Gradient flows in measure spaces

Topics in Analysis, Spring 2011

Program

Lecture	Topic		
Feb 2	Introduction, Probability measures on metric spaces: narrow convergence		
Feb 9	Probability measures on metric spaces: bounded Lipschitz metric, Prohorov'		
	theorem		
Feb 16	Probability measures on metric spaces: push forward, marginals, disintegration		
Feb 23	Optimal transportation: introduction, existence of optimal plans		
Mar 2	Optimal transportation: optimal transport maps		
Mar 9	Gradient flows in Hilbert spaces: Evolution Variational Inequality		
Mar 16	Gradient flows in metric spaces: convexity properties		
Mar 30	Gradient flows in metric spaces: existence and uniqueness		
Apr 6	Wasserstein spaces: basic properties		
Apr 13	Wasserstein spaces: curves and convexity		
Apr 20	Gradient flows in Wasserstein spaces		
Apr 27	Stochastic differential equations (SDE)		
May 11	SDE and gradient flows in Wasserstein spaces, Fokker-Planck equation		

Assignments

There will be five homework assignments, which will be graded.

Number	Posted	Due
1	Feb 16	Mar 9
2	Mar 2	Mar 30
3	Mar 16	Apr 13
4	Apr 6	Apr 27
5	Apr 20	May 18

There will also be an oral exam. The final grade will be composed of 70% assignments and 30% oral exam.

Literature

Lecture notes will become available. They are based on the following sources.

- Ambrosio, L., Gigli, N., and Savaré, G., *Gradient flows in metric spaces and in the space of probability measures*, Lectures in Mathematics, ETH Zürich, Birkhäuser Verlag, Basel Boston Berlin, 2005.
- P. Clément, An introduction to gradient flows in metric spaces, Leiden University, MI-report 2009-09, 2009. http://www.math.leidenuniv.nl/nl/reports/1171/
- Jordan, R.; Kinderlehrer, D.; Otto, F. The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal. 29 (1998), No. 1, 1-17.
- Villani, C. *Topics in optimal transportation*. Graduate Studies in Mathematics, 58, American Mathematical Society, Providence, Rhode Island, 2003.
- Onno van Gaans, Notes of the seminar Evolution Equations in Probability Spaces and the Continuity Equation, 2006.
 http://www.math.leidenuniv.nl/~vangaans/semEEPSCE_12_4.pdf
- Igor Stojković, PhD thesis (preliminary version), 2011.

Lectures

On Wednesdays, 11:15–13:30h, Room 401, Leiden University, Snellius building, Niels Bohrweg 1.

Contact

Onno van Gaans, Snellius 222, 071 5277122, vangaans@math.leidenuniv.nl

Onno van Gaans Spring 2011