
Chapter 2

Tools from complex analysis

We discuss some topics from complex analysis that are used in this course and that

are usually not treated in a basic complex analysis course. In exams, we will not ask

questions on exams about the proofs in this chapter, but students are expected to

know the results, and be able to apply them. In some theorems there are assumptions

on measurability of some occurring functions. If you are willing to take for granted

that all functions in this course are measurable, it is not necessary to know what

this means. The Prerequisites contain more information on measurable functions.

2.1 A quick review

We quickly recall a few basic facts. For definitions and more details we refer to

Section 0.7 of the Prerequisites. Recall that a complex function f , defined on a

non-empty open subset U of C is said to be analytic or holomorphic on U if for

every z0 ∈ U , the limit f ′(z0) := lim
z→z0

f(z)− f(z0)

z − z0

exists.

1) Let U be an open subset of C, f : U → C an analytic function, z0 ∈ U , and R

the largest number such that the open disk with center z0 and radius R, D(z0, R)

is contained in U . Then on D(z0, R) we have a power series expansion f(z) =∑∞
n=0 an(z − z0)n. We say that z0 is a zero of order k of f if a0 = · · · = ak−1 = 0

but ak 6= 0.

A consequence of this is, that the derivatives f ′, f (2), f (3),. . . exist and are all

49



analytic on U . Further, we have

(2.1) an = f (n)(z0)/n! =
1

2πi

∮
γ

f(z)

(z − z0)n+1
· dz for all n ∈ Z>0,

where γ is any contour contained in D(z0, R) with z0 in its interior.

2) Let U be an open subset of C and f : U → C an analytic function and suppose

that for some R > 0, the punctured disk D0(z0, R) = {z ∈ C : |z− z0| < R, z 6= z0}
with center z0 and radius R is contained in U . Then on D0(z0, R) we can express

f(z) as a Laurent series f(z) =
∑∞

n=−∞ an(z − z0)n. If γ is a contour contained in

D0(z0, R) with z0 in its interior, we have

(2.2) an =
1

2πi

∮
γ

f(z)

(z − z0)n+1
· dz for all n ∈ Z.

3) We keep the notation from 2). We call z0 an essential singularity of f if an 6= 0

for infinitely many n < 0, a pole of f of order k if a−k 6= 0 for some k > 0 but

an = 0 for n < −k, and a removable singularity of f if an = 0 for n < 0. In that

case, we can make f analytic on U ∪ {z0} by defining f(z0) := a0.

The coefficient a−1 is called the residue of f at z0, notation res(z0, f). For

instance, if z0 is a simple pole of f (i.e., of order 1), then

res(z0, f) = lim
z→z0

(z − z0)f(z).

In case that z0 is a removable singularity of f we have res(z0, f) = 0.

4) We say that a complex function f is meromorphic around z0 if it is defined and

can be expressed as a Laurent series
∑∞

n=n0
an(z− z0)n on D0(z0, r) for some r > 0.

This means that z0 is a pole or removable singularity of f . If f is not identically

0, and if we take an0 6= 0, we define ordz0(f) := n0. If f is identically 0, we put

ordz0(f) :=∞.

One can verify that if f, g are meromorphic around z0 then so are f ± g, f · g
and f/g (if g is not identically 0) and in that case ordz0(f · g) = ordz0(f) + ordz0(g),

ordz0(f/g) = ordz0(f)− ordz0(g), and ordz0(f ± g) > min(ordz0(f), ordz0(g)).

Further, if f is meromorphic around z0 and not identically 0, then z0 is a simple

pole of the logarithmic derivative f ′/f and ordz0(f) = res(z0, f
′/f).
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5) A very powerful tool is the so-called Residue Theorem, which in fact implies (2.1)

and (2.2):

Let U be a non-empty, open subset of C, γ a contour such that both γ and its interior

are contained in U and z1, . . . , zq in the interior of γ. Let f : U \ {z1, . . . , zq} → C
be analytic. Then

1

2πi

∮
γ

f(z) · dz =

q∑
i=1

res(zi, f).

2.2 Unicity of analytic functions

In this section we show that two analytic functions f, g defined on a connected open

set U are equal on the whole set U , if they are equal on a sufficiently large subset

of U .

We start with the following result.

Theorem 2.1. Let U be a non-empty, open, connected subset of C, and f : U → C
an analytic function. Assume that f = 0 on an infinite subset of U having a limit

point in U . Then f = 0 on U .

Proof. Our assumption that U is connected means, that any non-empty subset S of

U that is both open and closed in U , must be equal to U .

Let Z be the set of z ∈ U with f(z) = 0. Let S be the set of z ∈ U such that z is

a limit point of Z. By assumption, S is non-empty. Since f is continuous, we have

S ⊆ Z. Any limit point in U of S is therefore a limit point of Z and so it belongs to

S. Hence S is closed in U . We show that S is also open; then it follows that S = U

and we are done.

Pick z0 ∈ S. We have to show that there is δ > 0 such that D(z0, δ) ⊂ S. There

is δ > 0 such that f has a Taylor expansion

f(z) =
∞∑
n=0

an(z − z0)n

converging on D(z0, δ). Assume that f is not identically 0 on D(z0, δ). Then not

all coefficients an are 0. Assume that am 6= 0 and an = 0 for n < m, say. Then

f(z) = (z − z0)mh(z) with h(z) =
∑∞

n=m an(z − z0)n−m. Since h(z0) = am 6= 0 and
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h is continuous, there is δ1 > 0 such that h(z) 6= 0 for all z ∈ D(z0, δ1). But then

f(z) 6= 0 for all z with 0 < |z − z0| < δ1, contradicting that z0 ∈ S.

Hence f is identically 0 on D(z0, δ). Clearly, every point of D(z0, δ) is a limit

point of D(z0, δ), hence of Z. So D(z0, δ) ⊂ S. This shows that indeed, S is

open.

Corollary 2.2. Let U be a non-empty, open, connected subset of C, and let f :

U → C be an analytic function that is not identically 0 on U . Then the set of zeros

of f in U is discrete in U , i.e., every compact subset of U contains only finitely

many zeros of f .

Proof. Suppose that some compact subset of U contains infinitely many zeros of f .

Then by the Bolzano-Weierstrass Theorem, the set of these zeros would have a limit

point in this compact set, implying that f = 0 on U .

Corollary 2.3. Let U be a non-empty, open, connected subset of C, and f, g : U →
C two analytic functions. Assume that f = g on an infinite subset of U having a

limit point in U . Then f = g on U .

Proof. Apply Theorem 2.1 to f − g.

Let U,U ′ be open subsets of C with U ⊂ U ′. Let f : U → C be an analytic

function. An analytic continuation of f to U ′ is an analytic function g : U ′ → C
such that g(z) = f(z) for z ∈ U . It is often a difficult problem to figure out whether

such an analytic continuation exists. The next Corollary shows that if it exists, it

must be unique.

Corollary 2.4. Let U,U ′ be non-empty, open subsets of C, such that U ⊂ U ′ and

U ′ is connected. Let f : U → C be an analytic function. Then f has at most one

analytic continuation to U ′.

Proof. . Let g1, g2 be two analytic continuations of f to U ′. Then g1(z) = g2(z) =

f(z) for z ∈ U . Since U has a limit point in itself, hence in U ′, it follows that

g1(z) = g2(z) for z ∈ U ′.

Another consequence of Theorem 2.1 is the so-called Schwarz’ reflection priciple,

which states that analytic functions assuming real values on the real line have nice

symmetric properties.
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Corollary 2.5 (Schwarz’ reflection principle).

Let U be an open, connected subset of C,

such that U ∩ R 6= ∅ and such that U is

symmetric about R, i.e., z ∈ U for every

z ∈ U . Further, let f : U → C be a non-

identically zero analytic function with the

property that

{z ∈ U ∩ R : f(z) ∈ R}

has a limit point in U .
Then f has the following properties:

(i) f(z) ∈ R for z ∈ U ∩ R;

(ii) f(z) = f(z) for z ∈ U ;

(iii) If z0 and r > 0 are such that D0(z0, r) ⊂ U , then ordz0(f) = ordz0(f).

Proof. We first show that the function z 7→ f(z) is analytic on U . Indeed, for

z0 ∈ U , the limit

lim
z→z0

f(z)− f(z0)

z − z0

= lim
z→z0

(
f(z)− f(z0)

z − z0

)
= f ′(z0)

exists.

Notice that for every z ∈ U ∩ R with f(z) ∈ R, we have f(z) = f(z). So by our

assumption on f , the set of z ∈ U with f(z) = f(z) has a limit point in U . Now

Corollary 2.3 implies that f(z) = f(z) for z ∈ U . This implies (i) and (ii).

We finish with proving (iii). Our assumption implies that f has a Laurent series

expansion

f(z) =
∞∑

n=−∞

an(z − z0)n

converging on D0(z0, r). Then for z ∈ D0(z0, r) we have z ∈ D0(z0, r) and

f(z) = f(z) =

(
∞∑

n=−∞

an(z − z0)n

)
=

∞∑
n=−∞

an(z − z0)n,

which clearly implies (iii).
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2.3 Analytic functions defined by integrals

In analytic number theory, quite often one has to deal with complex functions that

are defined by infinite series, infinite products, infinite integrals, or even worse,

infinite integrals of infinite series. In this section we have collected some useful

results that allow us to verify in a not too difficult manner that such complicated

functions are analytic. We could not find a convenient reference for these results,

therefore we have included the not too exciting proofs.

We start with a general theorem on analytic functions defined by an integral.

Theorem 2.6. Let D be a measurable subset of Rm, U an open subset of C and

f : D × U → C a function with the following properties:

(i) f is measurable on D × U (with U viewed as subset of R2);

(ii) for every fixed x ∈ D, the function z 7→ f(x, z) is analytic on U ;

(iii) for every compact subset K of U there is a measurable function MK : D → R
such that

|f(x, z)| 6MK(x) for x ∈ D, z ∈ K,
∫
D

MK(x)dx <∞.

Then the function F given by

F (z) :=

∫
D

f(x, z)dx

is analytic on U , and for every k > 1,

F (k)(z) =

∫
D

f (k)(x, z)dx,

where f (k)(x, z) denotes the k-th derivative with respect to z of the analytic function

z 7→ f(x, z).

Proof. Fix z ∈ U . Choose r > 0 such that D(z, r) ⊂ U , and let 0 < δ < 1
2
r. We

show that for w ∈ D(z, δ), F (w) can be expanded into a Taylor series around z; then

it follows that F is analytic on D(z, δ) and so in particular in z. Let M(x) : D → R
be a measurable function such that |f(x,w)| 6 M(x) for x ∈ D, w ∈ D(z, r) and∫
D
M(x)dx <∞.
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For w ∈ D(z, δ) we have by (2.1),

F (w) =

∫
D

f(x,w)dx =

∫
D

{
1

2πi

∮
γz,2δ

f(x, ζ)

ζ − w
· dζ

}
dx.

By inserting

f(x, ζ)

ζ − w
=

f(x, ζ)

(ζ − z)− (w − z)
=
f(x, ζ)

ζ − z

(
1− w − z

ζ − z

)−1

=
∞∑
n=0

f(x, ζ)

(ζ − z)n+1
· (w − z)n

we obtain

F (w) =

∫
D

{
1

2πi

∮
γz,2δ

(
∞∑
n=0

f(x, ζ)

(ζ − z)n+1
(w − z)n

)
dζ

}
dx

=

∫
D

{∫ 1

0

(
∞∑
n=0

f(x, z + 2δe2πit)

(2δe2πit)n
(w − z)n

)
dt

}
dx.

We apply the Fubini-Tonelli Theorem (see the Prerequisites). Note that since

|w − z| < δ, ∫
D

{∫ 1

0

(
∞∑
n=0

∣∣∣∣f(x, z + 2δe2πit)

(2δe2πit)n
(w − z)n

∣∣∣∣
)
dt

}
dx

6
∫
D

{∫ 1

0

(
∞∑
n=0

M(x)2−n

)
dt

}
dx 6

∫
D

2M(x)dx <∞.

So the conditions of the Fubini-Tonelli Theorem are satisfied, and in the expression

for F (w) derived above we can interchange the integrations and the summation.

Performing this interchange, we obtain

F (w) =
∞∑
n=0

(w − z)n
(∫

D

{∫ 1

0

f(x, z + 2δe2πit)

(2δe2πit)n
dt

}
dx

)

=
∞∑
n=0

(w − z)n

(∫
D

{
1

2πi

∮
γz,2δ

f(x, ζ)

(ζ − z)n+1
· dζ

}
dx

)

=
∞∑
n=0

(w − z)n
(∫

D

f (n)(x, z)

n!
· dx
)
,
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where in the last step we applied (2.1). This shows that indeed, F (w) has a Taylor

expansion around z converging on D(z, δ). So in particular, F is analytic in z.

Further, F (k)(z) is equal to k! times the coefficient of (w−z)k, that is,
∫
D
f (k)(x, z)dx.

This proves our Theorem.

We deduce a result, which states that under certain conditions, the pointwise

limit of a sequence of analytic functions is again analytic.

Theorem 2.7. Let U ⊂ C be a non-empty open set, and {fn : U → C}∞n=0 a

sequence of analytic functions, converging pointwise to a function f on U . Assume

that for every compact subset K of U there is a constant CK <∞ such that

|fn(z)| 6 CK for all z ∈ K, n > 0.

Then f is analytic on U , and f
(k)
n → f (k) pointwise on U for all k > 1.

Proof. The set U can be covered by disks D(z0, δ) with z0 ∈ U , δ > 0, such that the

closed disk with center z0 and radius 2δ, D(z0, 2δ) is contained in U . We fix such a

disk D(z0, δ) and prove that f is analytic on D(z0, δ) and f
(k)
n → f (k) pointwise on

D(z0, δ) for k > 1. This clearly suffices.

Let z ∈ D(z0, δ), k > 0. Then by (2.1), we have

f (k)
n (z) =

k!

2πi

∮
γz0,2δ

fn(ζ)

(ζ − z)k+1
· dζ

=

∫ 1

0

k! · fn(z0 + 2δe2πit)2δe2πit

(z0 + 2δe2πit − z)k+1
· dt =

∫ 1

0

gn,k(t, z)dt,

say. By assumption, there is C <∞ such that |fn(w)| 6 C for w ∈ D(z0, 2δ), n > 0.

Further, for t ∈ [0, 1] we have |z0 + 2δe2πit − z| > δ. Hence

(2.3) |gn,k(t, z)| 6 C · k! · 2δ/δk+1 = 2C · k!δ−k for n, k > 0.

Notice that for k > 0, t ∈ [0, 1], z ∈ D(z0, δ) we have

gn,k(t, z)→ k! · f(z0 + 2δe2πit)2δe2πit

(z0 + 2δe2πit − z)k+1
= g(k)(t, z),

where

g(t, z) :=
f(z0 + 2δe2πit)2δe2πit

z0 + 2δe2πit − z

56



and g(k)(t, z) is the k-th derivative of the analytic function in z, z 7→ g(t, z).

Thanks to (2.3) we can apply the dominated convergence theorem, and obtain

f (k)
n (z)→

∫ 1

0

g(k)(t, z)dt for z ∈ D(z0, δ), k > 0.

Applying this with k = 0 and using fn → f pointwise, we obtain

f(z) =

∫ 1

0

g(t, z)dt for z ∈ D(z0, δ).

It follows from Theorem 2.6 that the right-hand side, and hence f , is analytic on

D(z0, δ), and moreover,

f (k)(z) =

∫ 1

0

g(k)(t, z)dt for z ∈ D(z0, δ), k > 1.

Indeed, g(t, z) is measurable on [0, 1] ×D(z0, δ) and for every fixed t, the function

z 7→ g(t, z) is analytic on D(z0, δ). Further, by (2.3) and since gn,0(t, z) → g(t, z),

we have |g(t, z)| 6 2C for t ∈ [0, 1], z ∈ D(z0, δ). So all conditions of Theorem 2.6

are satisfied.

Now it follows that

lim
n→∞

f (k)
n (z) =

∫ 1

0

g(k)(t, z)dt = f (k)(z) for z ∈ D(z0, δ), k > 1,

which is what we wanted to prove.

Corollary 2.8. Let U ⊂ C be a non-empty open set, and {fn : U → C}∞n=0 a

sequence of analytic functions, converging to a function f pointwise on U , and uni-

formly on every compact subset of U .

Then f is analytic on U and f
(k)
n → f (k) pointwise on U for every k > 1.

Proof. Take a compact subset K of U . Let ε > 0. Then there is N such that

|fn(z)− fm(z)| < ε for all z ∈ K, m,n > N . Choose m > N . Then there is C > 0

such that |fm(z)| 6 C for z ∈ K since fm is continuous. Hence |fn(z)| 6 C + ε for

z ∈ K, n > N . Now our Corollary follows at once from Theorem 2.7.
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Corollary 2.9. let U ⊂ C be a non-empty open set, and {fn : U → C}∞n=0 a

sequence of analytic functions, converging to a function f pointwise on U and uni-

formly on every compact subset of U . Then

lim
n→∞

f ′n(z)

fn(z)
=
f ′(z)

f(z)

for all z ∈ U with f(z) 6= 0, where the limit is taken over those n for which fn(z) 6= 0.

Proof. Obvious.

Corollary 2.10. Let U ⊂ C be a non-empty open set and {fn : U → C}∞n=0 a

sequence of analytic functions. Assume that for every compact subset K of U there

are reals Mn,K such that |fn(z)| 6Mn,K for z ∈ K and
∑∞

n=0Mn,K converges. Then

(i)
∑∞

n=0 fn is analytic on U , and
(∑∞

n=0 fn

)(k)

=
∑∞

n=0 f
(k)
n for k > 0,

(ii)
∏∞

n=0(1 + fn) is analytic on U .

Proof. Our assumption on the functions fn implies that both the series
∑∞

n=0 fn and

the infinite product
∏∞

n=0(1 + fn) converge uniformly on every compact subset of U

(see the Prerequisites). Now apply Corollary 2.8.

Corollary 2.11. Let U , {fn}∞n=0 be as in Corollary 2.10 and assume in addition

that fn 6= −1 on U for every n > 0. Then for the function F =
∏∞

n=0(1 + fn) we

have

F ′

F
=
∞∑
n=0

f ′n
1 + fn

.

Proof. Let Fm :=
∏m

n=0(1 + fn). Then Fm → F uniformly on every compact subset

of U . Hence by Corollary 2.9,

F ′

F
= lim

m→∞

F ′m
Fm

= lim
m→∞

m∑
n=0

f ′n
1 + fn

which clearly implies Corollary 2.11.
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2.4 Euler’s Gamma function

The Gamma function plays an important role in the functional equation for the

Riemann zeta function. We have collected here some properties of this function.

For t ∈ R>0, z ∈ C, define tz := ez log t, where log t is the ordinary real logarithm.

Euler’s Gamma function is defined by the integral

Γ(z) :=

∫ ∞
0

e−ttz−1dt (z ∈ C, Re z > 0).

Lemma 2.12. Γ(z) defines an analytic function on {z ∈ C : Re z > 0}.

Proof. This is standard using Theorem 2.6. Let U := {z ∈ C : Re z > 0}. First, the

function F (t, z) := e−ttz−1 is continuous, hence measurable on R>0×U . Second, for

each fixed t > 0, z 7→ e−ttz−1 is analytic on U . Third, let K be a compact subset of

U . Then there exist δ, R > 0 such that δ 6 Re z 6 R for z ∈ K. This implies that

for z ∈ K, t > 0,

|e−ttz−1| 6M(t) :=

{
tδ−1 for 0 6 t 6 1,

e−ttR−1 6 Ce−t/2 for t > 1,

where C is some constant. Now we have∫ ∞
0

M(t)dt =

∫ 1

0

tδ−1dt+ C

∫ ∞
1

e−t/2dt = δ−1 + 2C <∞.

Hence all conditions of Theorem 2.6 are satisfied, and thus, Γ(z) is analytic on

U .

Using integration by parts, one easily shows that for z ∈ C with Re z > 0,

Γ(z) = z−1

∫ ∞
0

e−tdtz

= z−1

(
[e−ttz|t=∞t=0 +

∫ ∞
0

e−ttzdt

)
= z−1Γ(z + 1),

that is,

(2.4) Γ(z + 1) = zΓ(z) if Re z > 0.

One easily shows that Γ(1) = 1 and then by induction, Γ(n) = (n− 1)! for n ∈ Z>0.

We now show that Γ has a meromorphic continuation to C.
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Theorem 2.13. There exists a unique meromorphic function Γ on C with the fol-

lowing properties:

(i) Γ(z) =
∫∞

0
e−ttz−1dt for z ∈ C, Re z > 0;

(ii) the function Γ is analytic on C \ {0,−1,−2, . . .};
(iii) Γ has a simple pole with residue (−1)n/n! at z = −n for n = 0, 1, 2, . . .;

(iv) Γ(z + 1) = zΓ(z) for z ∈ C \ {0,−1,−2, . . .}.

Proof. The function Γ has already been defined for Re z > 0 by
∫∞

0
e−ttz−1dt. By

Corollary 2.4, Γ has at most one analytic continuation to any larger connected open

set, hence there is at most one function Γ with properties (i)–(iv). We proceed to

construct such a function.

Let z ∈ C with Re z > 0. By repeatedly applying (2.4) we get

(2.5) Γ(z) =
1

z(z + 1) · · · (z + n− 1)
· Γ(z + n) for Re z > 0, n = 1, 2, . . . .

We continue Γ to B := C \ {0,−1,−2, . . .} as follows. For z ∈ B, choose n ∈ Z>0

such that Re z+n > 0 and define Γ(z) by the right-hand side of (2.5). This does not

depend on the choice of n. For if m,n are any two integers with m > n > −Re z,

then by (2.5) with z + n, m− n instead of z, n we have

Γ(z + n) =
1

z + n) · · · (z +m− 1)
· Γ(z +m),

and so

1

z(z + 1) · · · (z + n− 1)
· Γ(z + n) =

1

z(z + 1) · · · (z +m− 1)
· Γ(z +m).

Hence Γ is well-defined on B, and it is analytic on B since the right-hand side of

(2.5) is analytic if Re z + n > 0. This proves (ii).

We prove (iii). By (2.5) we have

lim
z→−n

(z + n)Γ(z) = lim
z→−n

(z + n)
1

z(z + 1) · · · (z + n)
Γ(z + n+ 1)

=
1

(−n)(−n+ 1) · · · (−1)
Γ(1) =

(−1)n

n!
.

Hence Γ has a simple pole at z = −n of residue (−1)n/n!.
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We prove (iv). Both functions Γ(z + 1) and zΓ(z) are analytic on B, and by

(2.4), they are equal on the set {z ∈ C : Re z > 0} which has limit points in B. So

by Corollary 2.3, Γ(z + 1) = zΓ(z) for z ∈ B.

Theorem 2.14. We have Γ(z)Γ(1− z) =
π

sinπz
for z ∈ C \ Z.

Proof. We prove that zΓ(z)Γ(1− z) = πz/ sin πz, or equivalently,

(2.6) Γ(1 + z)Γ(1− z) =
πz

sin πz
for z ∈ A := (C \ Z) ∪ {0},

which implies Theorem 2.14. Notice that by Theorem 2.13 the left-hand side is

analytic on A, while by limz→0 πz/ sin πz = 1 the right-hand side is also analytic on

A. By Corollary 2.3, it suffices to prove that (2.6) holds for every z in an infinite

subset of A having a limit point in A. For this infinite set we take S := { 1
2n

: n ∈
Z>0}; this set has limit point 0 in A. Thus, (2.6), and hence Theorem 2.14, follows

once we have proved that

(2.7) Γ(1 + 1
2n

) · Γ(1− 1
2n

) =
π/2n

sinπ/2n
(n = 1, 2, . . .).

Notice that

Γ(1 + 1
2n

) · Γ(1− 1
2n

) =

∫ ∞
0

e−ss1/2nds ·
∫ ∞

0

e−tt−1/2ndt

=

∫ ∞
0

∫ ∞
0

e−s−t(s/t)1/2ndsdt.

Define new variables u = s + t, v = s/t. Then s = uv/(v + 1), t = u/(v + 1). The

Jacobian of the substitution (s, t) 7→ (u, v) is

∂(s, t)

∂(u, v)
=

∣∣∣∣∣∣∣
∂s

∂u

∂s

∂v
∂t

∂u

∂t

∂v

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
v

v + 1

u

(v + 1)2

1

v + 1
− u

(v + 1)2

∣∣∣∣∣∣∣
=
−uv − u
(v + 1)3

=
−u

(v + 1)2
.

It follows that

Γ(1 + 1
2n

) · Γ(1− 1
2n

) =

∫ ∞
0

∫ ∞
0

e−uv1/2n

∣∣∣∣ ∂(s, t)

∂(u, v)

∣∣∣∣ · dudv
=

∫ ∞
0

∫ ∞
0

e−uv1/2n u

(v + 1)2
· dudv =

∫ ∞
0

e−uudu ·
∫ ∞

0

v1/2n

(v + 1)2
dv.
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In the last product, the first integral is equal to 1, while for the second integral we

have, by the exercise below,∫ ∞
0

v1/2n

(v + 1)2
dv = −

∫ ∞
0

v1/2nd
( 1

v + 1

)
= −

[
v1/2n

v + 1

]∞
0

+

∫ ∞
0

1

v + 1
· dv1/2n =

∫ ∞
0

dw

w2n + 1
=

π/2n

sin π/2n
.

This implies (2.7), hence Theorem 2.14.

Exercise 2.1. Let n be a positive integer. Prove that∫ ∞
0

dz

z2n + 1
= −1

2
· 2πi ·

n−1∑
k=0

1

2n
· e(πi/2n)+(kπi/n) =

π

2n
· 1

sin(π/2n)
.

Hint. Let ΓR be the contour consisting of the line segment from −R to R, and the

semi-circle in the upper half plane from R to −R with center R. Compute
∮

ΓR

dz
z2n+1

using the Residue Theorem, and show that the (absolute value of) the integral of
1

z2n+1
along the semi-circle converges to 0 as R → ∞. Here, you have to use the

general inequality ∣∣∣∣∫
γ

g(z)dz

∣∣∣∣ 6 L(γ) · sup
z∈γ
|g(z)|,

where γ is a path in C, g : γ → C is a continuous function, and L(γ) denotes the

length of γ.

Corollary 2.15. Γ(1
2
) =
√
π.

Proof. Substitute z = 1
2

in Theorem 2.14, and use Γ(1
2
) > 0.

Corollary 2.16. (i) Γ(z) 6= 0 for z ∈ C \ {0,−1,−2, . . .}.
(ii) 1/Γ is analytic on C, and 1/Γ has simple zeros at z = 0,−1,−2, . . ..

Proof. (i) Recall that Γ(n) = (n − 1)! 6= 0 for n = 1, 2, . . .. Further, by Theorem

2.14 we have Γ(z)Γ(1− z) sinπz = π 6= 0 for z ∈ C \ Z.

(ii) By (i), the function 1/Γ is analytic on C \ {0,−1,−2, . . .}. Further, at

z = 0,−1,−2, . . ., Γ has a simple pole, hence 1/Γ is analytic and has a simple

zero.
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We give another expression for the Gamma function.

Theorem 2.17. For z ∈ C \ {0,−1,−2, . . .} we have

Γ(z) = lim
n→∞

n! · nz

z(z + 1) · · · (z + n)
.

Proof. Define

Fn(z) :=
n! · nz

z(z + 1) · · · (z + n)
.

We prove by induction that for every non-negative integer m we have Γ(z) =

limn→∞ Fn(z) for z ∈ C with Re z > −m and (if m > 0) z 6= 0,−1, . . . , 1−m. For the

moment, we assume that this assertion is true for m = 0, i.e., Γ(z) = limn→∞ Fn(z)

for Re z > 0, and do the induction step. Assume our assertion holds for some integer

m > 0. Let z ∈ C with Re z > −m− 1 and z 6= 0, . . . ,m. Then

lim
n→∞

Fn(z + 1)

zFn(z)
= lim

n→∞

n! · nz+1

(z + 1) · · · (z + n+ 1)
· (z + 1) · · · (z + n+ 1)

(n+ 1)!(n+ 1)z

= lim
n→∞

( n

n+ 1

)z+1

= 1.

By the induction hypothesis we know that Γ(z + 1) = limn→∞ Fn(z + 1), and so

lim
n→∞

Fn(z) = lim
n→∞

Fn(z + 1)

z
=

Γ(z + 1)

z
= Γ(z).

This completes the induction step.

We now show that Γ(z) = limn→∞ Fn(z) for z ∈ C, Re z > 0. For this, we need

some lemmas.

Lemma 2.18. Let z ∈ C with Re z > 0. Then

Fn(z) =

∫ n

0

(
1− t

n

)n
tz−1dt.

Proof. By substituting s = t/n, the integral becomes

nz
∫ 1

0

(1− s)nsz−1ds.

The rest is left as an exercise.

63



Lemma 2.19. For every integer n > 2 and every real t with 0 6 t 6 n we have

0 6 e−t −
(
1− t

n

)n
6 e−t · t

2

n2
.

Proof. This is equivalent to

1− t2

n
6 et

(
1− t

n

)n
6 1 (0 6 t 6 n, n > 2).

Recall that if f, g are continuously differentiable, real functions with f(0) = g(0)

and f ′(x) 6 g′(x) for 0 6 x 6 A, say, then f(x) 6 g(x) for 0 6 x 6 A. From this

observation, one easily deduces that

1 + x 6 ex, 1− x 6 e−x, (1− x)r > 1− rx for 0 6 x 6 1, r > 0.

This implies on the one hand, for n > 2, 0 6 t 6 n,

et
(
1− t

n

)n
6 et(e−t/n)n 6 1,

on the other hand

et
(
1− t

n

)n
>
(
1 +

t

n

)n · (1− t

n

)n
=
(
1− t2

n2

)n
> 1− t2

n
.

Completion of the proof of Theorem 2.17. Let z ∈ C with Re z > 0. Put Γn(z) :=∫ n
0
e−ttz−1dt. Since limn→∞ Γn(z) = Γ(z), it suffices to prove that Γn(z)−Fn(z)→ 0

as n→∞.

By Lemma 2.18 we have

Γn(z)− Fn(z) =

∫ n

0

e−ttz−1dt−
∫ n

0

(
1− t

n

)n
tz−1dt

=

∫ n

0

(
e−t −

(
1− t

n

)n)
tz−1dt.

Now using |
∫
...| 6

∫
|...| and Lemma 2.19 we obtain

|Γn(z)− Fn(z)| 6
∫ n

0

e−t
t2

n
· |tz−1|dt

6
1

n

∫ ∞
0

e−ttRe z+1dt =
Γ(Re z + 2)

n
→ 0 as n→∞.
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We deduce some consequences. Recall that the Euler-Mascheroni constant γ is

given by

γ := lim
N→∞

(
N∑
n=1

1

n

)
− logN.

Corollary 2.20. We have

Γ(z) = e−γzz−1

∞∏
n=1

ez/n

1 + z/n
for z ∈ C \ {0,−1,−2, . . .}.

Proof. Let z ∈ C \ {0,−1,−2, . . .}. Then for N ∈ Z>0 we have

Γ(z) = lim
N→∞

N z ·N !

z(z + 1) · · · (z +N)
= z−1 lim

N→∞

ez logN

(1 + z)(1 + z/2) · · · (1 + z/N)

= z−1 lim
N→∞

e(logN−1− 1
2
−···− 1

N
)z

N∏
n=1

ez/n

1 + z/n

= e−γzz−1

∞∏
n=1

ez/n

1 + z/n
.

As another consequence, we derive an infinite product expansion for sinπz.

Corollary 2.21. We have

sin πz = πz ·
∞∏
n=1

(
1− z2

n2

)
for z ∈ C.

Proof. For z ∈ C we have by Theorem 2.14, Corollary 2.16 and Corollary 2.20,

sin πz =
π

Γ(z)Γ(1− z)
=

π

Γ(z)(−z)Γ(−z)

= π(−z)−1eγzz

∞∏
n=1

(
e−z/n

(
1 +

z

n

))
· (−z)e−γz

∞∏
n=1

(
e−z/n

(
1− z

n

))

= πz

∞∏
n=1

(
1− z

n

)(
1 +

z

n

)
= πz ·

∞∏
n=1

(
1− z2

n2

)
.
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Recall that the Bernoulli numbers Bn (n > 0) are given by

z

ez − 1
=
∞∑
n=0

Bn

n!
· zn (|z| < 2π).

Corollary 2.22. We have B0 = 1, B1 = −1
2
, B3 = B5 = · · · = 0 and

ζ(2n) = (−1)n−122n−1 B2n

(2n)!
π2n for n = 1, 2, . . . .

Proof. Let z ∈ C with 0 < |z| < 1. Then sin πz 6= 0 and so, by taking the logarithmic

derivative of sinπz,

sin′ πz

sin πz
=

π cosπz

sin πz
=
π(eπiz + e−πiz)/2

(eπiz − e−πiz)/2i

= πi+
1

z
· 2πiz

e2πiz − 1

= πi+
1

z

∞∑
n=0

Bn

n!
· (2πi)nzn.(2.8)

We obtain another expression for the logarithmic derivative of sin πz by applying

Corollary 2.11 to the product identity from Corollary 2.21. Note that for z ∈ C with

|z| < 1 we have |z2/n2| < n−2 and that
∑∞

n=1 n
−2 converges. Hence the logarithmic

derivative of the infinite product is the infinite sum of the logarithmic derivatives of

the factors, i.e.,

sin′ πz

sin πz
=

(πz)′

πz
+
∞∑
n=1

(1− z2/n2)′

1− z2/n2

=
1

z
+
∞∑
n=1

−2z/n2

1− z2/n2
=

1

z
− 2

∞∑
n=1

z

n2

(
∞∑
k=0

( z2

n2

)k)

=
1

z
− 2

∞∑
k=0

∞∑
n=1

z2k+1

n2k+2
(by absolute convergence)

=
1

z
− 2

∞∑
k=0

ζ(2k + 2)z2k+1.(2.9)

Now Corollary 2.22 easily follows by comparing the coefficients of the Laurent series

in (2.8) and (2.9).
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We finish with another important consequence of Theorem 2.17, the so-called

duplication formula.

Corollary 2.23. We have

Γ(2z) =
22z−1

√
π
· Γ(z)Γ(z + 1

2
) for z ∈ C, z 6= 0,−1

2
,−1,−3

2
,−2, . . . .

Proof. Let A be the set of z indicated in the lemma. We show that the function

F (z) := 22zΓ(z)Γ(z + 1
2
)/Γ(2z) is constant on A. Substituting z = 1

2
gives that the

constant is 2
√
π, and then Corollary 2.23 follows.

Let z ∈ A. To get nice cancellations in the numerator and denominator, we use

the expressions

Γ(z) = lim
n→∞

n! · nz

z(z + 1) · · · (z + n)
= lim

n→∞

2n+1 · n! · nz

2z(2z + 2) · · · (2z + 2n)
,

Γ(z + 1
2
) = lim

n→∞

n! · nz+1/2

(z + 1/2)(z + 3/2) · · · (z + n+ 1/2)

= lim
n→∞

2n+1 · n! · nz+1/2

(2z + 1)(2z + 3) · · · (2z + 2n+ 1)
,

Γ(2z) = lim
n→∞

(2n+ 1)! · (2n+ 1)2z

2z(2z + 1) · · · (2z + 2n+ 1)

(i.e., in Theorem 2.17 we substitute 2z for z and take the limit over the odd integers).

Thus,

F (z) =
22zΓ(z)Γ(z + 1

2
)

Γ(2z)

= 22z lim
n→∞

{
22n+2(n!)2n2z+1/2

2z(2z + 1) · · · (2z + 2n+ 1)
· 2z(2z + 1) · · · (2z + 2n+ 1)

(2n+ 1)! · (2n+ 1)2z

}
= lim

n→∞

{
22n+2(n!)2

√
n

(2n+ 1)!

}
since

lim
n→∞

22z · n2z

(2n+ 1)2z
= lim

n→∞
e2z log(2n/(2n+1)) = 1.

This shows that indeed F (z) is constant.
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Remark. By an argument similar to the proof of Corollary 2.23 (exercise), one can

derive the multiplication formula of Legendre-Gauss,

Γ(nz) = (2π)−(n−1)/2nnz−1/2Γ(z)Γ(z + 1
n
) · · ·Γ(z + n−1

n
) for n ∈ Z>2.
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