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Abstract

Pre-Riesz spaces are partially ordered vector spaces which are order dense sub-
spaces of vector lattices. A band in a pre-Riesz space can be extended to a band
in the ambient vector lattice. The corresponding restriction property does not hold
in general. We provide sufficient conditions on the underlying space such that the
restriction property for bands holds. As an application, we consider the space L"(I§°)
of all regular operators on the space [§° of all finally constant sequences. We establish
that L"(I§°) is pre-Riesz and that its subspace of all order continuous operators is a
band in L"(I§°).
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1 Introduction

The notions of ideal and band in a partially ordered vector space have been investigated
in [6]. The method used there is embedding of the space as an order dense subspace of a
vector lattice. The spaces that allow such an embedding are the pre-Riesz spaces. It has
been studied whether ideals or bands in a pre-Riesz space can be extended to ideals or
bands in the ambient vector lattice and whether the restriction to the pre-Riesz space of an
ideal or band in the vector lattice is an ideal or band in the pre-Riesz space. An appropriate
generalization of ideal has been established such that both extension and restriction works
in arbitrary pre-Riesz spaces. For bands extension always works, whereas restriction may
fail. In this paper we give a condition on the pre-Riesz space such that both extension and
restriction hold for bands. We show that the condition is satisfied by a space of operators.

We begin by fixing our notations and terminology. Let X be a real vector space and
let K be a cone in X, that is, K is a wedge (z,y € K, \,u > 0 imply Az + py € K)
and K N (—K) = {0}. In X a partial order is introduced by defining y > z if and only if
y—x € K. Aset M C X is called order bounded if there are y,z € X such that y <z < z
for all z € M. Denote for a subset M C X the set of all upper bounds by

M*={zxe X: z>m forall me M}.



We denote the natural numbers by N, and Ny = N U {0}. The space (X, K) is called
Archimedean if for every x,y € X with nx <y foralln € Nyone hasz < 0. Aset M C X
is called directed if for every x,y € M there is an element z € M such that z > z and
z > y. X is directed if and only if the cone K is generating in X, that is, X = K — K.
X has the Riesz decomposition property if for every y, xq,xs € K with y < 7 + x5 there
exist y1,y2 € K such that y = y; + 2 and y; < zq, yo < 9.

For standard notations in the case that X is a vector lattice see [3]. Recall that a
vector lattice is Dedekind complete whenever every non-empty subset that is bounded
from above has a supremum, and o-Dedekind complete whenever every countable subset
that is bounded from above has a supremum.

A partially ordered vector space X is called pre-Riesz if for every z,y,z € X the
inclusion {z + y,z + z}* C {y, z}" implies z € K [7, Definition 1.1(viii), Theorem 4.15].
Every pre-Riesz space is directed and every directed Archimedean partially ordered vector
space is pre-Riesz [7]. Clearly, each vector lattice is pre-Riesz.

By a subspace of a partially ordered vector space or a vector lattice we mean an arbitrary
linear subspace with the inherited order. We do not require it to be a lattice or a sublattice.
We say that a subspace X of a vector lattice Y generates Y as a vector lattice if for every
y € Y there exist ay,...,am,b1,...,b, € X such that y = /", a; — /[, ;.

We call a linear subspace D of a partially ordered vector space X order dense in X
if for every x € X we have x = inf{y € D: y > z}, that is, each x is the greatest lower
bound of the set {y € D: y >z} in X [4, p. 360].

Recall that a linear map ¢: X — Y, where X and Y are partially ordered vector spaces,
is called bipositive if for every x € X one has i(z) > 0 if and only if z > 0. An embedding
map is required to be linear and bipositive, which implies injectivity.

Let X be a partially ordered vector space. The following statements are equivalent |7,
Corollaries 4.9-11 and Theorems 3.5, 3.7, 4.13]:

(i) X is pre-Riesz.

(ii) There exist a vector lattice Y and a bipositive linear map i: X — Y such that i(X)
is order dense in Y.

(iii) There exist a vector lattice Y and a bipositive linear map i: X — Y such that i(X)
is order dense in Y and generates Y as a vector lattice.

All spaces Y as in (iii) are isomorphic as vector lattices. A pair (Y,4) as in (iii) is called
a Riesz completion of X. As it is unique up to isomorphism we will speak of the Riesz
completion of X and denote it by X?.

Let X be a partially ordered vector space. The elements x,y € X are called disjoint,
in symbols L y, if {z+y,—x—y}*={z—y,—x+y}*, cf. [5]. If X is a vector lattice,
then this notion of disjointness coincides with the usual one, cf. [3, Theorem 1.4(4)]. The
disjoint complement of a subset M C X is the set M?={y € X: y Lz forall x € M}.

Proposition 1.1. [5, Proposition 2.1] Let X and Y be partially ordered vector spaces and
let z,y € X.



(i) If X is a subspace of Y, then x Ly in'Y implies v L y in X.
(ii) If X is an order dense subspace of Y, then x Ly in'Y if and only if x L y in X.

A linear subspace M of a partially ordered vector space X is called a band in X if
(M) =M,

cf. [5, Definition 5.4]. If X is an Archimedean vector lattice, then this notion of a band
coincides with the usual one. For every subset M of X, the disjoint complemet M? is a
band [5, Proposition 5.5].

Let Y be a vector lattice and X an order dense subspace of Y. In [6] the following
restriction property (R) and extension property (E) for bands are considered:

(R) If Jis a band in Y, then J N X is a band in X.

(E) If I is a band in X, then there exists a band J in Y such that I = J N X.

The extension property (E) for bands is shown in [6, Proposition 3.15]. The restriction
property (R) for bands is not true in general [6, Example 4.16]. In the present paper,
we provide sufficient conditions on X such that (R) is satisfied. We verify (R) for several
spaces, in particular for a space of operators.

We conclude the section by collecting standard definitions concerning spaces of oper-
ators. Let X be a partially ordered vector space and L(X) the set of all linear operators
on X. As usual, an operator T' € L(X) is called positive whenever T'(K) C K; we write
S > Tif S—T is positive. An operator T' € L(X) is called order bounded if T maps order
bounded subsets into order bounded subsets, and reqular whenever T' can be written as a
difference of two positive operators. The set of all order bounded operators is denoted by
LP(X), whereas the set of all regular operators is denoted by L"(X).

A net {z,} C X is said to be decreasing (in symbols, =, |), whenever o > [ implies
o < xg. For x € X the notation z, |  means that x, | and inf,{2z,} = x both hold.

We say that a net {z,}o C X (0)-converges to x € X (in symbols, z, N x), if there is a
net {y,}o C X such that y, | 0 and for all & one has +(z, — z) < y,. The equivalence of

Ty ©), & and To — X , 0 is obvious. If a net (o)-converges, then the limit is unique.

An operator T € L*(X) is called (0)-continuous if for each net {r,}aca C X with

Tq ), 0 follows T(xq) © . Clearly, the (o)-continuity of 7" implies T'(x,) L), T(z) for

every net {z,} C X with z, © e X, Moreover, if T' is positive, then 7" is (0)-continuous

if and only if z, | 0 implies T'(z,) | 0. Denote the set of all (0)-continuous operators in
LP(X) by L"(X).

If X is a Dedekind complete vector lattice, then L°(X) is a Dedekind complete vector
lattice as well, which implies L°(X) = L"(X) [3, Theorem 1.13]. Moreover, L"(X) is a
band in L’(X) (Ogasawara’s theorem, see [3, Theorem 4.4]). We are interested in this
statement if X is not Dedekind complete. We consider an example of a vector lattice X,



where X is not Dedekind complete, L°(X) is pre-Riesz, and where L™(X) turns out to be
a band in L*(X). For the proof we calculate the Riesz completion of L?(X) and show that
L™(X) can be obtained as the restriction of a band in the Riesz completion.

2 The restriction property for bands

In the present section, we study (R) for a pre-Riesz space X and its Riesz completion
Y = X?. In certain pre-Riesz spaces the restriction property (R) is trivially satisfied.

Example 2.1. We refer to [6, Example 3.4], where subspaces of the space C'(R) of con-
tinuous functions on R are considered, ordered by the natural cone

{r €e C(R): z(t) >0 for all t € R}.

Let X = P»(R) be the ordered vector space of all real polynomial functions on R of at
most degree 2. X is pre-Riesz, and its Riesz completion is given by

Y ={y € C(R): y is a piecewise polynomial function of at most degree 2
with L(y) = R(y) }

where
L(y) = tliI}l y(t)/t* and R(y) = tlim y(t)/t.

Let B be a non-trivial band in Y and let # € BN X. Since B¢ # {0}, there is y € Y,
y # 0, such that z L y. This implies x = 0. Consequently, B N X = {0}, which is a band
in X.

In general, the restriction property (R) for bands does not hold. We continue with an
example of a sequence space which turns out to be pre-Riesz, calculate its Riesz completion,
and define a band in the Riesz completion that does not restrict to a band in the pre-Riesz
space.

Example 2.2. Consider the space X = ¢ of all convergent sequences and denote ¢t =
{(zn)nen € ¢: x, >0 for all n € N}. Consider the linear functional f on X given by

f(z) = Z % — nh_)rgo x, for each x = (z,)neny € X .
n=1

Let X be ordered by the cone K = {z € ¢": f(x) > 0}. X is not a lattice, since e. g.
for the elements u = (uy,)peny With u, = 1 for all n € N and v = (v,)neny with v; = 1 and
v, = 0 for all n > 2 the infimum does not exist. Indeed, assume that w is the infimum of u
and v. On one hand, w is coordinatewise less or equal v, which yields w; < 1 and w, <0
for all n > 2. On the other hand, w is coordinatewise equal or greater than each lower
bound of u and v. Since obviously f(u) =0, f(v) = % and f(0) = 0, one gets 0 < u,v. For
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the sequence z = (2, )neny With 27 =1, 20 = —2 and 2, = 0 for all n > 3 one has f(z) =0,
so z < u,v. Since w is coordinatewise greater than 0 and z, one gets w; = 1 and w,, = 0
for all n > 2, thus w = v. From f(v) £ f(u) follows w £ u, a contradiction.

The space Y = ¢ x R, ordered by the cone Yt = {(z,7) € Y:z € ¢t,r > 0}, is a
vector lattice, and the mapping i: X — Y, i(x) = (x, f(x)) for each x € X, is linear and
bipositive. We show that i(X) is order dense in Y and that i(X) generates Y as a vector
lattice, which implies that X is a pre-Riesz space and Y is its Riesz completion.

Let y = (z,7) € Y, i e. = (xp)nen € X. Consider the first case f(z) < r. Put

Un:{x1+2(r—f(x)) if n=1 wn:{x2+4(r—f(x)) if n=2

T, otherwise ’ T, otherwise

The sequences v = (vy)neny and w = (wy)nen are elements of X. Furthermore, f(v) =
f(z) + (r — f(z)) = r and, analogously, f(w) =r. So, y < i(v), y < i(w), and moreover,
y=i(v) Ni(w) = —(i(—v) Vi(—w)).
Consider the second case f(z) > r. Then, due to the first case, there are 0, 1w € X such
that —y = —(i(0) Vi(w)), i. e. y = i(0) V i(w). So, i(X) generates Y as a vector lattice.
In the case f(x) > r it remains to show that the element y = (z,r) is the infimum of

elements of i(X). For each m € N consider the sequence 2™ = (zﬁm))neN with 2™ = 0

)

for all n < m and z,(Lm = 1 otherwise. Clearly, 2(™ € X, and since lim,,_, zﬁm) =1, one

has

- 1 1
f(z( )):Z%—1:2m71—1-

For each m € N put ™ =z + (f(z) — r)2™), then v™ € X, u(™ > x and

F@) = @)+ () =) =t o () =) 2 7,

so for each m € N one has (u™, f(u™)) > (x,r) = y. Let (v,5) € Y be an arbitrary
lower bound of the set {(u(™), f(u™)): m € N}. Then v is elementwise less or equal =,
moreover s < f(u(™) for all m € N, so s < r, which implies (v,s) < (z,7) = y. So,

Y= inf{i(u(m)): m € N}.

Consequently, i(X) is order dense in Y.
The set B={(z,r)€Y:r=0}isabandin Y. Let B'=BNX ={z €c: f(x) =0}.
As1=(1,1,1,...) € B’, due to Proposition 1.1 one gets

(B ={veec: (v,f(v)) L (b f(b)inY forallbe B'} ={0}.

Hence, (B')%™ = ¢ # B’, so B’ is not a band in X. Thus, the restriction property (R) for
bands is not satisfied.

We provide conditions on a pre-Riesz space X which ensure that the restriction property
(R) for bands holds.



Definition 2.3. A pre-Riesz space X is called pervasive, if for each element y € X? y > 0,
y # 0, there is z € X, x # 0, such that 0 < x <.

Lemma 2.4. If X is a pervasive pre-Riesz space, then for everyy € X?, y > 0, there is
S C X such that {y}? = S? in X*.

Proof. Let y € X?, y > 0. We assume y # 0. Let S = {z € X: 0 <z < y}. On one
hand, if z € X* is such that |z| Ay =0, then 0 < |z] Az < |z| Ay =0 for all z € S, hence
{y}4 C S in X7.

On the other hand, assume that there exists z € S?\ {y}?. Put w = |z| A y, then
w e XP w >0, w+#0. Since X is pervasive, there is € X, x # 0, such that 0 < z < w.
As w <y we obtain € S and therefore x A |z| = 0. Hence,

r=xANz<zAw<zAlz| =0,
which is a contradiction. We conclude {y}¢ = S in X*. O

Proposition 2.5. Let X be a pre-Riesz space such that for every y € X?, y > 0, there is
S C X such that {y}? = S%. Then the restriction property (R) for bands holds.

Proof. Let B be a band in X? and B’ = BN X. We have to show (B")% = B’ in X. Since
B' C (B')% is obvious, it suffices to establish (B')¥ C B’. Let x € (B')™ in X. We show
r € B¥ in X*. Indeed, let y € B¢ in X*. Then |y| € X*, |y| > 0. So there is a set S C E
such that {|y[}¢ = S%in X?. Let z € B C B. Then y L z in X?, so z € {|]y|}¢ = S% in
XP. So, for any s € S one has z 1 s in X”, which implies z 1 s in X due to Proposition
1.1. Hence z € S in X, and one gets B’ C S? in X. Therefore (B')¥ C %4 = S in X.
So # € S¢in X. Due to Proposition 1.1, one has x € S? in X*, and, hence, x € {|y|}¢ in

X*. Consequently, z L y in X?. As y was an arbitrary element of B¢ in X”, we obtain
r € B¥ =B in X*. Thus, z € BN E = B'. We conclude (B")% C B" in X. O

Observe that the condition in Proposition 2.5 is not necessary. Indeed, referring to Example
2.1, for S C X one has either S = {0} or S =Y. On the other hand, there are y € Y’
Wlth {y}? non-trivial. Nevertheless, (R) is satisfied.

We combine Lemma 2.4 and Proposition 2.5.

Theorem 2.6. In a pervasive pre-Riesz space the restriction property (R) for bands holds.
Observe that the pre-Riesz space in Example 2.2 is not pervasive.

Example 2.7. Consider the space X = C*¥[0,1] of k times continuously differentiable
functions on [0, 1], equipped with the pointwise ordering. X is order dense in C]0, 1], and
the Riesz completion of X is given by

Y ={y € C[0,1]: y is a piecewise k times continuously differentiable function } .

(A detailed argumentation can be given analogously to [6, Example 3.4].) X is pervasive,
so the restriction property (R) for bands holds. An analogous statement is satisfied for the
space C*°[0, 1].



Remark 2.8. For a linear subspace D of a partially ordered vector space X we compare
order denseness and the property

(p) Vee X, 220,240 eD: 0<y<uwzy#0,

which appears in Definition 2.3.
(i) Example 2.2 shows that in general order denseness does not imply (p). Vice versa,
(p) does in general not imply order denseness. Indeed, let X = R? be ordered by the cone

K ={(z1,29): ©1 >0, or z; =0 and x5 > 0}.

Let D = {(0,22): 2o € R}. Then DN K = {(0,z2): 3 > 0}. On one hand, if z =
(x1,22) € X is such that z > 0 and x # 0, then either z; > 0 so that (0,0) < (0,1) <
(x1,22) with (0,1) € D, or 9 = 0 and z; > 0 so that € D. Hence (p) holds. On the
other hand, D is not order dense, since for x = (1,0) we have y < z, y # x for all y € D.

(ii) If X is a vector lattice and D is an order dense sublattice of X then (p) holds.
Indeed, let z € X, x > 0, x # 0. Then —z = inf{y € D: y > —x}, so that there exists
ay €D withy > —xandy #20,s0y” #0. Then 0Ny > 0A (—z) = —z and since
y~ = —(y A0) we have —y~ > —z and therefore 0 < y~ < z. So (p) holds.

(iii) If X is an Archimedean vector lattice and D is a majorizing subspace of X, then
(p) implies that D is order dense in X. For a proof, suppose that D is not order dense in
X. Then there exists an x € X such that = # inf{y € D: y > z}. That is, there exists a
v € X such that v <y forally € D with y > z, but v £ . Put w =vAx € X. Then
w <y forall y € D with y > z, and we have 0 < w — x and w — x # 0. Since (p) holds,
there exists a u € D, u # 0, with 0 < u < w — z, hence w — u > x. Since D is majorizing,
there exists a yo € D with yo > w. Then y; = yo —u > w —u > x, where y; € D and
y1 > w. Inductively, we define y, = y,-1 —u = yo — nu € D with y, > w —u > x and
therefore y,, > w, where n € N. Then yo — w > nu for all n € N. As X is Archimedean we
obtain that u < 0, which is a contradiction.

(iv) If X is an Archimedean vector lattice and D is a sublattice, then D is order dense
in X if and only if (p) holds (cf. [3, Theorem 3.1]).

3 A space of operators

In [2] the space [5° of all real sequences which are constant except for a finite number
of terms is investigated. This vector lattice is not Dedekind complete. In [2, Theorem
4.1] it is established that L"(I°) = L*(I°). The space L"(I3°) does not satisfy the Riesz
decomposition property [2, Theorem 5.1], so L"(I§°) is not a vector lattice. Since every
(0)-continuous operator is automatically order bounded (see [1, Theorem 2.1]), the space
of (o)-continuous operators L™(I§°) is a subspace of L"(I5°). We show that L™(I5°) is a
band in L"(I5°). Indeed, we establish that L"(l5°) is a pre-Riesz space, calculate its Riesz
completion, show that L"(I§°) is pervasive and apply the restriction property for bands.
In view of the subsequent example, we fix some notations. The space of all real se-
quences which are zero except for a finite number of terms is denoted by coy. Let X be a
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vector space with a countable algebraic basis B = (b));cy,, i. e. for every € X there is
a unique sequence & = (&;);en, € Coo such that

T = i &b .
=0

For i € N define f®: X — R by f®(z) = &, so one can write
r=Y_ fO)p®.
i=0

Let A: X — X be a linear operator. We denote the matrix representation of A with
respect to B by A, i. e.

~

A = (aij)i,jeNO Wlth aij = f(l) (Ab(j)) . (1)

By definition, for each j € Ny one has (a;;)ien, € coo. Conversely, every matrix (a;;j); jen,
with (a;;)ien, € coo for all j € Ny corresponds to a linear operator A: X — X. We view A
as a linear operator on cg, where

~

A: Coo — Coo -
Example 3.1. Let X = [§° be the vector lattice of all eventually constant sequences, i. e.

I ={(z;)ien: thereis f€R and k€N such that z; = forall i > k},

equipped with the coordinatewise order. The cone in X is denoted by X . For every j € N
denote ‘
el = (2i)ien with z; =1 and x; =0 forall i j.

Moreover, denote 1 = (1);en. The set
B={1,eW e? .}

is an algebraic basis of X, where for z = (z;);en € X one has

fOw) = lma,
and fO(x) = ;= lima; forall j> 1. @

For a linear operator A: X — X we have the matrix representation A according to (1).
Next we address the issue of order. Define

K={6=(&)ien, € co0: & >0,&+E& >0 forall ¢ € N},

then one has '
z € X, if and only if (f¥(2))sen, € K .

So, A is positive if and only if A is positive in the space (coo, K). We characterize the
positivity of A.



A

(a) A = (aij)ijen, is positive in (cop, K) if and only if for all 7 € N the both conditions
(i) agj +a;; >0 for all j € N, and
(il) aoo + aio > 72, (agj + aiy)
are satisfied.

For a proof, assume first that A is positive in (g, K). Denote ) = (¢)ien, with €; = 1
and ¢, = 0 for all i # j. Since €¥) € K, we have AeVU) € K for all j € Ny, which means
that (i) holds and that

(iii) ag; > 0 for all j € Ny.

Further, let N € N and consider § = (§;)ien, € K defined by § =1,§ = —1for1 <i < N,
and & =0 for ¢ > N. As A¢ € K we obtain agy > Zjvzl ap; and

N
aoo + Qo Z Z(aoj + aij) for all = € N.

j=1
We infer (ii) and
(iv) a0 = 3272, ao;.

Conversely, assume that (i) and (ii) hold and let £ € K. For every i € N we have

(AS)i+ (Ao = (aio +an)éo+ > (@i + ag;)§;

J=1
e 9]

> (a0 + ago)éo — Z(aij + ag;)&o > 0.

j=1

Since the columns of A are eventually zero, we see that (iii) and (iv) follow from (i) and
(ii). Hence

(Af)o = apéo + Z ao;& = appo — Z ap;&o > 0.
j=1 j=1

Thus A is positive.

~

(b) A = (aij)ijen, is regular with respect to (cgo, /) if and only if the sequence of absolute
row sums (Y7, |aij|)ien, is bounded.



Indeed, assume that A is regular. Then there exist positive operators G and H on (coo, K)
with G = (gij)i,jeNo and H = (hij)i7j€N0 such that A = G — H. Define B = (bij)iJENO by
B =G+ H. Then B is positive and B — A=2His positive, so that for all i € N,

bOj >0, b0j+bij > 0 for all j € N,

boo > Zboj', boo + big > Z(boj' + bsj),

j=1 j=1
bOj — Qoj > O, b()j — Aoy + bij — Q5 > 0 for aHj S N, and

boo — aoo > Y _(bo; — ag;)-
j=1

Hence
Qi S bOj + bij — Qoj S (bOj + bU) -+ (bOj — aoj) for all Z,] e N.
Both terms at the right hand side are positive, so taking positive parts and summing over
7 yields
Za;; < Z ((bij + bo;j) + (boj — an)>
j=1 j=1
S boo + biO + boo — Qqo for all = € N.

Similarly, if we consider — A instead of A we obtain boj + ag; > 0 for all j € Ny and

Z(—O,Z’j)+ < b(]() + bl'(] + boo -+ Qoo for all 7 € N.
j=1
Since (bjo)ien, € oo, the maximum b = max{by: 7 € No} exists, and > 2 [a;;| < 4bgo +2b
for all ¢ € N. It also follows that |ag;| < by; for all j € Ny and hence Zj; laoj| < boo.
Thus, (3°72; |aij|)ien, is bounded by 4bg + 2.
Next assume that (3272, [aij|)ien, is bounded. Let b > 4377 |a;;| for all i € Ny. Define

B = (bij)ijen, by
boo =b+ ‘CL00| and bij = |aij\ for ’l,] S NO with (Z,j) 7é (0,0)

~

With the aid of (a) it follows that B and B — A are positive. Hence A = B — (B — A) is
regular.

(c) The space L' (cgo, K) of regular operators on (cy, K) is not a lattice.

For example, consider A = (a;;); jen, With a;; = —1/i if i = j > 1 and a;; = 0 otherwise.
Due to (b), A is a regular operator on (cgo, K). We show that AV 0 does not exist. Define
for n € Ny the operator B™ = (b); ey, by

ij

1 . . .
- n—H lf =] = O,
by, = = ifj=0and1<i<n,
0 otherwise.
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It is easily checked that B™ and B™ — A are positive for all n € Ny. Further, let
G = (9ij)ijen, be an operator on (cgg, K) such that 0 < G < B™ for all n € N,. If
we show that G > A cannot hold, then we know that there is no least upper bound of
{0, A}. For i € N and n € Ny, the positivity of G and B™ — G yields gy + gio > 0 and
b(()g) — goo + bgg ) gio > 0. Since the columns of B(™ and G are eventually zero, it follows
that 0 < ggg < bgé) for all n and therefore gopg = 0. If we now suppose that G > A, then

goo — Qoo + Gio — Qip = Z(QOj —ag; + gi; — ai;) foralli € N,
j=1

SO gio > 1/i, which contradicts the fact that the columns of G are eventually zero. Thus
AV 0 does not exist in L" (¢, K).

Recall that the space L"(coy, K') consists of the matrix representations of the regular
operators on [§°. Due to (b), this space of matrix representations is given by

R = {(aij)i,jeNo: (aij)i € Coo VJ € NO and (E]Oil ‘CLZ']'DZ.GNO is bounded}.

The space R is equipped with the cone of operators that are positive with respect to
(coo, K), that is, the representations satisfying (i) and (ii) of (a). It is our aim to embed R
into an appropriate vector lattice. Define a space Y as the space of all matrices (b;;)ien,jen,
that satisfy the following four conditions:

(bij)ien is eventually constant for all j > 1, (3)
i |8;] < oo, where 3; = zliglo bij, (4)
=1

Zbio)ieN is bounded, (5)
<§ |b,~j|)iEN is bounded. (6)

We endow Y with the entrywise order. We define a map F on R by
F(A) = (fi;(A))ien jeno,
for A = (ai;)ijen, € R, where
fot) = { oyt % fori €N, j 21
ago + aio — > oy (age +ay) forieN, j=0.
(d) The space Y is a vector lattice and F': R — Y is a bipositive linear map.

It is straightforward that Y is a vector lattice. We next show that F maps into Y. Let
A € R and put b;; = f;;(A) for i € N and j € Ny. For j > 1 we have b;; = ao; for ¢ large,
50 (3) holds. Further, §; :=lim; .o, b = ag; and Y72, |3 = 2272, |agj| < oo, so we have
(4). To infer (5) and (6), use that (Z;’il |ai;]), is bounded and (a;o); € coo. It is clear that
the map F' is linear and that F'(A) is positive if and only if A is a positive element of R.
As each bipositive map is injective, it follows that R is embedded in Y by the map F.
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(e) The subspace F'(R) is order dense in Y.

Indeed, let B = (by;)ienjen, € Y. We construct a sequence (AY)yey in R such that for
each N € N we have

F(AN)ZJ:[)Z] fOI"lEN, ]EN, andforz'zl,...,N, j:O,
F(AN)Z]ZZ)U forj:O, 1> N.

Then it follows that B = inf{F(A): A€ R, F(A) > B}. Fix N € N. The construction
of AN is as follows. Denote B; = lim;_. b;; for j > 1 and choose 3y > 0 such that

ﬁ > sup bl + sup bz )
b = sup [bi| ZEN;| Jl
which is possible due to (5) and (6). Define
B, for i =0, 7 € Ny,
CI,NI bij_ﬁj fOTiGN,jEN,
K biO_ﬁO+Z§i1bi€ fOTZGNWIchSN,]ZO,
0 for: € Nwithi > N, 57 =0,

and put AN = (a})); jen,- It is straightforward that AY € R and that F(A") is as desired.
Thus, we have shown that the space L"(cog, K) is pre-Riesz and that its Riesz completion
is the vector lattice generated by F(R) in Y.

(f) The space Y is not o-Dedekind complete.

For a proof, define B™ = (bg?))ieN,jeNO for n € N by

B 1/i fori=1,...,n, j=1,

W | 0 otherwise.

Then B™ €Y for all n € N and {B™: n € N} does not have a supremum in Y.
(g) The space L"(cgo, K) is pervasive.

We show that forany B € Y, B > 0, B # 0, thereis A € R such that F'(A) > 0, F(A) # 0,
F(A) < B. Let B = (b;j)ien,jeng, bij > 0, B # 0. We examine two cases.

(i) There is ¢ € N such that b,y > 0.
Put a;o = by and ay = 0 otherwise. Then A = (a)ken, € R and

o biO fork:i,l:()
F(A)n = { 0 otherwise

(ii) There are 4,j € N such that b;; > 0.
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Put a; = a;; = b;; and ay; = 0 otherwise. Then A = (ay)kien, € R and

L bij fork:i,l:j
F(A)w = { 0 otherwise

In both cases A satisfies F'(A) >0, F(A) # 0, and F(A) < B.

We conclude from Theorem 2.6 that the space L"(cgo, K) (and, hence, L"(I5°)) has the
restriction property (R) for bands.

Let us now consider the space L"(cqo, K) of (0)-continuous operators on (¢, /), which
is a subspace of L"(cyp). We will show that L™(co, K) is a directed band in L"(cgg, K).
(Note that, in general, a band need not be directed, cf. [6, Example 5.13].) First, we
characterize the positive (0)-continuous operators and then we consider the arbitrary case.
In order to prove the characterizations, we need two statements concerning (o)-convergence
of sequences in (cgg, K).

(h) (i) A net (z%), in (cgo, K) satisfies * | 0 if and only if z§ | and z§ + 2% | 0 for all
ieN.
(ii) The sequence (2")nen in (coo, K) defined by aj := 1, 2 := =1 fori=1,...,n,
and z := 0 for ¢« > n, n € N, satisfies 2" | 0.

To show (i), we first assume that * | 0. Then z§ > 0 and z§ + 2% > 0, and both x§ and
xf + 3 are decreasing in « for all 7 € N. Suppose that zf + xf > ¢ for all a for some
k€ Nand 6§ > 0. If we define y € coyp by yr := 9 and y; := 0 for all 7 # k, then y < x® for
all a. However, y £ 0, since yg + yx = 0 £ 0, which contradicts x® | 0.

Conversely, we assume that z§ | and z§+2z$ | 0 for alli € N. Then (2%), is a decreasing
net of positive elements. If y € cgg satisfies y < 2 for all «, then yo +y; < 2§ + x¢ for all
1 € N and all a. Hence yg + y; < 0 for all © € N and then also yg < 0 as y € cpo. Soy <0
and therefore z¢ | 0.

For a proof of assertion (ii), observe that for n > m,

1 ifm<i<n,

@ =)o =0 and (a7 = a")+ (o —x)oz{o otherwise,

so ™ > ™. Further, ™ > 0 for all n. Finally, if y < 2™ for all n, then for every i € N we
have y; + yo < 27 + af for all n, so y; +yo < 0. Since y € ¢y, we also obtain yy < 0 and
y < 0. Hence z" | 0.

(j) A regular operator A = (a;;); jen, On (coo, &) is (0)-continuous if and only if
Z(aij + ag;) = aip + ago  for all i € N.

J=1

Moreover, the space L"(cqo, K) is directed.
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We first assume that A is an (o)-continuous operator on (co, K') and show that the algebraic
condition holds. For a net z® | 0 we have Ax® ©, 0, so that there exists a net (v*), in
(co0, K) with £Ax* < v® for all @ and v§ | and v{* + v | 0 for all ¢ € N. We then have
£[(Az®); + (Ax¥)o] < v + v, s0 | D72 (aij + ao)x§| < vff +vg | 0 for all i € N. Further,
for each i € N,

[e.9] o0

> (i + ag)(af + xf) Z (Jaij| + |aos|)(=§ + 27),

7j=1 7=1

which converges to 0 by the Monotone Convergence Theorem, since E]Oil la;;| < oo for all
i € No and 2 + 2 | 0 for all j € N. Hence for each 7 € N, the right hand side of the
identity

> (ai + ag)af — (aio + ag)z§ = > (ai; + agy) (5 + ) —

j=1 7=1 J

M

I
=)

(aij + ao;)x§

converges to 0. If we consider the sequence (z"),en of (ii) of (h), we have zf} =1 for all n,
and we infer that Z;-)O:1<a/ij + ag;) = aip + ag for all i € N.

Next, we show that any regular operator A = (a;;); jen, o1 (coo, K) that satisfies the
algebraic condition is (0)-continuous. We assume as a first step that A is positive. Let
(%) be a net in (coo, K) with 2* | 0. Then Az® | and in particular (Az%)y |. Due to the
property of A we have for every i € N,

(Az%)o + (Az?) Z aoj + aij)(xg + xF).
7j=1
Since Y% (ao; + ai;) < oo and x§ + x¢ | 0 for all 4, it follows that (Az*)o + (Az®); | 0.
By (i) of (h) we infer that Az | 0. Hence A is (o0)-continuous.
Now, let A = (a;;)i jen, be an arbitrary regular operator on (cg, /) that satisfies the
algebraic condition. We show that there exists a positive (o0)-continuous operator B on
(coo, K) such that B — A is positive and (o0)-continuous. Let

+
= sup <Z |ao;| + [ai;]) — (lao| + \aM)) ;

€N

which is a finite number, as A is regular. Define d;; = |a;;| for 4, j € Ny with (7, 5) # (0, 0)
and dgy = |ago| + d. Then
B = doo + dig — Y _(doj +di;) >0 forall i € N.
j=1

Now define B = (b;;)i jen, by

do() for ¢ :] = O,
bij = dij for ’l,] € N with ¢ 7é j,
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Then the columns of B are eventually zero, so B is an operator on (cgg, K). Further, B
satisfies the algebraic condition, and so does B — A. Also, B and B — A are positive.
Therefore, both B and B — A are (o)-continuous. Thus, A = B— (B — A) is (0)-continuous
and the proof is complete.

(k) The space L™(cqo, K') is a band in L (cgo, K).

We show the equivalent assertion, namely that the set A" of matrix representations of
elements of L™(cpo, K) is a band in R. We use the embedding in Y and the fact that
disjointness in Y is the entrywise disjointness. According to (d) and (e), the map F
embeds R order densely into Y. Due to (j), an element A € R is in N if and only if
F(A);p =0 for all ¢ € N. The set {B = (b;j)ien,jen, € Y : bjo = 0 for all i € N} is a band
in Y. Since the restriction property (R) for bands holds, F(R) N B is a band in F(R).
Accordingly, N is a band in R.
We conclude that L"(I§°) is a band in the pre-Riesz space L"(I5°).

In the previous example the Riesz completion shows to be an appropriate tool to deal with
spaces of operators on a vector lattice that is not Dedekind complete. If X is a Dedekind
complete vector lattice, Ogasawara’s theorem states that L™(X) is a band in L"(X). The
above example may be seen as an instance of this theorem in the more general setting of
pre-Riesz spaces. Thus we arrive at the following question for a vector lattice X:

If L°(X) is pre-Riesz (e. g., Archimedean and directed), which conditions on X ensure
that L"(X) is a band in L°(X)?

Acknowledgement. The authors thank Martin R. Weber for inspiring questions and
advice. O. van Gaans acknowledges the support by a ‘VIDI subsidie’ (639.032.510) of the
Netherlands Organisation for Scientific Research (NWO).

References

[1] Y.A. ABRAMOVICH AND G. SIROTKIN, On order convergence of nets, Positivity 9
(3) (2005), 287-292.

[2] Y.A. ABRAMOVICH AND A.W. WICKSTEAD, Regular operators from and into a
small Riesz space, Indag. Mathem., N.S. 2 (3) (1991), 257-274.

[3] C.D. ALIPRANTIS AND O. BURKINSHAW, Positive operators, Academic Press Inc.,
London, 1985.

[4] G. Buskes AND A.C.M. vAN Roous, The vector lattice cover of certain partially
ordered groups, J. Austral. Math. Soc. (Series A) 54 (1993), 352-367.

[5] O. vAN GAANSs AND A. KALAUCH, Disjointness in partially ordered vector spaces,
Positivity 10 (3) (2006), 573-589.

15



[6] O. VAN GAANS AND A. KALAUCH, Ideals and bands in pre-Riesz spaces, Positivity,
to appear.

[7] M. vAN HAANDEL, Completions in Riesz space theory, Ph.D. thesis, University of
Nijmegen, 1993.

Onno van Gaans
Mathematical Institute
Leiden University

P.O. Box 9512

2300 RA Leiden

The Netherlands
vangaans@math.leidenuniv.nl

Anke Kalauch

Institut fir Analysis
Fachrichtung Mathematik
TU Dresden

01062 Dresden

Germany

16



