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1. Introduction

The Subspace Theorem is a higher dimensional generalization of Roth’s

Theorem on the approximation of algebraic numbers by rational numbers.

We explain the Subspace Theorem, give some applications to simultaneous

Diophantine approximation, and then an application to higher dimensional

generalizations of Thue equations, the so-called norm form equations.

Let α be an irrational, real number. Given a rational number x/y with

x, y ∈ Z, gcd(x, y) = 1 and y > 0, we define the quality of x/y to be the real

M such that |α− x/y| = y−M if |α− x/y| < 1; if |α− x/y| > 1 we set M = 0.

Dirichlet’s Theorem implies that every irrational real number has infinitely

many rational approximations of quality 6 2:

Theorem 1.1. (Dirichlet, 1842). Let α ∈ R, α 6∈ Q. Then there are

infinitely many pairs of integers x, y such that

(1.1)
∣∣∣α− x

y

∣∣∣ 6 y−2, y > 0.

The famous theorem of Roth implies that if α is an irrational algebraic number,

then for every δ > 0, it has only finitely many rational approximations of

quality > 2 + δ.

Theorem 1.2. (Roth, 1955) Let α ∈ C be an irrational algebraic number

and let δ > 0. Then there are only finitely many pairs of integers (x, y) such
1
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that

(1.2)
∣∣∣α− x

y

∣∣∣ 6 y−2−δ, y > 0.

Roth’s Theorem is easy to prove if α ∈ C\R, or if α is a real quadratic number.

For real algebraic numbers α of degree > 3, the proof of Roth’s Theorem is

very difficult.

In the formulation of the Subspace Theorem, we need some notions from

linear algebra, which we recall below. Let n be an integer > 1 and r 6 n. We

say that linear forms L1 =
∑n

j=1 α1jXj, . . . , Lr =
∑n

j=1 αnjXj with coefficients

in C are linearly dependent if there are c1, . . . , cr ∈ C, not all 0, such that

c1L1 + · · ·+crLr ≡ 0. Otherwise, L1, . . . , Lr are called linearly independent. If

r = n, then L1, . . . , Ln are linearly independent if and only if their coefficient

determinant det(L1, . . . , Ln) = det(αij)16i,j6n 6= 0.

A linear subspace T of Qn of dimension r can be described as

T =

{
r∑
i=1

ziai : z1, . . . , zr ∈ Q

}
,

where a1, . . . , ar are linearly independent vectors from Qn. Alternatively, T

can be described as

T = {x ∈ Qn : L1(x) = 0, . . . , Ln−r(x) = 0}

where L1, . . . , Ln−r are linearly independent linear forms in X1, . . . , Xn with

coefficients in Q.

The norm of x = (x1, . . . , xn) ∈ Zn is given by

‖x‖ := max(|x1|, . . . , |xn|).

Theorem 1.3. (Subspace Theorem, W.M. Schmidt, 1972). Let n > 2,

let

Li(X) = αi1X1 + · · ·+ αinXn (i = 1, . . . , n)

be n linearly independent linear forms with algebraic coefficients in C and

let δ > 0. Then the set of solutions of the inequality

(1.3) |L1(x) · · ·Ln(x)| 6 ‖x‖−δ in x ∈ Zn

is contained in a union T1 ∪ · · · ∪ Tt of finitely many proper linear subspaces

of Qn.
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Remark. The proof of the Subspace Theorem is ineffective, i.e., it does not

enable to determine the subspaces. There is however a quantitative version of

the Subspace Theorem which gives an explicit upper bound for the number of

subspaces. This is an important tool for estimating the number of solutions of

various types of Diophantine equations.

We show that the Subspace Theorem implies Roth’s Theorem.

Subspace Theorem =⇒ Roth’s Theorem. Let (x, y) (with y > 0) be a

pair of integers satisfying |α− x/y| 6 y−2−δ. Multiplying with y2 gives

|y(x− αy)| 6 y−δ.

Since the linear forms Y and X − αY are linearly independent, this is an

inequality to which the Subspace Theorem is applicable, except that on the

right hand side we have y instead of ‖x‖ = max(|x|, |y|). However, we certainly

have |x/y| 6 |α| + y−2 6 |α| + 1. So |x| 6 (|α| + 1)y =: Cy and then also,

‖x‖ 6 Cy. With this observation, our inequality becomes

|y(x− αy)| 6 Cδ‖x‖−δ,

and now we can apply the Subspace Theorem. We infer that the pairs (x, y)

lie in only finitely many proper, i.e., one-dimensional, linear subspaces of Q2.

Pick one of these subspaces, say T . We show that T contains only finitely

many solutions of (1.2). We have T = {λ(x0, y0) : λ ∈ Q} where for (x0, y0)

we may take a pair of integers with gcd(x0, y0) = 1. If (x, y) ∈ T ∩ Z2 and

satisfies (1.2), then (x, y) = λ(x0, y0) with λ ∈ Z, and

0 <
∣∣∣α− x0

y0

∣∣∣ =
∣∣∣α− x

y

∣∣∣ 6 |λ|−2y−2
0 ,

implying that |λ| is bounded in terms of T . So indeed T contains only finitely

many solutions of (1.2). Roth’s theorem easily follows. 2

The Subspace Theorem states that the set of solutions of (1.3) is contained

in a finite union of proper linear subspaces of Qn, but one may wonder whether

(1.3) doesn’t have only finitely many solutions. For instance, it may be that

there is a non-zero x0 ∈ Zn with L1(x0) = 0. Then for every d ∈ Z, the point

dx0 is a solution to (1.3), and this gives infinitely many solutions to (1.3). To

avoid such a construction, let us consider

(1.4) 0 < |L1(x) · · ·Ln(x)| 6 ‖x‖−δ in x ∈ Zn.
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For instance, let n = 2. Then the solutions of (1.4) lie in finitely one-

dimensional subspacss of Q2, and similarly as in the proof of Roth’s Theorem,

each of these subspaces contains only finitely many solutions. So altogether,

if n = 2 then (1.4) has only finitely many solutions. We now give an example

showing that (1.4) may have infinitely many solutions if n > 3.

Example. Let 0 < δ < 1 and consider the inequality

(1.5) 0 < |(x1+
√

2x2+
√

3x3)(x1−
√

2x2+
√

3x3)(x1−
√

2x2−
√

3x3)| 6 ‖x‖−δ

to be solved in x = (x1, x2, x3) ∈ Z3. Notice that the three linear forms on the

left-hand side are linearly independent.

Consider the triples of integers x = (x1, x2, x3) ∈ Z3 with x3 = 0, x1x2 6=
0. For these points, ‖x‖ = max(|x1|, |x2|, 0). By Dirichlet’s Theorem, the

inequality ∣∣∣√2− x1
x2

∣∣∣ 6 |x2|−2

has infinitely many solutions (x1, x2) ∈ Z2 with x2 6= 0. For these solutions,

‖x‖ has the same order of magnitude as |x2|. Indeed,

|x1/x2| 6 |x2|−2 +
√

2 6 1 +
√

2,

and so, ‖x‖ = max(|x1|, |x2|) 6 (1 +
√

2)|x2|.

So for the points under consideration,

0 < |(x1 +
√

2x2 +
√

3x3)(x1 −
√

2x2 +
√

3x3)(x1 −
√

2x2 −
√

3x3)|
= |(x1 +

√
2x2)(x1 −

√
2x2)

2|
6 (1 +

√
2)‖x‖ · (x−1

2 )2 6 (1 +
√

2)3‖x‖−1

6 ‖x‖−δ,

provided ‖x‖ is sufficiently large. It follows that (1.5) has infinitely many

solutions x lying in the subspace x3 = 0. In a similar way, it can be shown

that (1.5) has infinitely many solutions in the subspaces x1 = 0, x2 = 0,

respectively (exercise).

By the Subspace Theorem, the solutions of (1.5) with x1x2x3 6= 0 lie in

finitely many proper linear subspaces of Q3. With a more precise argument one

shows that (1.5) has only finitely many solutions with x1x2x3 6= 0 (exercise).

We give a generalization of the Subspace Theorem which may be useful for

certain applications.
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We say that a system of r > n linear forms L1, . . . , Lr in the variables

X1, . . . , Xn is in general position if each n-tuple of linear forms among L1, . . . , Lr
is linearly independent.

Theorem 1.4. Let

Li(X) = αi1X1 + · · ·+ αinXn (i = 1, . . . , r, r > n)

be r linear forms with algebraic coefficients in C in general position and let

δ > 0. Then the set of solutions of the inequality

(1.6) |L1(x) · · ·Lr(x)| 6 ‖x‖r−n−δ in x ∈ Zn

is contained in a union T1 ∪ · · · ∪ Tt of finitely many proper linear subspaces

of Qn.

This can be deduced by combining the Subspace Theorem with the following

lemma.

Lemma 1.5. Let M1, . . . ,Mn be linearly independent linear forms in X1, . . . , Xn

with complex coefficients. Then there is a constant C > 0 such that

‖x‖ 6 C max
(
|M1(x)|, . . . , |Mn(x)|

)
for all x ∈ Cn.

Proof. Since the linear forms M1, . . . ,Mn are linearly independent, they span

the complex vector space of all linear forms in X1, . . . , Xn with complex coef-

ficients. So we can express X1, . . . , Xn as linear combinations of M1, . . . ,Mn,

i.e.,

Xi =
n∑
j=1

βijMj with βij ∈ C (i = 1, . . . , n).

Take x = (x1, . . . , xn) ∈ Cn and put M := max16i6n |Mi(x)|. Then

max
16i6n

|xi| 6 max
16i6n

n∑
j=1

|βij| · |Mj(x)| 6 C ·M with C := max
16i6n

n∑
j=1

|βij|.

2

Proof of Theorem 1.4. We partition the solutions x of (1.6) into a finite

number of subsets according to the ordering of the numbers |L1(x)|, . . . , |Lr(x)|,
and show that each of these subsets lies in at most finitely many proper linear

subspaces of Qn. Consider the solutions x ∈ Zn from one of these subsets, say

for which

|L1(x)| 6 · · · 6 |Lr(x)|.
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By Lemma 1.5, for i = n + 1, . . . , r, there is a constant Ci such that for all

solutions x under consideration,

‖x‖ 6 Ci|Li(x)|,

since L1, . . . , Ln−1, Li are linearly independent, and |Li(x)| has the largest

value. Substituting this into (1.6) gives

|L1(x) · · ·Ln(x)| 6 C‖x‖r−n−δ
r∏

i=n+1

|Li(x)|−1

6 C · (Cn+1 · · ·Cr)‖x‖−δ.

So the solutions x under consideration lie in at most finitely many proper

linear subspaces of Qn. 2

We deduce a result on simultaneous approximation.

Theorem 1.6. Let α1, . . . , αn be algebraic numbers in C and let C > 0, δ > 0.

Then the inequality

(1.7) 0 < |α1x1 + · · ·+ αnxn| 6 C‖x‖1−n−δ in x = (x1, . . . , xn) ∈ Zn

has only finitely many solutions.

Remark. For n = 2 this result is equivalent to Roth’s Theorem (exercise).

Proof. We proceed by induction on n. For n = 1 the assertion is obvious.

(Here we use our assumption α1x1 6= 0). Let n > 1 and suppose Theorem 1.6

is true for linear forms in fewer than n variables.

We apply the Subspace Theorem. We may assume that at least one of the

coefficients α1, . . . , αn is non-zero, otherwise there are no solutions. Suppose

that α1 6= 0. Then (1.7) implies

|(α1x1 + · · ·+ αnxn)x2 · · ·xn| 6 C‖x‖−δ

and by the Subspace Theorem, the solutions of the latter lie in a union of

finitely many proper linear subspaces T1, . . . , Tt of Qn. We consider only so-

lutions with α1x1 + · · · + αnxn 6= 0. Therefore, without loss of generality we

may assume that α1x1 + · · · + αnxn is not identically 0 on any of the spaces

T1, . . . , Tt.

Consider the solutions of (1.7) in Ti. Choose a non-trivial linear form van-

ishing identically on Ti, a1x1 + · · · + anxn = 0. Suppose for instance, that



THE SUBSPACE THEOREM 7

an 6= 0. Then xn can be expressed as a linear combination of x1, . . . , xn−1. By

substituting this into (1.7) we obtain an inequality

0 < |β1x1 + · · ·+ βn−1xn−1| 6 C‖x‖1−n−δ 6 C
(

max
16i6n−1

|xi|
)2−n−δ

.

By the induction hypothesis, the latter inequality has only finitely many so-

lutions (x1, . . . , xn−1). So Ti contains only finitely many solutions x of (1.7).

Applying this to T1, . . . , Tt we obtain that (1.7) has altogether only finitely

many solutions. 2

2. Galois theory

We have collected some facts from Galois theory which are needed later on.

Let K be an algebraic number field of degree r. We can express K as Q(θ).

Let f(X) denotes the minimal polynomial of θ over Q. Then f has precisely

r zeros in C, θ1, . . . , θr, say. The field K has precisely r distinct embeddings

in C, σ1, . . . , σr, say, which are determined by σi(θ) = θi for i = 1, . . . , r.

Let G denote the Galois closure of K, that is G = Q(θ1, . . . , θr). A Q-

automorphism of G is an isomorphism of G to itself, leaving the elements

of Q unchanged. Clearly, the Q-automorphisms of G form a group under

composition, the Galois group ofG, notation Gal(G/Q). The fieldG consists of

all polynomials in θ1, . . . , θr with rational coefficients. Since a Q-automorphism

τ preserves addition and multiplication and leaves Q unchanged, it is uniquely

determined by τ(θ1), . . . , τ(θr).

We recall some facts about the Galois group:

- The cardinality of Gal(G/Q) is equal to [G : Q].

- The set of x ∈ G such that τ(x) = x for all τ ∈ Gal(G/Q) is equal to

Q.

- Let τ ∈ Gal(G/Q). Then τ(θ1), . . . , τ(θr) is a permutation of θ1, . . . , θr
and τ is uniquely determined by this permutation. Thus, Gal(G/Q)

may be viewed as a subgroup of the permutation group on r elements

Sr.

- Let τ ∈ Gal(G/Q). Then τ ◦ σ1, . . . , τ ◦ σr is a permutation of the

embeddings σ1, . . . , σr of K in C.

Example. Let K = Q( 3
√

2). Then G = Q( 3
√

2, ω 3
√

2, ω−1 3
√

2) = Q( 3
√

2, ω),

where ω is a primitive cube root of unity. The field Q( 3
√

2) has degree 3, and
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ω has degree 2 over Q( 3
√

2). Hence G has degree 6. An automorphism of G

is determined by its images of 3
√

2 and ω. Its image of 3
√

2 must be another

root of X3 − 2, that is, one of 3
√

2, ω 3
√

2, ω−1 3
√

2, and its image of ω must be

another root of X2 + X + 1, that is, one of ω, ω−1. Thus, G has at most 6

automorphisms. So in fact, G has precisely 6 automorphisms, given by the

permutations of 3
√

2, ω 3
√

2, ω−1 3
√

2. Hence Gal(G/Q) ∼= S3.

Example. Let K = Q( 4
√

2). Then G = Q( 4
√

2, i 4
√

2,− 4
√

2,−i 4
√

2)) = Q( 4
√

2, i).

The field G has degree 8, since 4
√

2 has degree 4 over Q, and i degree 2 over

Q( 4
√

2). An automorphism of G is determined by its images of 4
√

2 and i.

Its image of 4
√

2 is one of 4
√

2, i 4
√

2,− 4
√

2,−i 4
√

2 and its image of i is one of

i,−i. So G has at most 8, and hence precisely 8, automorphisms. Thus, the

Galois group Gal(G/Q) is a subgroup of order 8 of S4. We obtain the action of

Gal(G/Q) on { 4
√

2, i 4
√

2,− 4
√

2,−i 4
√

2} by labelling the vertices of a square by
4
√

2, i 4
√

2,− 4
√

2,−i 4
√

2, respectively, and applying the symmetries of the square.

3. Norm form equations

Recall that if F (X, Y ) is an irreducible binary form in Q[X, Y ] of degree r

with coefficient of Xr equal to 1, say, then

F (X, Y ) =
r∏
i=1

(X − αiY )

where α1, . . . , αr are the conjugates of an algebraic number α. If K = Q(α),

and σ1, . . . , σr are the embeddings of K in C, with σi(α) = αi, then

F (X, Y ) =
r∏
i=1

(X − σi(α)Y ) = NK/Q(X − αY ).

That is, F is a norm form in two variables. The Thue equation

NK/Q(x− αy) = c in x, y ∈ Z

has only finitely many solutions if [K : Q] > 3 (by Thue’s Theorem) or if K is

an imaginary quadratic field (then the solutions represent points with integer

coordinates on an ellipsis). It may have infinitely many solutions if K is real

quadratic. For instance if K = Q(
√
d) with d a positive, non-square integer,

then the Pell equation x2 − dy2 = NK/Q(x −
√
dy) = 1 has infinitely many

solutions.
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We consider a generalization of the Thue equation, with norm forms of an

arbitrary number of variables. Let K = Q(θ) be an algebraic number field of

degree r, θ1, . . . , θr ∈ C the roots of the minimal polynomial of θ, and σ1, . . . , σr
the embeddings of K in C, determined by σi(θ) = θi for i = 1, . . . , r. Further,

let G := Q(θ1, . . . , θr).

Now suppose that r > n > 2 and let α1, . . . , αn be elements of K which

are linearly independent over Q, that is, the only solution in x1, . . . , xn ∈ Q of

x1α1 + · · ·+ xnαn = 0 is x1 = · · · = xn = 0. Define the polynomial

F (X1, . . . , Xn) := NK/Q(α1X1+· · ·+αnXn) :=
r∏
i=1

(σi(α1)X1+· · ·+σi(αn)Xn).

Notice that if we apply any τ from the Galois group Gal(G/Q), then it per-

mutes the linear factors of F , hence it leaves the coefficients of F unchanged.

So F has its coefficients in Q.

We deal with the so-called norm form equation

(3.1) NK/Q(α1X1 + · · ·+ αnXn) = c in x = (x1, . . . , xn) ∈ Zn

If n = 2, the left-hand side is a binary form and (3.1) becomes a Thue equation.

In 1972, Schmidt gave a necessary and sufficient condition such that (3.1) has

only finitely many solutions. His proof was based on the Subspace Theorem.

Here, we prove a special case of his result.

Theorem 3.1. Suppose that n < r, and let α1, . . . , αn be elements of K which

are linearly independent over Q. Assume that Gal(G/Q) ∼= Sr. Then (3.1)

has only finitely many solutions.

Lemma 3.2. Let Li := σi(α1)X1 + · · ·+ σi(αn)Xn for i = 1, . . . , n. Then the

linear forms L1, . . . , Lr are in general position.

Proof. Since α1, . . . , αn are linearly independent over Q, we can add r − n

new elements to make a basis of K over Q, say α1, . . . , αr. Then the matrix σ1(α1) · · · σ1(αr)
...

...

σr(α1) · · · σr(αr)


is non-singular; in fact the square of its determinant is the discriminant of a

basis of K over Q, hence non-zero. This means that the matrix consisting of
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the first n columns,  σ1(α1) · · · σ1(αn)
...

...

σr(α1) · · · σr(αn)


must have column rank n. Then the row rank of this matrix is also n, which

implies that this matrix has n linearly independent rows. Assume with-

out loss of generality that the first n rows are linearly independent. This

means precisely that the linear forms L1, . . . , Ln are linearly independent, i.e.,

det(L1, . . . , Ln) 6= 0. We have to show that also Li1 , . . . , Lin are linearly inde-

pendent, for any n distinct indices i1, . . . , in from 1, . . . , r.

Since Gal(G/Q) ∼= Sr, there is τ in this Galois group, such that τ(θ1) =

θi1 , . . . , τ(θn) = θin . This implies τ ◦ σ1 = σi1 , . . . , τ ◦ σn = σin . As a conse-

quence τ maps the coefficients of Lj to those of Lij for j = 1, . . . , n. It follows

that

det(Li1 , . . . , Lin) = τ(det(L1, . . . , Ln)) 6= 0,

hence Li1 , . . . , Lin are linearly independent. This proves our lemma. 2

Proof of Theorem 3.1. We proceed by induction on n. First let n = 1.

Then equation (3.1) becomes

NK/Q(α1x1) = NK/Q(α)xr1 = c,

and this clearly has only finitely many solutions.

Next, let n > 2, and assume the theorem is true for norm form equations

in fewer than n unknowns. Since the linear forms L1, . . . , Lr are in general

position, by Theorem 1.4, for any C > 0, δ > 0 the set of solutions of

|F (x)| = |L1(x) · · ·Lr(x)| 6 C‖x‖r−n−δ

lies in a union of finitely many proper linear subspaces of Qn. It follows that

the solutions of (3.1) lie in only finitely many proper linear subspaces of Qn.

We show that (3.1) has only finitely many solutions in each of these sub-

spaces. Let T be one of these subspaces. For solutions in T , one of the

coordinates, can be expressed as a linear combination of the others. Say that

we have xn = a1x1 + · · · + an−1xn−1 identically on T . By substituting this in

(3.1) we get a norm form equation in n− 1 variables

NK/Q(β1x1 + · · ·+ βn−1xn−1) = c,
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where βi = αi + aiαn for i = 1, . . . , n − 1. Now β1, . . . , βn−1 are linearly

independent over Q. Hence by the induction hypothesis, this last equation

has only finitely many solutions (x1, . . . , xn−1) ∈ Zn−1. This implies that the

original equation (3.1) has only finitely many solutions (x1, . . . , xn) ∈ T . This

completes our proof. 2

We give examples of norm form equations with infinitely many solutions.

We use the following fact:

Lemma 3.3. Let K be an algebraic number field and α an element of the ring

of integers OK of K. Then

α is a unit of OK ⇐⇒ NK/Q(α) = ±1.

Proof. Well-known. 2

It is more convenient to rewrite (3.1) as

(3.2) NK/Q(ξ) = c in ξ ∈M,

where

M := {α1x1 + · · ·+ αnxn : x1, . . . , xn ∈ Z}.
Notice that M is a free Z-module in K of rank n, i.e., its elements can be

expressed uniquely as Z-linear combinations of a basis of n elements.

Take an algebraic number field K such that the unit group O∗
K of the ring of

integers of K is infinite. This means precisely that K is not Q or an imaginary

quadratic field. Take M = OK . Recall that OK is a free Z-module of rank

equal to [K : Q]. Now clearly, if ε ∈ O∗
K , then ξ = ε2 is a solution to

NK/Q(ξ) = 1 in ξ ∈ OK ,

and so this last norm form equation has infinitely many solutions.

More generally, (3.2) has infinitely many solutions if M contains µOL =

{µξ : ξ ∈ OL}, where µ ∈ K∗, and L is a subfield of K which is not equal

to Q or to an imaginary quadratic field. Now Schmidt’s result on norm form

equations is as follows.

Theorem 3.4. (W.M. Schmidt, 1972) Let K be an algebraic number field,

α1, . . . , αn elements of K which are linearly independent over Q, and M :=

{
∑n

i=1 αixi : xi ∈ Z}. Then the following two assertions are equivalent:

(i) there do not exist µ ∈ K∗ and a subfield L of K not equal to Q or to an
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imaginary quadratic field such that µOL ⊆M;

(ii) for every c ∈ Q∗, the equation

(3.2) NK/Q(ξ) = c in ξ ∈M

has only finitely many solutions.

The implication (i)=⇒(ii) is deduced from the Subspace Theorem. The

proof is too difficult to be included here. We prove only the other implication,

that is, if (i) is false then (3.2) has infinitely many solutions. Indeed, for every

ε ∈ O∗
L we have µε2 ∈ M and NK/Q(ε) = ±1. Thus, by letting ε run through

O∗
L, we obtain infinitely many elements ξ = µε2 ∈M with

NK/Q(ξ) = NK/Q(µ)NK/Q(ε)2 = NK/Q(µ).

2

Example. Let K = Q( 6
√

2), M := {x1 6
√

2 + x2
√

2 + x3
6
√

2
5

: x1, x2, x3 ∈ Z}.
Notice that K contains the subfield L = Q( 3

√
2) and that

M =
6
√

2{x1 + x2
3
√

2 + x3
3
√

2
2
} =

6
√

2OL.

Now O∗
L = {±(1− 3

√
2)n : n ∈ Z}, and NK/Q(1− 3

√
2) = 1. Hence every n ∈ Z

yields a solution ξ := 6
√

2(1− 3
√

2)n ∈M of

NK/Q(ξ) = NK/Q(
6
√

2) = 2.

4. Exercises

Exercise 1. Prove that the following three assertions are equivalent:

(a) Let α be an algebraic number from C with α 6∈ Q. Then for every

δ > 0 there are only finitely many pairs of integers (x, y) such that∣∣∣α− x

y

∣∣∣ 6 |y|−2−δ, y 6= 0.

(b) Let α, β be two non-zero algebraic numbers from C. Then for every

C > 0, δ > 0 there are only finitely many pairs of integers (x, y) such

that

0 < |αx+ βy| 6 C max(|x|, |y|)−1−δ.
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(c) Let α1, β1, α2, β2 be non-zero algebraic numbers in C such that α1β2 −
α2β1 6= 0. Then for every C > 0, δ > 0, there are only finitely many

pairs of integers (x, y) such that

0 < |(α1x+ β1y)(α2x+ β2y)| 6 C max(|x|, |y|)−δ.

Exercise 2. Let F (X, Y ) ∈ Z[X, Y ] be a binary form.

(a) Prove that F (X, Y ) =
∏r

i=1(αiX − βiY ) where αi, βi are algebraic

numbers from C.

(b) Assume that F has degree r > 3, and that F is not divisible by (αX −
βY )2 for some α, β ∈ C. Further, let C > 0, δ > 0. Prove that there

are only finitely many pairs of integers (x, y) such that

|F (x, y)| 6 C max(|x|, |y|)r−2−δ, F (x, y) 6= 0.

(c) Let G(X, Y ) be a non-zero polynomial in Z[X, Y ] of total degree at

most r − 3, i.e., G(X, Y ) =
∑

i,j aijX
iY j, where the sum is over pairs

of indices i, j with i > 0, j > 0 and i + j 6 r − 3. Prove that the

equation

F (x, y) = G(x, y)

has at most finitely many solutions x, y ∈ Z with F (x, y) 6= 0.

Exercise 3. Let 0 < δ < 1 and consider the inequality

(4.1) 0 < |(x1+
√

2x2+
√

3x3)(x1−
√

2x2+
√

3x3)(x1−
√

2x2−
√

3x3)| 6 ‖x‖−δ

to be solved in x = (x1, x2, x3) ∈ Z3.

(a) Prove that the subspaces x1 = 0, x2 = 0 contain infinitely many solu-

tions of (4.1).

(b) Let T be a one-dimensional linear subspace of Q3. Prove that T con-

tains at most finitely many solutions of (4.1).

(c) Let T = {x ∈ Q3 : a1x1 + a2x2 + a3x3 = 0}, where a1, a2, a3 ∈ Q
and at least two among a1, a2, a3 are non-zero (i.e., T is not equal to

one of the subspaces x1 = 0, x2 = 0, x3 = 0). Consider the solutions

x = (x1, x2, x3) of (4.1) in T and eliminate one of the variables x1, x2, x3
by expressing it as a linear combination of the two others. Prove that

after this elimination, the linear forms L1, L2, L3 become a system of

linear forms in two variables which is in general position.
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Distinguish between the cases a3 = 0 giving x2 = −(a1/a2)x1, and

a3 6= 0 giving x3 = −(a1/a3)x1 − (a2/a3)x2.

(d) Prove that (4.1) has only finitely many solutions with x1x2x3 6= 0.

Remark. In 1989, Vojta proved the following refinement of the Subspace

Theorem. Let again L1, . . . , Ln be n linearly independent linear forms with

algebraic coefficients in C and δ > 0. Then there exist a finite collection

S1, . . . , Sm of proper linear subspaces of Qn, which is effectively determinable

and which is independent of δ, and a finite set Fδ which depends on δ, such

that the set of solutions of

|L1(x) · · ·Ln(x)| 6 ‖x‖−δ in x ∈ Zn

is contained in S1 ∪ · · · ∪ Sm ∪ Fδ.

In example (4.1) one can take S1 = {x1 = 0}, S2 = {x2 = 0}, S3 = {x3 = 0}.

Exercise 4. Let L1 = α1X1 + · · · + αnXn, L2 = β1X1 + · · · + βnXn be two

linearly independent linear forms with algebraic coefficients from C. Let δ > 0.

Prove that the system of inequalities

0 < |L1(x)| 6 ‖x‖1−n, 0 < |L2(x)| 6 ‖x‖1−δ in x ∈ Zn

has only finitely many solutions.

Exercise 5. In this exercise you are asked to prove another generaliza-

tion of Roth’s Theorem. Let α1, . . . , αn be real algebraic numbers such that

1, α1, . . . , αn are linearly independent over Q and let δ > 0. Consider the

system of inequalities

(4.2)
∣∣∣α1 −

x1
xn+1

∣∣∣ 6 ‖x‖−1− 1
n
−δ, . . . ,

∣∣∣αn − xn
xn+1

∣∣∣ 6 ‖x‖−1− 1
n
−δ

to be solved simultaneously in x = (x1, . . . , xn+1) ∈ Zn+1. Prove that (4.2)

has only finitely many solutions (for n = 1 this gives back Roth’s Theorem).

To this end, work out the following steps.

(a) Prove that the set of solutions of (4.2) lies in only finitely many proper

linear subspaces of Qn+1.

(b) Let T be a proper linear subspace of Qn+1. and let b1, . . . , bn+1 be

integers, not all equal to 0, such that b1x1 + · · ·+ bnxn + bn+1xn+1 = 0

is identically 0 on T . Assume that T contains infinitely many solutions

of (4.2). Prove that b1α1 + · · ·+ bnαn + bn+1 = 0.
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Hint. If x is a solution in T of (4.2), then αi is very close to xi/xn+1

for i = 1, . . . , n.

Exercise 6. Let K = Q( 5
√

2). Thus, there are precisely five embeddings

σ1, . . . , σ5 : K → C, given by σi(
5
√

2) = ρi−1 5
√

2, where ρ is a primitive 5-th

root of unity.

Consider the Diophantine equation

NK/Q
(
x1 + x2

5
√

2 + x3(
5
√

2)2
)

(4.3)

=
5∏
i=1

(
x1 + x2σi(

5
√

2) + x3σi(
5
√

2)2
)

= 1 in x = (x1, x2, x3) ∈ Z3 .

(a) Prove that the left-hand side of (4.3) is a product of linear forms in

general position (think of Vandermonde determinants).

(b) Let α, β ∈ K with β 6= 0 and α/β 6∈ Q. Prove that the linear forms

σi(α)X + σi(β)Y (i = 1, . . . , 5) are in general position.

(c) Prove that (4.3) has only finitely many solutions. It is not allowed to

use Theorem 3.4 here.


