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Abstract. In a vector lattice, ideals and bands are well-investigated subjects.
We study similar notions in a pre-Riesz space. The pre-Riesz spaces are exactly
the order dense linear subspaces of vector lattices. Restriction and extension
properties of ideals, solvex ideals and bands are investigated. Since every
Archimedean directed partially ordered vector space is pre-Riesz, we establish
properties of ideals and bands in such spaces.
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1. Introduction

In the study of vector lattices one naturally encounters partially ordered vector
spaces that are not lattices. For instance, spaces of operators between vector lat-
tices often lack lattice structure. This problem is usually avoided by assuming
Dedekind completeness of the codomain. Alternatively, one could try to extend
the required notions from lattice theory to a more general class of partially or-
dered vector spaces. One approach is to reformulate relations involving absolute
values or positive or negative parts as relations of suitable sets of upper bounds.
Intrinsic definitions of several notions can thus be obtained, but it turns out to
be difficult to set up their usual properties known from the vector lattice setting.
Another approach is to embed the partially ordered vector space in a vector lattice
and use the lattice structure of the ambient space. The latter approach is taken in
[4] to study disjointness in partially ordered vector spaces. As a rule, the embed-
ding method succeeds if the embedding is order dense. The partially ordered vector
spaces that can be embedded order densely in a vector lattice have been character-
ized in [6] as the pre-Riesz spaces. Every directed Archimedean space is pre-Riesz,
but there exist also non-Archimedean pre-Riesz spaces. Often a lattice notion in
a vector lattice can be stated in several ways and their reformulation in partially
ordered vector spaces may lead to different notions. It may be expected that the
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most useful generalizations will be those where the two approaches—direct refor-
mulation and using embeddings—coincide. In the present paper we proceed the
investigation of ‘vector lattice notions’ in pre-Riesz spaces from this point of view.
We focus on ideals and bands, which are indispensable in the theory of vector lat-
tices. We begin by intrinsic definitions and then study their properties relative to
embeddings in vector lattices. In particular, we address extension and restriction.
If a partially ordered vector space X is an order dense subspace of a vector lattice
Y , can a generalized ideal or band in X be extended to an ideal or band in Y ?
And is the restriction of an ideal or band in Y a generalized ideal or band in X?
Moreover, we determine what properties are similar to the lattice case and what
properties fail. The main results are in Section 5.

2. Preliminaries

Let X be a real vector space and let K be a cone in X , that is, K is a wedge
(x, y ∈ K, λ, µ ≥ 0 imply λx+µy ∈ K) and K∩ (−K) = {0}. In X a partial order
is introduced by defining y ≥ x if and only if y−x ∈ K. In this paper, (X, K) is a
partially ordered vector space. Occasionally we write loosely X instead of (X, K),
provided that K is fixed in advance. For two elements y, z ∈ K with y ≤ z denote
the according order interval by [y, z] = {x ∈ X : y ≤ x ≤ z}. A set M ⊂ X is
called majorized if there is z ∈ X such that x ≤ z for all x ∈ M , and order bounded
if there are y, z ∈ X such that M ⊆ [y, z]. Denote for a subset M ⊆ X the set of
all upper bounds by

Mu = {x ∈ X : x ≥ m for all m ∈ M} .

The positive-linear hull in X of a subset M ⊆ X is given by

pos M = {x ∈ X : ∃n ∈ N, λi ∈ [0,∞), xi ∈ M, i = 1, . . . n with x =

n
∑

i=1

λixi} .

The space (X, K) is called Archimedean if for every x, y ∈ X with nx ≤ y for all
n ∈ N one has x ≤ 0. A set M ⊆ X is called directed if for every x, y ∈ M there
is an element z ∈ M such that z ≥ x and z ≥ y. X is directed if and only if the
cone K is generating in X , that is, X = K − K. X has the Riesz decomposition
property if for every y, x1, x2 ∈ K with y ≤ x1 + x2 there exist y1, y2 ∈ K such
that y = y1 + y2 and y1 ≤ x1, y2 ≤ x2. A subset F of K is called a base of K if
F is a (non-empty) convex set such that every element x ∈ K with x 6= 0 has a
unique representation x = λy with y ∈ F and λ ∈ (0,∞). A net {xα} ⊆ X is said
to be decreasing (in symbols, xα ↓), whenever α ≥ β implies xα ≤ xβ . For x ∈ X
the notation xα ↓ x means that xα ↓ and infα{xα} = x both hold. The meanings
of xα ↑ and xα ↑ x are analogous. We say that a net {xα}α ⊂ X (o)-converges to

x ∈ X (in symbols, xα
(o)−−→ x), if there is a net {yα}α ⊂ X such that yα ↓ 0 and

for all α one has ±(xα − x) ≤ yα. The equivalence of xα
(o)−−→ x and xα − x

(o)−−→ 0
is obvious. If a net (o)-converges, then the limit is unique. A set M ⊆ X is called
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(o)-closed, if for each net {xα}α∈A ⊆ M which (o)-converges to x ∈ X one has
x ∈ M .

For standard notations in the case that X is a vector lattice see [1]. Recall that
a vector lattice is Dedekind complete whenever every non-empty majorized subset
has a supremum. By a subspace of a partially ordered vector space or a vector
lattice we mean an arbitrary linear subspace with the inherited order. We do not
require it to be a lattice or a sublattice. A subspace D of a partially ordered vector
space X is called majorizing if for every x ∈ X there is y ∈ D such that x ≤ y.
A majorizing subspace of a directed partially ordered vector space is directed. We
say that a subspace D of a vector lattice X generates X as a vector lattice if for
every x ∈ X there exist a1, . . . , am, b1, . . . , bn ∈ D such that x =

∨m
i=1 ai−

∨n
i=1 bi.

3. Ideals, solvex ideals, and bands

In [3] and [4] notions which are known in the theory of vector lattices are intro-
duced in the general setting of a partially ordered vector space X . Instead of the
supremum of two elements one considers the set of all common upper bounds of
the elements.

Definition 3.1. [3, Definition 3.1] A subset M of a partially ordered vector space
X is called solid if for every x ∈ X and y ∈ M the inclusion {x,−x}u ⊇ {y,−y}u

implies x ∈ M . A solid subspace of X is called an ideal.

If X is a vector lattice, these notions coincide with the usual ones. If some set
can be considered as a subset of several spaces, then its solidness strongly depends
on the space in which the upper bounds are taken. If there is risk of confusion,
we write “solid in X”. Since the solid hull of a convex set need not be convex, the
solvex hull will be of interest.

Definition 3.2. [3, Definition 3.7] Let X be a partially ordered vector space. A set
M ⊂ X is called solvex if for every x ∈ X , x1, . . . , xn ∈ M and λ1, . . . , λn ∈ (0, 1]
with

∑n
k=1 λk = 1 such that

{x,−x}u ⊇
{

n
∑

k=1

εkλkxk : ε1, . . . , εn ∈ {1,−1}
}u

one has that x ∈ M .

Lemma 3.3. [3, Lemma 3.8] Let X be a partially ordered vector space. Every solvex
set in X is solid and convex. If X is a vector lattice, then a set is solvex in X if
and only if it is solid and convex.

In order to obtain a representation of the solvex hull of a non-empty set, we
need the following preliminary statement.
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Lemma 3.4. [3, Lemma 3.28] Let X be a partially ordered vector space. If x, xk ∈ X
and yk,i ∈ X, i = 1, . . . , mk, k = 1, . . . , n, are such that

{xk,−xk}u ⊇
{

mk
∑

i=1

εiyk,i : ε1, . . . , εmk
∈ {1,−1}

}u

for k = 1, . . . , n, and

{x,−x}u ⊇
{

n
∑

k=1

εkxk : ε1, . . . , εn ∈ {1,−1}
}u

,

then

{x,−x}u ⊇
{

n
∑

k=1

mk
∑

i=1

εk,iyk,i : εk,i ∈ {1,−1}, k = 1, . . . , n, i = 1, . . . , mk

}u

.

Let X be a partially ordered vector space and M ⊆ X . Then the set

S =

{

x ∈ X : ∃x1, . . . , xn ∈ M, λ1, . . . , λn ∈ (0, 1] with
n
∑

k=1

λk = 1

such that {x,−x}u ⊇
{

n
∑

k=1

εkλkxk : ε1, . . . , εn ∈ {1,−1}
}u}

is the solvex hull of M , i. e. S is the smallest solvex set in X that contains M .
Indeed, M ⊆ S, and if T is a solvex set containing M , then S ⊆ T . It remains
to show that S is solvex. Let x ∈ X , x1, . . . , xn ∈ S, λ1, . . . , λn ∈ (0, 1] with
∑n

k=1 λk = 1 be such that

{x,−x}u ⊇
{

n
∑

k=1

εkλkxk : ε1, . . . , εn ∈ {1,−1}
}u

.

For each k ∈ {1, . . . , n} there are yk,1, . . . , yk,mk
∈ M , λk,1, . . . , λk,mk

∈ (0, 1] with
mk
∑

i=1

λk,i = 1

such that

{xk,−xk}u ⊇
{

mk
∑

i=1

εiλk,iyk,i : ε1, . . . , εmk
∈ {1,−1}

}u

.

Then

{λkxk ,−λkxk}u ⊇
{

mk
∑

i=1

εiλkλk,iyk,i : ε1, . . . , εmk
∈ {1,−1}

}u

.

Due to Lemma 3.4, one has

{x,−x}u ⊇
{

n
∑

k=1

mk
∑

i=1

εk,iλkλk,iyk,i : εk,i ∈ {1,−1}, k = 1, . . . , n, i = 1, . . . , mk

}u

.
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Since yk,i ∈ M and λkλk,i ∈ (0, 1] for k = 1, . . . , n, i = 1, . . . , mk, and

n
∑

k=1

mk
∑

i=1

λkλk,i =

n
∑

k=1

λk

mk
∑

i=1

λk,i =

n
∑

k=1

λk = 1 ,

one gets x ∈ S. So, S is solvex.

Lemma 3.5. Let X be a partially ordered vector space and M a subspace of X.
Then the solvex hull S of M is a subspace of X, and, hence, an ideal.

Proof. Since M is a linear subspace, its solvex hull is given by

S =

{

x ∈ X : ∃x1, . . . , xn ∈ M such that

{x,−x}u ⊇
{

n
∑

k=1

εkxk : ε1, . . . , εn ∈ {1,−1}
}u}

.

Let x, y ∈ S, we show x + y ∈ S. There are x1, . . . , xn, y1, . . . , ym ∈ M such that

{x,−x}u ⊇
{

n
∑

k=1

εkxk : ε1, . . . , εn ∈ {1,−1}
}u

and

{y,−y}u ⊇







m
∑

j=1

δjyj : δ1, . . . , δm ∈ {1,−1}







u

.

Suppose u is an upper bound of the set






n
∑

k=1

εkxk +

m
∑

j=1

δjyj : ε1, . . . , εn, δ1, . . . , δm ∈ {1,−1}







,

i. e. for any ε1, . . . , εn, δ1, . . . , δm ∈ {1,−1} we have u ≥∑n
k=1 εkxk +

∑m
j=1 δjyj .

So,

u −
m
∑

j=1

δjyj ≥
n
∑

k=1

εkxk ,

hence u −∑m
j=1 δjyj is an upper bound of the set

{

n
∑

k=1

εkxk : ε1, . . . , εn ∈ {1,−1}
}

.

Therefore, u −∑m
j=1 δjyj ≥ ±x. From this follows

u − x ≥
m
∑

j=1

δjyj and u + x ≥
m
∑

j=1

δjyj .
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So, u − x and u + x are upper bounds of the set






m
∑

j=1

δjyj : δ1, . . . , δm ∈ {1,−1}







and hence of {y,−y}. We conclude u − x ≥ y and u + x ≥ −y, which implies
u ∈ {x + y,−x − y}u. Consequently,

{x + y,−x − y}u ⊇







n
∑

k=1

εkxk +
m
∑

j=1

δjyj : ε1, . . . , εn, δ1, . . . , δm ∈ {1,−1}







u

,

and we infer that x + y ∈ S. Further, if x ∈ S, then −x ∈ S. Also, 0 ∈ S. Let
x ∈ S and λ > 0, we show λx ∈ S. There are x1, . . . , xn ∈ M such that

{x,−x}u ⊇
{

n
∑

k=1

εkxk : ε1, . . . , εn ∈ {1,−1}
}u

.

If u is an upper bound of the set {∑n
k=1 εkλxk : ε1, . . . , εn ∈ {1,−1}} , then 1

λu is

an upper bound of {∑n
k=1 εkxk : ε1, . . . , εn ∈ {1,−1}} , so 1

λu ∈ {x,−x}u, which
implies u ∈ {λx,−λx}u. Hence,

{λx,−λx}u ⊇
{

n
∑

k=1

εkλxk : ε1, . . . , εn ∈ {1,−1}
}u

and, therefore, λx ∈ S. �

In a vector lattice, two elements x, y are disjoint, whenever |x| ∧ |y| = 0,
which is equivalent to |x + y| = |x − y| [1, Theorem 1.4(4)]. Recall the following
notion of disjointness in a partially ordered vector space X .

Definition 3.6. [4] Let X be a partially ordered vector space. The elements x, y ∈ X
are called disjoint, in symbols x ⊥ y, if

{x + y,−x − y}u = {x − y,−x + y}u .

The disjoint complement of a subset M ⊆ X is the set

Md = {y ∈ X : y ⊥ x for all x ∈ M} .

For x, y ∈ X one has y ⊥ x if and only if x ⊥ y, and, obviously, x ⊥ 0.
Clearly, x ⊥ y implies −x ⊥ y. If x ⊥ x, then {x+x,−x−x}u = {x−x}u = K, so
x,−x ≤ 0, which yields x = 0. Similarly, x ⊥ (−x) implies x = 0. If x, y ∈ K are
such that x ⊥ y, and z ≥ x, y, then z ∈ {x− y,−x + y}u = {x + y}u, so z ≥ x + y.
For M ⊆ X the set Md is non-empty since one has 0 ∈ Md. Further, if M and N
are subsets of X such that M ⊆ N , then Md ⊇ Nd. Observe that for x, y ∈ X one
has x ⊥ y if and only if the four inclusions

(K ± x) ∩ (K ± y) ⊆ K (1)
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are satisfied. Indeed, let x, y ∈ X with x ⊥ y, i. e.

(K + x + y) ∩ (K − x − y) = (K + x − y) ∩ (K − x + y) . (2)

Adding x + y, using that K = 2K, and dividing by 2, respectively, yields

(2) ⇔ (K + 2x + 2y) ∩ K = (K + 2x) ∩ (K + 2y)

⇔ (2K + 2x + 2y) ∩ (2K) = (2K + 2x) ∩ (2K + 2y)

⇔ (K + x + y) ∩ K = (K + x) ∩ (K + y) . (3)

Moreover, one has x ⊥ −y, −x ⊥ −y and −x ⊥ y. Using analogous calculations
as in (3), one gets the four inclusions in (1). On the other hand, assume (1). From
(K + x) ∩ (K − y) ⊆ K one gets

(K + x + y) ∩ K ⊆ (K + y) ,

furthermore (K − x) ∩ (K + y) ⊆ K implies K ∩ (K + x + y) ⊆ (K + x), so

(K + x + y) ∩ K ⊆ (K + x) ∩ (K + y) .

One has (K + x) ∩ (K + y) ⊆ K, moreover (K − x) ∩ (K − y) ⊆ K implies
(K + y) ∩ (K + x) ⊆ (K + x + y), so

(K + x + y) ∩ K ⊇ (K + x) ∩ (K + y) .

Hence, (3) is satisfied, which means x ⊥ y. We conclude the section by giving the
definition of a band in a partially ordered vector space.

Definition 3.7. [4, Definition 5.4] A linear subspace M of a partially ordered vector
space X is called a band in X if (Md)d = M .

If X is an Archimedean vector lattice, then this notion of a band coincides
with the usual one of an (o)-closed ideal.

Properties of ideals, solvex ideals and bands in certain partially ordered vector
spaces will be derived in Section 5.

4. Pre-Riesz Spaces

In this section we provide the notion of a pre-Riesz space and recall that the
pre-Riesz spaces are exactly the order dense subspaces of vector lattices. We give
several examples of pre-Riesz spaces and their embeddings into vector lattices.

Definition 4.1. [6, Definition 1.1(viii), Theorem 4.15] A partially ordered vector
space (X, K) is called pre-Riesz if for every x, y, z ∈ X the inclusion {x + y, x +
z}u ⊆ {y, z}u implies x ∈ K.

Clearly, each vector lattice is pre-Riesz, since the inclusion in Definition 4.1
reduces to the inequality (x + y) ∨ (x + z) ≥ y ∨ z, so x + (y ∨ z) ≥ y ∨ z, which
implies x ≥ 0.

Proposition 4.2. [6, Theorem 1.7(ii)] Every pre-Riesz space is directed and every
directed Archimedean partially ordered vector space is pre-Riesz.
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As an example of a pre-Riesz space which is not Archimedean consider the
space R2 equipped with the cone

K = {(x1, x2)
T : x2 > 0} ∪ {(x1, 0)T : x1 ≥ 0} .

We call a linear subspace D of a partially ordered vector space X order dense in
X if for every x ∈ X we have

x = inf{y ∈ D : y ≥ x} ,

that is, each x is the greatest lower bound of the set {y ∈ D : y ≥ x} in X (see
[2, p. 360]). It is straightforward that D is order dense in X if and only if for
every x ∈ X one has x = sup{y ∈ D : y ≤ x}. Clearly, an order dense subspace
is majorizing. Recall that a linear map i : X → Y , where X and Y are partially
ordered vector spaces, is called bipositive if for every x ∈ X one has i(x) ≥ 0 if
and only if x ≥ 0. An embedding map is required to be linear and bipositive, which
implies injectivity. X and Y are called order isomorphic if there is a bipositive
surjective linear map i : X → Y . The pre-Riesz spaces are exactly the order dense
linear subspaces of vector lattices.

Theorem 4.3. [6, Corollaries 4.9–11 and Theorems 3.5, 3.7, 4.13] Let X be a par-
tially ordered vector space. The following statements are equivalent:

(i) X is pre-Riesz.
(ii) There exist a vector lattice Y and a bipositive linear map i : X → Y such

that i(X) is order dense in Y .
(iii) There exist a vector lattice Y and a bipositive linear map i : X → Y such

that i(X) is order dense in Y and generates Y as a vector lattice.

All spaces Y as in (iii) are order isomorphic. A pair (Y, i) as in (iii) is called a
Riesz completion of X . As it is unique up to isomorphism we will speak of the Riesz
completion of X and denote it by Xρ. If a pre-Riesz space (X, K) is Archimedean,
then Xρ is Archimedean as well. We consider examples of pre-Riesz spaces. We
compute, for instance, the Riesz completions of R3 with the ice-cream cone and of
the space of symmetric 2× 2 matrices ordered by the cone of positive semidefinite
matrices. The Examples 4.4, 4.5, 4.6, and 4.7 describe different representations
of the same partially ordered vector space. The Examples 4.7 and 4.8 will be
continued in Section 5 to construct counterexamples.

Example 4.4. In the present example, we consider subspaces of the space C(R)
of continuous functions on R, ordered by the natural cone {x ∈ C(R) : x(t) ≥
0 for all t ∈ R}. Let X = P2(R) be the ordered vector space of all real polynomial
functions on R of at most degree 2. Observe that X is directed. We show that X
is order dense in the vector lattice

V = {v ∈ C(R) : there is p ∈ X such that |v| ≤ p} .

Let v ∈ V and p ∈ X be such that |v(t)| < p(t) for all t ∈ R. Fix an arbitrary
point t0 ∈ R and ε > 0 such that v(t0) + ε < p(t0). Since v is continuous, there is
δ > 0 such that for all t ∈ (t0 − δ, t0 + δ) one has v(t) ≤ v(t0) + ε. One obtains a
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polynomial pε ∈ X from the equations pε(t0) = v(t0)+ ε, pε(t0 − δ) = pε(t0 + δ) =
max{p(t0−δ), p(t0+δ)}. The polynomial pε attains its minimum in t0 and satisfies
pε(t) ≥ p(t) for all t ∈ R \ (t0 − δ, t0 + δ). So, pε ≥ v. It follows that

inf {p(t0) : p ∈ X, p ≥ v} ≤ pε(t0) = v(t0) + ε

and, as ε tends to zero, v(t0) = inf {p(t0) : p ∈ X, p ≥ v} . Hence, v = inf{p ∈
X : p ≥ v}. We conclude that X is order dense in V .

A function y on R is called a piecewise polynomial function of at most degree
2 if there are n ∈ N and t1, . . . , tn ∈ R such that t1 < t2 < . . . < tn and y is a
polynomial function of at most degree 2 on (−∞, t1], [tn,∞) and [ti, ti+1] for each
i = 1, . . . , n − 1. For such a function y we define

L(y) = lim
t→−∞

y(t)/t2 and R(y) = lim
t→∞

y(t)/t2.

Denote

Y = {y ∈ C(R) : y is a piecewise polynomial function of at most degree 2

and L(y) = R(y) } .

Clearly, Y is a subspace of V and X ⊂ Y , so X is order dense also in Y . In
addition, Y is a sublattice of V . To see that X generates Y , consider a function
y ∈ Y with the corresponding t1 < t2 < . . . < tn and pi ∈ X , i = 0, . . . , n, such
that y = p0 on (−∞, t1], y = pi on [ti, ti+1], i = 1, . . . , n − 1, and y = pn on
[tn,∞). For i ∈ {1, . . . , n − 1}, one can construct a function yi = pi ∨ z such that
yi ≥ y and yi = y on [ti, ti+1], by choosing a parabola z ∈ X through (ti, y(ti))
and (ti+1, y(ti+1) with the coefficient of t2 sufficiently large. One can construct y0

as pointwise maximum of at most three elements of X with y0 = p0 on (−∞, t1]
and y0 ≥ y. Indeed, if a = L(y) = R(y) ≤ 0, one can take for y0 the pointwise
maximum of p0 and a sufficiently steep line. If a > 0 one can take y0 = p0 ∨ v ∨w,
where v(t) = at2 + pt + q is such that v(tn) = y(tn) and v′(tn) is so large that
v ≤ p0 on (−∞, t1] and v ≥ pn on [tn,∞). Further, w is a parabola through
(t1, y(t1)) and (tn, y(tn)) such that w ≥ y on [t1, tn] and w ≤ p0 on (−∞, t1]. One
can construct yn similarly. Now y =

∧n
i=0 yi = −∨n

i=0(−yi). Thus, X generates
Y , and we infer that Y is the Riesz completion of X .

Next we consider the 3-dimensional icecream cone and show that its Riesz
completion is the space Y of the previous example.

Example 4.5. Let the space X = R3 be equipped with the so-called 3-dimensional
ice-cream cone K3 = {(x1, x2, x3)

T : x2
1 + x2

2 ≤ x2
3, x3 ≥ 0}. We claim that X

is order isomorphic to the space P2(R) (equipped with the pointwise ordering) in
Example 4.4. Let a, b, c ∈ R and consider the element p(t) = at2 + bt + c of P2(R).
In the case a 6= 0 the zeros of p are given by

t1/2 = 1
2a (−b ±

√
b2 − 4ac) .
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So, p is positive if and only if either (i) 0 < a and b2 − 4ac ≤ 0, or (ii) a = b = 0
and 0 ≤ c. Consider the linear bijection j : R3 → P2(R) defined by

(x1, x2, x3)
T 7→ p(t) = at2 + bt + c ,

where a = x1 + x3, b = 2x2, c = x3 − x1. We show that j is bipositive. Let
x = (x1, x2, x3)

T ∈ K3, i. e. x2
1 + x2

2 ≤ x2
3 and 0 ≤ x3. Due to x1 = a−c

2 , x2 = b
2

and x3 = a+c
2 , the inequality x2

1 + x2
2 ≤ x2

3 is satisfied if and only if b2 ≤ 4ac . In

particular, one has 0 ≤ ac. In combination with 0 ≤ x3 = a+c
2 one gets 0 ≤ a and

0 ≤ c. If 0 < a, we have the condition in (i). On the other hand, if a = 0 we obtain
b = 0, and, hence, the condition in (ii). So, the polynomial j(x) is positive with
respect to the pointwise ordering.

Vice versa, let p be a positive element of P2(R). In the case (i) one obtains
x2

1 + x2
2 ≤ x2

3, in particular |x1| ≤ |x3|, and from 0 < a = x1 + x3 follows 0 < x3,
so x ∈ K3. In the case (ii), one has x2 = 0 and x3 = −x1, so x2

1 = x2
3. Now

0 ≤ c = 2x3 yields x ∈ K3. We conclude that the Riesz completion of (R3, K3) is
the space Y in Example 4.4.

Example 4.6. Let X be the space of all symmetric 2 × 2-matrices, ordered by the
cone K of all matrices in X which are positive semidefinite. We show that X is
order isomorphic to P2(R) in Example 4.4. Consider the bijection

j : P2(R) → X

p(t) = at2 + bt + c 7→
(

a 1
2b

1
2b c

)

.

The matrix A =
(

a 1
2 b

1
2 b c

)

is in K if and only if the eigenvalues of A, which are

given by

λ1/2 = 1
2 (a + c ±

√

(a + c)2 + b2 − 4ac ) ,

are both non-negative. Furthermore, one has 0 ≤ λ1, λ2 if and only if (iii) 0 ≤ a+c
and b2 − 4ac ≤ 0. Indeed, if 0 ≤ λ1, λ2, then 0 ≤ λ1 + λ2 = a + c. Moreover, the
inequality a + c ≥

√

(a + c)2 + b2 − 4ac implies 0 ≥ b2 − 4ac. On the other hand,
assuming (iii), it is straightforward that 0 ≤ λ1, λ2.

The condition (i) in Example 4.5 yields 0 ≤ ac and hence 0 ≤ c, so (iii) is
satisfied. Clearly, (ii) implies (iii) as well. On the other hand, (iii) implies (i) or
(ii). So, p ∈ P2(R) is positive if and only if A = j(p) ∈ K, i. e. j is a bipositive
bijection, and we conclude that the two spaces are order isomorphic. Hence, the
Riesz completion of X is again the space Y in Example 4.4.

Example 4.7. Let S = {(ξ, η) : ξ2 + η2 = 1} be the unit circle in R2 and let X be
the space of restrictions to S of all affine functions from R2 into R, that is,

X = {x : S → R : ∃µ1, µ2, µ3 ∈ R such that x(ξ, η) = µ1ξ +µ2η +µ3 ∀(ξ, η) ∈ S}.
Let K be the cone of functions that are pointwise non-negative on S. This partially
ordered vector space (X, K) is described in [3, Example 3.6]. X is directed and
Archimedean and, hence, pre-Riesz. X can be considered as a partially ordered
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subspace of C(S). Due to [3, 3.6 (b)], X is order dense in C(S). So, the lattice
subspace of C(S) generated by X is the Riesz completion Xρ of X . The space
(X, K) is isomorphic to the space (R3, K3) of Example 4.5 (and, therefore, to the
space P2(R) of Example 4.4). Indeed, consider the linear bijection j : R3 → X
defined by

(µ1, µ2, µ3)
T 7→ x(ξ, η) = µ1ξ + µ2η + µ3 .

A straightforward calculation yields

min {x(ξ, η) : (ξ, η) ∈ S} = µ3 −
√

µ2
1 + µ2

2.

Hence x is pointwise non-negative on S if and only if

µ3 ≥ 0 and µ2
3 ≥ µ2

1 + µ2
2.

So, j is bipositive. The spaces Y of Example 4.4 and Xρ are two different repre-
sentations of the Riesz completion of X .

In the following example we discuss an embedding of the space Rn, equipped
with a finitely generated cone, into a vector lattice.

Example 4.8. Consider the Euclidean space X = Rn with the scalar product
〈·, ·〉. We identify the space X ′ of all linear functionals on X with Rn , as usual.
A cone K in X is called finitely generated if there are finitely many elements
x1, . . . , xr ∈ X such that K = pos{x1, . . . , xr} , that is, K equals the positive-
linear span of x1, . . . , xr. Let K be a generating and finitely generated cone in X ,
i. e. r ≥ n. K is closed and hence Archimedean, so (X, K) is pre-Riesz. Moreover,
int(K) 6= ∅, which implies that the dual wedge K ′ = {f ∈ X ′ : f(K) ⊆ [0,∞)} is
a cone. For a fixed element u ∈ int(K) the set F = {x ∈ K ′ : 〈u, x〉 = 1} is a base
of K ′. F has finitely many extreme points f1, . . . , fk, where k ≥ n, and one has
K ′ = pos{f1, . . . , fk} . For K we get the representation

K = {x ∈ Rn : fi(x) ≥ 0 for all i = 1, . . . , k} . (4)

The map i : Rn → Rk given by

i : x 7→ (f1(x), . . . , fk(x))T (5)

is bipositive and hence injective, i. e. i embeds the partially ordered vector space
(Rn , K) into the vector lattice (Rk, Rk

+). (This embedding is sometimes called the
Königstein embedding.) We consider the space R3 equipped with a cone K which
is generated by four elements. The cone

K = pos
{(

1
0
1

)

,
(

0
1
1

)

,
(

−1
0
1

)

,
(

0
−1
1

)}

has a representation (4) with respect to the functionals

f1 =
(

−1
−1
1

)

, f2 =
(

1
−1
1

)

, f3 =
(

1
1
1

)

, f4 =
(

−1
1
1

)

.

The embedding (5) yields (x1, x2, x3)
T 7→ x1b

(1) + x2b
(2) + x3b

(3), where

b(1) =

(

−1
1
1
−1

)

, b(2) =

(

−1
−1
1
1

)

, b(3) =

(

1
1
1
1

)

.
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For sake of convenience we use the vectors

1
2 (b(3) − b(2)), 1

2 (b(1) + b(3)) and 1
2 (b(2) + b(3))

to span i(R3 ), i. e.

i(R3 ) = span

{(

1
1
0
0

)

,

(

0
1
1
0

)

,

(

0
0
1
1

)}

.

The linear subspace i(R3 ) of R4 is order dense in R4 (with the standard order).
Indeed, for

x = (x1, x2, x3, x4)
T ∈ R4

consider

u = x1

(

1
1
0
0

)

+ (x2 − x1)

(

0
1
1
0

)

+ (|x2 − x1| + |x3| + |x4|)
(

0
0
1
1

)

=

(

x1
x2

(x2−x1)+|x2−x1|+|x3|+|x4|
|x2−x1|+|x3|+|x4|

)

and

v = (|x1| + |x2| + |x3 − x4|)
(

1
1
0
0

)

+ (x3 − x4)

(

0
1
1
0

)

+ x4

(

0
0
1
1

)

=

(

|x1|+|x2|+|x3−x4|
|x1|+|x2|+|x3−x4|+(x3−x4)

x3
x4

)

.

Then u, v ∈ i(R3 ), u ≥ x, v ≥ x and x = u ∧ v. So, i(R3 ) is order dense in
R4. Moreover, (R4, i) is the Riesz completion of the partially ordered vector space
(R3, K).

5. Restriction and extension properties

As generalizations of ideals and bands in vector lattices we defined ideals, solvex
ideals, (o)-closed ideals and bands in partially ordered vector spaces. These notions
are investigated in a pre-Riesz space and are related to the corresponding notions
in the Riesz completion. As a pre-Riesz space is an order dense subspace of the
Riesz completion, we consider a vector lattice Y and an order dense subspace X of
Y . We address a restriction property (R) and an extension property (E) as below,
where (P) for a subset of X or Y stands for “being an ideal”, “being a band” etc.

(R) If J ⊆ Y has the property (P) in Y , then J ∩ X has the property (P) in X .
(E) If I ⊆ X has the property (P) in X , then there is J ⊆ Y such that J has the

property (P) in Y and I = J ∩ X .

The results in the present section will be as follows:
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(P) (R) (E)
being an ideal yes, Proposition 5.3 no, Example 5.7
being an (o)-closed ideal yes, Propositions 5.1 (iii), 5.3 no, Example 5.7
being a solvex ideal yes, Proposition 5.5 (i) yes, Proposition 5.6
being a band no, Example 5.13 yes, Proposition 5.12

We start with a statement concerning (o)-convergence and infer the restriction
property for (o)-closed sets.

Proposition 5.1. Let X be an order dense subspace of a partially ordered vector
space Y .

(i) If D is a subset of X such that the infimum infX D in X exists, then the
infimum infY D in Y exists and equals infX D.

(ii) If {xα} is a net in X and x ∈ X such that xα
(o)−−→ x in X, then xα

(o)−−→ x in
Y .

(iii) If J ⊆ Y is (o)-closed in Y , then J ∩ X is (o)-closed in X.

Proof. (i) Put w = infX D, so w ∈ X ⊆ Y and w ≤ d for all d ∈ D. Let
v ∈ Y be such that v ≤ d for all d ∈ D. Since X is order dense in Y , one has
v = sup{x ∈ X : x ≤ v}. Let x ∈ X be such that x ≤ v, then x ≤ d for all d ∈ D,
hence x ≤ infX D = w. So, w is an upper bound for all x ∈ X with x ≤ v, which
implies v ≤ w. Consequently, w = infY D.

(ii) Assume that xα
(o)−−→ x in X , i. e. there is a net {yα} ⊂ X such that

yα ↓ 0 and for all α one has ±(xα −x) ≤ yα. Then yα ↓ in Y and yα ≥ 0 for all α.

Due to (i), one gets inf{yα} = 0 in Y , so yα ↓ 0 in Y . Hence, xα
(o)−−→ x in Y .

(iii) is an immediate consequence of (ii). �

Observe that Proposition 5.1 (ii) in particular implies that the embedding
i : X → Xρ is (o)-continuous.

In general, the converse statement of (ii) is not true. We give an example
where the (o)-convergence in Y does not imply the (o)-convergence in X , even if
the limit of the sequence is in X .

Example 5.2. Consider the vector lattice

Y = {y = (yi)i∈Z ∈ l∞(Z) : lim
i→∞

yi exists }

and its subspace

X = {x = (xi)i∈Z ∈ Y :

∞
∑

k=1

x−k

2k
= lim

i→∞
xi} .

For i ∈ Z denote e(i) = (e
(i)
j )j∈Z with e

(i)
j = 1 if i = j and e

(i)
j = 0 otherwise.

(a) X is order dense in Y .
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Let y = (yi)i∈Z ∈ Y and

α = lim
i→∞

yi −
∞
∑

k=1

y−k

2k
.

If α ≥ 0, put
x(1) = y + 2αe(−1) and x(2) = y + 4αe(−2) .

Then x(1), x(2) ∈ X , and y = x(1) ∧ x(2). If α < 0, then put

x(m) = y − α

∞
∑

i=m

e(i)

for all m ∈ N. One has x(m) ∈ X for all m ∈ N, and, moreover, y = inf{x(m) : m ∈
N}.
(b) The sequence (e(m))m∈N ⊂ X (o)-converges to 0 in Y , but it does not (o)-

converge in X .

For m ∈ N put y(m) =
∑∞

i=m e(i). Clearly, y(m) ∈ Y for all m ∈ N, and y(m) ↓m 0

in Y . Since ±e(m) ≤ y(m) for all m ∈ N, one has e(m) (o)−−→ 0 in Y . We show
by way of contradiction that the sequence (e(m))m∈N does not (o)-converge in X .

Assume that there is v ∈ X such that e(m) (o)−−→ v in X . Then e(m) (o)−−→ v in Y ,
hence v = 0. So, there is a sequence (v(m))m∈N ⊂ X such that v(m) ↓m 0 and

e(m) ≤ v(m) for all m ∈ N. If i ≥ m, then v(m) ≥ v(i) ≥ e(i). Hence, v
(m)
i ≥ 1

for all i ≥ m. This implies limi→∞ v
(m)
i ≥ 1, and, consequently,

∑∞
k=1

v
(m)
−k

2k ≥ 1

for all m ∈ N. We do not have v
(m)
−k ↓m 0 for every k ∈ N \ {0}, since otherwise

we would get
∑∞

k=1

v
(m)
−k

2k ↓m 0 by monotone convergence. So, there is k ∈ N \ {0}
and δ > 0 such that v

(m)
−k ≥ δ for all m ∈ N. Put w = δe(−k) − 2δe(−k−1), then

w ∈ X and w ≤ δe(−k) ≤ v(m) for all m ∈ N. Moreover, w � 0, which contradicts

inf{v(m) : m ∈ N} = 0.

Next we state the restriction property for solid sets (cf. also [4, Lemma 5.2]).

Proposition 5.3. Let Y be a directed partially ordered vector space, X an order
dense subspace of Y and J a solid subset of Y . Then the set J ∩ X is solid in X.

Proof. Let x ∈ X and y ∈ J ∩X be such that {x,−x}u∩X ⊇ {y,−y}u∩X . Since
Y is directed, the set {y,−y}u is non-empty. If v ∈ Y is such that v ≥ y, v ≥ −y,
then

{u ∈ X : u ≥ v} ⊆ {y,−y}u ∩ X ⊆ {x,−x}u ∩ X ,

which implies v = inf{u ∈ X : u ≥ v} ≥ x and, analogously, v ≥ −x. So,
{x,−x}u ⊇ {y,−y}u. As J is solid in Y , it follows that x ∈ J , so x ∈ J ∩ X .
Hence J ∩ X is solid in X . �

Corollary 5.4. Let X be a pre-Riesz space and Xρ its Riesz completion with the
corresponding embedding map i. If J is an ideal in Xρ, then {x ∈ X : i(x) ∈ J}
is an ideal in X.
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For solvex sets both the restriction and the extension property are valid.

Proposition 5.5. Let Y be a directed partially ordered vector space and X an order
dense subspace of Y .

(i) If J is a solvex subset of Y , then J ∩ X is solvex in X.
(ii) If I is a solvex subset of X and J is its solvex hull in Y , then J ∩ X = I.

Proof. (i) Let x ∈ X , x1, . . . , xn ∈ J ∩X and λ1, . . . , λn ∈ (0, 1] with
∑n

k=1 λk = 1
be such that

{x,−x}u ∩ X ⊇
{

n
∑

k=1

εkλkxk : ε1, . . . , εn ∈ {1,−1}
}u

∩ X .

If v ∈ Y is an upper bound of the set {∑n
k=1 εkλkxk : ε1, . . . , εn ∈ {1,−1}}, then

{u ∈ X : u ≥ v} ⊆
{

n
∑

k=1

εkλkxk : ε1, . . . , εn ∈ {1,−1}
}u

∩ X ⊆ {x,−x}u ∩ X ,

which implies v = inf{u ∈ X : u ≥ v} ≥ x and, analogously, v ≥ −x. So,

{x,−x}u ⊇
{

n
∑

k=1

εkλkxk : ε1, . . . , εn ∈ {1,−1}
}u

.

As J is solvex in Y , it follows that x ∈ J , so x ∈ J ∩ X . Hence J ∩ X is solvex in
X .

(ii) We assume that I is solvex in X . The set J is given by

J =

{

y ∈ Y : ∃x1, . . . , xn ∈ I, λ1, . . . , λn ∈ (0, 1] with

n
∑

k=1

λk = 1

such that {y,−y}u ⊇
{

n
∑

k=1

εkλkxk : ε1, . . . , εn ∈ {1,−1}
}u}

.

Clearly, I ⊆ J , so I ⊆ J ∩ X . It remains to establish J ∩ X ⊆ I . Let x ∈ J ∩ X .
Then there are x1, . . . , xn ∈ I and λ1, . . . , λn ∈ (0, 1] with

∑n
k=1 λk = 1 such that

{x,−x}u ⊇
{

n
∑

k=1

εkλkxk : ε1, . . . , εn ∈ {1,−1}
}u

.

Therefore,

{x,−x}u ∩ X ⊇
{

n
∑

k=1

εkλkxk : ε1, . . . , εn ∈ {1,−1}
}u

∩ X ,

and, as I is solvex in X , it follows x ∈ I . �

The ideals in X which satisfy the extension property are exactly the solvex
ideals.
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Proposition 5.6. Let Y be a vector lattice and let X be an order dense subspace of
Y . For an ideal I in X the following two statements are equivalent:

(i) There is an ideal J in Y such that I = J ∩ X.
(ii) I is solvex in X.

Proof. (i) ⇒ (ii): J is solid and convex, as any ideal in a vector lattice. Hence, J
is solvex by Lemma 3.3, so J ∩ X is solvex due to Proposition 5.5 (i).

(ii) ⇒ (i): Let J be the solvex hull of I in Y . Due to Lemma 3.5, J is an ideal
in Y . Further, according to Proposition 5.5 (ii), J ∩ X = I . �

Since in the vector lattice Y every ideal is solvex, Proposition 5.6 establishes
the extension property for solvex ideals.

Next we present an example of a pre-Riesz space X and an ideal I in X such
that I is not solvex in X . According to Proposition 5.6 there is no ideal J in the
Riesz completion Xρ of X such that I = J ∩X . The ideal I in the example is even
(o)-closed.

Example 5.7. We continue Example 4.7, i. e. S is the unit circle in R2 and X is
the space of restrictions to S of all affine functions from R2 into R, equipped with
the pointwise order. Recall that X is pre-Riesz and order dense in C(S). Consider
in X the subset

I = {x : S → R : there are µ1, µ2 ∈ R such that x(ξ, η) = µ1ξ + µ2η ∀(ξ, η) ∈ S} .

(a) I is an ideal in X .

Clearly, I is a linear subspace of X , so it remains to show that I is solid. Let

y = µ1ξ + µ2η ∈ I , y 6= 0 .

The zeros of y are

s1 =

(

µ2√
µ2

1+µ2
2

, −µ1√
µ2

1+µ2
2

)

and s2 =

(

−µ2√
µ2

1+µ2
2

, µ1√
µ2

1+µ2
2

)

.

Let x ∈ X be such that {x,−x}u ⊇ {y,−y}u. In the following calculation, |z|C(S)

denotes the pointwise absolute value of a function z ∈ C(S). Due to [3, Example
3.6(b)], we have

|x(s1)| = inf{u(s1) : u ∈ X, u ≥ |x|C(S)}
= inf{u(s1) : u ∈ X, u ≥ ±x}
≤ inf{u(s1) : u ∈ X, u ≥ ±y}
= inf{u(s1) : u ∈ X, u ≥ |y|C(S)}
= |y(s1)| = 0 ,

so x(s1) = 0, and, similarly, x(s2) = 0. Hence there is λ ∈ R such that x = λy,
i. e. x ∈ I .

(b) I is not solvex.
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Let J be the smallest ideal in Xρ which contains I . In particular, for the functions
x1(ξ, η) = ξ and x2(ξ, η) = η, (ξ, η) ∈ S, we have |x1| ∨ |x2| ∈ J . There is δ > 0
such that for all s ∈ S one has (|x1| ∨ |x2|)(s) ≥ δ, so all constant functions belong
to J . Since every element of Xρ is a bounded function, we obtain J = Xρ. Now,
e. g. the function s 7→ 1 (s ∈ S) is an element of J ∩ X = X , but does not belong
to I . Due to Proposition 5.6, I is not solvex.

(c) I is (o)-closed.

Let {xα}α be a net in I and x ∈ X such that xα
(o)−−→ x in X , i. e. there is a net

{yα}α in X with yα ↓ 0 and ±(xα − x) ≤ yα for all α. There are µ1, µ2, µ3 ∈ R
such that x(ξ, η) = µ1ξ + µ2η + µ3. We have to show that x ∈ I , which means
µ3 = 0. We will show that yα converges pointwise to zero and then conclude that
xα converges pointwise to x. It then follows that µ3 = 0. For each s ∈ S the net
{yα(s)}α is decreasing in [0,∞), and hence convergent. Denote

y(s) = lim
α

yα(s) .

We claim that y is the restriction on S of an affine function on R2. The affine
functions are determined by their values at three distinct points on the circle
S. We choose the points (1, 0), (0, 1), and (−1, 0). Every point of S is a linear
combination of these points with the sum of the coefficients equal to 1. That is,
for (ξ, η) ∈ S there are λ1, λ2, λ3 ∈ R such that λ1 + λ2 + λ3 = 1 and

(ξ, η) = λ1(1, 0) + λ2(0, 1) + λ3(−1, 0) .

Denote

ν1 = 1
2 [y(1, 0) − y(−1, 0)]

ν2 = y(0, 1) − 1
2 [y(1, 0) + y(−1, 0)]

ν3 = 1
2 [y(1, 0) + y(−1, 0)] .

Then

y(ξ, η) = lim
α

yα(ξ, η)

= lim
α

yα(λ1(1, 0) + λ2(0, 1) + λ3(−1, 0))

= lim
α

(λ1yα(1, 0) + λ2yα(0, 1) + λ3yα(−1, 0))

= λ1y(1, 0) + λ2y(0, 1) + λ3y(−1, 0)

= λ1(ν1 + ν3) + λ2(ν2 + ν3) + λ3(ν3 − ν1)

= ν1(λ1 − λ3) + ν2λ2 + ν3(λ1 + λ2 + λ3)

= ν1ξ + ν2η + ν3 .

So, y is an affine function, i. e. y ∈ X . One has 0 ≤ y and y ≤ yα for all α.
Since infα yα = 0, it follows that y = 0. Hence limα yα(ξ, η) = 0 for all (ξ, η) ∈ S.
So, as ±(x(ξ, η) − xα(ξ, η)) ≤ yα(ξ, η), one has x(ξ, η) = limα xα(ξ, η). From
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x(1, 0) = µ1 + µ3 and x(−1, 0) = −µ1 + µ3 follows

2µ3 = x(1, 0) + x(−1, 0) = lim
α

(xα(1, 0) + xα(−1, 0)) .

Since xα ∈ I one has xα(1, 0) = −xα(−1, 0), so the last limit is equal to 0. We
conclude x ∈ I .

Since in a vector lattice a band is (o)-closed and solvex, we obtain the fol-
lowing consequence of Proposition 5.1 (iii) and Proposition 5.5 (i).

Proposition 5.8. Let Y be a vector lattice, X an order dense subspace of Y and J
a band in Y . Then J ∩ X is an (o)-closed solvex ideal in X.

We recall a preliminary statement concerning disjoint elements.

Proposition 5.9. [4, Proposition 2.1] Let X and Y be partially ordered vector spaces
and let x, y ∈ X.

(i) If X is a subspace of Y , then x ⊥ y in Y implies x ⊥ y in X.
(ii) If X is an order dense subspace of Y , then x ⊥ y in Y if and only if x ⊥ y

in X.

Let Y be a partially ordered vector space, X an order dense subspace of
Y and M ⊆ X . Let I and J be the disjoint complements of M in X and Y ,
respectively. Proposition 5.9 (ii) implies that

I = J ∩ X . (6)

If Y , in addition, is a vector lattice, then J is a band in Y , so, in particular, J
is a linear subspace, which implies that I is a linear subspace as well (cf. also [4,
Corollary 2.2]). Moreover, J is solvex due to Lemma 3.3. Applying Proposition 5.5
(i), one gets that I is solvex. Finally, since J is (o)-closed, I is (o)-closed as well,
according to Proposition 5.1 (iii). For the assertion (v) in the subsequent theorem
see [4, Proposition 5.5].

Theorem 5.10. Let X be a pre-Riesz space, Xρ its Riesz completion with the ac-
cording embedding map i, and M ⊆ X.

(i) One has i(Md) = i(M)d ∩ i(X) in Xρ.
(ii) The disjoint complement Md in X is a linear subspace of X.
(iii) Md is solvex, and hence solid.
(iv) Md is (o)-closed.
(v) Md is a band.

For the statement in (ii) the condition on X being pre-Riesz is sufficient, but
not necessary, as the next example illustrates.

Example 5.11. Let X = R2 and K = {(x1, x2)
T : 0 < x1, x2}∪{(0, 0)T }. For each

x ∈ X \ {(0, 0)T} one has {x}d = {(0, 0)T}. So, for each set M ⊆ X the disjoint
complement Md is a linear subspace of X . On the other hand, for y = (1, 0)T and
x = z = (0, 1)T one has

{y+x, z+x}u = {(x1, x2)
T : 1 < x1, 2 < x2} ⊆ {(x1, x2)

T : 1 < x1, x2} = {y, z}u ,
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but x /∈ K. So, (X, K) is not pre-Riesz.

We justify the extension property for bands in a pre-Riesz space.

Proposition 5.12. Let Y be a pre-Riesz space, X an order dense subspace of Y and
I a band in X. Then there is a band J in Y such that I = J ∩ X.

Proof. Let D = Id in X , so Dd = (Id)d = I , since I is a band in X . So, I is the
disjoint complement of D in X . Let J be the disjoint complement of D in Y . J is
a band in Y due to Theorem 5.10 (v), and we observed in (6) that I = J ∩X . �

If Y is a vector lattice, X an order dense subspace of Y and B a band in Y ,
then B ∩X need not be a band in X , i. e. the restriction property for bands does
not hold, in general. Moreover, bands need not be directed.

Example 5.13. We continue Example 4.8. In [4, Example 4.6] it is shown that the
only directed bands in (R3 , K) are the subspaces

{0} , X , span
{(

1
0
1

)}

, span
{(

0
1
1

)}

, span
{(

−1
0
1

)}

, span
{(

0
−1
1

)}

.

Moreover, there are two non-directed bands, namely

span
{(

1
1
0

)}

and span
{(

1
−1
0

)}

.

Employing the embedding map i given in (5), the linear subspaces

span

{(

0
1
1
0

)}

, span

{(

0
0
1
1

)}

, span

{(

1
0
0
1

)}

, span

{(

1
1
0
0

)}

and

span

{(

−1
0
1
0

)}

, span

{(

0
1
0
−1

)}

of R4 are the non-trivial bands in i(R3 ). Even if i(R3 ) is order dense in R4, the
intersection of a band in R4 with i(R3 ) need not be a band in i(R3 ). Indeed,
consider the band

B = span

{(

1
0
0
0

)

,

(

0
1
0
0

)

,

(

0
0
1
0

)}

in R4, then

B ∩ i(R3 ) = span

{(

1
1
0
0

)

,

(

0
1
1
0

)}

,

which is not a band in i(R3 ). Due to Proposition 5.8, B ∩ i(R3 ) is an (o)-closed
solvex ideal in i(R3 ).

As a consequence of Theorem 5.10 one gets the following properties of a band
in a pre-Riesz space.

Theorem 5.14. If X is a pre-Riesz space, then every band in X is an (o)-closed
solvex ideal.
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In general, an (o)-closed solvex ideal in a pre-Riesz space need not be a band,
see Example 5.13.

If X is an arbitrary pre-Riesz space, then the extension and restriction prop-
erty both hold for solvex ideals. Hence, a subspace of a pre-Riesz space is the
restriction of an ideal in the Riesz completion if and only if it is a solvex ideal.
For bands, the extension property is valid, but in general the restriction property
fails. For pre-Riesz spaces satisfying an additional condition it can be shown that
both the extension and the restriction property for bands hold [5].

6. A note on disjointness

We discuss another notion of disjointness for positive elements in a partially or-
dered vector space (X, K) which is introduced in [7, Definition 8]. Two elements
x, y ∈ K are called D-disjoint (in symbols, xDy) if the condition

[0, x] ∩ [0, y] = {0}
holds. If X is pre-Riesz and x, y ∈ K with x ⊥ y, then x ⊥ y in Xρ, so [0, x]∩[0, y] =
{0} in Xρ, which yields xDy. If X has, in addition, the Riesz decomposition
property, we obtain the following.

Proposition 6.1. Let (X, K) be a pre-Riesz space which has the Riesz decomposition
property, and let x, y ∈ K. Then x ⊥ y if and only if xDy.

Proof. Let X have the Riesz decomposition property and let x, y ∈ K be such
that xDy holds. Since x and y are positive, one has

{x + y,−x − y}u = {x + y}u ⊆ {x − y,−x + y}u .

We show the converse inclusion. Let z ∈ {x − y,−x + y}u, then 0 ≤ x ≤ z + y, so
there are elements x1, x2 ∈ K with x = x1 + x2, 0 ≤ x1 ≤ z and 0 ≤ x2 ≤ y. Now
0 ≤ x2 ≤ x in combination with the D-disjointness of x and y implies x2 = 0, i. e.
z ≥ x. Analogously, we get z ≥ y. Now, 0 ≤ x ≤ z = (z − y) + y, so x = x3 + x4

with 0 ≤ x3 ≤ z − y and 0 ≤ x4 ≤ y; from 0 ≤ x4 ≤ x we get x4 = 0 and so
x ≤ z − y, which shows that z ∈ {x + y}u. So, x ⊥ y. �

We remark that in general the disjointness and the D-disjointness for two
positive elements differ. In view of Example 4.5, for x = (1, 0, 1)T the only positive
element which is disjoint to x is 0, whereas the elements y = λ(y1, y2, 1)T with
y2
1 + y2

2 = 1, y1 6= 1, λ ≥ 0, are all the (positive) elements D-disjoint to x. Observe
that the set of all such elements y is not convex, so fundamental properties as in
Theorem 5.10 are in general not obtained for D-disjointness. Anyway, in pre-Riesz
spaces with the Riesz decomposition property disjointness and D-disjointness for
positive elements coincide and the advantages of both notions are on hand.
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