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Abstract

This paper concerns the dynamics of non-expansive maps on strictly
convex finite dimensional normed spaces. By using results of Edelstein
and Lyubich, we show that if X = (Rn, ‖ · ‖) is strictly convex and
X has no 1-complemented Euclidean plane, then every bounded orbit
of a non-expansive map f : X → X , converges to a periodic orbit.
By putting extra assumptions on the derivatives of the norm, we also
show that the period of each periodic point of a non-expansive map
f : X → X is the order, or, twice the order of a permutation on n
letters. This last result generalizes a theorem of Sine, who proved it
for ℓn

p
where 1 < p <∞ and p 6= 2. To obtain the results we analyze the

ranges of non-expansive projections, the geometry of 1-complemented
subspaces, and linear isometries on 1-complemented subspaces.

1 Introduction

A frequently addressed problem in non-linear functional analysis is to de-
scribe the asymptotic behavior of the iterates of non-expansive maps f : X →
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X on a real Banach space, see for instance [1, 3, 6, 8, 22, 24, 25]. This prob-
lem is already highly non-trivial in finite dimensional normed spaces. It is
known [14, 21, 27], for example, that if R

n is equipped with a polyhedral
norm that has N facets, then every bounded orbit of a non-expansive map
f : R

n → R
n converges to a periodic orbit of f whose period does not exceed

maxk 2k
(m

k

)

, where m = N/2. Important examples of polyhedral norms on
R

n are the ℓ∞-norm, ‖x‖∞ = maxi |xi|, and the ℓ1-norm, ‖x‖1 =
∑

i |xi|.
For the ℓ∞-norm Nussbaum [21] has conjectured that the optimal upper
bound for the possible periods of periodic points of non-expansive maps
f : R

n → R
n is 2n. At present, however, this conjecture is proved for n = 1,

2 and 3 only, see [15, 17]. For the ℓ1-norm a complete characterization of
the set of possible periods of periodic points of non-expansive maps in terms
of arithmetical and combinatorial constraints was obtained in [13] (see also
[23]).

Knowing these results the following problem is particularly interest-
ing: Identify those norms on R

n that have the property that for every non-
expansive map f : R

n → R
n each bounded orbit converges to a periodic orbit.

Obviously the ℓ2-norm does not possess this property as every rotation in
the plane about an irrational angle is an isometry. On the other hand, Sine
[25] has proved that the ℓp-norms on R

n have this property if 1 < p <∞ and
p 6= 2. Moreover, he showed, in that case, that the period of each periodic
point is an element of the set

S(n) = {p ∈ N : p = lcm(p1, . . . , pk) or p = 2 lcm(p1, . . . , pk)

for some integers 1 ≤ p1, . . . , pk ≤ n with

k
∑

i=1

pi ≤ n}.

In other words, each period is the order, or twice the order, of an element
of the symmetric group on n letters.

Our aim in this paper is to generalize Sine’s result to more general strictly
convex norms on R

n. Among others, we show that if (Rn, ‖ · ‖) is a strictly
convex normed space that does not contain a 1-complemented Euclidean
plane, then every bounded orbit of a non-expansive map converges to a
periodic orbit. We note that this result is sharp. Indeed, if (Rn, ‖ · ‖) is a
strictly convex space with a 1-complemented Euclidean plane E, then one
can compose the norm one projection onto E with an irrational rotation
on E to obtain a non-expansive map for which most bounded orbits do not
converge to periodic orbits. Under additional assumptions on the derivatives
of the norm we also show that the possible periods of the periodic points
are elements of S(n). Examples, other than the classical ℓp-spaces with
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1 < p < ∞ and p 6= 2, include vector valued ℓp-spaces such as ℓnp (ℓmq ) for
p, q ≥ 2 and 1 < p, q < 2, and certain Orlicz spaces. To obtain the results
we shall initially study non-expansive maps on possibly infinite dimensional
Banach spaces and subsequently specialize to the finite dimensional case. We
emphasize that the results presented here depend on the assumption that
the non-expansive map is defined on the whole Banach space, and that, in
general, non-expansive maps defined on a proper subset of a Banach space
need not admit a non-expansive extension to the whole space.

2 Non-expansive projections

In the sequel X will denote a real Banach space. A map f : A → X, with
A ⊆ X, is called non-expansive if ‖f(x) − f(y)‖ ≤ ‖x − y‖ for all x, y ∈ A.
It is said to be an isometry if equality holds for all x, y ∈ A. A map
τ : X → X is called a projection if τ2(x) = τ(x) for all x ∈ X. (We note
that a projection need not be linear in general and is often called a retraction
in the point-set topology literature.) To analyze the asymptotic behavior
of the orbits, O(x) = {fk(x) : k = 0, 1, 2, . . .}, one needs to understand the
structure of the ω-limit sets,

ω(x) = {y ∈ X : fki(x) → y for some {ki} with ki → ∞}.

We define the attractor of f : X → X by

Ωf =
⋃

x∈X

ω(x).

If O(x) is pre-compact and f : X → X is continuous, then ω(x) is non-empty
and f(ω(x)) = ω(x). If f is also non-expansive then the restriction of f to
ω(x) is an isometry (cf. [8]). In a separable Banach space, Ωf is the range of
a non-expansive projection, if f : X → X is non-expansive and every orbit
of f is pre-compact, as the following proposition shows.

Proposition 2.1. If X is a separable Banach space and f : X → X is a
non-expansive map such that O(x) is pre-compact for each x ∈ X, then there
exists a non-expansive projection τ : X → X onto Ωf and the restriction of
f to Ωf is an isometry.

The proof of this proposition uses the following lemma, which is proved
in a similar way as the classical Arzela-Ascoli theorem.

3



Lemma 2.2. If X is a separable Banach space and f : X → X is a non-
expansive map such that O(x) is pre-compact for each x ∈ X, then every
subsequence of {fk} has a convergent subsequence that converges uniformly
on compact subsets of X.

Proof. As X is a separable Banach space, there exists a countable dense
subset Y = {yk : k ∈ N} in X. Remark that {fk(y1)} has a convergent
subsequence, say {fk1,i(y1)}, since O(y1) has a compact closure. Similarly
{fk1,i(y2)} has a convergent subsequence, {fk2,i(y2)}. By repeating the ar-
gument indefinitely, we obtain for each m ∈ N a subsequence {fkm,i} such
that {fkm,i(yl)} converges for each l ≤ m. Now we remark that the diagonal
sequence {fki,i} has the property that {fki,i(ym)} converges for each m ∈ N.

For x ∈ X and ε > 0 there exists y ∈ Y such that ‖x − y‖ < ε.
As f is non-expansive, we deduce that ‖fki,i(x) − fkj,j(x)‖ ≤ ‖fki,i(x) −
fki,i(y)‖+‖fki,i(y)−fkj,j (y)‖+‖fkj,j (x)−fkj,j (y)‖ ≤ 2ε+‖fki,i(y)−fkj,j (y)‖.
Obviously the second term at the right hand side converges to 0 as i, j → ∞,
so that {fki,i(x)} is a Cauchy sequence in X and hence it converges.

To show that the convergence is uniform on compact subsets of X, we let
C ⊆ X be compact and {z1, . . . , zr} ⊆ Y be such that C ⊆ ∪iB(zi, ε), where
B(zi, ε) is the open ball with radius ε around zi. By the same argument as in
the previous paragraph we know for each x ∈ C that there exists 1 ≤ s ≤ r
such that

‖fki,i(x) − fkj,j(x)‖ ≤ 2ε+ ‖fki,i(zs) − fkj,j(zs)‖.

Now let I ∈ N be such that

max
1≤s≤r

‖fki,i(zs) − fkj,j(zs)‖ < ε

for all i, j ≥ I. This implies that ‖fki,i(x) − fkj,j(x)‖ ≤ 3ε for all i, j ≥ I
and x ∈ C, and hence {fki,i} converges uniformly on C.

Let us now prove Proposition 2.1.

Proof of Proposition 2.1. By Lemma 2.2 there exists a subsequence {fki} of
{fk} that converges uniformly on compact subsets of X. By passing to a
subsequence and applying the lemma again we may assume that kij+1−kij →

∞, as j → ∞, and {fkij+1−kij } converges uniformly on compact subsets of
X. Define τ : X → X by

τ(x) = lim
j→∞

f
kij+1−kij (x) for each x ∈ X. (1)
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To see that τ is a projection onto Ωf we first remark that τ(x) ∈ Ωf for each
x ∈ X, so that τ(X) ⊆ Ωf . Now let y ∈ Ωf . It follows from [8, Theorem
1] that y ∈ ω(y) and, as O(y) has a compact closure, f(ω(y)) = ω(y).
Therefore there exists for each k ∈ N a point yk ∈ ω(y) such that fk(yk) = y.
Denote by g the point-wise limit of {fki} and let {ylj} be a convergent
subsequence of {yki

} with limit say z ∈ ω(y). (Such a subsequence exists as
ω(y) is compact.) Clearly

‖f lj (ylj) − g(z)‖ ≤ ‖f lj (ylj) − g(ylj )‖ + ‖g(ylj ) − g(z)‖ → 0,

as j → ∞, since {f lj} converges uniformly to g on ω(y). Thus, we find that
g(z) = y.

Remark that
f

kij+1(z) = f
kij+1−kij (f

kij (z))

for each i ∈ N. The left hand side converges to g(z), whereas the right hand
side converges to τ(g(z)). Therefore τ(y) = y for all y ∈ Ωf and hence τ is
a non-expansive projection onto Ωf .

It is now easy to deduce that f is an isometry on Ωf , as ‖x−y‖ = ‖τ(x)−

τ(y)‖ ≤ limj→∞ ‖fkij+1−kij (x) − f
kij+1−kij (y)‖ ≤ ‖f(x) − f(y)‖ ≤ ‖x − y‖

for all x, y ∈ Ωf .

A Banach space X is said to be strictly convex if the unit sphere, SX =
{x ∈ X : ‖x‖ = 1}, does not contain a straight-line segment, or, equivalently,
‖x+ y‖ = ‖x‖ + ‖y‖ and y 6= 0 implies x = (‖x‖/‖y‖)y. It has been proved
by Edelstein [11, Proposition 2] that if f : X → X is a non-expansive map
on a strictly convex Banach space and f is an isometry on A ⊆ X, then
f preserves convex combinations on the convex hull of A, i.e., f(λx+ (1 −
λ)y) = λf(x) + (1 − λ)f(y) for all x, y ∈ A and 0 ≤ λ ≤ 1. A combination
of Edelstein’s result with Proposition 2.1 immediately yields the following
corollary.

Corollary 2.3. If X is a strictly convex separable Banach space and f : X →
X is a non-expansive map such that O(x) is pre-compact for each x ∈ X,
then Ωf is convex.

Proof. Let τ : X → X be the non-expansive projection onto Ωf from Propo-
sition 2.1. For each x, y ∈ Ωf and 0 ≤ λ ≤ 1 we have that τ(λx+(1−λ)y) =
λτ(x) + (1 − λ)τ(y) = λx+ (1 − λ)y, so that λx+ (1 − λ)y ∈ Ωf .

Under the assumptions in Corollary 2.3 we also have that f : X → X has
a fixed point in Ωf . Indeed, f(ω(x)) = ω(x) and ω(x) is non-empty, as f
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is continuous and O(x) has a compact closure. Thus, by Edelstein’s result,
f(conv(ω(x))) ⊆ conv(f(ω(x))) = conv(ω(x)). But conv(ω(x)) is compact,
as ω(x) is compact (see [10, Theorem V.2.6]) and therefore f : X → X has a
fixed point by the Schauder fixed point theorem. This result, however, also
holds in finite dimensional normed spaces, and, more generally, under mild
compactness conditions on f . It is not hard to show the following assertion.

Lemma 2.4. Let X be a strictly convex separable Banach space. If f : X →
X is a non-expansive map such that O(x) is pre-compact for each x ∈ X and
f(0) = 0, then there exists a unique linear extension of the restriction of f
to Ωf to the closure of span(Ωf ) and this extension is a surjective isometry.

Proof. As 0 ∈ Ωf , it follows from Edelstein [11, Proposition 2] that the
restriction of f to Ωf has a unique linear extension F to the closure of
span(Ωf ). To see that F is an isometry, we use the equality span(Ωf ) =
{αx − βy : α, β ≥ 0 and x, y ∈ Ωf}, which is not hard to show. Let z =
αx − βy ∈ Ωf , with α, β ≥ 0 and x, y ∈ Ωf . Take M > α,β and put
a = αx/M and b = βy/M . Since Ωf is convex and 0 ∈ Ωf , we know that
a, b ∈ Ωf , so that ‖F (z)‖ = M‖f(a) − f(b)‖ = M‖a − b‖ = ‖z‖, due to
Proposition 2.1. Finally, F is surjective, as f maps Ωf onto Ωf and F is
linear.

A subspace Y ⊆ X is called 1-complemented in X if it is the range of a
linear non-expansive (norm one) projection. Also recall that a Banach space
X is smooth if for each (x, y) ∈ SX × SX ,

lim
t→0

‖x+ ty‖ − ‖x‖

t
(2)

exists. If the limit in (2) is uniform for (x, y) ∈ SX×SX , then X is said to be
uniformly smooth. Now suppose that f : X → X is a non-expansive map on
a strictly convex separable Banach space and that X is uniformly smooth.
If each orbit of f is pre-compact, Ωf has a non-empty relative interior as
a subset of span(Ωf ) and 0 ∈ Ωf , then we shall show that span(Ωf ) is 1-
complemented in X. To prove this we use the following observation by Sine
[25]. As Sine omits most of the details of the proof, we provide them here.

Proposition 2.5. Let X be a uniformly smooth Banach space and A be a
convex subset of X with non-empty relative interior as a subset of span(A)
and 0 ∈ A. If there exists a non-expansive projection τ : X → X onto A,
then span(A) is 1-complemented in X.
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Proof. Before we start the proof we like to point out that under the assump-
tions span(A) must be closed, as the range of a non-expansive projection is
closed. To prove the proposition we need the notion of a sunny projection.
A projection τ : X → X is called sunny if for each x, y ∈ X with τ(x) = y
we have that τ(y + λ(x − y)) = y for all λ ≥ 0. It has been shown by
Bruck [7, Theorem 2] that if X is a uniformly smooth Banach space and
A ⊆ X is the range of a non-expansive projection, then there exists a sunny
non-expansive projection s : X → X onto A.

For x ∈ A and y ∈ span(A) with x 6= y, let x + Hx(y) denote the
hyperplane through x tangent to the ball B(y, ‖x − y‖) centered at y with
radius ‖x− y‖. In other words Hx(y) is the null space of JX(x− y), where
JX : X → X∗ is the duality map. Recall that as X is uniformly smooth, X∗

is uniformly convex, so that JX is a single valued continuous map. In fact,
JX(z) is the unique functional such that ‖JX(z)‖ = ‖z‖ and JX(z)(z) =
‖z‖ · ‖JX(z)‖.

For each x ∈ A write

Nx = ∩{Hx(y) : y ∈ span(A) and y 6= x}.

We note that if x ∈ A and y ∈ span(A) with x 6= y, then Hx(y) = Hx(z) for
all z ∈ {x+ λ(y− x) : λ > 0}, as JX(x− (x+ λ(y− x)) = λJX(x− y) for all
λ > 0. Since A is convex, this gives for each x ∈ relint(A) (relative interior
of A) that

Nx = ∩{Hx(y) : y ∈ relint(A) and y 6= x}

= ∩{Hx(y) : y ∈ relint(A), y 6= x and ‖y − x‖ < α} (3)

for any α > 0. Moreover, we have that Nx = Ny for all x, y ∈ relint(A), since
span(A) is a subspace containing A. We write N = Nx for x ∈ relint(A)
Furthermore we define F (x) to be the affine subspace generated by s−1({x})
for x ∈ relint(A). We remark that N ∩ span(A) = {0}. Indeed, if x ∈
relint(A) and there exists y ∈ (x+N) ∩ span(A) with y 6= x, then y − x ∈
N ⊆ Nx(y), so that y is in the hyperplane tangent to B(y, ‖y − x‖), which
is impossible. The remainder of the proof is split up into two claims.
Claim 1. For each x ∈ relint(A), F (x) = x+N . To show this claim we first
prove that F (x) ⊆ x+N . Let z ∈ s−1({x}). As s is a sunny non-expansive
projection onto A, the half-line ℓ+x,z = {x + λ(z − x) : λ ≥ 0} does not
intersect the open ball B(y, ‖y−x‖) for all y ∈ A. Let α > 0 so small that if
y ∈ A and ‖x− y‖ < α, then the reflection of y in x, given by y′ = 2x− y, is
also in A. Next we show that ℓ−x,z = {x+λ(z−x) : λ ≤ 0} does not intersect
the open ball B(y, ‖y−x‖) for all y ∈ A with ‖x− y‖ < α. Suppose, for the
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sake of contradiction, that there exists y ∈ A such that ‖x−y‖ < α and ℓ−x,z

intersects B(y, ‖y − x‖). Let y′ be the reflection of y in x. It is easy to see
that the reflection of B(y, ‖x− y‖) in x is equal to B(y′, ‖x− y′‖). Indeed,
if z′ is the reflection of z ∈ B(y, ‖x− y‖) in x, then

‖z′ − y′‖ = ‖(2x − z) − (2x− y)‖ = ‖z − y‖ < ‖x− y‖ = ‖x− y′‖,

which proves one inclusion. The other inclusion follows by symmetry. This
implies that ℓ+x,z ∩ B(y′, ‖x − y′‖) is non-empty, which is a contradiction,
as y′ ∈ A and s is a sunny non-expansive projection. Thus, we find that
lx,z = {x+ λ(z − x) : λ ∈ R} does not intersect B(y, ‖x − y‖) for all y ∈ A
with ‖x − y‖ < α. As N is a linear subspace, it thus follows from (3) that
F (x) ⊆ x+N .

To prove the opposite inclusion, x + N ⊆ F (x), let z ∈ x + N and
z 6= x. We note that z − x 6∈ span(A), as N ∩ span(A) = {0}. To show that
s(z) = x, it suffices to show that s(x+ ε(z − x)) = x for some ε > 0, since s
is sunny. We may therefore assume that s(z) ∈ relint(A), as x ∈ relint(A).
Suppose that s(z) 6= x. Then the 2-dimensional affine subspace W through
z, x and s(z) intersects x + N in the line lx,z, because x, z ∈ x + N and
s(z) 6∈ x + N . (Otherwise s(z) − x ∈ N ∩ span(A).) The line ls(z),z is
contained in F (s(z)) ⊆ s(z) +N , because s(z) ∈ relint(A). By translation,
lx,z−(s(z)−x) ⊆ x+N , so that lx,z−(s(z)−x) is contained in the intersection of
x + N and the affine plane W . Therefore x, z and z − (s(z) − x) are all
on a line, which contradicts the fact that s(z) 6∈ x+N . Thus, we find that
s(z) = x and hence F (x) = x+N .
Claim 2. span(A) ⊕N = X. There exists x ∈ relint(A) and a closed ball B
around x such that s(B) ⊆ relint(A). For y ∈ X with s(y) ∈ relint(A) we
have that y ∈ F (s(y)) = s(y) +N by Claim 1, so that y − s(y) ∈ N . Hence
y = s(y) + (y− s(y)) ∈ span(A)⊕N . Let v ∈ X be arbitrary. Choose ε > 0
so small that x + εv ∈ B. Then x+ εv = y1 + y2, where y1 ∈ span(A) and
y2 ∈ N . This implies that v = ((y1 − x) + y2)/ε ∈ span(A) ⊕N .

By using Claim 2 we can define P : X → X to be the linear projection
onto span(A) along N , so P (u+ v) = u for all u ∈ span(A) and v ∈ N . To
complete the proof we show that P is non-expansive. Let x ∈ relint(A)
and z ∈ X arbitrary. Pick ε > 0 such that (1 − ε)x ∈ relint(A) and
y = x+ ε(P (z)− x) ∈ relint(A). Then x+ ε(z − x)− y ∈ N ⊂ Hy((1− ε)x)
and hence the line through y and x+ ε(z − x) is tangent to the ball B((1−
ε)x, ‖(1 − ε)x− y‖). In particular, x+ ε(z − x) is outside this ball, so that

‖x+ ε(z − x) − (1 − ε)x‖ ≥ ‖(1 − ε)x− y‖.

This implies that ‖εz‖ ≥ ‖εP (z)‖, and hence P is non-expansive.
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If in Proposition 2.5 the relative interior of A is empty, then span(A)
need not be 1-complemented. Indeed, if 1 ≤ p <∞ and A = {x ∈ ℓp : |xi| ≤
2−i for all i}, then A is a closed convex set and the coordinatewise nearest
point projection τ onto A is non-expansive. That is, τ(x)i = xi if |xi| ≤ 2−i

and τ(x)i = sgn(xi)2
−i if |xi| > 2−i. The linear span of A is a dense proper

subspace of ℓp and therefore not 1-complemented. It appears to be unknown
whether the closure of span(A) is always 1-complemented in a uniformly
smooth Banach space X, if A is a convex subset of X containing 0 and A is
the range of a non-expansive projection.

By combining the results so far we obtain the following result.

Corollary 2.6. Let X be a uniformly smooth strictly convex separable Ba-
nach space. If f : X → X is non-expansive such that O(x) is pre-compact
for each x ∈ X, f(0) = 0, and Ωf has non-empty relative interior as a
subset of span(Ωf ), then Y = span(Ωf ) is a 1-complemented subspace of X
and the restriction of f to Ωf extends to a linear isometry from Y onto Y .

A 2-dimensional subspace Y of a Banach space is called a Euclidean
plane if (Y, ‖ · ‖X) is a Hilbert space. The following useful result is due to
Lyubich [18, Theorem 4].

Theorem 2.7. If X = (Rn, ‖ · ‖) has an infinite group of linear isometries,
then X contains a 1-complemented Euclidean plane.

By using Lyubich’s theorem and the previous lemmas we now prove the
following assertion.

Theorem 2.8. Let X be a uniformly smooth strictly convex separable Ba-
nach space that contains no 1-complemented Euclidean plane and let f : X →
X be a non-expansive map with f(0) = 0. If O(x) is pre-compact for each
x ∈ X and dim span(Ωf ) <∞, then there exists p ∈ N such that |ω(x)| ≤ p
for all x ∈ X.

Proof. As X is a strictly convex separable Banach space, it follows from
Corollary 2.3 that Ωf is convex. Moreover, there exists a surjective lin-
ear isometry F : span(Ωf ) → span(Ωf ) that extends f on Ωf by Lemma
2.4. Since span(Ωf ) is finite dimensional, the relative interior of Ωf in
this subspace is non-empty. Let Y = (span(Ωf ), ‖ · ‖X) and remark that
as X is uniformly smooth, span(Ωf ) is 1-complemented in X by Proposi-
tion 2.5. From Lyubich [18, Theorem 4] we deduce that Γ = {T : Y →
Y | T linear isometry} is a finite group. Otherwise Y would contain a 1-
complemented Euclidean plane E, and E would also be 1-complemented in

9



X, as span(Ωf ) is 1-complemented, which contradicts the assumption in the
theorem.

Let p = |Γ| and x ∈ X. Suppose that y ∈ ω(x) and note that, as f is
continuous and O(x) is pre-compact, f(ω(x)) = ω(x). Moreover it follows
from [8, Theorem 1] that ω(x) = ω(y). Clearly F k ∈ Γ for each k ≥ 0.
Hence there exist 0 ≤ k < m ≤ p such that F k = Fm. This implies that
Fm−k(y) = y, so that |ω(x)| = |ω(y)| ≤ m− k ≤ p and we are done.

It follows from Theorem 2.8 that, under the assumptions, every orbit
converges to a periodic orbit, as each ω-limit set is finite and itself a periodic
orbit. To obtain estimates for the lengths of the periodic orbits, we need
to better understand the 1-complemented subspaces of a Banach space and
the surjective linear isometries acting on them.

3 Isometries on 1-complemented subspaces

For the classical Lp spaces, with 1 ≤ p < ∞, it is well known that every
1-complemented subspace is isometrically isomorphic to an Lp space (see
[2, 5, 9, 26]). Therefore if 1 < p <∞ and f : Lp → Lp, with f(0) = 0 is a non-
expansive map such that each orbit of f is pre-compact and dim(span Ωf ) =
n, then (span(Ωf ), ‖ · ‖p) is isometrically isomorphic to ℓnp . In that case
one can use Banach’s [4] characterization of the linear isometries on ℓp for
1 < p <∞ and p 6= 2, to conclude that the cardinality of each ω-limit is the
order, or twice the order, of an element of the symmetric group on n letters.
These facts were used by Sine in [25]. In general, however, a 1-complemented
subspace in a Banach space need not be isometrically isomorphic to (a lower
dimensional version of ) the original space. Nevertheless there are still ways
to analyze the linear isometries acting on them.

To do this, we need to recall some additional notions from the theory
of Banach spaces. Most of these notions can be found in [19]. Let X be
a Banach space with a (Schauder) basis {ei}, so for each x ∈ X there
exists a unique sequence of scalars {αi} such that x =

∑

i αiei. The basis
is said to be 1-unconditional if for each x =

∑

i αiei ∈ X we have that
‖x‖ = supϑ ‖

∑

i ϑiαiei‖, where ϑi ∈ {−1, 1} for each i. We denote by
σ(x) = {i : αi 6= 0} the support of x. If σ(x) is finite, then we call x simple.
A subspace Y ⊆ X is said to have a block basis if there exists a basis {yi} for
Y whose elements are disjointly supported, so σ(yi) and σ(yj) are disjoint
for all i 6= j. The following notion was introduced in [16] and is particularly
useful in the study of 1-complemented subspaces and linear isometries (see
also [12]).
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Definition 3.1. Suppose that X is a Banach space with a basis and for
each x, y ∈ X the function N = Nx,y : R → R is given by

N(α) = ‖x+ αy‖ for all α ∈ R.

We say that X reflects disjointness if for each x, y ∈ X with x 6∈ span(y)
the following conditions hold:

(i) the function N is continuously differentiable;

(ii) if x and y are not disjoint in X and N ′(0) = 0, then N ′′(α) does not
converge to 0 as α→ 0 along any subset of [0, 1] of full measure;

(iii) if x and y are disjoint in X and y is simple, then N ′(0) = 0 and N ′′(α)
does converge to 0 as α→ 0 along a subset of [0, 1] of full measure.

Although this definition looks somewhat technical, it has a natural geo-
metric interpretation in finite dimensions in terms of the directional curva-
ture of the unit sphere. In fact, the following statement holds.

Lemma 3.2. If X = (Rn, ‖ · ‖) has a C2 smooth norm and the standard
basis is 1-unconditional, then X reflects disjointness is equivalent to saying
that at each x ∈ SX the normal curvature in the direction of y is 0 if, and
only if, x and y are disjoint.

Proof. Let Sn−1 denote the Euclidean sphere in R
n and Sr

X denote the
sphere with radius r > 0 in X. Then the Gauss map, N : Sr

X → Sn−1, is
given by

N (x) =
∇‖x‖

|∇‖x‖|
,

where |z| denotes the Euclidean norm of z. Let Vx be the tangent space
at x ∈ Sr

X . For x ∈ Sr
X the Weingarten map Lx : Vx → Vx is given by

Lx(v) = −∇vN (x). The normal curvature of Sr
X at X in the direction

v ∈ Vx is given by
κx(v) = 〈Lx(v), v〉.

Note that as Lλx(v) = λLx(v) for all λ > 0, we have that κx(y) = 0 if, and
only if, κλx(y) = 0 for all λ > 0.

As X is C2 smooth, we have for each x, y ∈ X with x 6∈ span(y) that
N = Nx,y is C2 and N ′(α) = 〈∇‖x+αy‖, y〉 and N ′′(α) = 〈HX(x+αy)y, y〉,
where HX is the Hessian of x 7→ ‖x‖. Note that

Lx(v) = −∇vN (x) =
〈∇‖x‖,HX(x)v〉

|∇‖x‖|3
∇‖x‖ −

HX(x)v

|∇‖x‖|
.
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Thus,

〈HX(x)v, v〉 =
〈∇‖x‖,HX (x)v〉

|∇‖x‖|2
〈∇‖x‖, v〉 − |∇‖x‖|κx(v). (4)

Assume that X satisfies the curvature condition. Suppose that x, y ∈ X,
with x 6∈ span(y), are not disjoint and N ′(0) = 0. Remark that N ′(0) = 0
is equivalent to 〈∇‖x‖, y〉 = 0. As N ′′(0) = 〈HX(x)y, y〉 and y ∈ Vx, we
deduce from (4) that

N ′′(0) = −|∇‖x‖|κx(y).

Let v1, . . . , vn−1 be an orthonormal basis for Vx consisting of the eigenvectors
of Lx : Vx → Vx. Note that asHX(x) is positive semi-definite and symmetric,
Lx is negative semi-definite and symmetric. Relabel the eigenvectors such
that λ1(x) = λ2(x) = . . . = λk(x) = 0 and λi(x) < 0 for all i > k. We write

y =

k
∑

i=1

aiv
i +

n−1
∑

i=k+1

aiv
i. (5)

There exists j > k such that aj 6= 0 in (5). Indeed, if aj = 0 for all j > k,
then Lx(y) = 0, so that κx(y) = 0. But this implies that κx/r(y) = 0, so
that x and y are disjoint, which is a contradiction. As aj 6= 0 for some j > k,
we get that

N ′′(0) = −|∇‖x‖|κx(y)

= −|∇‖x‖|〈
∑

i

aiLx(v
i),
∑

i

aiv
i〉

= −|∇‖x‖|
∑

i>k

λi(x)〈aiv
i, aiv

i〉 > 0.

Thus Property (ii) in Definition 3.1 holds.
As X has a 1-unconditional basis, we know that σ(x) = σ(JX(x)) =

σ(∇‖x‖). Thus, if x and y are disjoint, then ∇‖x‖ and y are disjoint, so
that N ′(0) = 〈∇‖x‖, y〉 = 0. To see that N ′′(0) = 0, we remark that as x and
y are disjoint, κx(y) = κx/‖x‖(y) = 0, so that N ′′(0) = −|∇‖x‖|κx(y) = 0.

To prove the opposite implication we suppose thatX reflects disjointness.
Assume that x ∈ SX , y ∈ Vx, and x and y not disjoint. As y ∈ Vx, N ′(0) = 0,
so that N ′′(0) 6= 0. As N ′′(0) = −|∇‖x‖|κx(y), we conclude that κx(y) 6= 0.
On the other hand, if x and y are disjoint, then N ′′(0) = 0 and hence
κx(y) = 0.
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The next result from [16] shows the relevance of Definition 3.1 in the
context of 1-complemented subspaces.

Theorem 3.3. If X is a C2 smooth Banach space with a 1-unconditional
basis, and X reflects disjointness, then every 1-complemented subspace has
a block basis.

Recall that a Banach space is C2 smooth if the norm function is twice
continuously Frechet differentiable. The proof of the Theorem 3.3 relies on
the following observation [16, Lemma 3.5] concerning convex functions.

Lemma 3.4. Let ϕ : R → [0,∞) and ψ : R → [0,∞) be convex functions
that are continuously differentiable and assume that ϕ′ and ψ′ are absolutely
continuous on [0, 1]. If ϕ(0) = ψ(0) and ϕ(α) ≤ ψ(α) for all α ∈ [0,∞),
then

(i) ϕ′(0) = ψ′(0),

(ii) the set consisting of those α ∈ (0,∞) for which ϕ′′(α) and ψ′′(α) exist
and ϕ′′(α) ≤ ψ′′(α) has positive measure on each interval (0, δ) for
δ > 0,

(iii) for every C > 0 the measure of the set consisting of those α ∈ [0, 1] for
which ψ′′(α) exists and ψ′′(α) ≤ C is strictly smaller than 1, whenever
ϕ′′(α) → ∞, as α→ 0 along a subset of full measure.

We shall use Lemma 3.4 again to prove the following proposition.

Proposition 3.5. Let X be a C2 smooth Banach space with 1-unconditional
basis and suppose that X reflects disjointness. If Y ⊆ X is a 1-complemented
subspace of X with a block basis {yi}, then every linear isometry T : Y → Y
is disjointness preserving with respect to {yi}.

Proof. Let P denote a non-expansive linear projection onto Y . First, con-
sider u ∈ Y and v ∈ X with u 6= 0, v simple, and u and v disjoint. Let
ϕ : R → [0,∞) and ψ : R → [0,∞) be given by ϕ(α) = ‖TPu+αTPv‖ and
ψ(α) = ‖u + αv‖ for all α ∈ R, respectively. Then ϕ and ψ are convex,
ϕ(α) ≤ ψ(α) for all α ∈ R, and ϕ(0) = ψ(0), as T is an isometry. Moreover,
ϕ and ψ are C2 functions, as X is a C2 Banach space. Since X reflects
disjointness, we have ψ′(0) = 0 and ψ′′(α) → 0 along a subset of [0, 1] of
full measure. By Lemma 3.4 we get that ϕ′(0) = 0 and ϕ′′(0) = 0, as ϕ′′ is
continuous. Now the second property of Definition 3.1 implies that TPu and
TPv are disjoint in X. But TPu and TPv are in Y , so that TPu =

∑

i αiyi
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and TPv =
∑

i βiyi, and hence TPu and TPv are also disjoint with respect
to {yi}.

Next, let x, y ∈ Y be disjoint with respect to {yi}. Choose a sequence
{vn}n in X that converges to y with each σ(vn) ⊆ σ(y) and each vn simple.
As {yi} is a block basis, x and y are also disjoint in X and hence x and
vn are disjoint for all n. By the first part of the proof we obtain that TPx
and TPvn are disjoint with respect to {yi}. As TPvn converges to TPy,
it follows that Tx = TPx and Ty = TPy are disjoint with respect to {yi}.
Hence T is disjointness preserving with respect to {yi}.

Surjective disjointness preserving isometries have a special form.

Lemma 3.6. If X is a Banach space with a normalized basis {ei} and
T : X → X is a surjective disjointness preserving isometry, then there exists
a permutation π and a sequence {ϑi} in {−1, 1} such that

Tx =
∑

i

αiϑπ(i)eπ(i)) for all x =
∑

i

αiei ∈ X. (6)

Proof. First we remark that surjective isometries on Banach spaces are linear
by the Mazur-Ulam theorem [20]. Let {ei} be a normalized basis for X. We
claim that for each j there exists a unique i and βi ∈ {−1, 1} such that
Tej = βiei. Indeed, if v ∈ span{ei : i ∈ σ(Tej)} and 0 6= v 6= βTej for
all β ∈ R, then there exists u =

∑

i γiei ∈ X with Tu = v. Note that
Tek and Tem are disjoint for all k 6= m. Therefore Tu = T (

∑

i γiei) =
γjTej , as σ(Tu) = σ(v) ⊆ σ(Tej). Thus, v = Tu = γjTej , which is a
contradiction. Hence |σ(Tej)| = 1 and Tej = βiei, where βi ∈ {−1, 1},
since ‖ej‖ = ‖Tej‖ = |βi|‖ei‖. Now let π be the permutation that asigns to
j the unique element in σ(Tej). Clearly T (

∑

j αjej) =
∑

j αjϑπ(j)eπ(j) for
all
∑

j αjej ∈ X.

A linear operator of the form (6) is called a signed permutation. If a
Banach space X with a 1-unconditional basis {xi} is uniformly smooth, then
it is reflexive (see [19, Theorem 5.5.13]) and then the coordinate functionals
{x∗i } are a 1-unconditional basis in X∗ (see [19, Corollary 4.4.16]). We can
now prove our main result.

Theorem 3.7. Let X be a uniformly smooth strictly convex Banach space
with a 1-unconditional basis. Suppose that f : X → X is a non-expansive
map such that f(0) = 0, O(x) is pre-compact for every x ∈ X, and the
relative interior of Ωf as a subset of span(Ωf ) is non-empty. If either X
or X∗ is C2 smooth and reflects disjointness, then Y = span(Ωf ) has a
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block basis, f |Ωf
extends to a linear isometry T in Y , and T is a signed

permutation operator with respect to the block basis of Y . Moreover, if
dim span(Ωf ) = n <∞, then |ω(x)| ∈ S(n) for each x ∈ X.

Proof. Due to Corollary 2.6 the subspace Y = span(Ωf ) is 1-complemented
and the restriction of f to Ωf extends to a linear isometry T from Y onto
Y . Let P denote a nonexpansive projection onto Y . If X is C2 smooth and
reflects disjointness, then it follows from Theorem 3.3 and Proposition 3.5
that T : Y → Y is disjointness preserving with respect to the block basis of
Y . Therefore T is a signed permutation operator by Lemma 3.6.

If X∗ is C2-smooth and reflects disjointness, then we let Y ′ denote the
range of the adjoint P ∗ of P . Thus Y ′ is 1-complemented in X∗ and, ac-
cording to Theorem 3.3, Y ′ has a block basis {y′i}. We now show that Y has
a block basis. Since X is reflexive and strictly convex, there exists for each
non-zero x∗ ∈ X∗ a unique norming functional x ∈ X, that is, ‖x‖ = 1 and
x∗(x) = ‖x∗‖. If y′ ∈ Y ′, y′ 6= 0, then its norming functional y is in Y , since
y′(Py) = P ∗y∗(y) = y′(y) ≥ ‖Py‖‖y′‖ and therefore y = Py/‖Py‖ ∈ Y .
Let yi ∈ Y be the norming functional of y′i. We show that {yi} is a block
basis of Y . As the basis of X is 1-unconditional, the support of yi with
respect to {xi} is contained in the support of y′i with respect to the basis
{x∗i } of coordinate functionals. Therefore {yi} is a set of mutually disjoint
elements of Y . To see that the closure of the span of the yi equals Y , let
‖x‖(m) denote the norm of the functional x ∈ X on span{x∗i : i > m}. As
X is reflexive, the basis {x∗i } of X∗ is shrinking, that is, ‖x‖(m) → 0 as
m → ∞ for all x ∈ X (see [19, Theorem 4.4.15]). Now let y ∈ Y . For
y′ ∈ Y ′ with ‖y′‖ = 1 there are αi such that y′ =

∑

i αiy
′
i. Since the ele-

ments in {y′i} are disjoint relative to {x∗j}, we have after suitable relabeling
that y′i ∈ span{x∗j : j ≥ i}. As {y′i} is a 1-unconditional basis, we get that

∣

∣

∣

∣

∣

∣





∑

j

αjy
′
j







y −
∑

i≤m

y′i(y)yi





∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

(

∑

i>m+1

αiy
′
i

)

(y)

∣

∣

∣

∣

∣

≤ ‖y‖(m) → 0

as m → ∞. Thus y is in the closure of span{yi}. It follows that {yi} is a
1-unconditional basis of Y .

Next we show that (TP )∗ is a linear isometry from Y ′ onto Y ′. In-
deed, (TP )∗ is linear and non-expansive on X∗. For y′ ∈ Y ′ and x ∈ X,
P ∗(TP )∗y′(x) = y′(TP 2x) = (TP )∗y′(x), so (TP )∗ maps Y ′ into Y ′. The
same holds for (T−1P )∗ and therefore (TP )∗(T−1P )∗y′(x) = y′(T−1PTPx) =
P ∗y′(x) = y′(x) for all x ∈ X, so that (TP )∗ maps Y ′ onto Y ′. To see that
(TP )∗ is an isometry, let y′ ∈ Y ′ and let y ∈ Y be its norming functional.
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Then (TP )∗y′(T−1y) = y′(y) = ‖T−1y‖‖y′‖ and ‖(TP )∗y′‖ ≥ ‖y′‖. Hence
(TP )∗ is an isometry on Y ′. Proposition 3.5 and Lemma 3.6 yield that
(TP )∗ is a signed permutation operator on Y ′ relative to the block basis
{y′i}. It follows that T is a signed permutation operator with respect to
{yi}.

To prove the last assertion we remark that if dim span(Ωf ) = n < ∞,
then for each x ∈ X and z ∈ ω(x) we have that

|ω(x; f)| = |ω(z;T )| ∈ S(n),

as T is a signed permutation operator that coincides with f on Ωf and
ω(x; f) = ω(z; f) by [8, Theorem 1].

We remark that if X is finite dimensional, then C2 smoothness of X im-
plies uniform smoothness of X. Moreover, the assumption that the relative
interior of Ωf is non-empty is always fulfilled, as Ωf is a convex set in R

n

in that case. Basic examples that satisfy the assumptions in Theorem 3.7
include ℓp spaces with 1 < p < ∞ and p 6= 2, vector valued ℓp(ℓq) spaces
with p, q > 2 or 1 < p, q < 2, and ℓp + ℓq spaces with p, q > 2.
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