EXAM ANALYTIC NUMBER THEORY
 Thursday January 26, 2023, 13:45-16:45

- Write down your name, student number and university on each sheet of paper you use. Take care that these are very well readable.
- You are allowed to use the results from the lecture notes and the results from the exercises, unless otherwise stated. But you have to formulate the results you are using.
- To facilitate the grading, please give your answers in English.
- There are four exercises, one per page. On page 5 there are some theorems that you have to use.
- If in a particular part of an exercise you have to use some earlier parts, you are allowed to use these also if you were not able to solve them.
- The maximal number of points for each part of an exercise is indicated in the left margin. Grade is (number of points)/10.

10 1.a) Let $C>0, \sigma>0$ and let $f: \mathbb{Z}_{>0} \rightarrow \mathbb{C}$ be an arithmetic function such that $\left|\sum_{n \leq x} f(n)\right| \leq C x^{\sigma}$ for all $x>0$. Prove that $L_{f}(s)=\sum_{n=1}^{\infty} f(n) n^{-s}$ has abscissa of convergence $\leq \sigma$.
b) For $n=p_{1}^{k_{1}} \cdots p_{t}^{k_{t}}$ (unique prime factorization) define
$\Omega(n):=k_{1}+\cdots+k_{t}$.
Assume that for every $\varepsilon>0$ there is $C_{\varepsilon}>0$ such that
$\left|\sum_{n \leq x}(-1)^{\Omega(n)}\right| \leq C_{\varepsilon} x^{1 / 2+\varepsilon}$ for all $\varepsilon>0$. Prove that $\zeta(s) \neq 0$ for all $s \in \mathbb{C}$ with $\operatorname{Re} s>1 / 2$ (you don't have to prove this, but this is equivalent to the Riemann Hypothesis).
Hint. Express $\sum_{n=1}^{\infty}(-1)^{\Omega(n)} n^{-s}$ in terms of the zeta-function.
2. A positive integer n is called squarefull if for every prime p we have $p\left|n \Rightarrow p^{2}\right| n$. For convenience, the integer 1 is also called squarefull.

7 a) Prove that every squarefull integer n can be expressed uniquely as $n=n_{1}^{3} n_{2}^{2}$, where n_{1}, n_{2} are positive integers with n_{1} squarefree.
6 b) Let $f(n)=1$ if n is squarefull and $f(n)=0$ otherwise. Prove that there is $C>0$ such that $\sum_{n \leq x} f(n) \leq C x^{1 / 2}$ for all $x>0$. Use a).

7
c) Prove that $\sum_{n=1}^{\infty} f(n) n^{-s}=\frac{\zeta(3 s) \zeta(2 s)}{\zeta(6 s)}$ for all $s \in \mathbb{C}$ with $\operatorname{Re} s>1 / 2$.

10
d) Prove that $\lim _{x \rightarrow \infty} x^{-1 / 2} \sum_{n \leq x} f(n)$ exists, and compute this limit.
3. Let a and k be positive coprime integers. Let

$$
\begin{aligned}
\mathcal{A}:= & \{n \leq x: n \equiv a \quad(\bmod k)\}, \\
& \mathcal{P}:=\{p:(p, k)=1\},
\end{aligned}
$$

and

$$
P:=\prod_{\substack{p \in \mathcal{P} \\ p<z}} p .
$$

a) Let d be a squarefree number composed of primes in \mathcal{P}. Show:

$$
\# \mathcal{A}_{d}=\frac{x}{k} \cdot \frac{1}{d}+O(1) .
$$

5 b) Show that, for all $0<z<x$, we have

$$
\pi(x ; k, a) \leq z+S(\mathcal{A}, \mathcal{P}, z)
$$

10
c) Use Selberg's sieve (stated on p. 5) to show that, for all $k<z$,

$$
S(\mathcal{A}, \mathcal{P}, z) \leq \frac{x}{\varphi(k) \log z}+O\left(z^{2}\right)
$$

Hint: Begin by proving that,

$$
\frac{\varphi(\bar{P})}{\bar{P}}=\frac{\varphi(k)}{k},
$$

where

$$
\bar{P}(z):=\prod_{\substack{p \neq \mathcal{P} \\ p<z}} p .
$$

In order to bound $V(z)$, use Lemma 2 on $p .5$.
5 d) Prove the Brun Titchmarsh inequality:

$$
\pi(x ; k, a) \ll \frac{x}{\varphi(k) \log (x / k)}
$$

for all $k<x$. Hint: Take $z=\left(\frac{x}{k \log (x / k)}\right)^{\frac{1}{2}}$.
4. Let $\tau(n)=\sum_{d \mid n} 1$ be the divisor counting function.
a) Show that $\tau(n)=2 \sum_{\substack{d \mid n \\ d \leq \sqrt{n}}} 1-\delta(n)$, where

$$
\delta(n)= \begin{cases}1, & \text { if } n \text { is a square } \\ 0, & \text { otherwise }\end{cases}
$$

c) Show that there is some positive constant c such that

$$
\sum_{p \leq x} \tau(p+a)=c x+O_{a}\left(\frac{x \log \log x}{\log x}\right) .
$$

Hint: Split the sum in the following way:

$$
\sum_{d \leq \sqrt{x}} \pi(x ; d,-a)=\sum_{\substack{d \leq \frac{x^{1 / 2}}{(\log x)^{8}}}} \pi(x ; d,-a)+\sum_{\frac{x^{1 / 2}}{(\log x)^{8}} \leq d \leq \sqrt{x}} \pi(x ; d,-a) .
$$

For the first sum, use Theorem 3. For the second sum, use part (d) of Exercise 3. You may also use that there is a constant $c_{0}>0$ with

$$
\sum_{n \leq x} \frac{1}{\varphi(n)}=c_{0} \log x+O(1)
$$

for all $x \geq 1$, and that

$$
\operatorname{Li}(x)=\frac{x}{\log x}+O\left(\frac{x}{(\log x)^{2}}\right) .
$$

Useful Theorem Statements

Theorem 1. (Selberg's sieve). Let $X>0$ and let f be a multiplicative function satisfying $f(p)>1$ for any prime $p \in \mathcal{P}$ such that for any squarefree integer d composed of primes in \mathcal{P} we have

$$
\# \mathcal{A}_{d}=\frac{X}{f(d)}+R_{d}
$$

for some real number R_{d}. Let f_{1} be the function satisfying

$$
f(n)=\sum_{d \mid n} f_{1}(d)
$$

that is uniquely determined by the Möbius inversion formula. Let

$$
V(z):=\sum_{\substack{d \leq z \\ d \mid P}} \frac{\mu^{2}(d)}{f_{1}(d)} .
$$

Then

$$
S(\mathcal{A}, \mathcal{P}, z) \leq \frac{X}{V(z)}+O\left(\sum_{\substack{d_{1}, d_{2} \leq z \\ d_{1}, d_{2} \mid P}} \mid R_{\left[d_{1}, d_{1}\right]}\right) .
$$

Lemma 2. Let \tilde{f} be the completely multiplicative function defined by $\tilde{f}(p):=$ $f(p)$ for all primes p and let $\bar{P}(z):=\prod_{\substack{p \notin \mathcal{P} \\ p<z}} p$. Then:

$$
f(\bar{P}(z)) V(z) \geq f_{1}(\bar{P}(z)) \sum_{e \leq z} \frac{1}{\tilde{f}(e)} .
$$

Theorem 3. (Corollary to Bombieri-Vinogradov). We have

$$
\sum_{\substack{x^{1 / 2} \\ d \leq(\log x)^{8}}} \max _{(a, d)=1}\left|\pi(x ; d, a)-\frac{\operatorname{Li}(x)}{\varphi(d)}\right| \ll \frac{x}{(\log x)^{2}} .
$$

