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1. INTRODUCTION

The Subspace Theorem is a higher dimensional generalization of Roth’s
Theorem on the approximation of algebraic numbers by rational numbers.
We explain the Subspace Theorem, give some applications to simultaneous
Diophantine approximation, and then an application to higher dimensional
generalizations of Thue equations, the so-called norm form equations.

Let « be an irrational, real number. Given a rational number z/y with
x,y € Z, ged(x,y) = 1 and y > 0, we define the quality of x/y to be the real
M such that |a —z/y| =y ™M if |a —2/y| < 1;if |[a —2/y| > 1 we set M = 0.
Dirichlet’s Theorem implies that every irrational real number has infinitely
many rational approximations of quality < 2:

Theorem 1.1. (Dirichlet, 1842). Let o € R, o ¢ Q. Then there are
infinitely many pairs of integers x,y such that

(1.1) a—=|<y 2 y>0.

o=l
The famous theorem of Roth implies that if « is an irrational algebraic number,

then for every 6 > 0, it has only finitely many rational approximations of
quality > 2+ 9.

Theorem 1.2. (Roth, 1955) Let a € C be an irrational algebraic number

and let 6 > 0. Then there are only finitely many pairs of integers (x,y) such
1
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that

(1.2) <y , y>0.

Roth’s Theorem is easy to prove if « € C\R, or if « is a real quadratic number.
For real algebraic numbers o of degree > 3, the proof of Roth’s Theorem is
very difficult.

In the formulation of the Subspace Theorem, we need some notions from
linear algebra, which we recall below. Let n be an integer > 1 and r < n. We
say that linear forms Ly = Y7 ay;Xj, ..., L, = Y7 ay,; X with coefficients

in C are linearly dependent if there are c¢i,...,c. € C, not all 0, such that
c1li+---4c¢.L, =0. Otherwise, Ly, ..., L, are called linearly independent. If
r =mn, then Lq,..., L, are linearly independent if and only if their coefficient

determinant det(Ll, ce ,Ln) = det(aij)lgi’jgn §£ 0.

A linear subspace T' of Q" of dimension r can be described as

.
T = {Zziai: zl,...,zre(@},
i=1

where a;,...,a, are linearly independent vectors from Q". Alternatively, T
can be described as

T={xeQ": Li(x)=0,...,L,_.(x) =0}

where Ly, ..., L,_, are linearly independent linear forms in X,..., X, with
coeflicients in Q.

The norm of x = (x1,...,x,) € Z" is given by
HXH = max(|a:1\, R ‘an‘)

Theorem 1.3. (Subspace Theorem, W.M. Schmidt, 1972). Letn > 2,
let

be n linearly independent linear forms with algebraic coefficients in C and
let 6 > 0. Then the set of solutions of the inequality

(1.3) |Ly(x) - L,(x)] < ||x]| 7 inx € Z"

1s contained in a union Ty U --- U T, of finitely many proper linear subspaces

of Q".
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Remark. The proof of the Subspace Theorem is ineffective, i.e., it does not
enable to determine the subspaces. There is however a quantitative version of
the Subspace Theorem which gives an explicit upper bound for the number of
subspaces. This is an important tool for estimating the number of solutions of
various types of Diophantine equations.

We show that the Subspace Theorem implies Roth’s Theorem.

Subspace Theorem = Roth’s Theorem. Let (z,y) (with y > 0) be a
pair of integers satisfying |a — z/y| < y~27°. Multiplying with 32 gives
ly(z — ay)l <y~

Since the linear forms Y and X — aY are linearly independent, this is an
inequality to which the Subspace Theorem is applicable, except that on the
right hand side we have y instead of ||x|| = max(|z|, |y|). However, we certainly
have |z/y| < |a|+y 2 < |a] +1. So |z] < (Ja| + 1)y =: Cy and then also,
|x|| < Cy. With this observation, our inequality becomes

ly(z — ay)l < x|,

and now we can apply the Subspace Theorem. We infer that the pairs (x,y)
lie in only finitely many proper, i.e., one-dimensional, linear subspaces of Q2.

Pick one of these subspaces, say T. We show that T contains only finitely
many solutions of (1.2). We have T = {\(z¢,y0) : A € Q} where for (zo, yo)
we may take a pair of integers with ged(wg,y9) = 1. If (z,y) € T NZ?* and
satisfies (1.2), then (z,y) = A(zo, yo) with A € Z, and
0<fo—22] = |a=2| <At
Yo Y
implying that |A| is bounded in terms of T". So indeed 7" contains only finitely
many solutions of (1.2). Roth’s theorem easily follows. a

The Subspace Theorem states that the set of solutions of (1.3) is contained
in a finite union of proper linear subspaces of Q™, but one may wonder whether
(1.3) doesn’t have only finitely many solutions. For instance, it may be that
there is a non-zero x¢ € Z™ with L;(x¢) = 0. Then for every d € Z, the point
dxy is a solution to (1.3), and this gives infinitely many solutions to (1.3). To
avoid such a construction, let us consider

(1.4) 0 < |Li(x)--- Ly(x)| < ||x]|7° in x € Z".
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For instance, let n = 2. Then the solutions of (1.4) lie in finitely one-
dimensional subspacss of Q?, and similarly as in the proof of Roth’s Theorem,
each of these subspaces contains only finitely many solutions. So altogether,
if n = 2 then (1.4) has only finitely many solutions. We now give an example
showing that (1.4) may have infinitely many solutions if n > 3.

Example. Let 0 < § < 1 and consider the inequality
(15) 0< |(.’L‘1+\/§$2+\/§$3)($1—\/5%2-'-\/51’3)(.’171—\/5132—\/5563)’ < ||XH76

to be solved in x = (zy, 72, z3) € Z3. Notice that the three linear forms on the
left-hand side are linearly independent.

Consider the triples of integers x = (x1, 72, 23) € Z* with 23 = 0,1179 #
0. For these points, ||x|| = max(|z1], |z2|,0). By Dirichlet’s Theorem, the
inequality

< Jaa| 2

Z1

V2 — =

‘ T

has infinitely many solutions (z,xs) € Z* with zo # 0. For these solutions,
||x|| has the same order of magnitude as |xs|. Indeed,

|21 /22| < ‘$2\_2 +v2< 1+ \/5,
and so, ||x|| = max(|z1], |za2]) < (1 + V2)|22].

So for the points under consideration,

0 < |(x + V2, + \/§IE3)($1 — 2y + \/§IE3)($1 — V225 — \/§$3)|
= | (21 + V222) (21 — V22,)?]
< (L+V2)IIx]| - (231)* < (1+ V2)* 1]
< =)
provided ||x|| is sufficiently large. It follows that (1.5) has infinitely many
solutions x lying in the subspace 3 = 0. In a similar way, it can be shown

that (1.5) has infinitely many solutions in the subspaces x1 = 0, 5 = 0,
respectively (exercise).

By the Subspace Theorem, the solutions of (1.5) with z12zex3 # 0 lie in
finitely many proper linear subspaces of Q3. With a more precise argument one
shows that (1.5) has only finitely many solutions with zjxox3 # 0 (exercise).

We give a generalization of the Subspace Theorem which may be useful for
certain applications.
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We say that a system of » > n linear forms L,,..., L, in the variables
X1,..., X, isin general position if each n-tuple of linear forms among L, ..., L,
is linearly independent.

Theorem 1.4. Let
LiX)=auXi+-+a; X, (i =1,...,r, 7 >n)

be r linear forms with algebraic coefficients in C in general position and let
0 > 0. Then the set of solutions of the inequality

(1.6) ILy(x) - Lo (x)] < ||x|7~"° in x € Z"

1s contained in a union T1 U --- U T, of finitely many proper linear subspaces

of Q".

This can be deduced by combining the Subspace Theorem with the following
lemma.

Lemma 1.5. Let My, ..., M, be linearly independent linear forms in Xq,..., X,
with complex coefficients. Then there is a constant C' > 0 such that

Ix|| < C'max ([My(x)], ..., [My(x)]) for all x € C™.

Proof. Since the linear forms M, ..., M, are linearly independent, they span
the complex vector space of all linear forms in X7, ..., X, with complex coef-
ficients. So we can express Xi,..., X, as linear combinations of My, ..., M,,
ie.,

Xi =Y Bi;M; with 8; €C (i=1,...,n).
j=1

Take x = (x1,...,z,) € C" and put M := maxi¢;<, |M;(x)|. Then

1121%2\:61 < max Z |Bij| - |M;(x)] < C- M with C':= max Z |Bij -

1<i<n

O

Proof of Theorem 1.4. We partition the solutions x of (1.6) into a finite
number of subsets according to the ordering of the numbers | Ly (x)], .. ., |L.(x)],
and show that each of these subsets lies in at most finitely many proper linear
subspaces of Q™. Consider the solutions x € Z" from one of these subsets, say
for which

|Li(x)] < -+ < L (x)].
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By Lemma 1.5, for ¢ = n 4+ 1,...,r, there is a constant C; such that for all
solutions x under consideration,

[l < Gl Li(x)],

since Li,..., L, 1,L; are linearly independent, and |L;(x)| has the largest
value. Substituting this into (1.6) gives

Lix) - Lo(x)] < Cllx|™ T L)

i=n+1
< O (G- ClIx[7°
So the solutions x under consideration lie in at most finitely many proper

linear subspaces of Q™. a

We deduce a result on simultaneous approximation.

Theorem 1.6. Let ..., «a, be algebraic numbers in C and let C' > 0,6 > 0.
Then the inequality

(1.7) 0 < |agzy + -+ apay| < OIx||' % inx = (21,...,2,) € Z"

has only finitely many solutions.

Remark. For n = 2 this result is equivalent to Roth’s Theorem (exercise).

Proof. We proceed by induction on n. For n = 1 the assertion is obvious.
(Here we use our assumption ajz; # 0). Let n > 1 and suppose Theorem 1.6
is true for linear forms in fewer than n variables.

We apply the Subspace Theorem. We may assume that at least one of the
coefficients aq, ..., a, is non-zero, otherwise there are no solutions. Suppose
that ay # 0. Then (1.7) implies

(21 + -+ Qnen)a - 2] < O]~

and by the Subspace Theorem, the solutions of the latter lie in a union of
finitely many proper linear subspaces Ti,...,T; of Q™. We consider only so-
lutions with ayxy + - - + a,x, # 0. Therefore, without loss of generality we
may assume that ayx; + - -+ + a,x, is not identically 0 on any of the spaces
Ti,...,T;.

Consider the solutions of (1.7) in 7;. Choose a non-trivial linear form van-
ishing identically on T}, a1z + - -+ 4+ a2z, = 0. Suppose for instance, that
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a, # 0. Then x,, can be expressed as a linear combination of xy,...,x,_ ;. By
substituting this into (1.7) we obtain an inequality
e 2-n—§
0 < |Bizy+ -+ BuciTnr| < O x| i< C( max |m,|) "l
1<i<n—1

By the induction hypothesis, the latter inequality has only finitely many so-

lutions (x1,...,2,-1). So T; contains only finitely many solutions x of (1.7).
Applying this to T1,...,T; we obtain that (1.7) has altogether only finitely
many solutions. O

2. GALOIS THEORY

We have collected some facts from Galois theory which are needed later on.

Let K be an algebraic number field of degree r. We can express K as Q(6).
Let f(X) denotes the minimal polynomial of 6 over Q. Then f has precisely
r zeros in C, 0y,...,0,, say. The field K has precisely r distinct embeddings
in C, 0y,...,0., say, which are determined by o;(6) =0, fori=1,...,r.

Let G denote the Galois closure of K, that is G = Q(64,...,6,). A Q-
automorphism of G is an isomorphism of G to itself, leaving the elements
of @ unchanged. Clearly, the Q-automorphisms of G form a group under
composition, the Galois group of G, notation Gal(G/Q). The field G consists of
all polynomials in 64, .. ., 6, with rational coefficients. Since a Q-automorphism
7 preserves addition and multiplication and leaves Q unchanged, it is uniquely
determined by 7(6y),...,7(6,).

We recall some facts about the Galois group:

- The cardinality of Gal(G/Q) is equal to [G : Q].

- The set of x € G such that 7(z) = x for all 7 € Gal(G/Q) is equal to
Q.

- Let 7 € Gal(G/Q). Then 7(6,),...,7(6,) is a permutation of 0y, ..., 6,
and 7 is uniquely determined by this permutation. Thus, Gal(G/Q)
may be viewed as a subgroup of the permutation group on r elements
Sy

- Let 7 € Gal(G/Q). Then 7o 0y,...,7 00, is a permutation of the
embeddings o1, ...,0, of K in C.

Example. Let K = Q(v/2). Then G = Q(v2,wv/2,w'v2) = Q(v/2,w),
where w is a primitive cube root of unity. The field Q(+v/2) has degree 3, and
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w has degree 2 over Q(+/2). Hence G has degree 6. An automorphism of G
is determined by its images of v/2 and w. Its image of v/2 must be another
root of X% — 2, that is, one of ¥/2,wv/2,w™'4/2, and its image of w must be
another root of X2 + X + 1, that is, one of w,w™'. Thus, G has at most 6
automorphisms. So in fact, G has precisely 6 automorphisms, given by the

permutations of v/2,w+/2,w™'v/2. Hence Gal(G/Q) = Ss.

Example. Let K = Q(v/2). Then G = Q(v/2,iv/2, —v/2, —iv/2)) = Q(v/2,1).
The field G has degree 8, since v/2 has degree 4 over Q, and i degree 2 over
Q(v/2). An automorphism of G is determined by its images of v/2 and i.
Its image of V2 is one of \4/5,@'\4/_, —\4/5, —iv/2 and its image of 7 is one of
1, —t. So G has at most 8, and hence precisely 8, automorphisms. Thus, the
Galois group Gal(G/Q) is a subgroup of order 8 of Sy. We obtain the action of
Gal(G/Q) on {+/2,iv/2,—+/2, —iv/2} by labelling the vertices of a square by
V2,12, —v/2, —iv/2, respectively, and applying the symmetries of the square.

3. NORM FORM EQUATIONS

Recall that if F'(X,Y) is an irreducible binary form in Q[X, Y] of degree r

with coefficient of X" equal to 1, say, then

P(XY)=][(X - a:Y)

i=1
where «g, ..., «, are the conjugates of an algebraic number a. If K = Q(«),
and o4, ...,0, are the embeddings of K in C, with 0;(«) = v;, then
F(X.Y)=][(X = 0i()Y) = Nio(X — aY).
i=1

That is, I’ is a norm form in two variables. The Thue equation
Nk —ay) =c inz,y € Z

has only finitely many solutions if [K : Q] > 3 (by Thue’s Theorem) or if K is
an imaginary quadratic field (then the solutions represent points with integer
coordinates on an ellipsis). It may have infinitely many solutions if K is real
quadratic. For instance if K = Q(v/d) with d a positive, non-square integer,
then the Pell equation x* — dy* = Ng gz — Vdy) = 1 has infinitely many
solutions.
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We consider a generalization of the Thue equation, with norm forms of an
arbitrary number of variables. Let K = Q(6) be an algebraic number field of
degreer, 01, ...,0, € C the roots of the minimal polynomial of 6, and o4, ..., 0,
the embeddings of K in C, determined by o;(0) = 0; for i = 1,...,r. Further,
let G :=Q(by,...,0,).

Now suppose that r > n > 2 and let «ay,...,a, be elements of K which
are linearly independent over Q, that is, the only solution in x1,...,x, € Q of
T+ -+ x,a, =0is 1 = -+ =z, = 0. Define the polynomial

T

F(X1,. .0, Xa) = Nigg(an Xi 4+ -+ Xo) == [ [(0i(@) Xa+- -+ 03(an) X,).
i=1
Notice that if we apply any 7 from the Galois group Gal(G/Q), then it per-

mutes the linear factors of F', hence it leaves the coefficients of F' unchanged.
So F' has its coefficients in Q.

We deal with the so-called norm form equation
(3.1) Ngplarn Xy + -+ a,Xy) =c inx = (21,...,2,) € 2"
If n = 2, the left-hand side is a binary form and (3.1) becomes a Thue equation.

In 1972, Schmidt gave a necessary and sufficient condition such that (3.1) has
only finitely many solutions. His proof was based on the Subspace Theorem.
Here, we prove a special case of his result.

Theorem 3.1. Suppose that n < r, and let aq, ..., a, be elements of K which
are linearly independent over Q. Assume that Gal(G/Q) = S,. Then (3.1)
has only finitely many solutions.

Lemma 3.2. Let L; :== o;(a1) X1+ -+ + 04(,) Xy, fori=1,...,n. Then the

linear forms Ly, ..., L, are in general position.
Proof. Since aq,...,q, are linearly independent over Q, we can add » — n
new elements to make a basis of K over Q, say aq,...,a,. Then the matrix
0'1(@1) O'l(Oér)
o) -+ op(ay)

is non-singular; in fact the square of its determinant is the discriminant of a
basis of K over Q, hence non-zero. This means that the matrix consisting of
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the first n columns,

o1(ar) - o1(ay)

or(ar) - or(an)
must have column rank n. Then the row rank of this matrix is also n, which
implies that this matrix has n linearly independent rows. Assume with-
out loss of generality that the first n rows are linearly independent. This
means precisely that the linear forms L4, ..., L, are linearly independent, i.e.,
det(Ly,...,L,) # 0. We have to show that also L;,, ..., L;, are linearly inde-
pendent, for any n distinct indices i1, ..., 2, from 1,... 7.

Since Gal(G/Q) = S,, there is 7 in this Galois group, such that 7(6;) =
Ois...,7(0,) = 0;, . This implies T 00y = 0y,,..., 700, = 0;,. As a conse-
quence 7 maps the coefficients of L; to those of L;; for j =1,...,n. It follows
that

det(Lil, c. ,LG) = ’T(det(Ll, . 7Ln)) # O,
hence L;,, ..., L;, are linearly independent. This proves our lemma. O
Proof of Theorem 3.1. We proceed by induction on n. First let n = 1.
Then equation (3.1) becomes
Nijglanzr) = Nijola)zy = ¢,
and this clearly has only finitely many solutions.

Next, let n > 2, and assume the theorem is true for norm form equations
in fewer than n unknowns. Since the linear forms Lq,..., L, are in general
position, by Theorem 1.4, for any C' > 0,6 > 0 the set of solutions of

[F(x)] = |Li(x) -+~ Ly (x)] < Cllx["™°

lies in a union of finitely many proper linear subspaces of Q™. It follows that
the solutions of (3.1) lie in only finitely many proper linear subspaces of Q™.

We show that (3.1) has only finitely many solutions in each of these sub-
spaces. Let T be one of these subspaces. For solutions in 7', one of the
coordinates, can be expressed as a linear combination of the others. Say that
we have z, = a1x1 + -+ + ap_12,_1 identically on T. By substituting this in
(3.1) we get a norm form equation in n — 1 variables

Ngjo(brzr + -+ + Buo1Tn—1) = ¢,
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where 3; = «o; + a;a, for ¢ = 1,...,n — 1. Now fq,...,5,_1 are linearly
independent over Q. Hence by the induction hypothesis, this last equation
has only finitely many solutions (z1,...,x,_1) € Z""'. This implies that the
original equation (3.1) has only finitely many solutions (z1,...,z,) € T. This
completes our proof. O

We give examples of norm form equations with infinitely many solutions.
We use the following fact:

Lemma 3.3. Let K be an algebraic number field and o an element of the ring
of integers Ok of K. Then

a is a unit of O <= Ngg(a) = £1.
Proof. Well-known. O

It is more convenient to rewrite (3.1) as
(32) NK/Q(€> =c in f S M,
where
M ={agz1+ -+ oty x1,..., 2, €L}
Notice that M is a free Z-module in K of rank n, i.e., its elements can be

expressed uniquely as Z-linear combinations of a basis of n elements.

Take an algebraic number field K such that the unit group Oj; of the ring of
integers of K is infinite. This means precisely that K is not Q or an imaginary
quadratic field. Take M = Opg. Recall that Ok is a free Z-module of rank
equal to [K : Q]. Now clearly, if e € O, then £ = 2 is a solution to

Nk/g(§) =1 in € € Ok,
and so this last norm form equation has infinitely many solutions.

More generally, (3.2) has infinitely many solutions if M contains pOj =
{p€ : € € O}, where p € K*, and L is a subfield of K which is not equal
to Q or to an imaginary quadratic field. Now Schmidt’s result on norm form
equations is as follows.

Theorem 3.4. (W.M. Schmidt, 1972) Let K be an algebraic number field,
i, ..., elements of K which are linearly independent over Q, and M =
{30 i x; € Z}. Then the following two assertions are equivalent:

(i) there do not exist p € K* and a subfield L of K not equal to Q or to an
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imaginary quadratic field such that uOp C M;
(ii) for every c € Q*, the equation
(3.2 Nijol€) =c in € e M

has only finitely many solutions.

The implication (i)==-(ii) is deduced from the Subspace Theorem. The
proof is too difficult to be included here. We prove only the other implication,
that is, if (i) is false then (3.2) has infinitely many solutions. Indeed, for every
e € O we have pue? € M and Nk g(¢) = £1. Thus, by letting € run through
O3, we obtain infinitely many elements £ = pue® € M with

Niso(€) = Nijo(i) Nijo(e)® = Nisg(p)-
0

Example. Let K = Q(\G/i), M = {xl\‘/§+ V2 + 353{6/55 DTy, Xe, T3 € L}
Notice that K contains the subfield L = Q(+/2) and that

M = \6/5{131 + ZL’2\3/§+ 333\3/52} = \‘/iOL.
Now O; = {£(1 —V2)": n € Z}, and Ng/o(1 — v/2) = 1. Hence every n € Z
yields a solution ¢ := v/2(1 — v/2)" € M of

Niyo(€) = Nijo(V2) = 2.

4. EXERCISES

Exercise 1. Prove that the following three assertions are equivalent:

(a) Let a be an algebraic number from C with @ ¢ Q. Then for every
0 > 0 there are only finitely many pairs of integers (z,y) such that
x —o_
’Oé——’ < ‘y| ? 57 y#o
)
(b) Let «a, 8 be two non-zero algebraic numbers from C. Then for every

C' > 0,8 > 0 there are only finitely many pairs of integers (x,y) such

that

0 < |az + By| < Cmax(|a], yl) ™.
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(c) Let ay, f1, ag, B2 be non-zero algebraic numbers in C such that oy 8y —
asf1 # 0. Then for every C' > 0,9 > 0, there are only finitely many
pairs of integers (x,y) such that

0 < [(erz + Bry)(azz + fay)| < C max(|a], [y)~.

Exercise 2. Let F(X,Y) € Z[X,Y] be a binary form.

(a) Prove that F'(X,Y) = [[i_;(;X — 5;Y) where o, 3; are algebraic
numbers from C.

(b) Assume that F' has degree r > 3, and that F' is not divisible by (aX —
BY)? for some a, 3 € C. Further, let C' > 0,6 > 0. Prove that there
are only finitely many pairs of integers (z,y) such that

|F(z,y)] < Cmax(|z], [y)) ™7, F(z,y) # 0.

(c) Let G(X,Y) be a non-zero polynomial in Z[X,Y] of total degree at
most 1 — 3, i.e., G(X,Y) = 3, 1 a;; XY, where the sum is over pairs
of indices 7,7 with ¢ > 0,7 > 0 and i + 7 < r — 3. Prove that the
equation

F(z,y) = G(z,y)
has at most finitely many solutions z,y € Z with F(z,y) # 0.

Exercise 3. Let 0 < < 1 and consider the inequality
(4.1) 0 < |(21+V22s+V323) (21— V222 +V325) (21 — V222 —V323)| < ||x 7
to be solved in x = (z1, 19, x3) € Z3.

(a) Prove that the subspaces z; = 0, 25 = 0 contain infinitely many solu-
tions of (4.1).

(b) Let T be a one-dimensional linear subspace of Q3. Prove that T con-
tains at most finitely many solutions of (4.1).

(c) Let T = {x € Q : ayz; + asry + azxz = 0}, where a;,as,a3 € Q
and at least two among ay, as, ag are non-zero (i.e., T' is not equal to
one of the subspaces z; = 0, o = 0, x3 = 0). Consider the solutions
x = (21, T9,x3) of (4.1) in T" and eliminate one of the variables x1, x5, 3
by expressing it as a linear combination of the two others. Prove that
after this elimination, the linear forms L;, Ly, L3 become a system of
linear forms in two variables which is in general position.
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Distinguish between the cases a3 = 0 giving o = —(ay/ag)z;, and

az # 0 giving x3 = —(al/a3)931 - (az/a3)$2-
(d) Prove that (4.1) has only finitely many solutions with zyzoxs # 0.

Remark. In 1989, Vojta proved the following refinement of the Subspace
Theorem. Let again Lq,..., L, be n linearly independent linear forms with
algebraic coefficients in C and 0 > 0. Then there exist a finite collection
S1, ..., 9y of proper linear subspaces of Q", which is effectively determinable
and which is independent of §, and a finite set Fs which depends on ¢, such
that the set of solutions of

Ly(x) -+ La(x)] < x| in x € 2"
is contained in S; U ---US,, U F}.
In example (4.1) one can take S; = {x1 = 0}, Sy = {x2 = 0}, S5 = {x3 = 0}.

Exercise 4. Let L1 = an X1 + -+ ap, X, Ly = 51X +--- + 5,X,, be two
linearly independent linear forms with algebraic coefficients from C. Let 6 > 0.
Prove that the system of inequalities

0 < |Li(x)] < [Ix['™", 0 < [Lo(x)] < [Ix[I' in x € 2"
has only finitely many solutions.

Exercise 5. In this exercise you are asked to prove another generaliza-
tion of Roth’s Theorem. Let aq,...,a, be real algebraic numbers such that
1,aq,...,q, are linearly independent over Q and let 6 > 0. Consider the
system of inequalities

X 11 X I
@2) o - P <l o - | <
n+1 Tni1
to be solved simultaneously in x = (z1,...,7,41) € Z""'. Prove that (4.2)

has only finitely many solutions (for n = 1 this gives back Roth’s Theorem).
To this end, work out the following steps.

(a) Prove that the set of solutions of (4.2) lies in only finitely many proper
linear subspaces of Q"*!.

(b) Let T be a proper linear subspace of Q. and let by,...,b,,1 be
integers, not all equal to 0, such that byz; +--- + b2, + bpr12p01 =0
is identically 0 on 7. Assume that T' contains infinitely many solutions
of (4.2). Prove that byay + -+ + by, + b1 = 0.
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Hint. If x is a solution in 7" of (4.2), then «; is very close to x;/z, 41
fori=1,...,n.

Exercise 6. Let K = Q(v/2). Thus, there are precisely five embeddings
o1,...,05 : K — C, given by 0;(v/2) = p'~'v/2, where p is a primitive 5-th
root of unity.

Consider the Diophantine equation

(4.3) Ngjg(z1 + 22V/2 + 953<\5/§)2)

5
= H (Il + 1320'7;(\5/§> + I’3O’i<\5/§)2) =1inx= (v1,19,73) € Z°.
i=1

(a) Prove that the left-hand side of (4.3) is a product of linear forms in
general position (think of Vandermonde determinants).

(b) Let o, B € K with 8 # 0 and o/ € Q. Prove that the linear forms
()X +0;(B)Y (i=1,...,5) are in general position.

(c) Prove that (4.3) has only finitely many solutions. It is not allowed to
use Theorem 3.4 here.



