

elements of given discriminant resp. of given index in number �elds and,

more generally, in their orders; see Corollaries 5.3 and 5.4. In particular, as

an immediate consequence of his Theorem 5.2, Gy®ry provided the �rst gen-

eral e�ective algorithm for deciding the monogenicity and for determining,

at least in principle, all power integral bases in number �elds and in their

orders; see Theorems 5.5 and 5.6 below.

As a consequence of Theorem 4.4 we present from Evertse and Gy®ry

(1991a) a general e�ective �niteness theorem on algebraic numbers of given

discriminant; see Theorem 5.10. Finally, we introduce rationally monogenic

orders, which are generalizations of monogenic orders, and give an algorithm

to determine in principle whether a given order is rationally monogenic, see

Theorems 5.14 and 5.15 below.

For convenience, we formulate the above-mentioned e�ective �niteness re-

sults in their simplest form. For generalizations, further applications and

comprehensive treatment of this extensive area, we refer to Gy®ry (1983,

1984, 1998, 2000, 2006), Evertse and Gy®ry (1991a, 2017, 2022), BEGyRS

(2023), the references given there, and to Sections 6 to 9 of the present paper.

5.1. Preliminaries.

Throughout this section, K will denote a number �eld of degree n ≥ 2

with ring of integers OK and discriminant DK . Recall that K has precisely

n distinct embeddings in its normal closure over Q, which we denote by

x 7→ x(i) (i = 1, . . . , n). Here x(1) = x.

LetM be a free Z-module in K of rank n, and pick a Z-basis {ω1, . . . , ωn}
ofM. Then the discriminant ofM is de�ned by

D(M) :=
(

det
(
ω

(j)
i

)n
i,j=1

)2

.

This is a rational number, and it does not depend on the choice of the basis.
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Given two free Z-modulesM1,M2 in K of rank n withM1 ⊇M2, denote

by [M1 :M2] the index ofM2 inM1, i.e., the cardinality ofM1/M2. Then

(5.1) D(M2) = [M1 :M2]2D(M1).

We recall that an order of K is a subring of K which as a Z-module is free

of rank n. In particular, OK is an order of K, and each other order of K is

a subring of OK . We have DK = D(OK). Equation (5.1) implies that ifM
is a submodule of OK of rank n, then D(M) ∈ Z.
Let α be a non-zero algebraic integer. Then we denote by fα(X) the mini-

mal (monic) polynomial of α in Z[X]. Thus, fα(X) =
∏n

i=1(X −α(i)), where

α(1) = α, . . . , α(n) are the distinct conjugates of α in the splitting �eld of fα.

We now de�ne the discriminant of α by

D(α) := D(fα) =
∏

1≤i<j≤n

(α(i) − α(j))2.(5.2)

The ring Z[α] is clearly an order ofQ(α), with Z-module basis {1, α, . . . , αn−1},
so

D(α) = D(Z[α]).(5.3)

Let now O be an order of K, and D(O) its discriminant. Then O is a

subring of OK . For a primitive element α of K with α ∈ OK resp. α ∈ O,
we de�ne

(5.4) I(α) := [OK : Z[α]], IO(α) := [O : Z[α]]

to be the index of α in OK resp. in O. Then, by (5.1), (5.3),

(5.5) D(α) = I(α)2DK for α ∈ OK , D(α) = IO(α)2D(O) for α ∈ O.

Two algebraic integers α, β are called Z-equivalent if β = ±α+a for some

a ∈ Z. If α and β are Z-equivalent then so are fα and fβ. Conversely, if fα
and fβ are Z-equivalent then α is Z-equivalent to a conjugate of β.

Clearly, Z-equivalent elements inOK resp. inO have the same discriminant

and hence the same index in OK resp. in O.
A number �eld K is called monogenic if OK = Z[α] for some α ∈ OK .

This is equivalent to the fact that I(α) = 1 and that {1, α, . . . , αn−1} is a
power integral basis in K, i.e., a Z-module basis of OK . Similarly, an order O
of K is said to be monogenic if O = Z[α], i.e. if IO(α) = 1 for some α ∈ O.
Clearly, if O = Z[α] then also O = Z[β] for every β that is Z-equivalent to
α.
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Further, K resp. O is called k (≥ 1) times monogenic if OK resp. O equals

Z[α1] = · · · = Z[αk] for some pairwise Z-inequivalent α1, . . . , αk in OK resp.

in O. In case that in the above de�nition k is maximal, it is called the

multiplicity of the monogenicity of K, resp. of O.

5.2. Consequences of Theorems 4.1 and 4.2 for algebraic integers

of given discriminant.

From their Theorem 4.1, Birch and Merriman in 1972 deduced the following

ine�ective �niteness theorem.

Theorem 5.1 (Birch and Merriman, 1972). Up to Z-equivalence, there are

only �nitely many algebraic integers with given non-zero discriminant.

Independently, as a consequence of his Theorem 4.2, Gy®ry (1973) proved

the following e�ective version of Theorem 5.1.

By the height H(α) of an algebraic integer α we mean the height H(fα).

Theorem 5.2 (Gy®ry, 1973). Let α be an algebraic integer of degree n ≥ 2

and discriminant D 6= 0. Then

(i) n ≤ c1(|D|), and
(ii) There is an algebraic integer β, Z-equivalent to α such that

H(β) ≤ c2(n, |D|),

where c1, c2 denote the same e�ectively computable positive numbers as in

Theorem 4.2.

This theorem was stated and proved in Gy®ry (1973) as 'Corollaire 3' of

the 'Théorème', cf. Theorem 4.2 above.

As was mentioned in Section 2, the cubic case was settled independently

by Delone (1930) and Nagell (1930), and the quartic case by Nagell (1967)

in an ine�ective way.

Theorems 5.1 resp. 5.2 con�rmed in full generality, and in fact Theorem

5.2 in an e�ective form, a conjecture of Nagell (1967). Further both Theorem

5.1 and Theorem 5.2 imply, Theorem 5.2 in an e�ective form, that there are

only �nitely many algebraic units in Q of given discriminant. This gave the

e�ective solution to Problem 19 in the book Narkiewicz (1974).

Finally, we note that Theorem 5.2 easily follows from Theorem 4.2. In-

deed, if α is an algebraic integer with the properties speci�ed in Theorem

5.2, then by (5.2), D(fα) = D and deg fα = n. Further, by Theorem 4.2 fα
is Z-equivalent to some monic g ∈ Z[X] of degree n and discriminant D such
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that n ≤ c1(|D|) and H(g) ≤ c2(n, |D|), where c1, c2 denote the e�ectively

computable numbers occurring in Theorem 4.2. But then α is Z-equivalent to
a zero of g, say β, whence deg β ≤ c1(|D|) and H(β) ≤ c2(n, |D|) follow. �

The �rst explicit version of (ii) in Theorem 5.2 was established by Gy®ry

(1974) by means of Baker's method. For c1(n) one can take 2 log |D|/ log 3.

For c2(n, |D|) we can obtain an explicit bound, using Theorem 4.2* instead

of Theorem 4.2. An even better explicit estimate can be obtained in (ii),

observing that in fact we apply Theorem 4.2 (or its explicit version Theorem

4.2*) only to irreducible polynomials fα. The best known bound in (ii) comes

from Theorem 6.4.1 of Evertse and Gy®ry (2017).

5.3. Consequences for monogenic number �elds and orders.

Let again K be a number �eld of degree n ≥ 2 with ring of integers OK and

discriminant DK .

The following e�ective corollaries are immediate consequences of Theorem

5.2 (i.e. the `Corollaire 3') of Gy®ry (1973). Although this was not mentioned

by Birch and Merriman in their 1972 paper, it should be remarked that

from their Theorem 5.1 one can also deduce in ine�ective form the �niteness

consequences of the results below.

Corollary 5.3 (of Theorem 5.2). Let O be an order of K and D a non-zero

integer. Every α in O of discriminant DK/Q(α) = D is Z-equivalent to some

β ∈ O such that

H(β) ≤ c2(n, |D|),
where c2 = c2(n, |D|) denotes the same e�ectively computable positive number

as in Theorem 5.2.

This is a special case of Theorem 5.2, restricted to the elements of O. It
follows from Corollary 5.3 that up to Z-equivalence, there are only �nitely

many elements of O of given non-zero discriminant, and all of them can be,

at least in principle, e�ectively determined.

As was mentioned above, the �rst quantitative versions of Theorem 5.2

and Corollary 5.3 were established in Gy®ry (1974).

Corollary 5.4 (of Theorem 5.2). Let O be an order in K of discriminant

D(O), and IO a positive integer. Every α in O with index IO(α) = IO is

Z-equivalent to some β ∈ O such that

H(β) ≤ c2(n, I2
O · |D(O)|),
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where c2 denotes the same e�ectively computable positive number as in The-

orem 5.2 with |D| replaced by I2
O · |D(O)|.

This follows immediately from Corollary 5.3 and the second identity in

(5.5). Corollary 5.4 implies that up to Z-equivalence there are only �nitely

many elements in O with given index and all of them can be, at least in

principle, e�ectively determined.

The next Theorem 5.5 and its more general version Theorem 5.6 are the

most in�uential consequences of Theorem 5.2. They provided the �rst general

e�ective algorithm for deciding the monogenicity, the multiplicity of mono-

genicity, and for determining, at least in principle, all power integral bases

in K and in its orders.

Of particular importance are the cases when in Corollaries 5.3, and 5.4 O
is just OK , the ring of integers of K. Then Corollary 5.4 implies

Theorem 5.5 (Gy®ry, 1976). Every α ∈ OK with OK = Z[α] is Z-equivalent
to some β ∈ OK such that

H(β) ≤ c2(n, |DK |),

where c2 denotes the same e�ectively computable positive number as in Corol-

lary 5.4 with IO = 1, D(O) = DK. Consequently, there are only �nitely many

Z-equivalence classes of α in OK such that OK = Z[α], and a full set of rep-

resentatives of these classes can be, at least in principle, e�ectively found.

More generally, Corollary 5.4 immediately gives the following:

Theorem 5.6 (Gy®ry, 1976). Let O be an order of K of discriminant D(O).

Every α ∈ O with O = Z[α] is Z-equivalent to some β ∈ O such that

H(β) ≤ c2(n, |D(O)|),

where c2 denotes the same e�ectively computable positive number as in Corol-

lary 5.4 with IO = 1.

The �rst explicit, quantitative versions of Corollary 5.4 and Theorems 5.5

and 5.6 were given in Gy®ry (1976).

Remark. With the above formulation of Corollaries 5.3, 5.4 and Theorem

5.6 it was easier to point out that these are indeed consequences of Theo-

rems 4.2 and 5.2. Further, we note that their explicit versions can be easily

derived from the explicit variant Theorem 4.2* of Theorem 4.2. Finally, the

corollaries can be deduced with better bounds from less general versions of
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Theorem 4.2, where the polynomials f involved are irreducible; for such ver-

sions we refer to Gy®ry (1976, 1998, 2000), Evertse and Gy®ry (2017) and in

fact Corollary 5.3 above.

5.4. Reformulation of Corollaries 5.3, 5.4 and Theorem 5.6 over OK
in terms of polynomial Diophantine equations over Z.
Let K be an algebraic number �eld of degree n ≥ 2 with ring of integers

OK and discriminant DK . Consider Corollaries 5.3, 5.4 and Theorem 5.6 for

O = OK . Let {1, ω2, . . . , ωn} be an integral basis of K. For α ∈ OK with

α = x1 + x2ω2 + · · ·+ xnωn, x1, x2, . . . , xn ∈ Z,

its discriminant

D(α) = D(x2ω2 + · · ·+ xnωn)(5.5)

can be regarded as a decomposable form of degree n(n−1) in x2, . . . , xn with

coe�cients in Z, i.e., it is a product of n(n−1) linear forms in x2, . . . , xn with

algebraic coe�cients. The form D(x2ω2 + · · ·+ xnωn), which was introduced

by Kronecker (1882), is called discriminant form, while, for D 6= 0, the

equation

D(x2ω2 + · · ·+ xnωn) = D in x2, . . . , xn ∈ Z(5.6)

is called a discriminant form equation.

Clearly, Corollary 5.3 implies the following

Corollary 5.7 (of Theorem 5.2). For given D 6= 0, the discriminant form

equation (5.6) has only �nitely many solutions and they can be e�ectively

determined.

The following important fact is due to Hensel (1908):

to the integral basis {1, ω2, . . . , ωn} of K there corresponds a decomposable

form I(X2, . . . , Xn) of degree n(n− 1)/2 in n− 1 variables with coe�cients

in Z such that for α ∈ OK
I(α) = |I(x2, . . . , xn)| if α = x1 + x2ω2 + · · ·+ xnωn(5.7)

with x1, x2, . . . , xn ∈ Z.

Here I(X2, . . . , Xn) is called an index form, and for given non-zero I ∈ Z,

I(x2, . . . , xn) = ±I in x2, . . . , xn ∈ Z(5.8)

an index form equation.
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We note that the equations (5.6) and (5.8) are related by the �rst identity

in (5.5).

In view of (5.7), the �niteness assertion of Corollary 5.4 for OK implies

the following.

Corollary 5.8 (of Theorem 5.2). For given I ∈ Z \ {0}, the index form

equation (5.8) has only �nitely many solutions, and they can be e�ectively

determined.

In particular, for I = 1, we get the following consequence of Theorem 5.5.

Corollary 5.9 (of Theorem 5.2). The index form equation

I(x2, . . . , xn) = ±1 in x2, . . . , xn ∈ Z(5.9)

has only �nitely many solutions, and they can be e�ectively determined.

Corollaries 5.7, 5.8 and 5.9 were proved in Gy®ry (1976) with explicit

upper bounds for the solutions, not only for equations (5.6), (5.8) and (5.9)

but also for index form equations related to indices with respect to arbitrary

orders O of K; see also Gy®ry (2000) and Evertse and Gy®ry (2017).

The best known upper bound for the solutions of (5.9) is

max
2≤i≤n

|xi| < exp{10n
2

(|DK |(log |DK |)n)n−1}(5.10)

which is due to Evertse and Gy®ry (2017). We note that a conjectural im-

provement of the upper bound, with a polynomial dependence on |DK |, fol-
lows immediately from Conjecture 4.14.

5.5. A consequence of Theorem 4.4 for algebraic numbers of given

discriminant.

Theorem 4.4 can be applied to algebraic numbers that are not necessarily

algebraic integers. Given an algebraic number α, we denote by fα its primitive

minimal polynomial, i.e.,

fα = a0X
n + · · ·+ an = a0(X − α(1)) · · · (X − α(n)) ∈ Z[X](5.11)

where a0 > 0, gcd(a0, . . . , an) = 1 and α(1) = α, , . . . , α(n) are the distinct

conjugates of α. We recall that the height and discriminant of α are de�ned

by those of fα, i.e.,

H(α) := H(fα), D(α) := D(fα).
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Two algebraic numbers α, β are called GL2(Z)-equivalent if

β =
aα + b

cα + d
with

(
a b

c d

)
∈ GL2(Z).

One easily veri�es that if α, β are GL2(Z)-equivalent then so are fα, fβ while

conversely, if fα, fβ are GL2(Z)-equivalent, then α is GL2(Z)-equivalent to a

conjugate of β.

Consequently, if α, β are GL2(Z)-equivalent, then D(α) = D(β). Now

Theorem 4.4 implies at once:

Theorem 5.10 (Evertse and Gy®ry, 1991a). Every algebraic number α of

degree n ≥ 2 and discriminant D 6= 0 is GL2(Z)-equivalent to an algebraic

number β with

H(β) ≤ c3(n, |D|),
where c3 denotes the same e�ectively computable positive number as in The-

orem 4.4.

Further, by Théorème 1 of Gy®ry (1974) we have

n ≤ 2 log |D|/ log 3.

5.6. Rationally monogenic orders.

Monogenic orders Z[α], where α is an algebraic integer, can be generalized

to so-called rationally monogenic orders Zα, where α is not necessarily inte-

gral. We will formulate an analogue of Corollary 5.3 for rationally monogenic

orders. While in the results for monogenic orders, Z-equivalence of algebraic
integers plays an important role, for rationally monogenic orders we have to

deal with GL2(Z)-equivalence of algebraic numbers. Before we de�ne ratio-

nally monogenic orders, we brie�y go into some history and introduce the

necessary terminology.

Let α be a non-zero, not necessarily integral algebraic number of degree

n ≥ 3, and fα its primitive minimal polynomial, given by (5.11). De�ne Zα
to be the Z-module with basis

1, ω2 := a0α, ω3 := a0α
2 + a1α, . . . , ωn := a0α

n−1 + a1α
n−2 + · · ·+ an−2α.

This Z-module was introduced by Birch and Merriman (1972), who observed

that it is contained in the ring of integers of Q(α), and that for its discrimi-

nant we have

(5.12) D(Zα) = D(fα) = D(α).
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Nakagawa (1989) showed that Zα is in fact an order of the �eld Q(α), i.e.,

closed under multiplication. More precisely, he showed that

(5.13) ωiωj = −
∑

max(i+j−n,1)≤k≤i

ai+j−kωk +
∑

j<k≤min(i+j,n)

ai+j−kωk

for i, j = 1, . . . , n − 1, where ωn := −an. This order was further studied

by Simon (2001, 2003) and Del Corso, Dvornicich and Simon (2005). They

showed that

(5.14) Zα = Z[α] ∩ Z[α−1].

As was very likely known at the time, another description of Zα is as follows.

LetMα be the Z-module generated by 1, α, . . . , αn−1. Then Zα is the ring of

coe�cients ofMα (see Borevich and Shafarevich (1967), Section 2.2), i.e.,

(5.15) Zα = {ξ ∈ Q(α) : ξMα ⊆Mα} .

We have

(5.16) Zα = Z[α] if α is an algebraic integer.

Indeed, if α is an algebraic integer of degree n, the powers αi (i ≥ n) belong

toMα, and thus, Zα =Mα = Z[α]. Further, for any two non-zero algebraic

numbers α, β we have

(5.17) α, β GL2(Z)-equivalent =⇒ Zα = Zβ.

Indeed, let β = aα+b
cα+d for some matrix

(
a b
c d

)
∈ GL2(Z). ThenMβ = (cα +

d)1−nMα where n = degα, and thus, Zα = Zβ.
We call an order O of a number �eld K rationally monogenic if there

is α such that O = Zα. From (5.16) it follows that monogenic orders are

rationally monogenic. Below we explain that rationally monogenic orders

are in fact special cases of invariant orders of polynomials. In particular, Zα
is the invariant order of fα.

Recall that the index of an algebraic integer was de�ned in (5.4). Following

Simon (2001), we generalize this to not necessarily integral algebraic numbers

as follows. Given a non-zero algebraic number α, we de�ne the index of α by

I(α) := [OK : Zα],

where K = Q(α). In fact, this is the index of fα as it was introduced by

Simon. From (5.1) and (5.12) we deduce, analogously to the �rst identity in
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(5.5),

(5.18) D(α) = I(α)2DK .

For more results and properties of this index, we refer to Simon (2001).

There is a connection between rationally monogenic orders and Hermite

equivalence classes of polynomials, which we explain here without proof. For

a non-zero algebraic number α, let Iα be the fractional ideal of Zα generated

by 1 and α. This is known to be invertible, see Simon (2003). It is called also

the invariant ideal of fα.

Theorem 5.11 (BEGyRS, 2023). Let f, g ∈ Z[X] be two primitive, irre-

ducible polynomials. Then the following three assertions are equivalent:

(i) f and g are Hermite equivalent;

(ii) f has a root α and g a root β such that Mβ = λMα for some non-zero

λ ∈ Q(α);

(iii) f has a root α and g a root β such that Zα = Zβ and Iα and Iβ lie in the

same ideal class of Zα.

In the particular case that f and g are monic, we have α ∈ Z[α] = Zα and

Iα = Zα and likewise for g and β. This leads to the following corollary.

Corollary 5.12 (BEGyRS, 2023). Let f, g ∈ Z[X] be two monic, irreducible

polynomials. Then f and g are Hermite equivalent if and only if f has a root

α and g a root β such that Z[α] = Z[β].

In BEGyRS (2023) an example of a quartic algebraic number �eld K was

given such that OK = Zα = Zβ for certain α, β ∈ K, but fα, fβ lie in

di�erent Hermite equivalence classes. So far, we haven't been able to �nd

similar examples for algebraic number �elds of degree ≥ 5.

An order O of a number �eld K is called primitive if there are no integer

a > 1 and order O′ such that O = Z + aO′. It is not di�cult to show that

a rationally monogenic order is primitive. It follows from work of Delone

and Faddeev (1940) that every primitive order of a cubic number �eld is

rationally monogenic. Simon (2001) gave various examples of number �elds

of degree ≥ 4 that are not rationally monogenic, i.e., whose rings of integers

are not rationally monogenic.

In Evertse (2023) the following was shown:

Theorem 5.13. Every number �eld K of degree ≥ 3 has in�nitely many

orders that are rationally monogenic but not monogenic.
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We �nally arrive at the main result of this subsection, which follows di-

rectly from Theorem 5.10 and (5.12):

Theorem 5.14. Let O be an order of a number �eld K, and denote by D(O)

its discriminant. Then every α such that Zα = O is GL2(Z)-equivalent to

some β ∈ K of height H(β) ≤ c3(n, |D(O)|), where c3 denotes the same

e�ectively computable positive number as in Theorem 5.10.

This implies

Theorem 5.15. Let O be an order of a number �eld K. Then it can be

e�ectively decided whether there is α such that O = Zα.
Moreover, there are only �nitely many GL2(Z)-equivalence classes of α ∈
K such that Zα = O, and a full system of representatives of those can be

e�ectively determined.

Idea of proof. Suppose K is e�ectively given in the form Q(γ), with an alge-

braic number γ of degree n. Thus, each element of K has a represention as a

Q-linear combinations of 1, γ, . . . , γn−1, and we can express all computations

on K in terms of such representations.

Let the order O be given by a Z-module basis 1, θ2, . . . , θn (with represen-

tions as described above). Using Theorem 5.10, one can e�ectively determine

a full system of representatives for the GL2(Z)-equivalence classes of those

α ∈ K with D(α) = D(O). To check whether such a representative α sat-

is�es Zα = O, one can proceed as follows. Verify that O ⊆ Zα by checking

θiMα ⊆Mα for i = 2, . . . , n. If so, we have in fact O = Zα by (5.12). �

The rationally monogenic orders introduced above are in fact special cases

of invariant orders or invariant rings of binary forms, for which there is now

a vast general theory. Although outside the scope of this paper, we give some

background on these rings.

Let A be a commutative ring (with 1), and a0, . . . , an ∈ A. Then the

invariant ring (order if A = Z) associated with (a0, . . . , an), or rather with

the binary form F (X, Y ) = a0X
n+ · · ·+anY n (but we allow here that a0 = 0

or even a0 = · · · = an = 0) is given by the A-algebra AF with A-module

basis 1, ω2, . . . , ωn satisfying the multiplication table (5.13). This is in fact

a commutative, associative A-algebra. The name `invariant ring' (invariant

order if A = Z) comes from the following invariance property: if F,G are two

GL2(A)-equivalent binary forms, i.e., G(X, Y ) = uF (aX + bY, cX + dY ) for

some u ∈ A∗,
(
a b
c d

)
∈ GL2(A), then AG ∼= AF as A-algebras. Any ring that
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is the invariant ring of a binary form is called a binary ring (or binary order

if A = Z).
Thus, Zα is the invariant order of Fα(X, Y ) := Y nfα(X/Y ). In other

words, a rationally monogenic order is the invariant order of a primitive,

irreducible binary form.

From work of Delone and Faddeev (1940), later extended by Gan, Gross,

and Savin (2002) and Deligne (unpublished) (see also section 16.3 of Evertse

and Gy®ry (2017)) it follows that for every commutative ring A, the map

F 7→ AF gives a one-to-one correspondence between GL2(A)-equivalence

classes of binary cubic forms in A[X, Y ] and isomorphism classes of free cubic

A-algebras, i.e., commutative, associative, unital A-algebras that as an A-

module are free of rank 3. Wood (2011) gave a geometric interpretation of

invariant rings of binary forms.

6. Algorithmic resolution of index form equations,

application to (multiply) monogenic number fields

As above,K will denote a number �eld of degree n ≥ 3 with ring of integers

OK and discriminant DK . For an index form I(X2, . . . , Xn) associated with

an integral basis {1, ω2, . . . , ωn} of K, consider again the above index form

equation (5.9).

The exponential bound (5.10) for the solutions of (5.9) is too large for

practical use. In the 1990's, there were new breakthroughs, leading to the

complete resolution of certain index form equations. In fact, practical meth-

ods were elaborated for solving equation (5.9) when |DK | is not too large,

and the degree n of K is ≤ 6. Further, (5.9) was solved for some special

higher degree number �elds K up to about degree 15 and for some relative

extensions of degree ≤ 4.

6.1. The case n = 3 and 4. Approach via Thue equations of degree

3 and 4.

As will be seen, in the case n = 3 equation (5.9) can be reduced to a cubic

Thue equation while, in the case n = 4, to a cubic and some quartic Thue

equations, that is to equations of the form

F (x, y) = m in x, y ∈ Z,(6.1)

where m is a non-zero integer and F ∈ Z[X, Y ] is a binary form of degree

3 or 4 with pairwise non-proportional linear factors over Q. By a general

theorem of Thue (1909), every equation of the type (6.1) with degree ≥ 3
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has only �nitely many solutions, and Baker (1968b) gave an explicit upper

bound for their solutions in terms of |m| and the height and degree of F .

The best known bound is due to Bugeaud and Gy®ry (1996b). However,

in concrete cases this bound is too large for practical use. For solving con-

crete Thue equations, general practical methods were developed in Peth®

and Schulenberg (1987) for m = 1, and in Tzanakis and de Weger (1989)

for arbitrary m. Later, these methods were made even more e�cient in Bilu

and Hanrot (1996, 1999) and Hanrot (1997). Their algorithms are based on

Baker's method and certain reduction and enumeration techniques. Hence

we possess e�cient algorithms for solving equation (5.9) for n = 3 and 4.

However, this approach cannot be applied in general to index form equations

in number �elds K of degree n > 4, except for n = 6, 8, 9 when K has a

quadratic or cubic sub�eld; then equation (5.9) leads to relative cubic or

quartic Thue equations.

For n = 3, Gaál and Schulte (1989) reduced equation (5.9) to a cubic

Thue equation with m = 1. Then, using the algorithm elaborated for solving

cubic Thue equations, they determined all power integral bases of cubic

�elds K with discriminant −300 ≤ DK ≤ 3137. Their computations were

later extended in Schulte (1989, 1991).

For n = 4, Gaál, Peth® and Pohst (1993, 1996) �rst reduced the equation

(5.9) to a cubic Thue equation and a pair of ternary quadratic equations.

Then the quadratic equations were themselves reduced to quartic Thue equa-

tions. Finally, by means of e�cient algorithms for solving such Thue equa-

tions, they computed the solutions of equation (5.9) for quartic number �elds

with not too large discriminant. They obtained several interesting tables on

the distribution of minimal indices and about the average behaviour of min-

imal indices.

6.2. The cases n = 5 and 6. Re�ned version of the general approach

via unit equations, combined with reduction and enumeration al-

gorithms.

For n ≥ 5, the approach via Thue equations does not work, in general. For

n = 5 and 6 a re�ned version of the general approach involving unit equations

is needed. Since by (5.7), (5.5) and (5.2) we have for α ∈ OK withK = Q(α),

(5.9)⇔ D(α) = DK ⇔ D(fα) = DK in α ∈ OK
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where fα ∈ Z[X] is the minimal polynomial of α, in case of concrete equations

(5.9) a re�nement of the proof of Theorem 4.2 for irreducible fα's must be

combined with some reduction and enumeration algorithms.

The re�ned version of the general method for solving index form equations

(5.9) consists of the following steps:

1. Reduction to unit equations but in considerably smaller sub�elds of the

normal closure G of K, of which the unit rank is much smaller than

that of G, i.e., at most n(n − 1)/2 − 1 (note that the unit rank of G

may be as large as n! − 1); cf. Gy®ry (1998, 2000). Then in the unit

equation corresponding to (4.10), one can write εijk = ζijkρ
aijk,1
1 · · · ρaijk,rr ,

with a root of unity ζijk and a fundamental system of units ρ1, . . . , ρr of

bounded height, and in concrete cases one can bound the exponents |aijk,l|
by Baker's method. Here the estimate of Baker and Wüstholz (1993) for

linear forms in logarithms of algebraic numbers is very practical to apply

in calculations.

2. The bounds in concrete cases are still too large. Hence a reduction algo-

rithm is needed, reducing the Baker's bound for |aijk,l| in several steps if

necessary by a re�ned version of the L3-algorithm; cf. de Weger (1989),

Tzanakis and de Weger (1989), Wildanger (1997) and Gaál and Pohst

(1996).

3. The last step is to apply an enumeration algorithm, determining the small

solutions under the reduced bound; cf. Wildanger (1997, 2000), Gaál and

Gy®ry (1999) and Bilu, Gaál and Gy®ry (2004).

Combining the re�ned version of the general approach with reduction and

enumeration algorithms, for n = 5, 6 and for not too large |DK |, Gaál and
Gy®ry (1999), resp. Bilu, Gaál and Gy®ry (2004) gave algorithms for deter-

mining all power integral bases and hence checking the monogenicity and

determining the multiplicity of the monogenicity of K.

We note that the use of the re�ned version of the general approach is

particularly important in the application of the enumeration algorithm.

To perform computations, algebraic number theory packages, a computer

algebra system and in some cases a supercomputer were needed.

6.3. Examples: resolutions of index form equations of the form (5.9)

for n = 3,4,5,6 in the most di�cult case.

In the examples below, the authors resolved concrete index form equations

of the form (5.9) for n = 3, 4, 5, 6. The number �elds K of degree n are given
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by irreducible monic polynomials f(X) ∈ Z[X], a zero of which generates

the corresponding K over Q. In each case all power integral bases in K, and

therefore the multiplicity of the monogenicity of K, denoted by mm(K), are

computed by the method outlined above. For the lists of the power integral

bases, we refer to the original papers and to Evertse and Gy®ry (2017) and

Gaál (2019).

n = 3, f(X) = X3−X2− 2X + 1, mm(K) = 9 (Gaál and Schulte, 1989);

n = 4, f(X) = X4− 4X2−X + 1, mm(K) = 17 (Gaál, Peth® and Pohst,

1990's);

n = 5, f(X) = X5− 5X3 +X2 + 3X − 1, mm(K) = 39 (Gaál and Gy®ry,

1999);

n = 6, f(X) = X6− 5X5 + 2X4 + 18X3− 11X2− 19X + 1, mm(K) = 45

(Bilu, Gaál, and Gy®ry, 2004).

We note that from the point of view of computation, the above examples

belong to the most di�cult cases for n = 3, 4, 5, and 6, K being in each case

totally real with Galois group Sn. In these cases the number of exponents in

the unit equations involved is the largest possible.

Remark. The general procedure outlined above to solve any concrete equa-

tion (5.9) for n = 6 requires considerable CPU-time. In certain special cases

(e.g., if n = 6 and K has a quadratic sub�eld), there are faster algorithms,

see Gaál (2024, 2025). However, some of these algorithms determine only the

�small� solutions, and do not exclude the existence of �large" solutions.

For n ≥ 7, the above mentioned algorithms do not work in general. Then

the number of fundamental units, ρ1, . . . , ρr involved can be ≥ 7·6
2
− 1 = 20

which is too large to use the enumeration algorithm.

Problem 1. For n = 7,8, . . ., give a practical algorithm for solving equation

(5.9) in case of any number �eld K of degree n with not too large discrimi-

nant.

7. Power integral bases and canonical number systems in

number fields

Number systems and their generalizations have been intensively studied for

a long time. Here we present an important generalization for the number �eld
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case, point out its close connection with power integral bases and formulate

an application of the above Theorem 5.5 to this generalization.

Let K be an algebraic number �eld with ring of integers OK , and let

α ∈ OK with |NK/Q(α)| ≥ 2. Then {α,N (α)} with

N (α) = {0, 1, . . . , |NK/Q(α)| − 1}

is called a canonical number system, in short CNS, in OK , if every non-zero

element of OK has a unique representation of the form

a0 + a1α + · · ·+ akα
k with ai ∈ N (α) for i = 0, . . . , k, ak 6= 0.

Then α is called the base and N (α) the set of digits of the number system.

This concept is a generalization of the radix representation considered in Z.
B. Kovács (1981) proved the following fundamental theorem.

Theorem 7.1 (B. Kovács, 1981). In OK there exists a canonical number

system if and only if OK has a power integral basis.

Together with the above Theorem 5.5 of Gy®ry (1976) this implies that

it is e�ectively decidable whether there exists a CNS in OK . Theorem 5.5

provides even a general algorithm to determine all power integral bases in

OK . Using this, B. Kovács and Peth® (1991) proved as follows.

Theorem 7.2 (B. Kovács and Peth®, 1991). Up to Z-equivalence, there are

only �nitely many CNS's in OK, and all of them can be e�ectively deter-

mined.

In fact, using Theorem 5.6, they extended their result to any order O of

K as well. In an order O, a canonical number system {α,N (α)} is de�ned
in a similar way as in OK .
We note that Brunotte (2001) considerably improved the procedure of B.

Kovács and Peth® (1991) and gave an e�cient algorithm for �nding all such

CNS's, provided that one has an e�cient algorithm for determining all power

integral bases in OK , resp. in O. As was seen in Section 6, such an algorithm

is known for number �elds K of degree at most 4 if their discriminants are

not too large in absolute value.

B. Kovács and Peth® (1991) gave also a complete, e�ective characterization

of CNS's in number �elds and in their orders.

Theorem 7.3 (B. Kovács and Peth®, 1991). Let O be an order in a number

�eld K. There exist α1, . . . , αt ∈ O, n1, . . . , nt ∈ Z, N1, . . . , Nt �nite subsets
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of Z, which are all e�ectively computable, such that {α,N (α)} is a CNS in

O, if and only if α = αi− h for some integers i, h with 1 ≤ i ≤ t and h ≥ ni
or h ∈ Ni.

Several generalizations and applications have been obtained. Peth® and

Varga (2017) generalized the result of B. Kovács to CNS's over imaginary

quadratic Euclidean domains. Peth® and Thuswaldner (2018) study CNS's

in relative extensions. Most of the results of B. Kovács and Peth® (1991) are

generalized to this situation. Further generalizations are in Evertse, Gy®ry,

Peth® and Thuswaldner (2019) over general orders.

Peth® (1991) introduced the notion of CNS polynomials. The monic poly-

nomial P (X) ∈ Z[X] is called CNS polynomial if |P (0)| ≥ 2 and for ev-

ery 0 6= Q(X) ∈ Z[X] there exist unique integers ` ≥ 0, q1, . . . , q` ∈
{0, 1, . . . , |P (0)| − 1} such that

Q(X) ≡
∑̀
j=0

qjx
j (mod P (X)).

He proved that if P (X) is irreducible and monic and α is one of the zeros of

P (X), then P (X) is a CNS polynomial if and only if {α, 0, 1, . . . , |P (0)|−1}
is a CNS in Z[α].

A. Kovács (2001) computed all CNS polynomials with P (0) = 2 up to

degree 8. This computation was extended up to degree 14 in Burcsi and A.

Kovács (2008).

Akiyama, Borbély, Brunotte, Peth® and Thuswaldner (2005) de�ned the

shift radix system (SRS). It is a discrete dynamical system, which is a com-

mon generalization of CNS polynomials and some kind of β representations

of real numbers. Many properties of SRS were also described.

For surveys, we refer to Brunotte (2001), Peth® (2004), Brunotte, Huszti

and Peth® (2006), Komornik (2011), Evertse, Gy®ry, Peth® and Thuswaldner

(2019) and the references given there.

8. Further consequences and applications of the reduction

theory

The main results from the e�ective reduction theory for polynomials dis-

cussed before, i.e., Theorems 4.2 and 4.4, as well as their various versions led

to many applications. Some of them were treated in Sections 4 to 7. Below we

brie�y present some others in their simplest form. For further applications,
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we refer to the survey paper Gy®ry (2006), the books Gy®ry (1980b), Smart

(1998), Evertse and Gy®ry (2017) and the references given there.

8.1. Applications to classical Diophantine equations.

Theorem 4.2 can be applied to superelliptic equations and the Schinzel�

Tijdeman equation.

• Let f ∈ Z[X] be a monic polynomial of degree n ≥ 3 with discriminant

D(f) 6= 0, and m ≥ 2 an integer. Consider the solutions x, y ∈ Z of the

equation

f(x) = ym.(8.1)

Applying various variants of Theorem 4.2 to the polynomial f and then

using Baker's method for the reduced equation, Trelina (1985) and, for

n = 3,m = 2, Pintér (1995) gave e�ective upper bounds for |y| that
depend on m,n and |D(f)|, but not on the height of f . We recall that the

height of f can be arbitrarily large with respect to |D(f)|. Furthermore,

Gy®ry and Pintér (2008) showed that for each solution x, y of (8.1) with

gcd(y,D(f)) = 1, |y|m can be e�ectively bounded in terms of the radical

of D(f), i.e. the product of the distinct prime factors of D(f). It should

be noted that |D(f)| can be arbitrarily large with respect to its radical.

Brindza, Evertse and Gy®ry (1991), Haristoy (2003) and Gy®ry and Pintér

(2008) gave upper bounds even for m that depend only on n and |D(f)|.
• Consider now an application of Theorem 4.2 to equations of discriminant

type

D(x1, . . . , xn) = D in x1, . . . , xn ∈ Z,(8.2)

where D(x1, . . . , xn) := D(f(X)) is the discriminant of the polynomial

f(X) = Xn + x1X
n−1 + · · · + xn in X, and D 6= 0 is a given rational

integer. If (x1, . . . , xn) is a solution of (8.2) then so is

(x∗1, . . . , x
∗
n) =

(
f (n−1)(a)

(n− 1)!
, . . . , f(a)

)
for any a ∈ Z,

where Xn+x∗1X
n−1+· · ·+x∗n =: f ∗(X) = f(X+a). Such a set of solutions

of (8.2) is called a family of solutions. Using a quantitative version of

his Theorem 4.2, Gy®ry (1976) proved that (8.2) has only �nitely many

families of solutions and a representative of every family can be e�ectively

determined. Theorem 4.2* gives a considerable improvement of this result

of Gy®ry (1976).
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The binary form variant of Theorem 4.4 can be applied to Thue equations,

Thue inequalities and Thue�Mahler equations.

• Let F ∈ Z[X, Y ] be an irreducible binary form of degree n ≥ 3 and

discriminant D, let p1, . . . , ps (s ≥ 0) be distinct primes not exceeding P ,

and let m be a positive integer coprime with p1, . . . , ps. There are several

upper bounds for the number of solutions x, y of the Thue equation

F (x, y) = m,(8.3)

the Thue inequality

0 < |F (x, y)| ≤ m(8.4)

and the Thue�Mahler equation

F (x, y) = mpz11 · · · pzss , with (x, y) = 1,(8.5)

where z1, . . . , zs are also unknown non-negative integers.

Using a quantitative binary form version of Theorem 4.4, e.g. the gen-

eral e�ective Theorem 1 of Evertse and Gy®ry (1991a) on binary forms of

given degree and given discriminant over Z, the previously obtained upper

bounds for the number of solutions of these equations were substantially

improved under the assumptions that n,D,m, s and P satisfy some ad-

ditional conditions. Such improved upper bounds were derived in Stewart

(1991) for (8.5) with gcd(x, y) = 1 when m > C1, in Brindza (1996) for

(8.3) with gcd(x, y) = 1 when m > C2, and in Thunder (1995) for (8.4)

when m > C3, where C1, C2, C3 are e�ectively computable numbers such

that C1 depends on n, |D|, P, s and C2, C3 on n and |D|. Further, Evertse
and Gy®ry (1991b) showed that if |D| > C4, then the number of coprime

solutions of (8.4) is at most 6n if n > 400, and by Gy®ry (2001) it is at

most 28n + 6 if |D| > C5 and 3 ≤ n ≤ 400. For m = 1 and |D| > C6,

this was later improved by Akhtari (2012) to 11n − 2. Here C4, C5, C6

are e�ectively computable numbers such that C4, C5 depend on m and

n, and C6 on n. Together with the above mentioned quantitative version

of Theorem 4.4, these imply that for given n ≥ 3 and m ≥ 1, there are

only �nitely many GL2(Z)-equivalence classes of irreducible binary forms

F ∈ Z[X, Y ] of degree n for which the number of coprime solutions of

(8.4) exceeds 28n+ 6 or 11n− 2 if m = 1.

• The quantitative version of Theorem 4.4, proved in Evertse and Gy®ry

(1991a) was also applied in Evertse (1993) to bound the number of solu-

tions of some resultant inequalities, and in Ribenboim (2006) to binary
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forms with given discriminant, having additional conditions on the coe�-

cients.

We remark that using the improved and completely explicit version

Theorem 4.4* of Evertse and Gy®ry (2017), the above quoted applications

can be made more precise.

8.2. Some other applications of Theorems 4.2 and 4.4.

• In Evertse and Gy®ry (2017), as a consequence of Theorem 4.4*, we de-

rived for any separable polynomial f ∈ Z[X] of degree n ≥ 4 an improve-

ment of the previous bounds for the minimal root distance of f .

• Some applications of Theorem 4.2 were given to the reducibility of a gen-

eral class of polynomials of the form g(f(X)) where f, g are monic polyno-

mials, g(X) is irreducible with CM splitting �eld. For given prime p and

g ∈ Z[X], there are up to Z-equivalence only �nitely many f ∈ Z[X] of

degree p with distinct real zeros for which g(f(X)) is reducible; see Gy®ry

(1976, 1982).

• In Evertse and Gy®ry (1991a), a quantitative binary form variant of The-

orem 4.4 was utilized to give e�ective upper bounds for the minimal non-

zero absolute value of binary forms at integral points.

• For an application of an earlier version of Theorem 5.2 (ii) to integral

valued polynomials, see Peruginelli (2014).

• For an application of Theorem 5.2 to so-called binomially equivalent num-

bers, see Yingst (2006).

As will be seen in the next section, the various generalizations presented

there of Theorems 4.2 and 4.4 have also several applications.

9. Generalizations and their consequences, applications

In Sections 4 to 8 we presented the most signi�cant results and conse-

quences/applications of the e�ective reduction theory of integral polynomials

over Z. In the last decades this e�ective theory has been generalized by the

authors among others for the number �eld case, more precisely for the case

of integral, resp. S-integral polynomials over number �elds. In the monic

case, they have obtained even more general e�ective results for polynomials

over �nitely generated domains of characteristic 0 which may contain tran-

scendental elements, too. These provided many important consequences and

applications, and yielded a further advancement in the theory.
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In this section we formulate some typical general e�ective theorems on

integral polynomials over number �elds and �nitely generated domains, in-

cluding various generalizations of Theorems 4.2, 4.4 and their consequences.

For simplicity, we present them in qualitative forms. For explicit versions

and further results and applications, we refer to our original works or our

books Evertse and Gy®ry (2017, 2022). The proofs depend explicitly or im-

plicitly on an e�ective �niteness theorem of Gy®ry (1979) or its improvements

by Bugeaud and Gy®ry (1996a), Gy®ry and Yu (2006), Evertse and Gy®ry

(2015) or Gy®ry (2019), see Theorem 4.10 above on S-unit equations, resp. of

Evertse and Gy®ry (2013) on unit equations over �nitely generated domains.

For convenience, the monic and non-monic cases are treated separately in

the Subsections 9.1 and 9.2 below.

9.1. Generalizations: the monic case.

9.1.1. Results over number �elds.

Let L be a number �eld with ring of integers OL, and S a �nite set of places

on L containing all in�nite places S∞. The ring of S-integers of L, denoted by

OS, consists of those elements of L which are integral at every �nite placee

outside S. A fractional ideal of OS is a subset a of L such that there is non-

zero δ ∈ L such that δa is an ideal of OS. Given a subset V 6= {0} of L such

that δV ⊂ OS for some non-zero δ ∈ OS, we denote by (V)S the fractional

ideal of OS generated by V . Lastly, we denote by O∗S the unit group of OS.
Two monic polynomials f, g ∈ OS[X] of degree n are called OS-equivalent

if

g(X) = εnf(ε−1X + a) for some ε ∈ O∗S and a ∈ OS,

and strongly OS-equivalent if

g(X) = f(X + a) for some a ∈ OS.

In this case D(g) = εn(n−1)D(f), resp. D(g) = D(f).

For a polynomial g ∈ Q[X], we denote by H(g) the absolute height of the

vector whose coordinates are the coe�cients of g.

Theorem 9.1 (Gy®ry, 1978b, 1984). Let δ ∈ OS \ {0}, and let f ∈ OS[X]

be a monic polynomial of degree n ≥ 2 with discriminant D(f) ∈ δO∗S. Then
f is OS-equivalent to a monic polynomial g ∈ OS[X] for which

H(g) < C1(L, S, (δ)S, n)
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where C1 is an e�ectively computable number depending only on L, S, δ and

n.

For L = Q, S = S∞, this is just Theorem 4.2, (ii), where the bound given

for H(g) is in fact independent of n. We note that this is not the case in

general, see Evertse and Gy®ry (2017), p. 155.

For the best known, completely explicit bound C1 see also Evertse and

Gy®ry (2017), Theorem 8.2.3.

Theorem 9.1 implies the following e�ective �niteness results.

Corollary 9.2. For given integer n ≥ 2 and δ ∈ OS \ {0}, there are only

�nitely many OS-equivalence classes of monic polynomials f in OS[X] of

degree n and with D(f) ∈ δO∗S. Further, there exists an algorithm that for

any n ≥ 2 and any e�ectively given L, S and δ computes a full set of repre-

sentatives of these classes.

Theorem 9.1 gives also in an e�ective form that there are only �nitely

many strongOS-equivalence classes of monic polynomials f ∈ OS[X] of given

degree n ≥ 2 and with given discriminant D(f) = δ 6= 0. For a quantitative

and explicit version, see Corollary 8.2.6 in Evertse and Gy®ry (2017).

We recall that for de�nitions of e�ectively given concepts, structures, etc.

we referred in Subsection 1.1 to the corresponding sections of our books

Evertse and Gy®ry (2015, 2017, 2022).

We now present another version of Theorem 9.1 which is more convenient

to apply.

With the above notation, let L = O∗S ∩OL. If p1, . . . , pt denote the prime

ideals of OL corresponding to the �nite places of S, then L is just the mul-

tiplicative semigroup of non-zero elements of OL which are not divisible by

any prime ideal di�erent from p1, . . . , pt. The set L contains obviously the

unit group O∗L of OL, and, for t = 0, L = O∗L.
We say that the monic polynomials f, g ∈ OL[X] are strongly OL-equivalent

if

g(X) = f(X + a) for some a ∈ OL.

The next theorem was proved in Gy®ry (1978b) in a quantitative form.

Theorem 9.3 (Gy®ry, 1978b). Let L,L be as above and let δ be a non-zero

element of OL. If f ∈ OL[X] is a monic polynomial of degree n ≥ 2 with

discriminant D(f) ∈ δL, then it is strongly OL-equivalent to a polynomial
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of the form ηng(η−1X), where η ∈ L, g ∈ OL[X] and

H(g) ≤ C2(L,L, (δ)S, n),

where C2 is an e�ectively computable number depending only on L,L, (δ)S
and n.

If L = Q and t = 0, then L = {±1}, and Theorem 9.3 gives again Theorem

4.2 (ii). For a more general version of Theorem 9.3 with not necessarily non-

zero δ, see also Theorem 2 in Gy®ry (1981).

We present now some applications of Theorem 9.3 to algebraic integers

whose discriminants resp. indices over L belong to δL.
For an algebraic integer α of degree n ≥ 2 over L, fα,L will denote the

monic minimal polynomial of α over L, i.e., the monic polynomial in OL[X]

of minimal degree of which α is a zero. We de�ne the discriminant of α

relative to L by

DL(α) := D(fα,L) =
∏

1≤i<j≤n

(α(i) − α(j))2,

where α(1), . . . , α(n) are the conjugates of α over L. The algebraic integers α

and β are said to be strongly OL-equivalent over L when α−β ∈ OL. In this

case their minimal polynomials over L are also strongly OL-equivalent.
We denote by H(β) the absolute height of an algebraic number β.

Corollary 9.4 is an immediate consequence of Theorem 9.3. It was proved

in Gy®ry (1978b) in quantitative form.

Corollary 9.4 (Gy®ry, 1978b). Let L,L and δ be as in Theorem 9.3, and

let α be an algebraic integer with degree n ≥ 2 and discriminant DL(α) ∈ δL
over L. Then α is strongly OL-equivalent to an algebraic integer of the form

ηβ, where η ∈ L and β is an algebraic integer satisfying

H(β) < C3(L,L, δ, n)

with an e�ectively computable number C3 depending only on L,L, δ and n.

This is a considerable e�ective generalization of Theorem 5.2 in two dif-

ferent directions, for the number �eld case and for the p-adic case. We note

that in the special case L = Q, Corollary 9.4 was proved independently by

Trelina (1977a).

A simple consequence of Corollary 9.4 is that up to the obvious mul-

tiplications by elements of L and translations by integers of L, there are

only �nitely many algebraic integers α with given degree n and discriminant
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DL(α) ∈ δL over L and they can be e�ectively determined. As is remarked

in Gy®ry (1978b), the �rst, �niteness part can be deduced, in an ine�ec-

tive form, from the ine�ective Theorem 4.1 of Birch and Merriman (1972)

over number �elds and from the �niteness of the number of solutions of the

generalized Thue�Mahler equation; cf. Parry (1950).

As is pointed out in Gy®ry (1978b), p. 177, if in Corollary 9.4 we restrict

ourselves to integers α of a �xed algebraic number �eld K of degree n ≥ 3

over L, then the proof of Corollary 9.4 in Gy®ry (1978b) gives the following

in quantitative form.

Corollary 9.5 (Gy®ry, 1978b, 1981). Let L,L, δ and K be as above, and let

α be a primitive integral element of K with discriminant DK/L(α) ∈ δL over

L. Then α is strongly OL-equivalent to an algebraic integer of the form ηβ,

where η ∈ L, and β is an algebraic integer in K such that

H(β) < C4(L,K,L, δ, n)

with an e�ectively computable number C4 which depend only on L,K,L and

δ.

Keeping the above notations, we present some consequences of Corollary

9.5. Consider an order O of the �eld extension K/L (i.e. let O be a subring

of OK , the ring of integers of K, that has the full dimension n as an OL-
module). Denote by DK/L(O) the discriminant ideal of O. Then we have (cf.

Fröhlich, 1967)

(DL(α)) = I2
O(α) ·DK/L(O)

for any α ∈ O such that L(α) = K. Here IO(α) is an integral ideal which

is called the index of α in O. It is clear that if α, β ∈ O are strongly OL-
equivalent then IO(α) = IO(β).

Corollary 9.6 (Gy®ry, 1981). If α ∈ O has index IO(α) not divisible by any

prime ideal di�erent from p1, . . . , pt, then α is strongly OL-equivalent to an

algebraic integer of the form ηβ, where η ∈ L, β ∈ O, and

H(β) < C5(L,K,O, p1, . . . , pt),

where C5 is an e�ectively computable number depending only on

L,K,O, p1, . . . , pt.

In the case O = OK , a prime ideal p in L is called a common index

divisor of K/L if p divides IOK
(α) for every primitive integral element α
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of K/L. The number of common index divisors is �nite and a well-known

theorem of Hasse (1980) gives an elegant characterization of these divisors.

It is interesting to apply Corollary 9.6 to the case when p1, . . . , pt are just

the common index divisors of K/L. There are relative extensions of arbitrary

high degree in which there exists no element α with index not divisible by

prime ideals di�erent from the common index divisors; cf. Pleasants (1974).

Corollary 9.6 provides and e�ective algorithm for deciding whether such an

element α exists and for determining all α having this property.

Corollaries 9.5 and 9.6 allowed Gy®ry (1981) to get some information about

the arithmetical structure of those non-zero algebraic integers resp. non-zero

integral ideals in L which are discriminants resp. indices of elements of OK
over L.

We now present generalizations of Theorems 5.5 and 5.6 for the relative

case.

Let again L be a number �eld, K an extension of degree n ≥ 2 of L, and

O an order of K over L. Then O = OL[α] for some α ∈ O if and only if

IO(α) = OL. In this case {1, α, . . . , αn−1} is a OL-module basis for O. There
exists an extensive literature of such power bases of orders of number �elds

and related topics; we refer the reader to the works of Hensel (1908), Hasse

(1980), Narkiewicz (1974), Gy®ry (1978a, 1978/79), and Evertse and Gy®ry

(2017), and thence to the literature mentioned there.

We say that α, β ∈ O are OL-equivalent if β = a + εα for some a ∈ OL
and unit ε in OL. If α is a generator of O over OL, i.e. O = OL[α] then so

is every β which is OL-equivalent to α.
The following fundamental theorem is a consequence of Corollary 9.6.

Theorem 9.7 (Gy®ry, 1981). Let O be an order of K/L, and suppose that

O = OL[α] for some α ∈ O. Then there is β ∈ O that is OL-equivalent to α
and for which

H(β) < C6(L,K,O),

where C6 is an e�ectively computable number depending only on L,K and

O.

For L = Q, this gives Theorems 5.5 and 5.6 above. In the case O = OK ,
Theorem 9.7 was proved in Gy®ry (1978a) with a completely explicit bound

corresponding to C6. For the best known explicit bound in Theorem 9.7, see

Corollary 8.4.13 in Evertse and Gy®ry (2017).
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Theorem 9.7 provides a general e�ective algorithm for deciding whether a

relative extension K/L resp. an order O of K over L is monogenic or not,

and for determining all α ∈ OK resp. all α ∈ O for which OK = OL[α] resp.

O = OL[α].

We now present a very important consequence of Theorem 9.7. Let again

L be a number �eld, K an extension of degree n ≥ 2, and OK ,OL the rings

of integers of K resp. L. Pleasants (1974) gave an explicit formula which

enables one to compute a positive integer m(OK ,OL) such that if r(OK ,OL)

denotes the minimal number of generators of OK as OL-algebra then

m(OK ,OL) ≤ r(OK ,OL) ≤ max{m(OK ,OL), 2}.

Pleasants proved that if L = Q, there are number �elds K of arbitrarily

large degree over Q such that m(OK ,Z) = 1 and OK is not monogenic.

Consequently, his theorem does not make it possible to decide whether the

ring of integers of a number �eld is monogenic. Together with Pleasants'

result, our Theorem 9.7 above gives the following

Corollary of Theorem 9.7 (and of Pleasants (1974)). There is an algo-

rithm for determining the least number of elements of OK that generate OK
as an OL-algebra.

Chapter 11 of Evertse and Gy®ry (2017) considers more generally OS-
orders of �nite étale L-algebras, and gives a method to determine a system

of OS-algebra generators of minimal cardinality of such an order. This was

basically work of Kravchenko, Mazur and Petrenko (2012), worked out in

more detail in a special case.

We give an overview of generalizations of some of the results from the

previous sections.

• In Section 5, several results have reformulations in terms of polynomial

Diophantine equations; see equations (5.6) and (5.8). In the present sec-

tion the above extensions of the results from Section 5 have also reformu-

lation in terms of discriminant form equations and index form equations

over number �elds and in the p-adic case.

• Corollaries 5.7, 5.8 were �rst extended to the case when D resp. I is re-

placed by pu11 · · · puss , where p1, . . . , ps are �xed primes and u1, . . . , us are

unknown non-negative integers; see Gy®ry (1978b, 1981), Trelina (1977a,

1977b), Gy®ry and Papp (1977). These results yielded e.g. explicit lower
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bounds for the greatest prime factor of discriminant and index of an in-

teger of a number �eld. For generalizations for the number �eld case, see

Gy®ry (1980a, 1981).

• Corollary 5.7 on discriminant form equations was generalized for more

general decomposable form equations of the form

F (x1, . . . , xm) = F in x1, . . . , xm ∈ Z,(9.1)

where F ∈ Z \ {0} and F (X1, . . . , Xm) is a decomposable form with

coe�cients in Z which factorizes into linear factors over Q such that these

factors form a so-called triangularly connected system (i.e. (9.1) can be

reduced to a connected system of three terms unit equations); see Gy®ry

and Papp (1978) and, more generally, Gy®ry (1998).

For discriminant form equations and more general decomposable form

equations, see also Evertse and Gy®ry (2017), Chapters 6, 8 and 10, and

Evertse and Gy®ry (2022), Chapters 2 and 4.

• Corollary 5.7 was generalized for the `inhomogeneous' case by Gaál (1986).

• Analogous results were established over function �elds by Gy®ry (1984,

2000); Gaál (1988), Mason (1988), Shlapentokh (1996).

9.1.2. Results over �nitely generated domains.

We now present two general �niteness theorems where the ground ring is

an integrally closed integral domain A of characteristic 0 that is �nitely

generated over Z as a Z-algebra, i.e., A = Z[z1, . . . , zr], where we allow some

of the zi to be transcendental.

We say that the monic polynomials f, g ∈ A[X] are strongly A-equivalent if

g(X) = f(X+a) with some a ∈ A. Then f and g have the same discriminant.

Theorem 9.8 (Gy®ry, 1982). Let G be a �nite extension of the quotient �eld

of A. Up to strong A-equivalence, there are only �nitely many monic f(X)

in A[X] with given non-zero discriminant δ having all their zeros in G.

This was made e�ective by Gy®ry (1984) in a special case, and in full

generality by Evertse and Gy®ry (2017), provided that A,G and δ are given

e�ectively in the sense de�ned in Evertse and Gy®ry (2017, 2022).

Theorem 9.9 (Evertse and Gy®ry, 2017, 2022). Let A,G, δ be as above. Up

to strong A-equivalence, there are only �nitely many monic f(X) in A[X]

with D(f) = δ, and if A,G, δ are e�ectively given, all these f can be e�ec-

tively determined.
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Problem 2. Are Theorems 9.8 and 9.9 true without �xing the splitting �eld

G?

Several results of the theory have been extended to the case of étale alge-

bras in Evertse and Gy®ry (2017, 2022).

• Let K be a number �eld with ring of integers OK , and D 6= 0 an integer.

As was seen above, up to strong Z-equivalence, the equation

D(α) = D in α ∈ OK(9.2)

has only �nitely many solutions, and all of them can be e�ectively deter-

mined.

Let A = Z[z1, . . . , zr] be an integral domain of characteristic 0 with al-

gebraic or transcendental generators z1, . . . , zr, L its quotient �eld, and Ω

a �nite étale L-algebra (i.e. a direct product of �nite extensionsK1, . . . , Kt

of L). Denote by AΩ the integral closure of A in Ω. The discriminant of

α ∈ AΩ over L with Ω = L[α] is given by DL(α) := D(fα,L), where fα,L
is the monic minimal polynomial of α over L.

Let O be an A-order of Ω, i.e. an A-subalgebra of AΩ which spans Ω

as an L-vector space. We say that α, β ∈ O are strongly A-equivalent if

β − α ∈ A. One veri�es that if α, β ∈ O are strongly A-equivalent then

fα,L, fβ,L are also strongly A-equivalent, and thus, DL(β) = DL(α).

Let δ be a non-zero element of L. Consider the following generalization

of equation (9.2):

DL(α) = δ in α ∈ O.(9.3)

For an integral domain B, denote by B+ the additive group of B.

Theorem 9.10 (Evertse and Gy®ry, 2022). If

(O ∩ L)+/A+ is �nite,(9.4)

then the set of α ∈ O with (9.3) is a union of �nitely many strong A-

equivalence classes. Moreover, if A,Ω,O and δ are given e�ectively in

a well-de�ned way, one can determine a set consisting of precisely one

element from each of these classes.

The condition (9.4) is necessary and decidable.

For A = Z, L = Q, Ω = number �eld K, O = OK , Theorem 9.10 gives

the above theorem concerning equation (9.2).
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9.2. Generalizations: the non-monic case.

As was seen above, Theorem 4.2 (ii) and its consequences in Sections 4 and

5 were later extended to the number �eld case and p-adic case. Theorem 4.4

was already generalized for the same generality by the authors in the �rst

paper on the subject Evertse and Gy®ry (1991a).

We present now this general theorem from the non-monic case which cor-

responds to Theorem 9.1 above.

Keeping the above notations, let again L be a number �eld, and S a �nite

set of places on L containing all in�nite places. We denote by OS the ring of

S-integers and by O∗S the group of S-units. Two polynomials f, g ∈ OS[X]

of degree n are said to be GL2(OS)-equivalent if

g(X) = ε(cX+d)nf

(
aX + b

cX + d

)
with some

(
a b

c d

)
∈ GL2(OS) and ε ∈ O∗S.

As above, for a polynomial g(X) ∈ Q[X] we denote by H(g) the absolute

height of the vector whose coordinates are the coe�cients of g.

Theorem 9.11 (Evertse and Gy®ry, 1991a). Let δ ∈ OS \ {0}, and let

f ∈ OS[X] be a polynomial of degree n ≥ 2 and of discriminant D(f) ∈ δO∗S.
Then f is GL2(OS)-equivalent to a polynomial g ∈ OS[X] such that

H(g) < C7(L, S, (δ)S, n),

where C7 is an e�ectively computable number, given explicitly in terms of

L, S, (δ)S and n.

For L = Q,OS = Z, when O∗S = {±1}, Theorem 9.11 gives Theorem 4.4.

For the best known, completely explicit bound C7, see Theorem 14.2.2 in

Evertse and Gy®ry (2017).

The binary form variant of Theorem 4.4 was later generalized for decom-

posable forms in more than two variables in Evertse and Gy®ry (1992) and

Gy®ry (1994).

Let K be an extension of L of degree n ≥ 3. Let α be a primitive element

of K/L, i.e., K = L(α). We would have liked to de�ne the discriminant of α

over OS to be the discriminant of f , where f is a minimal polynomial of α in

OS[X] whose coe�cients generate the unit ideal. But in case that OS is not

a principal ideal domain, such a minimal polynomial need not exist. Instead,

we give a more subtle de�nition. Denote by PS(α) the set of polynomials

f ∈ OS[X] such that f is irreducible in L[X] and f(α) = 0, and de�ne the
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discriminant ideal of α with respect to OS by

dS(α) := (D(f) : f ∈ PS(α))S.

Given f(X) = a0X
n + · · ·+ an ∈ PS(α), let cS(f) := (a0, . . . , an)S denote its

content. Then

(9.5) dS(α) = D(f) · c2−2n
S .

Two elements α, β of K are called GL2(OS)-equivalent if β = aα+b
cα+d for

some
(
a b
c d

)
∈ GL2(OS); such elements satisfy dS(α) = dS(β).

Theorem 9.11 has the following consequence.

Theorem 9.12. Let α with K = L(α). Then α is GL2(OS)-equivalent to an

element β ∈ K with

H(β) ≤ C8(L, S, dS(α), n),

where C8 is an e�ectively computable number, given explicitly in terms of

L, S, dS(α) and n.

Idea of proof. Choose a �nite set of ideals of OS that form a full system of

representatives for the ideal classes of OS. This depends only on L and S.

There is f ∈ PS(α) such that cS(f) = a, where a belongs to this �nite set of

ideals. By Theorem 9.11, there is g ∈ OS[X], GL2(OS)-equivalent to f , such

that

H(g) < C7(L, S, (D(f))S, n) = C7(L, S, a2n−2dS(α), n).

Now g has a zero β that is GL2(OS)-equivalent to α, and for this β we have

H(β) < C8(L, S, dS(α), n). �

10. Multiply monogenic and rationally monogenic orders

In this section we consider `Diophantine equations'

Z[α] = O in algebraic integers α,(10.1)

Zα = O in algebraic numbers α,(10.2)

where O is a given order of a number �eld. As observed before, from the

e�ective reduction theory for polynomials one can deduce e�ective �niteness

results for the collection of Z-equivalence classes of algebraic integers α with

(10.1), respectively the collection of GL2(Z)-equivalence classes of algebraic

numbers α with (10.2). Although this does not strictly belong to the e�ec-

tive reduction theory for polynomials, in this section, we give an overview

of results with upper bounds for the number of these classes, i.e., for the
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multiplicity of (rational) monogenicity for the order O under consideration.

An important feature of these bounds is their uniformity, i.e., they depend

at most on the rank of O. We have included outlines of the proofs of the

main results. The main tools are upper bounds for the number of solutions

of equations ax+ by = 1 in algebraic units x, y.

10.1. Monogenic orders.

In this subsection, we consider (10.1). Let K be a number �eld with ring

of integers OK , and O an arbitrary order of K, i.e., a subring of OK with

quotient �eld K. It follows from Theorem 5.6 above (in an e�ective form)

that up to Z-equivalence, there are only �nitely many α ∈ O with O = Z[α].

The order O is said to be k-times monogenic/precisely k times monogenic/at

most k times monogenic if there are at least/precisely/at most k pairwise

Z-inequivalent such generators α of O over Z.
It is easy to see that every order of a quadratic number �eld is precisely

one time monogenic.

For �xed n ≥ 3, we denote by M(n) the smallest integer k such that for

every number �eld K of degree n and every order O of K, the order O is at

most k times monogenic. We start with recalling an old result of ours.

Theorem 10.1 (Evertse and Gy®ry, 1985). Let K be a number �eld of degree

n ≥ 3, and suppose that its normal closure has degree g. Then every order

of K is at most (3× 72g)n−2 times monogenic.

In particular, M(n) is �nite, and M(n) ≤ (3× 72n!)n−2.

This was deduced from an upper bound for the number of solutions of

S-unit equations, obtained shortly before by the �rst author, see Evertse

(1984a).

There are now much better upper bounds for M(n). The problem of es-

timating M(3) can be reduced via index form equations to estimating the

number of integer solutions of a Thue equation |F (x, y)| = 1 with F an in-

tegral cubic binary form. Bennett (2001) proved that such an equation has

up to sign at most 10 solutions. This gives the following.

Theorem 10.2 (Bennett, 2001). We have M(3) ≤ 10.

For n ≥ 4, the �rst author improved the bound of Theorem 10.1 as follows.

Theorem 10.3 (Evertse, 2011). For n ≥ 4, M(n) ≤ 24(n+5)(n−2) holds.
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The main tool in the proof is an important improvement and generalization

of the �rst author's result from 1984, due to Beukers and Schlickewei (1996),

see Theorem 10.6 in Section 10.2.

In the case of quartic number �elds, Bhargava (2022) substantially im-

proved Evertse's bound by proving the following theorem.

Theorem 10.4 (Bhargava, 2022). We have M(4) ≤ 2760 (and M(4) ≤ 182

if |D(O)| is su�ciently large).

Bhargava proved his theorem via a parametrization of quartic rings and

their cubic resolvent rings, and utilized Akhtari's recent upper bound (see

the Appendix of Bhargava (2022)) for the number of solutions of quartic

Thue equations.

Akhtari (2022) gave another, more direct proof for Theorem 10.4, following

the approach of Gaál, Peth® and Pohst (1996) (which in fact is going into the

same direction as Bhargava's approach but is less general), and combining

this with her own upper bound for the number of solutions of quartic Thue

equations.

Theorem 10.3 is probably far from best possible in terms of n. We pose

the following problem:

Problem 3 (Gy®ry, 2000). Do there exist absolute constants c1, c2 such that

M(n) < c1n
c2 for all n ≥ 4 ?

The best lower bound we could �nd is due to Miller-Sims and Robertson

(2005). Let p be a prime number, ζp a primitive p-th root of unity, and Kp

the associated real cyclotomic �eld, i.e., Q(ζp + ζ−1
p ). Then Kp has degree

(p − 1)/2, and its ring of integers is Op := Z[ζp + ζ−1
p ]. They proved that

if p ≥ 7 then Z[α] = Op is satis�ed by α = ζkp + ζ−kp , (ζkp + ζ−kp + b)−1

(b = −1, 0, 1, 2, k = 1, . . . , (p − 1)/2). If p = 7 then among these numbers

there are precisely nine pairwise Z-inequivalent ones and by a result of Gaál

and Schulte (1989) these are up to Z-equivalence the only numbers α with

Z[α] = O7. If p ≥ 11 then all these numbers are pairwise Z-inequivalent and
thus, the order Op is 5(p− 1)/2 = 5[Kp : Q] times monogenic.

We now �x a number �eld K of degree ≥ 3, and consider only orders

of K. As it turned out, most orders of K have only small multiplicity of

monogenicity, bounded above independently even of the degree of K. In

2013, we proved the following result with Bérczes:
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Theorem 10.5 (Bérczes, Evertse and Gy®ry, 2013). Let K be an algebraic

number �eld of degree ≥ 3. Then K has only �nitely many orders that are

three times monogenic.

To see that this is optimal, let K be a non-CM number �eld of degree ≥ 3.

Then the ring of integers of K has in�nitely many units ε with K = Q(ε).

For every of these ε we obtain a two times monogenic order Z[ε] = Z[ε−1] of

K.

Theorem 10.5 is proved by means of a reduction to unit equations in more

than two unknowns, and a use of ine�ective �niteness theorems for these

equations. So Theorem 10.5 is ine�ective, in the sense that its proof does not

allow to determine the exceptional orders.

Problem 4. Make Theorem 10.5 e�ective.

This seems to be completely out of reach. At present, it is not known how

to make the results on unit equations in more than two unknowns e�ective.

10.2. Outlines of the proofs of Theorems 10.3 and 10.5.

We start with recalling some auxiliary results from the literature.

Theorem 10.6 (Beukers and Schlickewei, 1996). Let F be a �eld of char-

acteristic 0, and Γ a multiplicative subgroup of F ∗ × F ∗ of rank r. Then the

equation x+ y = 1 has at most 28r+8 solutions (x, y) ∈ Γ.

Corollary 10.7. Let F be a �eld of characteristic 0, let m ≥ 1, and let

Γ be a multiplicative subgroup of (F ∗)2m of rank r. Then there are at most

28(r+2m−1) tuples (x1, y1, . . . , xm, ym) ∈ Γ satisfying

(10.3) xi + yi = 1 for i = 1, . . . ,m.

This result is easily deduced from Theorem 10.6 using induction on m, see

Evertse (2011), or Evertse and Gy®ry (2017), Corollary 4.3.5.

Theorem 10.8. Let F be a �eld of characteristic 0, let m ≥ 1, and let Γ

be a multiplicative subgroup of (F ∗)m. Then there are at most �nitely many

tuples (x1, . . . , xm) ∈ Γ satisfying

(10.4){
x1 + · · ·+ xm = 1,

xi1 + · · ·+ xit 6= 0 for each non-empty subset {i1, . . . , it} of {1, . . . ,m}.

This was proved by Evertse (1984b) and van der Poorten and Schlickewei

(1982, 1991), combining Schmidt's and Schlickewei's Subspace Theorem from
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Diophantine approximation with a specialization argument. We note that

Theorem 10.8 is ine�ective, hence so are its consequences. Although we will

not need these here, we mention that there are explicit upper bounds for the

number of solutions of (10.4) depending only on m and on r := rank Γ, see

Evertse, Schlickewei and Schmidt (2002) or Amoroso and Viada (2009), who

obtained the up to now best upper bound (8m)4m4(m+r+1).

Theorem 10.9. Let F be a �eld of characteristic 0, and Γ a multiplicative

subgroup of F ∗×F ∗. Then there are only �nitely many pairs (a, b) ∈ F ∗×F ∗
such that a+ b = 1, and such that ax+ by = 1 has three solutions (x, y) ∈ Γ,

the pair (1, 1) included.

Idea of proof. This is basically a result of Evertse, Gy®ry, Stewart, and Tij-

deman (1988), see also Evertse and Gy®ry (2015), Theorem 6.1.6. The idea

is as follows. Suppose that there are (x1, y1), (x2, y2) ∈ Γ, distinct from each

other and distinct from (1, 1), such that axi + byi = 1 for i = 1, 2. Then∣∣∣∣∣∣
1 1 1

1 x1 y1

1 x2 y2

∣∣∣∣∣∣ = 0.

Expand the determinant, divide by a term to obtain a �ve term sum equal

to 1, consider all possible partitions into minimal vanishing subsums, and

apply Theorem 10.8 to each of them. �

Let K be a number �eld of degree n ≥ 3. Denote by x 7→ x(i) (i = 1, . . . , n)

the embeddings of K in G, where G is the normal closure of K. For α with

Q(α) = K and i = 3, . . . , n, de�ne

xi(α) =
α(i) − α(1)

α(2) − α(1)
, yi(α) =

α(2) − α(i)

α(2) − α(1)

and the tuple

κ(α) := (x3(α), y3(α), . . . , xn(α), yn(α)).

In addition, we need a few simple lemmas. We call α, β Q-equivalent if

β = λα + a for some λ ∈ Q∗, a ∈ Q.

Lemma 10.10. Let α, β with Q(α) = Q(β) = K.

(i) κ(α) = κ(β) ⇐⇒ α, β are Q-equivalent.
(ii) Assume in addition that Z[α] = Z[β] and that α, β are Q-equivalent.
Then α, β are Z-equivalent.
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Proof. (i) Clearly, κ(α) = κ(β) if and only if (α(i), β(i)) (i = 1, . . . , n) are

collinear, i.e., β(i) = λα(i) + a (i = 1, . . . , n) for some λ ∈ G∗, a ∈ G. One
easily shows that this is posible only if λ, a are invariant under Galois action,

i.e., lie in Q.
(ii) Our assumption Q(α) = Q(β) = K implies that β = f(α) for some

unique polynomial f ∈ Q[X] of degree < n, and then Z[α] = Z[β] implies

f ∈ Z[X]. So if α, β are Q-equivalent, then β = λα + a with λ, a ∈ Z. By
interchanging the role of α, β we see that λ−1 ∈ Z, hence λ = ±1. �

Lemma 10.11. Let α, β be such that Q(α) = Q(β) = K and Z[α] = Z[β].

Then
β(i) − β(j)

α(i) − α(j)
∈ O∗G for i, j = 1, . . . , n, i 6= j.

Proof. Use β = f(α), α = g(β) for some f, g ∈ Z[X]. �

Sketch of the proof of Theorem 10.3. Let O be an order of K. Note that for

α ∈ K with K = Q(α) we have relations

xi(α) + yi(α) = 1 (i = 3, . . . , n)

where

xi(α) =
α(i) − α(1)

α(2) − α(1)
, yi(α) =

α(2) − α(i)

α(2) − α(1)
.

It was proved in Evertse (2011), see also Evertse and Gy®ry (2017), pages

206�208, that if one restricts to α with Z[α] = O, then the set of tuples

{κ(α) : Z[α] = O}

generates a multiplicative subgroup of (G∗)2n−4 of rank at most n(n− 1)/2.

In the deduction of this we used a re�nement of Lemma 10.11. Now an

application of Corollary 10.7 and Lemma 10.10 implies Theorem 10.3. �

In the proof of Theorem 10.5 we need the following lemma. Call α1 k-

special if α1 ∈ OK , K = Q(α1) and there are α2, . . . , αk such that α1, . . . , αk
are pairwise Z-inequivalent and Z[α1] = Z[α2] = · · · = Z[αk].

Lemma 10.12. Let C be a Q-equivalence class of 2-special numbers. Then

C is the union of �nitely many Z-equivalence classes.

Proof. For the somewhat involved argument we refer to Bérczes, Evertse and

Gy®ry (2013) or Evertse and Gy®ry (2017), Lemma 9.5.6. �
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Sketch of the proof of Theorem 10.5. We have to prove that there are only

�nitely many orders Z[α] such that α is 3-special. It su�ces to show that

the 3-special α lie in �nitely many Z-equivalence classes. We sketch the

argument.

Let α ∈ OK be 3-special. Pick β, γ such that α, β, γ are pairwise Z-
inequivalent, and Z[α] = Z[β] = Z[γ]. For any three distinct indices i, j, k

from {1, . . . , n}, de�ne

εijk =
(β(i) − β(j))/(β(i) − β(k))

(α(i) − α(j))/(α(i) − α(k))
, ηijk =

(γ(i) − γ(j))/(γ(i) − γ(k))

(α(i) − α(j))/(α(i) − α(k))
.

Then by Lemma 10.11, the equation

α(i) − α(j)

α(i) − α(k)
x+

α(j) − α(k)

α(i) − α(k)
y = 1 in x, y ∈ O∗G

has three solutions

(1, 1), (εijk, εkji), (ηijk, ηkji).

If for all i, j, k and all α, β, γ as above these three solutions were distinct,

we could conclude from Theorem 10.9 that there is a �nite set S such that

α(i,j,k) ∈ S for all i, j, k and all 3-special α. It need not be true, however,

that in all cases these three solutions are distinct. However, by means of a

combinatorial argument, worked out in Bérczes, Evertse and Gy®ry (2013)

or Evertse and Gy®ry (2017), pp. 211�216 we deduce that the existence of

a �nite set S as above still holds. Now Lemma 10.10 (i) implies that the

3-special numbers α lie in only �nitely many Q-equivalence classes. Finally,
Lemma 10.12 implies that the 3-special numbers lie in only �nitely many

Z-equivalence classes. �

10.3. Generalizations for rationally monogenic orders.

The theorems stated in Subsection 10.1 have analogues for rationally mono-

genic orders. For the necessary terminology and properties we refer to Sub-

section 5.6.

For a not necessarily integral algebraic number α of degree n ≥ 3 we de�ne

Mα := {x0 + x1α + · · ·+ xn−1α
n−1 : x0, . . . , xn−1 ∈ Z},

Zα := {ξ ∈ Q(α) : ξMα ⊆Mα}.

Recall that Zα = Zβ if α and β are GL2(Z)-equivalent.

An order O of a number �eld K is called rationally monogenic if O =

Zα for some algebraic number α. As observed in Subsection 5.6, if α is an
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algebraic integer, then Zα = Z[α]. Thus, monogenic orders are rationally

monogenic. We further recall that rationally monogenic orders are primitive,

i.e., they cannot be expressed as Z + aO′ for some integer a > 1 and order

O′.
We say that an order O of a number �eld K is k times/precisely k times/at

most k-times rationally monogenic if up to GL2(Z)-equivalence there are at

least/precisely/at most k numbers α such that O = Zα. Denote by RM(n)

the least number k such that for every number �eld K of degree n and every

order O of K, the order O is at most k times rationally monogenic.

From work of Delone and Faddeev (1940) it follows that RM(3) ≤ 1, that

is, every order of a cubic number �eld is at most one time rationally mono-

genic (and in fact precisely one time if the order is primitive). From a result

of Bérczes, Evertse and Gy®ry (2004) the following analogue of Theorem 10.3

can be deduced:

Theorem 10.13. For every n ≥ 4, RM(n) is �nite and in fact, RM(n) ≤
n× 224n3

.

Similarly to Theorem 10.3 the proof uses Theorem 10.6 of Beukers and

Schlickewei (1996) mentioned above.

This bound has been improved. The best bounds to date are as follows:

Theorem 10.14. We have

(i) RM(4) ≤ 40 (Bhargava (2022));

(ii) RM(n) ≤ 25n2
for n ≥ 5 (Evertse and Gy®ry (2017)).

The proof of part (ii) is similar to that of Theorem 10.13 but with a

combinatorial improvement in the argument. The proof of part (i) also uses

a parametrization of quartic rings and their cubic resolvent rings.

Recently, the following analogue of Theorem 10.5 for rationally monogenic

orders was proved:

Theorem 10.15 (Evertse, 2023).

(i) Let K be a number �eld of degree 4. Then K has only �nitely many three

times rationally monogenic orders.

(ii) Let K be a number �eld of degree ≥ 5 such that the normal closure of

K is 5-transitive. Then K has only �nitely many two times rationally

monogenic orders.
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Part (i) is best possible in the sense that there are quartic number �elds

having in�nitely many two times rationally monogenic orders. In fact, Bér-

czes, Evertse and Gy®ry (2013, end of Section 1) give the following construc-

tion:

Let r, s be integers such that f(X) = (X2 − r)2 −X − s is irreducible, and
let K = Q(α), where α is a root of f . Then K has in�nitely many orders

Om (m = 1, 2, . . .) with the following property: Om = Z[αm] = Z[βm], where

βm = α2
m − rm, αm = β2

m − sm for some integers rm, sm.

It is clear that αm, βm in the above theorem are not GL2(Z)-equivalent. We

would like to pose the following problem:

Problem 5. Does every quartic number �eld have in�nitely many orders

that are two times rationally monogenic? If not, can we characterize those

quartic number �elds that do? Do the two times rationally monogenic orders

have a particular structure?

Similary to Theorem 10.5, Theorem 10.15 has been proved by means of

a reduction to unit equations in more than two unknowns, and a use of

ine�ective �niteness theorems for such equations. So likewise, Theorem 10.15

is ine�ective.

It is not clear whether the 5-transitivity condition on the Galois closure

of K in part (ii) is necessary; this was just a technical condition needed for

the proof. We are interested in the following problem:

Problem 6. Is it true that every number �eld of degree n ≥ 5 has only

�nitely many orders that are two times rationally monogenic? If not, can we

characterize those number �elds that do?

Combining Theorems 5.11 and 10.15 one can deduce the following counter-

part of Theorem 3.4. For a number �eldK, let PI(K) denote the set of prim-

itive, irreducible polynomials in Z[X] having a root α such that K = Q(α).

Corollary 10.16 (Evertse, 2023).

(i) Let K be a quartic number �eld. Then PI(K) has only �nitely many Her-

mite equivalence classes that split into more than two GL2(Z)-equivalence

classes.

(ii) Let K be a number �eld of degree ≥ 5 whose normal closure is 5-transitive.

Then PI(K) has only �nitely many Hermite equivalence classes that split

into more than one GL2(Z)-equivalence class.
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Part (ii) was conjectured in BEGyRS (2023), without the 5-transitivity

condition.

10.4. Outlines of the proofs of Theorems 10.14 (ii) and 10.15.

The main new tool is the following result.

Theorem 10.17. Let F be a �eld of characteristic 0, and Γ a �nitely gen-

erated subgroup of F ∗. Then there is a �nite subset S of F ∗ with 1 ∈ S, such
that for the set of solutions (x1, x2, x3, y1, y2, y3) ∈ Γ6 of

(10.5) (x1 − 1)(x2 − 1)(x3 − 1) = (y1 − 1)(y2 − 1)(y3 − 1)

at least one of the following holds:

(i) at least one of x1, . . . , y3 belongs to S;
(ii) there are η1, η2, η3 ∈ {±1} such that (y1, y2, y3) is a permutation of

(xη11 , x
η2
2 , x

η3
3 );

(iii) one of the numbers in {xixj, xi/xj, yiyj, yi/yj : 1 ≤ i < j ≤ 3} is equal
to either −1, or to a primitive cube root of unity.

Proof. This is Proposition 8.1 of Bérczes, Evertse and Gy®ry (2013). The

proof is basically to expand (10.5), divide by one term to get an equation

of type (10.4) in 16 terms equal to 1, consider all possible partitions into

minimal vanishing subsums, and apply Theorem 10.8 to each of them (by

using symmetric properties we can substantially reduce the number of cases).

�

We need some other lemmas. Let K be a number �eld of degree n ≥ 4.

Denote by G the normal closure of K and by x 7→ x(i) (i = 1, . . . , n) the

embeddings of K in G. For α with Q(α) = K we de�ne the cross ratios

crijkl(α) :=
(α(i) − α(j))(α(k) − α(l))

(α(i) − α(k))(α(j) − α(l))

for any four distinct indices i, j, k, l ∈ {1, . . . , n} and we de�ne the tuple

λ(α) := (cr123i(α), cr1i32(α) : i = 4, . . . , n).

We call α, β ∈ K GL2(Q)-equivalent if β = aα+b
cα+d for some

(
a b
c d

)
∈ GL2(Q).

Lemma 10.18. Let α, β with Q(α) = Q(β) = K.

(i) λ(α) = λ(β) ⇐⇒ α, β are GL2(Q)-equivalent.

(ii) If Zα = Zβ and α, β are GL2(Q)-equivalent, then α, β are GL2(Z)-

equivalent.
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Proof. (i). ⇐= is straighforward. As for =⇒, from elementary projective

geometry it follows that if λ(α) = λ(β) then there is a projective transfor-

mation of P1 de�ned over G that maps α(i) to β(i), for i = 1, . . . , n. It is easy

to verify that this projective transformation is invariant under Galois action,

hence de�ned over Q.
(ii). See for instance Lemma 2.6 of Evertse (2023). �

Lemma 10.19. Let α, β with Q(α) = Q(β) = K and Zα = Zβ. Then for all

distinct i, j, k, l ∈ {1, . . . , n} we have crijkl(β)/crijkl(α) ∈ O∗G.

Proof. This is Lemma 2.4 of Evertse (2023). �

Sketch of the proof of Theorem 10.14 (ii). LetO be an order ofK. Note that

for α ∈ K with K = Q(α) we have relations

cr123i(α) + cr1i32(α) = 1 (i = 4, . . . , n).

By Lemma 17.7.3 of Evertse and Gy®ry (2017), the set of tuples

{λ(α) : Zα = O}

generates a multiplicative subgroup of (G∗)2n−6 of rank at most n(n− 1)/2.

In the deduction of this we used a re�nement of Lemma 10.19. Now an

application of Corollary 10.7 and Lemma 10.18 implies Theorem 10.14 (ii).

�

Call α1 with Q(α1) = K k-special if there are α2, . . . , αk ∈ K such that

α1, . . . , αk are pairwise GL2(Z)-inequivalent and Zα1 = · · · = Zαk
. We should

mention here that if K has degree 3 then there are no 2-special numbers in

K.

In the proof of Theorem 10.15, we need the following lemma.

Lemma 10.20. Assume n ≥ 4. Let C be a GL2(Q)-equivalence class of 2-

special numbers. Then C is the union of �nitely many GL2(Z)-equivalence

classes.

Idea of proof. This is Proposition 5.1 of Evertse (2023). Its proof is fairly

complicated. We give a brief outline.

We de�ne crijkl(C) := crijkl(α) for any α ∈ C. This is well-de�ned since

GL2(Q)-equivalent algebraic numbers have the same cross ratios. Let α ∈ C,
let β ∈ K be such that Zβ = Zα and β is not GL2(Z)-equivalent to α, and

let D be the GL2(Q)-equivalence class of β. Then D 6= C by Lemma 10.18
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(ii). Clearly, crijkl(β) =: crijkl(D) depends only on D. By Lemma 10.19 we

have crijkl(D)/crijkl(C) ∈ O∗G for all i, j, k, l. Further,

1 = crijkl(β) + crilkj(β) = crijkl(C) ·
crijkl(D)

crijkl(C)
+ crilkj(C) ·

crilkj(D)

crilkj(C)
for all i, j, k, l. Now by Theorem 10.6, for given C there are only �nitely many

possible values for each crijkl(D) and thus, by Lemma 10.18, at most �nitely

many possibilities for D. It follows that C is the union of �nitely many sets

C(D) := {α ∈ C : there is β ∈ D with Zα = Zβ}

whereD 6= C is aGL2(Q)-equivalence class of 2-special numbers. So it su�ces

to prove that each set C(D) is the union of �nitely many GL2(Z)-equivalence

classes.

Now �x D, α ∈ C(D), and β ∈ D such that Zα = Zβ. Let α′ be any other

element of C(D). Then we can write

α′ =
aα + b

cα + d
with a, b, c, d ∈ Z, gcd(a, b, c, d) = 1, ad− bc =: ∆ 6= 0.

We have to prove that the numbers α′ ∈ C(D) lie in only �nitely many

GL2(Z)-equivalence classes. Recall that there are U ∈ GL2(Z) and a′, b′, d′ ∈
Z with a′d′ = ∆, |b′| ≤ |d′|/2 such that U

(
a b
c d

)
=
(
a′ b′

0 d′

)
. Hence α′ is

GL2(Z)-equivalent to α∗ := (a′α + b′)/d′. It su�ces to prove that there are

only �nitely many possibilities for α∗. It is in fact su�cient to prove that

∆ is bounded, since for given ∆ there are only �nitely many possibilities

for (a′, b′, d′). The boundedness of ∆ is provided by the following elementary

lemma, which is Proposition 4.1 of Evertse (2023). We refer to that paper

for the rather lengthy proof.

Lemma 10.21. Let D be the discriminant of Zα, and let a(α, β) be the ideal

of OG generated by the numbers crijkl(β)/crijkl(α)− 1 (1 ≤ i < j < k < l ≤
n). Then ∆ divides D5 · a(α, β)2.

�

Sketch of the proof of Theorem 10.15. For α, β with Q(α) = Q(β) = K and

distinct i, j, k, l ∈ {1, . . . , n} we put

εijkl(α, β) :=
crijkl(β)

crijkl(α)
.

Lemma 10.19 implies that if Zα = Zβ, then εijkl(α, β) ∈ O∗G.
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The case n = 4. We have to show that there are only �nitely many orders

O of K such that O = Zα for some 3-special α. It clearly su�ces to show

that the 3-special numbers α lie in only �nitely many GL2(Z)-equivalence

classes.

Let α ∈ K be 3-special, and choose β, γ ∈ K such that α, β, γ are pairwise

GL2(Z)-inequivalent, and Zα = Zβ = Zγ. Let (i, j, k, l) be a permutation of

(1, 2, 3, 4). Then the equation

crijkl(α)x+ crilkj(α)y = 1

has three distinct solutions (x, y) ∈ O∗G×O∗G, i.e., (1, 1), (εijkl(α, β), εilkj(α, β)),

(εijkl(α, γ), εilkj(α, γ)). Now Theorem 10.9 implies that crijkl(α) can assume

only �nitely many values. From Lemma 10.19 it now follows that the 3-

special α ∈ K lie in only �nitely GL2(Q)-equivalence classes. Finally, from

Lemma 10.20 it follows that they lie in �nitely many GL2(Z)-equivalence

classes.

The case n ≥ 5. We have to show that there are only �nitely many orders

O of K such that O = Zα for some 2-special α. It clearly su�ces to show

that the 2-special numbers α lie in only �nitely many GL2(Z)-equivalence

classes.

Let α ∈ K be 2-special, and choose β such that α, β areGL2(Z)-inequivalent

and Zα = Zβ. Henceforth, we write εijkl for εijkl(α, β). Let i, j, k, l be distinct

indices from {1, . . . , n}. Then

crijkl(α) + crilkj(α) = 1, crijkl(α)εijkl + crilkj(α)εilkj = 1,

εilkj/εijkl = εiljk, which imply

(10.6) crijkl(α) =
εilkj − 1

εilkj − εijkl
, crijkl(β) = εijklcrijkl(α) =

εilkj − 1

εiljk − 1
.

Now picking a �fth index m, and using
crjmlk(β)crijkm(β)

crijkl(β)
= 1, we obtain

(10.7)
εjklm − 1

εjkml − 1
· εimkj − 1

εimjk − 1
· εiljk − 1

εilkj − 1
= 1.

We apply Theorem 10.17 to (10.7) for all i, j, k, l,m. Our assumption that

the Galois group of G is 5-transitive implies various conjugacy relations be-

tween the εijkl. Using all of these, we infer that for each quadruple i, j, k, l

there are only �nitely many possible values for εijkl (we should mention here
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that without the 5-transitivity assumption, we do not know how to prove

this). Now (10.6) implies that there are only �nitely many possible values

for crijkl(α), if α runs through the 2-special numbers of α, and thus, by

Lemma 10.18, that the 2-special α ∈ K lie in only �nitely many GL2(Q)-

equivalence classes. Finally, from Lemma 10.20 it follows that they lie in only

�nitely many GL2(Z)-equivalence classes. �

Appendix: Related topics

We brie�y discuss some further topics related to monogenic number �elds

and monogenic orders and generalizations thereof that do not strictly belong

to the reduction theory of integral polynomials.

A. Monogenicity, class group and Galois group

Recently, surprising results have been obtained in precise and quantitative

form that imply that on average, the monogenicity of a number �eld has an

altering e�ect on the structure of its 2-class group, see Bhargava, Hanke

and Shankar (2020), Siad (2021), Swaminathan (2023), Shankar, Siad and

Swaminathan (2025), and Bhargava, Shankar and Swaminathan (2025). The

2-class group Cl2(K) of a number �eld K is the group of ideal classes of K

whose order divides 2.

To illustrate this, we recall some results from the literature. Amonogenized

number �eld is a pair (K,α) consisting of a number �eld K and α ∈ OK
such that OK = Z[α]. Two monogenized number �elds (K1, α1), (K2, α2)

are called isomorphic if there are a �eld isomorphism ϕ : K1 → K2 and a

rational integer a such that α2 = ±ϕ(α1) + a.

We now restrict ourselves to monogenized cubic �elds. We de�ne the height

of a monogenized cubic �eld (K,α) as follows. Let f = X3 +aX2 + bX+ c ∈
Z[X] be the minimal polynomial of α. Then the height of (K,α) is

H(K,α) := max(|I(f)|3, J(f)2/4),

where I(f) := a2 − 3b, J(f) := −2a3 + 9ab− 27c.

One can show that isomorphic monogenized cubic �elds have the same height.

Further, the pair (I(f), J(f)2) uniquely determines an isomorphism class.

Lastly, the discriminant of f is D(f) = 1
27

(
4I(f)3 − J(f)2

)
.

Theorem A.1 (Bhargava, 2005). Let K run through the cubic number �elds,

ordered by discriminant.
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(i) The average size of Cl2(K) over the totally real cubic �elds is 5/4.

(ii) The average size of Cl2(K) over the complex cubic �elds is 3/2.

Theorem A.2 (Bhargava, Hanke and Shankar, 2020). Let (K,α) run through

the monogenized cubic number �elds whose Galois closure has Galois group

isomorphic to S3, ordered by height.

(i) The average size of Cl2(K) over the totally real monogenized cubic �elds

is 3/2.

(ii) The average size of Cl2(K) over the complex monogenized cubic �elds is

2.

Siad (2021) proved a generalization of the last theorem for number �elds

of odd degree ≥ 5.

We brie�y discuss some other topics. Recently, Arpin, Bozlee, Herr and

Smith (2023a,b) introduced and studied twisted monogenic relative exten-

sions K/L. They proved that L has trivial class group (this is the case if e.g.

L = Q) if and only if every twisted monogenic extension of L is monogenic.

Another topic worth of study is the connection between (multiplicity of)

monogenicity of the ring of integers of a number �eld K and the size of the

Galois group of its Galois closure. The examples of number �elds K of degree

n = 3, 4, 5, 6 in Section 6 show that the multiplicity of monogenicity of OK
can be relatively large if the Galois group of the Galois closure of K is Sn,

i.e. if its size is large relative to n.

B. Distribution of monogenic and non-monogenic number

fields

As is well-known, all quadratic number �elds and cyclotomic �elds are

monogenic. For degree n = 3, the �rst example of a non-monogenic number

�eld was given by Dedekind (1878). For every n ≥ 3, there are in�nitely

many isomorphism classes of monogenic, cf. Kedlaya (2012), and in�nitely

many isomorphism classes of non-monogenic number �elds of degree n.

Let K be a number �eld, and {1, ω2, . . . , ωn} a Z-module basis of OK .
Denote by I(X2, . . . , Xn) the associated index form, as introduced in Sub-

section 5.4. Thus, if α = x1 + x2ω2 + · · · + xnωn with x1, . . . , xn ∈ Z, then
[OK : Z[α]] = |I(x2, . . . , xn)|. Consequently, K is monogenic if and only if

I(x2, . . . , xn) = ±1 is solvable in x2, . . . , xn ∈ Z. We say that K has no

local obstruction to being monogenic if for every prime number p, the equa-

tion I(x2, . . . , xn) = ±1 has a solution x2, . . . , xn in the p-adic integers. This
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notion does not depend on the choice of ω2, . . . , ωn. We recall some recent

results.

Theorem B.1 (Alpöge , Bhargava and Shnidman, 2025). Let K run through

the isomorphism classes of cubic �elds, ordered by their absolute discrimi-

nant. Then a positive proportion of them are not monogenic, and yet have

no local obstruction to being monogenic.

Subsequently, but published earlier, the same authors proved the follow-

ing result for quartic �elds. Recall that a number �eld is called rationally

monogenic if its ring of integers is rationally monogenic.

Theorem B.2 (Alpöge, Bhargava and Shnidman, 2024). Let K run through

the isomorphism classes of quartic �elds, ordered by their absolute discrimi-

nant. Then a positive proportion of them are not rationally monogenic, and

yet have no local obstruction to being monogenic.

For n = 3, 4, 6, tables of Gaál (2019) suggest that the density of mono-

genic number �elds K of degree n decreases with the absolute value of the

discriminant |DK |.
Bhargava, Shankar and Wang established the following pioneering result.

Theorem B.3 (Bhargava, Shankar and Wang, 2022). Denote by Mn(X)

the number of isomorphism classes of monogenic number �elds K of degree

n with |DK | ≤ X and with associated Galois group Sn. Then for every n ≥ 2

we have

Mn(X)� X1/2+1/n as X →∞.

The authors conjecture that the exponent on X is optimal.

In Part II of their paper, the authors proved a corresponding result for

rationally monogenic number �elds:

Theorem B.4 (Bhargava, Shankar and Wang, 2025). Denote by RMn(X)

the number of isomorphism classes of rationally monogenic number �elds K

of degree n with |DK | ≤ X and with associated Galois group Sn. Then for

every n ≥ 3 we have

RMn(X)� X1/2+1/(n−1) as X →∞.

LetNn(X) denote the number of isomorphism classes of number �eldsX of

degree n with |DK | ≤ X. It is conjectured that Nn(X) � X as X →∞. This

is easy for n = 2. Davenport and Heilbronn (1971) proved this conjecture

for n = 3 and Bhargava (2005, 2010) for n = 4, 5.
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C. Arithmetic characterization of monogenic and multiply

monogenic number fields

The following problem continues to attract considerable attention:

Hasse's problem (1960's): give an arithmetic characterization of mono-

genic number �elds.

In this direction there are many important results for deciding the mono-

genicity or non-monogenicity of number �elds from certain special in�nite

classes, including quadratic, cyclotomic, abelian, cyclic, pure, composite num-

ber �elds, certain quartic, sextic, multiquadratic number �elds and relative

extensions, and parametric families of number �elds de�ned by binomial,

trinomial,. . . irreducible polynomials.

In their proofs various types of tools are used, among others Dedekind's

criterion; Newton polygons; Montes' algorithm; Ore's theorem; Engström's

theorem; Gröbner basis approach; reduction to binomial Thue equations; el-

liptic curve approaches, irreducible monic polynomials with square-free dis-

criminant; non-squarefree discriminant approach; in�nite parametric families

of number �elds; use of the index form equation approach with �small" so-

lutions.

For details, we refer to Dedekind (1878) and to the books Hensel (1908),

Hasse (1963), Narkiewicz (1974), Evertse and Gy®ry (2017), Gaál (2019)

and the references given there. For some recent developments, see also the

survey article Gaál (2024) with many interesting special results, and the

recent interesting papers Kaur, Kumar and Remete (2025), Sharma and

Sarma (2025), Guàrdia and Perdet (2025), Gaál (2025), Harrington and

Jones (2025), Yakkou, Aghzer and Boua (202?), and König (2025). We note

that Hasse's problem has not yet been solved in full generality.

A more precise version of Hasse's problem is as follows.

Problem 7. For m ≥ 1, give an arithmetic characterization of those number

�elds whose ring of integers is m times monogenic.

Clearly, Hasse's problem and Problem 7 do not properly belong to the

reduction theory of integral polynomials.

Dedekind's necessary condition for monogenicity of a number �eld was

generalized by Del Corso, Dvornicich and Simon (2005) to a condition for
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rational monogenicity. Perhaps this provides a tool to construct more exam-

ples of number �elds that are not rationally monogenic.
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