
Appendix A

Proof of the Bombieri-Vinogradov
Theorem

A.1 Key Lemmas

In this chapter, we give a proof of the Bombieri-Vinogradov Theorem, which was

stated without proof in Chapter 11. We start by proving the following large sieve

type result for characters:

Corollary A.1.1 (Gallagher). For any integers M,N,Q > 1,

X

q6Q

q

'(q)

X⇤

� (mod q)

����
M+NX

n=M+1

an�(n)

����
2

6 (N +Q2)
M+NX

n=M+1

|an|
2,

where
P⇤

� (mod q) runs over all primitive characters (mod q).

Proof. Let

S(t) ··=
M+NX

n=M+1

an e(nt) and S̃(t) ··=
NX

n=1

aM+n e(nt).

First note that the value of M is irrelevant in the sense that |S(t)| = |S̃(t)|. Now,

let

T (�) ··=
M+NX

n=M+1

an�(n).
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Recall that given a character � (mod q), we define the Gauss sum of � by

⌧(�) =
qX

m=1

�(m) e
⇣m
q

⌘
.

By Theorem 3.4.1, we know that

�(n) =
1

⌧(�)

qX

a=1

�(a) e
⇣an

q

⌘
.

Hence,

T (�) =
1

⌧(�)

qX

a=1

�(a)S
⇣a
q

⌘
.

Also recall that if � is primitive, then by Theorem 3.4.2, ⌧(�) = q
1
2 . Therefore,

X⇤

� (mod q)

|T (�)|2 =
1

q

X⇤

� (mod q)

����
qX

a=1

�(a)S
⇣a
q

⌘����
2

6 1

q

X

� (mod q)

����
qX

a=1

�(a)S
⇣a
q

⌘����
2

=
1

q

qX

a=1

qX

b=1

S
⇣a
q

⌘
S
⇣ b
q

⌘X

�

�(a)�(b)

=
'(q)

q

qX

a=1
(a,q)=1

����S
⇣a
q

⌘����
2

,(A.1.1)

where the last equality follows from the orthogonality relations of characters (The-

orem 3.2.1). Now, by the large sieve inequality (Theorem 11.2.3), we have

QX

q=1

qX

a=1
(a,q)=1

����S
⇣a
q

⌘����
2

6 (N +Q2)
M+NX

n=M+1

|an|
2.

This together with equation (A.1.1) completes the proof.

Now, we proceed to prove two useful lemmas.
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Lemma A.1.2. Let Q,M,N, u 2 Z>1. Then,

X

q6Q

q

'(q)

X⇤

�

max
u

����
X

16m6M

X

16n6N

mn6u

ambn�(mn)

����

⌧ (M +Q2)
1
2 (N +Q2)

1
2

✓ X

16m6M

|am|
2

◆ 1
2
✓ X

16n6N

|bn|
2

◆ 1
2

logMN.

Proof. We will begin by ignoring the conditions involving u and then work them in

later. By Corollary A.1.1, we have

X

q6Q

q

'(q)

X⇤

�

����
M+NX

n=M+1

an�(n)

����
2

⌧ (N +Q2)
M+NX

n=M+1

|an|
2.

This, together with the Cauchy–Schwarz inequality, shows that

X

q6Q

q

'(q)

X⇤

�

����
X

16m6M

X

16n6N

ambn�(mn)

����

6
 
X

q6Q

q

'(q)

X⇤

�

����
MX

m=1

am�(m)

����
2
! 1

2
 
X

q6Q

q

'(q)

X⇤

�

����
NX

n=1

bn�(n)

����
2
! 1

2

⌧ (M +Q2)
1
2 (N +Q2)

1
2

✓ X

16m6M

|am|
2

◆ 1
2
✓ X

16n6N

|bn|
2

◆ 1
2

.(A.1.2)

If there were no condition that mn 6 u in the statement of our lemma, this proof

would be a straightforward application of the large sieve and the Cauchy-Schwarz

inequality. To introduce the condition mn 6 u, we use the following result from

complex analysis (for a proof, see Davenport’s book):

Z
T

�T

eit↵
sin t�

⇡t
dt =

8
>><

>>:

1 +O(T�1(� � |↵|)�1), if |↵| < �
1
2 if |↵| = �

O(T�1(� � |↵|)�1), if |↵| > �.

Letting � = log u and ↵ = � logmn, this becomes

Z
T

�T

m�itn�it
sin t�

⇡t
dt = 1 +O(T�1(log u� logmn)�1).
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Therefore, if we let

A(t,�) ··=
MX

m=1

am�(m)m�it and B(t,�) ··=
NX

n=1

bn�(n)n
�it,

then

MX

m=1

NX

n=1

ambn�(mn) =

Z
T

�T

A(t,�)B(t,�)
sin t�

⇡t
dt+O

✓
T�1

MX

m=1

NX

n=1

|ambn|
��� log

mn

u

���
�1
◆
.

Since
��� log 1

x

��� > 1
x
for x > 2, then

��� log
mn

u

����
1

u
�

1

MN
.

Note that

sin(t log u) 6 min(1, |t| logMN).

Hence,

MX

m=1

NX

n=1

ambn�(mn) ⌧

Z
T

�T

A(t,�)B(t,�)min
⇣ 1

|t|
, logMN

⌘
dt+

MN

T

MX

m=1

NX

n=1

|ambn|.

Now, we apply (A.1.2) to the first term, the Cauchy–Schwarz inequality to the

second term, and use the fact that

(A.1.3)
X

q6Q

q

'(q)
6
X

q6Q

q =
Q(Q+ 1)

2
⌧ Q2

to obtain

X

q6Q

q

'(q)

X⇤

�

max
u

����
X

16m6M

X

16n6N

mn6u

ambn�(mn)

����

⌧ (M +Q2)
1
2 (N +Q2)

1
2

✓ X

16m6M

|am|
2

◆ 1
2
✓ X

16n6N

|bn|
2

◆ 1
2
Z
T

�T

min
⇣ 1

|t|
, logMN

⌘
dt

+
M

3
2N

3
2Q2

T

✓ X

16m6M

|am|
2

◆ 1
2
✓ X

16n6N

|bn|
2

◆ 1
2

.
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Now,

min
⇣ 1

|t|
, logMN

⌘
=

8
><

>:

logMN, if |t| 6 1

logMN
1

|t|
, otherwise,

so that
Z
T

�T

min
⇣ 1

|t|
, logMN

⌘
dt = 2(1 + log T � log logMN).

Therefore, letting T = MN completes the proof.

Before proving our next lemma, we will explain the following method due to

Vaughan for evaluating sums of the form
P

n6N
f(n)⇤(n). For this purpose, let

F (s) ··=
X

m6U

⇤(m)

ms
and G(s) ··=

X

d6V

µ(d)

ds
,

where U and V will be chosen later. We begin by noting that

�
⇣ 0(s)

⇣(s)
= F (s)� ⇣(s)F (s)G(s)� ⇣ 0(s)G(s) +

⇣
�
⇣ 0(s)

⇣(s)
� F (s)

⌘
(1� ⇣(s)G(s))

= f1(s) + f2(s) + f3(s) + f4(s)

This equation is called Vaughan’s identity. For j = 1, 2, 3, 4, let aj(n) denote the

Dirichlet series coe�cients of fj(s). Since

�
⇣ 0(s)

⇣(s)
=

1X

n=1

⇤(n)

ns
,

by comparing Dirichlet coe�cients, we have

⇤(n) = a1(n) + a2(n) + a3(n) + a4(n),
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where (verify this!):

a1(n) =

8
<

:
⇤(n), if n 6 U

0, otherwise,

a2(n) =�

X

mdr=n
m6U

d6V

⇤(m)µ(d),

a3(n) =
X

hd=n
d6V

µ(d) log h,

a4(n) =�

X

mk=n
m>U

k>1

⇤(m)
⇣X

d|k
d6V

µ(d)
⌘
.

Therefore,

X

n6N

f(n)⇤(n) = S1 + S2 + S3 + S4,

where

Sj =
X

n6N

f(n)aj(n).

We write S2 in the form

S2 = �

X

t6UV

⇣ X

md=t
m6U

d6V

⇤(m)µ(d)
⌘X

r6N
t

f(rt).

Since
P

m|t ⇤(m) = log t 6 logUV , we have

(A.1.4) S2 ⌧ logUV
X

t6UV

X

r6N
t

f(rt).
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As for S3,

S3 =
X

d6V

µ(d)
X

h6N
d

f(dh) log h

=
X

d6V

µ(d)
X

h6N
d

f(dh)

Z
h

1

dw

w

=

Z
N

1

X

d6V

µ(d)
X

w6h6N
d

f(dh)
dw

w

⌧ logN
X

d6V

max
w

���
X

w6h6N
d

f(dh)
���,(A.1.5)

where the third equality follows from Exercise A.1. For S4, since
X

d|k
d6V

µ(d) = 0 for 1 < k 6 V,

we have

(A.1.6) S4 = �

X

U6m6N
V

⇤(m)
X

V <k6N
m

⇣X

d|k
d6V

µ(d)
⌘
f(mk).

Vaughan’s identity is a standard tool in analytic number theory, and has many

other applications. The point of Vaughan’s identity is to introduce more variables

(e.g., m, d, r). Why is it useful to introduce more variables? Because, deep down,

bounding a double sum (say) amounts to bounding a single sum on average. And

bounding something on average is easier than bounding it on its own. More variables

also give us more freedom.

We need one last lemma before proving the Bombieri–Vinogradov Theorem:

Lemma A.1.3. For x > 1, let

 (x,�) ··=
X

n6x

⇤(n)�(n).

For all Q 2 Z>1, we have
X

q6Q

q

'(q)

X⇤

�

max
y6x

| (y,�)| ⌧ (x+ x
5
6Q+ x

1
2Q2)(logQx)4.
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Proof. We consider two cases:

Case 1: Q2 > x.

Letting M = 1, a1 = 1, bn = ⇤(n), N = x in Lemma A.1.2, we see that

X

q6Q

q

'(q)

X⇤

�

max
y6x

| (y,�)| ⌧ (1 +Q2)
1
2 (x+Q2)

1
2

⇣ X

16n6x

|⇤(n)|2
⌘ 1

2
log x

⌧
�
(1 +Q2)(2Q2)

� 1
2

⇣
log x

X

16n6x

⇤(n)
⌘ 1

2
log x

⌧ (Q+Q2)(x log x)
1
2 log x

= (x
1
2Q+ x

1
2Q2) log

3
2 x

⌧ (x+ x
5
6Q+ x

1
2Q2)(logQx)4,

where the second bound follows from the fact that x < Q2.

Case 2: Q2 6 x.

Since  (y,�) =
P

n6y
�(n)⇤(n), we have

 (y,�) = S1 + S2 + S3 + S4,

where by using (A.1.5) and (A.1.6) we obtain

S1 =
X

n6U

�(n)⇤(n) ⌧ U ;(A.1.7)

S2 = �

X

t6UV

⇣ X

md=t
m6U

d6V

⇤(m)µ(d)
⌘X

r6N
t

�(rt);

S3 ⌧ logN
X

d6V

max
w

���
X

w6h6N
d

�(h)
���;

S4 = �

X

U6m6N
V

⇤(m)
X

V <k6N
m

⇣X

d|k
d6V

µ(d)
⌘
�(mk).
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Let’s begin by bounding S4: By Lemma A.1.2, we have

X

q6Q

q

'(q)

X⇤

�

max
y6x

����
X

M6m62M

⇤(m)
X

V <k6 y
m

⇣X

d|k
d6V

µ(d)
⌘
�(mk)

����

⌧ (M +Q2)
1
2 (

x

m
+Q2)

1
2

✓ X

M6m62M

⇤(m)2
◆ 1

2
✓X

k6 x
M

⌧(k)2
◆ 1

2

log x,

where ⌧(k) =
P

d|k 1. Now, by the prime number theorem,

X

M6m62M

⇤(m)2 ⌧ log 2M
X

M6m62M

⇤(m) ⌧ log 2M(2M �M) = M logM.

By Exercise A.3, X

k6z

⌧(k)2 ⌧ z log3 z

Hence,

X

q6Q

q

'(q)

X⇤

�

max
y6x

����
X

M6m62M

⇤(m)
X

V <k6 y
m

⇣X

d|k
d6V

µ(d)
⌘
�(mk)

����

⌧ (M +Q2)
1
2 (

x

m
+Q2)

1
2 (M logM)

1
2

⇣ x

M
log3

x

m

⌘ 1
2
log x

⌧ (Q2x
1
2 +QxM� 1

2 +Qx
1
2M

1
2 + x) log3 x.

Now we sum this bound over M = 2k for
U

2
6 2k 6 x

V
(dyadic decomposition) to

obtain

(A.1.8)
X

q6Q

q

'(q)

X⇤

�

max
y6x

|S4| ⌧ (Q2x
1
2 +QxU� 1

2 +QxV � 1
2 + x) log4 x.

For S2 we consider two ranges of t:

S2 =
X

t6UV

=
X

t6U

+
X

U<t6UV

= S 0
2 + S 00

2 .

For S 00
2 we do exactly the same we did with S4 to obtain

(A.1.9)
X

q6Q

q

'(q)

X⇤

�

max
y6x

|S 00
2 | ⌧ (Q2x

1
2 +QxU� 1

2 +Qx
1
2U

1
2V

1
2 + x) log4 x.
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For S 0
2 we use the Pólya–Vinogradov inequality (Theorem 3.5.1): for q > 1, we have

M+NX

n=M+1

�(n) ⌧ q
1
2 log q.

This together with (A.1.4) show that for q > 1, we have

S 0
2 ⌧ logU

X

t6U

���
X

r6 y
t

�(r)
���⌧ q

1
2U(log qU)2.

For q = 1, we use the trivial bound

S 0
2 ⌧ y(log2 U).

These bounds together with (A.1.3) show that

(A.1.10)
X

q6Q

q

'(q)

X⇤

�

max
y6x

|S 0
2| ⌧ (Q

5
2U + x)(logUx)2.

We treat S3 the same way we did with S 0
2 to find that

(A.1.11)
X

q6Q

q

'(q)

X⇤

�

max
y6x

|S3| ⌧ (Q
5
2V + x)(log V x)2.

Finally. combining (A.1.7), (A.1.10), (A.1.9), (A.1.11) and (A.1.8) we obtain

X

q6Q

q

'(q)

X⇤

�

max
y6x

| (y,�)|

⌧ (Q2x
1
2 + x+QxU� 1

2 +QxV � 1
2 + U

1
2V

1
2Qx

1
2 +Q

5
2U +Q

5
2V )(log xUV )4.

If we vary U and V in a way such that the product UV is fixed, then it is possible

to see that this expression is minimized when U = V . Hence,

X

q6Q

q

'(q)

X⇤

�

max
y6x

| (y,�)| ⌧ (Q2x
1
2 + x+QxU� 1

2 + UQx
1
2 +Q

5
2U)(logQx)4.

Now consider the following cases:

• If x
1
3 6 Q 6 x

1
2 , then the terms involving U are minimized by taking U =

x
2
3Q�1 and

QxU� 1
2 + UQx

1
2 +Q

5
2U ⌧ Q

3
2x

2
3 ⌧ Q2x

1
2 .
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• If 1 6 Q 6 x
1
3 , then the terms involving U are minimized by letting U = x

1
3

and

QxU� 1
2 + UQx

1
2 +Q

5
2U ⌧ x

5
6Q.

This shows that
X

q6Q

q

'(q)

X⇤

�

max
y6x

| (y,�)| ⌧ (x+ x
5
6Q+ x

1
2Q2)(logQx)4.

A.2 Proof of the Bombieri-Vinogradov Theorem

Finally, we are ready to prove the Bombieri-Vinogradov Theorem, which was first

presented in Chapter 11. The main idea is to reduce the problem (in a dyadic

interval U < q < 2U) to Lemma A.1.3. When U is too small for that approach to

work, we appeal to the Siegel-Walfisz Theorem (Theorem 11.4.1) instead. We will

prove a slightly stronger result than the one presented in Chapter 11. In order to

simplify notation, let E(x; q, a) denote the error term in the prime number theorem

in arithmetic progressions, i.e.,

E(x; q, a) ··=  (x; q, a)�
x

'(q)
.

We also let

E(x, q) ··= sup
a

(a,q)=1

|E(x; q, a)| and E⇤(x, q) ··= sup
y6x

E(y, q).

We are ready for our main theorem:

Theorem 11.3.3 (The Bombieri–Vinogradov Theorem). Let A > 0. Then
X

q6Q

E⇤(x, q) ⌧ x
1
2Q(log x)5

for all x
1
2 (log x)�A 6 Q 6 x

1
2 .

Proof. By Exercise A.4,

 (x; q, a) =
1

'(q)

X

� (mod q)

�(a) (x,�).
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Now let �0 denote the principal character and let

 0(y,�) ··=

8
<

:
 (y,�), if � 6= �0;

 (y,�0)� y, if � = �0.

Then,

 (y; q, a)�
y

'(q)
=

1

'(q)

X

�

�(a) 0(y,�).

Therefore,

|E(y; q, a)| 6 1

'(q)

X

�

| 0(y,�)|,

so that

|E(y, q)| 6 1

'(q)

X

�

| 0(y,�)|,

i.e., the bound is independent of a. Now, if � (mod q) is induced1 by �1 (mod q1),

then

 0(y,�1)�  0(y,�) =
X

n6y

(n,q1) 6=1

�1(n)⇤(n)

=
X

p|q
p-q1

X

pl6y

�1(p
l) log p

⌧

X

p|q

�
log y

log p

⌫
log p

⌧ log y
X

p|q

log p

⌧ log y log q

⌧ log2(yq).

1Recall that for every character � (mod q) there is a unique primitive character �1 (mod q)
that induces �, namely

�(n) =

8
<

:
�1(n), if (n, q) = 1

0, otherwise.
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Hence

E(y, q) ⌧
1

'(q)

X

�

| 0(y,�)| ⌧ log2(yq) +
1

'(q)

X

�1

| 0(y,�1)|,

so that X

q6Q

E⇤(x, q) ⌧ Q log2(Qx) +
X

q6Q

1

'(q)

X

�1

max
y6x

| 0(y,�1)|.

Now, we perform a change of variables: since a primitive character (mod q) induces

characters (mod q1), where q1 = kq, we have
X

q6Q

E⇤(x, q) ⌧ Q log2(Qx) +
X

q6Q

X⇤

�

max
y6x

| 0(y,�)|
⇣X

k6Q
q

1

'(kq)

⌘
.

Note that '(kq) > '(k)'(q), so that
X

k6z

1

'(kq)
6 1

'(q)

X

k6z

1

'(k)
⌧

1

'(q)
log z,

where the last bound follows from Exercise 11.9. This shows that
X

q6Q

E⇤(x, q) ⌧ log x
X

q6Q

1

'(q)

X⇤

�

max
y6x

| 0(y,�)|.

Therefore, to complete the proof it su�ces to show that
X

q6Q

1

'(q)

X⇤

�

max
y6x

| 0(y,�)| ⌧ x
1
2Q(log x)4.

By Lemma A.1.3, we have
X

U<q<2U

1

'(q)

X⇤

�

max
y6x

| (y,�)| ⌧
⇣ x
U

+ x
5
6 + x

1
2U
⌘
(logUx)4.

Now, for any Q1 2 [1, Q], we sum the above inequality over all U = 2k for integers

k such that
1

2
Q1 < 2k < 2Q to obtain

X

U<q<2U

1

'(q)

X⇤

�

max
y6x

| (y,�)| 6
X

1
2Q1<2k<2Q

1

'(q)

X

2k<q62k+1

max
y6x

| (y,�)|

⌧

X

1
2Q1<2k<2Q

⇣ x

2k
+ x

5
6 + x

1
22k
⌘
(logQx)4

⌧

⇣ x

Q1
+ x

5
6 logQ+ x

1
2Q
⌘
(logQx)4.
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Letting Q1 = (log x)A, we have
⇣ x

Q1
+ x

5
6 logQ+ x

1
2Q
⌘
⌧ x

1
2Q

for all Q 2 [x
1
2 (log x)�A, x

1
2 ]. Therefore,

X

(log x)A<q<Q

1

'(q)

X⇤

�

max
y6x

| 0(y,�)| ⌧ x
1
2Q(log x)4.

Now we bound the remaining sum over q 6 (log x)A: By Theorem 11.4.1,

max
y6x

| (y,�)| ⌧ x e�c
p
log x

⌧ x(log x)�2A.

Summing over all q 6 (log x)A we have

X

16q6(log x)A

1

'(q)

X⇤

�

max
y6x

| 0(y,�)| ⌧ (log x)Ax(log x)�2A 6 x
1
2Q ⌧ x

1
2Q(log x)4.

This completes the proof.

A.3 Exercises

Exercise A.1. Show that if f, g are real or complex valued functions defined on

[1, N ], then
X

h6N
d

f(dh)

Z
h

1

g(w) dw =

Z
N

1

X

w6h6N
d

f(dh)g(w) dw.

Exercise A.2. Let ⌧(k) denote the number of divisors of k. Show that

⌧(k)2 =
X

d|k

f(d),

where f is the multiplicative function defined by f(pa) = 2a+ 1, where p is a prime

number and a 2 Z>0.

Exercise A.3. Use Exercise A.2 to show that
X

k6z

⌧(k)2 ⌧ z log3 z.
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Exercise A.4. Show that

 (x; q, a) =
1

'(q)

X

� (mod q)

�(a) (x,�).

Hint: Use the orthogonality relations of characters.
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