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Fig. 1: Myelinated nerve fibres.

Motivated by the study of physical structures such as crystals, grids
of neurons and population patches, an increasing interest has arisen
in mathematical modelling techniques that reflect the underlying spa-
tial discreteness. In this project, we will consider the propagation of
electrical signals through nerve fibres. Such fibres are insulated by a
myeline coating that admits gaps at the so-called nodes of Ranvier [3],
which are regularly spaced along the fibre; see Fig. 1. Excitations of
the nerve effectively jump from one node to the next, through a process called saltatory conduction [1].

Fig. 2: Slow and fast pulses for (2).

Electro-chemical analysis [2] leads to the discrete FitzHugh–
Nagumo equation

V̇j(t) = α[Vj+1(t) + Vj−1(t)− 2Vj(t)] + g
(
Vj(t); a

)
−Wj(t),

Ẇj(t) = ε
(
Vj(t)− γWj(t)

)
,

(1)

posed on the 1-dimensional lattice j ∈ Z. The variable Vj encodes
the potential at the j-the node of Ranvier, Wj denotes a recovery
component and the cubic g(v; a) = v(1 − v)(v − a) describes the
ionic interactions.

Relatively little is known about the lattice differential equation
(LDE) (1). Indeed, the spatial discreteness in the model is often
ignored. Upon writing α = h−2 and treating h as the distance
between nodes of Ranvier, one typically takes the limit h→ 0 to arrive at the FitzHugh–Nagumo PDE

Vt = Vxx + g
(
V ; a

)
−W,

Wt = ε(V − γW ). (2)

In this project we will investigate the differences between the LDE (1) and its PDE counterpart (2). We
will be primarily interested in so-called travelling pulses, which are solutions to (1) that can be written as

(Vj ,Wj)(t) = (v, w)(j + ct), lim
ξ→±∞

(v, w)(ξ) = (0, 0). (3)

Here c ∈ R indicates the speed of the pulse and the functions v : R→ R and w : R→ R determine the shape
of the pulse, which remains fixed. For the PDE (2) it is known1 that one can construct a branch of fast (c ∼ 1)
stable pulses and a branch of slow (c ≈ 0) unstable pulses that can be connected to each other by changing
the parameter ε > 0; see Figure 2.

We expect the situation to be less clear in the case of the LDE (1). To get a first glimpse why, substitute
the Ansatz (3) into (1) to obtain the travelling wave differential equation

cv′(ξ) = α[v(ξ + 1) + v(ξ − 1)− 2v(ξ)] + g
(
v(ξ) ; a

)
− w(ξ),

cw′(ξ) = ε
(
v(ξ)− γw(ξ)

)
.

(4)

Notice the shifted arguments (ξ + 1 and ξ − 1) appearing in the equation for v. Notice also that when c = 0,
all derivatives vanish and the equation transforms into a recursion relation. Both these features do not occur
when studying the PDE (2).

Using both numerical and analytical techniques, depending on taste, the aim of this project is to investigate
the modelling consequences of these mathematical curiosities.
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1The curve in Figure 2 has been confirmed numerically for all 0 < a < 1
2

but theoretically only for a ≈ 1
2

.


