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Abstract

A stochastic integral of Banach space valued deterministic functions with respect

to Banach space valued Lévy processes is defined. There are no conditions on the

Banach spaces nor on the Lévy processes. The integral is defined analogously to

the Pettis integral. The integrability of a function is characterized by means of

a radonifying property of an integral operator associated to the integrand. The

integral is used to prove a Lévy-Itô decomposition for Banach space valued Lévy

processes and to study existence and uniqueness of solutions of stochastic Cauchy

problems driven by Lévy processes.
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1 Introduction

Lévy processes are an extensively studied class of stochastic processes. They play an
important role in models of evolutionary phenomena perturbed by noise as for exam-
ple in financial mathematics. In many models the complexity of the dynamics under
consideration is often captured more effectively using stochastic processes with values
in infinite dimensional spaces, see for example Carmona and Teranchi [8] for models in
financial mathematics. However, a central issue in the use of infinite dimensional spaces
in stochastic analysis is a convenient stochastic integral.

A real valued stochastic integral with respect to a real valued Wiener process can be
defined in the classical sense of K. Itô. By augmenting only a small amount of opera-
tor theory this approach can be easily generalized to integrands with values in Hilbert
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spaces and Hilbert space valued Wiener processes, which is accomplished in Da Prato
and Zabczyk [9]. Their approach has been extended to Lévy processes by Peszat and
Zabczyk in [14]. For Banach spaces, even in the case of Wiener processes, there seemed
to be no general method to introduce a rigorously defined stochastic integral without
assuming special assumptions on the geometry of the Banach space. But more recently,
van Neerven and Weis introduced in [18] for deterministic Banach space valued inte-
grands a stochastic integral with respect to Wiener processes on Banach spaces without
any conditions on the underlying Banach space, see also [7] and [17]. The main point in
their construction is the case of a Banach space valued integrand and a scalar Wiener
process, which is then extended to Banach space valued Wiener processes. Together with
Veraar they continued this work in [19] for random integrands on UMD Banach spaces.
But already the integral for deterministic integrands turned out to be very helpful for
dealing with evolution equations on infinite dimensional spaces.

In this work we develop in the same spirit a stochastic integral for deterministic
Banach space valued integrands with respect to Lévy processes on Banach spaces. This
integral can be interpreted as a stochastic version of a Pettis integral or of a weak integral.
In the case of a Wiener process a key feature in constructing the integral is the equivalent
condition for the existence of the integral in terms of γ-radonifying operators associated
with the integrands. We introduce an analogous definition of “martingale-radonifying”
operators which turns out to be of the same significance for the integration theory as the
γ-radonifying operators in the Gaussian case.

The usefulness of the integral is demonstrated by two important applications: a
pathwise decomposition of Lévy processes on Banach spaces, the so-called Lévy-Itô de-

composition, and evolution equations driven by Lévy processes.
For finite-dimensional Lévy processes the pathwise decomposition into its continuous

and jump part is well-known and often used. In this decomposition, the small jumps are
represented by an integral with respect to the compensated random Poisson measure.
The definition of this integral is based on the fact that for a finite-dimensional Lévy
process the Lévy measure ν satisfies

∫

|β|61

min{1, |β|p} ν(dβ) < ∞ (1.1)

for p = 2. But for infinite-dimensional Lévy processes this condition does not hold
any longer in general. Consequently, the decomposition can not be derived by a direct
generalization of the integral to an integral in Bochner sense.

There are few works in the literature concerning the pathwise decomposition in
infinite-dimensions. Linde achieved in [11] the decomposition as a limit but this limit
was not associated with a possible integral definition. This shortcoming limits the utility
of the pathwise decomposition in comparison to the decomposition in finite-dimensional
spaces where properties of the integral are often used. In [1] Albeverio and Rüdiger filled
this gap by introducing a new integral, but not every Lévy process or Banach space
satisfies the necessary conditions for the existence of the integral. The power of our con-
struction of the integral lies in the fact that it gives exactly the desired decomposition
by means of a proper defined integral without any further condition on the underlying
Banach space or Lévy process.

A very nice review of the results mentioned above on the pathwise decomposition and
some additional results on the integration with respect to a Lévy process in a Banach
space can be found in [4].

One of the simplest stochastic evolutionary equations but nonetheless object of ex-
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tensive studies in the last years are equations of the form

dY (t) = AY (t) dt + F dX(t) for t > 0,

where A is a generator of a C0 semigroup on a linear space V and F : U → V is a linear
bounded operator on a linear space U . If the stochastic process X = (X(t) : t > 0)
is a Wiener process and U and V are Hilbert spaces then these equations are covered
by a comprehensive theory introduced in the monograph [9] by Da Prato and Zabczyk.
For a Banach space V and a Wiener process X with values in a Banach space U the
work [18] gives a complete answer for the existence of a solution to the equation. Our
construction for an integral with respect to Lévy processes allows to deal with such
equations on Banach spaces U and V and a Lévy process X with values in U . We
derive necessary and sufficient conditions for the existence of a solution in terms of the
semigroup generated by A. Furthermore, the pathwise decomposition by means of our
weak integral allows even that the operator F acts differently on the continuous and
jump part of the Lévy process.

2 Martingale-valued measures

Let (Ω,A, P ) be a probability space with a filtration (F t)t>0. In this work we will
consider mainly random variables on this probability space with values in a separable
real Banach space U . The dual space of U is denoted by U∗ and the dual pairing by
〈u, u∗〉 for u ∈ U and u∗ ∈ U∗. The Borel σ-algebra is denoted by B(U).

If (S,S) is a measurable space and µ a measure on S, then Lp(S, µ) defines the Banach
space of all measurable, real-valued functions f with

∫

S

|f(s)|p µ(ds) < ∞.

If V is another Banach space then we call a function f : S → V V -weakly Lp(S, µ) if
the function s 7→ 〈f(s), v∗〉 is in Lp(S, µ) for all v∗ ∈ V ∗.

If S is a set and R a ring of subsets of S, then a martingale-valued measure M on
(S,R) is a collection of real-valued random variables (M(t, A) : t > 0, A ∈ R) on
(Ω,F , (F t)t>0, P ) such that:

(a) M(0, A) = 0 a.s. and E[M(t, A)2] < ∞ for all t > 0 and all A ∈ R;

(b) M(t, ∅) = 0 a.s. and for any mutually disjoint sets A1, A2, . . . ∈ R with
⋃∞

j=1 Aj ∈
R one has

M(t,

∞
⋃

j=1

Aj) =

∞
∑

j=1

M(t, Aj) a.s. for all t > 0;

(c) for every A ∈ R, (M(t, A) : t > 0) is a martingale with respect to (F t)t>0.

For a Banach space U and a closed set C of U let R be the ring of all A ∈ B(U) with
Ā ∩ C = ∅. A martingale-valued measure on U with forbidden set C is a martingale-
valued measure (M(t, A) : t > 0, A ∈ R) on (U \C,R). We assume in the sequel that
martingale-valued measures M also satisfy:

(d) for any mutually disjoint sets A1, . . . , An ∈ R the random variables
M(t1, A1), . . . , M(tn, An) are independent for all t1, . . . , tn ∈ R+;
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(e) M(t, A) − M(s, A) is independent of Fs for all 0 6 s 6 t and all A ∈ R;

(f) there exists a σ-finite measure ρ on B(R+ ×(U \C)) for which

E[M(t, A)2] = ρ([0, t] × A) for all t > 0 and all A ∈ R.

We call ρ the square mean measure.

Due to (d) and (f), the a.s. convergence of the series in (b) is equivalent to convergence in
L2(Ω, P ). Indeed, by dominated convergence the a.s. convergence yields L2-convergence
and the converse direction follows from [20, Thm. V.2.3]. Thus, in our setting the def-
inition of martingale-valued measures corresponds to the one of Walsh [21] (see also
[3]).

Example 2.1. A real-valued Wiener process (B(t) : t > 0) is an adapted stochastic
process with continuous paths starting in 0 and with independent, stationary increments
B(t) − B(s) which are normally distributed with expectation E[B(t) − B(s)] = 0 and
variance Var(B(t) − B(s)) = c |t − s| for a constant c > 0. If c = 1 we call B a standard

real-valued Wiener process.
An adapted stochastic process B := (B(t) : t > 0) with values in a separable Banach

space U is called a Wiener process if

(a) B(0) = 0 a.s.;

(b) B has independent increments;

(c) for any u∗ ∈ U∗ the stochastic process (〈B(t), u∗〉 : t > 0) is a real-valued Wiener
process;

(d) B has a.s. continuous paths.

Condition (c) yields by Pettis’s measurability theorem ([15, Thm. 1.1] or [20, Prop.
I.1.10]) that B has stationary increments. Moreover, there exists a covariance operator
R : U∗ → U which gives the covariance between two components 〈B(t), u∗〉 and 〈B(t), v∗〉
for u∗, v∗ ∈ U∗, see [20, Thm. III.2.1]. Although Kolmogorov’s continuity theorem implies
only by condition (b) and (c) that there exists a version of B with continuous paths we
include condition (d) in our definition to avoid the necessity of considering versions of B.

If B is a Wiener process with values in R, then M(t, A) := B(t)δ0(A) for A ∈ B(R)
defines a martingale-valued measure M with empty forbidden set. The Dirac measure
δ0 provides the condition (b) on the σ-additivity in the definition of a random measure.

Example 2.2. An adapted, U -valued process (L(t) : t > 0) is called a Lévy process, if

(a) L(0) = 0 a.s.;

(b) L has stationary, independent increments;

(c) L has càdlàg paths.

We call a set Λ ∈ B(U \{0}) bounded from below if 0 6∈ Λ̄. For every Λ ∈ B(U \{0})
bounded from below and t > 0 we define

N(t, Λ) :=
∑

s∈[0,t]

1Λ(∆L(s)),
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where ∆L(s) := L(s) − L(s−). Note, that because L has càdlàg paths there are only
finitely many jumps of size larger than a positive constant and thus only finitely many
in the set Λ. Then (N(t, Λ) : t > 0) defines a Poisson process on N0. Moreover, let
ν(Λ) := E[N(1, Λ)] be the so-called Lévy measure. Then ν extends to a σ-finite measure
on B(U\{0}), which is finite for every set bounded from below. The so-called compensated
Poisson random measure is defined by

Ñ(t, Λ) := N(t, Λ) − tν(Λ)

for every Λ ∈ B(U \ {0}) bounded from below. Thus Ñ defines a martingale-valued
measure on U with the forbidden set C = {0}. The square mean measure is given by

E[Ñ(t, Λ)2] = tν(Λ).

These properties of a Lévy process may be established as in the finite dimensional
case.

3 Integration of Banach space-valued functions

In this section let U and V be arbitrary Banach spaces and assume V separable. More-
over, let M denote a martingale-valued measure on U with forbidden set ∅ or {0} ⊆ U
and let R be the ring of all sets A ∈ B(U) with closure contained in the complement of
the forbidden set. We fix a set B ∈ B(U) which should be bounded from below if the
forbidden set is {0}.

We introduce in this section a stochastic integral for functions F : [0, T ] × B → V
with respect to the martingale-valued measure M . If V is finite-dimensional, that is
V = Rd, then the integral

∫

[0,T ]×B

F (s, u)M(ds, du) (3.1)

can be defined in the standard way by step functions F and then by extension to functions
F which are square integrable relative to the square mean measure ρ of M by use of the
Itô isometry E ∣∣∣

∣

∣

∫

[0,T ]×B

F (s, u)M(ds, du)

∣

∣

∣

∣

∣

2

=

∫

[0,T ]×B

|F (s, u)|2ρ(ds, du). (3.2)

This is carried out for finite-dimensional U in [2] and can easily be generalized to the
case of infinite-dimensional spaces U , as long as the range of the function F is finite-
dimensional. This definition of the integral is used in the sequel without any further
notice.

In general, if V is infinite-dimensional, one may try to follow a similar approach to
define the integral (3.1) for a Bochner square integrable function F : [0, T ]× B → V ,

∫

[0,T ]

‖F (t, u)‖2
ρ(dt, du) < ∞.

For Hilbert spaces this approach is accomplished in [3]. However, it is well-known that the
strong integral can be only defined in Banach spaces under certain geometric conditions.

Instead of the strong integral we consider a definition more similar to the Pettis
integral in Banach spaces, originally in a deterministic setting introduced in [15]. The
stochastic analog for martingale-valued measures reads as follows.

5



Definition 3.1. A function F : [0, T ] × B → V is called stochastically integrable on

[0, T ]×B with respect to M if it is V -weakly L2([0, T ]×B, ρ) and there exists a V -valued
random variable Y such that for all v∗ ∈ V ∗ we have

〈Y, v∗〉 =

∫

[0,T ]×B

〈F (t, u), v∗〉M(dt, du) a.s.

In this situation we write

Y =

∫

[0,T ]×B

F (t, u)M(dt, du).

A similar idea is used by Rosiński in [16] to define a ‘weak random integral’ in a
more abstract setting. Some further properties of the integral and the class of integrable
functions can be found there. We consider our more specific situation as it seems more
appropriate for our purposes. In fact we will use the stochastic integral to study stochastic
Cauchy problems and the Banach space valued Lévy-Itô decomposition. Our terminology
is closely related to [18].

One of the major achievements in the work of van Neerven and Weis [18] for Wiener
processes is the equivalent condition for the existence of the integral in terms of γ-
radonifying operators associated with the integrands. In the following we generalize this
property of an operator and we will also set this operator in relation to the existence
of the integral. But further consideration of this operator and its properties will be the
subject of forthcoming work.

Definition 3.2. We call a linear continuous map R : L2([0, T ]×B, ρ) → V M -radonifying

if there exists an orthonormal basis (fn) ⊆ L2([0, T ] × B, ρ) and a V -valued random
variable Y such that

〈Y, v∗〉 =

∞
∑

n=1

γn〈Rfn, v∗〉 in L2(Ω, P ) for all v∗ ∈ V ∗, (3.3)

where γn :=
∫

[0,T ]×B fn(t, u)M(dt, du).

Remark 3.3. (a) The definition of M -radonifying depends on the martingale-valued
measure M but not on the choice of the orthonormal basis. Indeed, let (gn) ⊆
L2([0, T ] × B, ρ) be another orthonormal basis. Then we have a.s.

∞
∑

n=1

γn〈Rfn, v∗〉 =

∞
∑

n=1

∞
∑

k=1

〈Rgk, v∗〉γn〈fn, gk〉

=

∞
∑

k=1

〈Rgk, v∗〉

∫

[0,T ]×B

∞
∑

n=1

fn(t, u)〈fn, gk〉M(dt, du)

=
∞
∑

k=1

〈Rgk, v∗〉δk,

where δk =
∫

[0,T ]×B
gk(t, u)M(dt, du).

(b) If M is a Wiener process, that is, M(t, A) = W (t)δ0(A) for a real-valued Wiener
process (W (t) : t > 0) and the forbidden set is ∅, then M -radonifying is equiv-
alent to γ-radonifying. For, the sequence (γn)n∈N defines a sequence of indepen-
dent, identically standard-normal distributed random variables. In this case the
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convergence of the series in (3.3) is equivalent to the fact that the operator R
is γ-radonifying, see [18]. The stochastic integral of Definition 3.1 with B = U
then coincides with the stochastic integral of [18] of F (·, 0) with respect to W .
The latter integral is the key construction of [18], which is there subsequently ex-
tended to an integral with respect to a Banach space valued Wiener process. The
same approach could be taken in our setting to extend to a Banach space valued
Wiener process with the aid of its Cameron-Martin space and Hilbert space valued
martingale-valued measures (as defined in [3]). Instead, we will simply use the
stochastic integral of [18] whenever we want to integrate with respect to a Banach
space valued Wiener process.

(c) The family of random variables γn, n ∈ N, is orthonormal in L2(Ω, P ), as follows
from the Itô isometry (3.2) and the polarization formula.

Lemma 3.4. For a V -weakly L2([0, T ]× B, ρ) function F : [0, T ]× B → V we define

〈IF f, v∗〉 =

∫

[0,T ]×B

〈F (t, u), v∗〉 f(t, u) ρ(dt, du), f ∈ L2([0, T ]× B, ρ)

for all v∗ ∈ V ∗. In this way we obtain a bounded linear operator IF : L2([0, T ]×B, ρ) →
V .

Proof. We begin to show that IF f ∈ V ∗∗ for which we use that

G : V ∗ → L2([0, T ]× B, ρ), G(v∗) = 〈F (·, ·), v∗〉

is closed. Indeed, if v∗n → v∗ in V ∗ and 〈F (·, ·), v∗n〉 → g in L2([0, T ] × B, ρ) then there
exists a subsequence such that

g(t, u) = lim
k→∞

〈F (t, u), v∗nk
〉 = 〈F (t, u), v∗〉 for ρ-a.e. (t, u) ∈ [0, T ]× B.

Hence, the operator G is closed and the closed graph theorem implies

|〈IF f, v∗〉| = 〈G(v∗), f〉L2(ρ) 6 ‖G(v∗)‖L2(ρ) ‖f‖L2(ρ) 6 c ‖v∗‖ ‖f‖L2(ρ) (3.4)

for a constant c > 0.
We proceed to establish that IF f is actually in V . Because F is strongly measur-

able by Pettis’s measurability theorem [15, Theorem 1.1], the map (t, u) 7→ ‖F (t, u)‖ is
measurable. We define

An := {(t, u) ∈ [0, T ]× B : ‖F (t, u)‖ 6 n}.

Let f ∈ (L1 ∩ L2)([0, T ]× B, ρ) be such that its essential support is contained in An

for some n ∈ N. Then for v∗k ∈ V ∗ we have

|〈F (t, u), v∗k〉f(t, u)| 6 ‖F (t, u)‖ ‖v∗k‖ |f(t, u)| 6 n |f(t, u)| sup
k∈N ‖v∗k‖

and thus the dominated convergence theorem can be applied to conclude 〈IF f, v∗k〉 → 0
for v∗k → 0 weakly∗. A corollary [12, Cor. 2.7.10] to the Krein-Smulyan theorem yields
that IF f ∈ V as V is separable.

Next for arbitrary f ∈ L2([0, T ] × B, ρ) there exists a sequence (fn)n∈N in (L1 ∩
L2)([0, T ] × B, ρ) such that hn := fn 1An

→ f in L2([0, T ] × B, ρ) and IF hn ∈ V for all
n ∈ N. Because (3.4) implies

‖IF (hn − f)‖V ∗∗ = sup
‖v∗‖61

|〈IF (hn − f), v∗〉| 6 c ‖hn − f‖L2(ρ) ,
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it follows that IF hn → IF f in V ∗∗ and hence IF f ∈ V since V is closed in V ∗∗. Bound-
edness of IF follows from (3.4).

Remark 3.5. Note that inequality (3.4) gives the estimate

E

∣

∣

∣

∣

∣

∫

[0,T ]×B

〈F (t, u), v∗〉M(dt, du)

∣

∣

∣

∣

∣

2

=

∫

[0,T ]×B

〈F (t, u), v∗〉2 ρ(dt, du)

= ‖〈F (·, ·), v∗〉‖2
L2(ρ)

= sup
‖f‖L2(ρ)=1

(

∫

[0,T ]×B

〈F (t, u), v∗〉f(t, u) ρ(dt, du)

)2

6 c2 ‖v∗‖2
.

By means of the operator IF introduced in Lemma 3.4 we find an equivalent condition
guaranteeing the stochastic integrability of a function.

Theorem 3.6. Let F : [0, T ] × B → V be a V -weakly L2[(0, T ] × B, ρ) function. Then

the following are equivalent:

(a) F is stochastically integrable on [0, T ]× B with respect to M .

(b) IF is M -radonifying.

In this situation we have

〈

∫

[0,T ]×B

F (t, u)M(dt, du), v∗〉 =

∞
∑

n=1

γn〈IF fn, v∗〉 for every v∗ ∈ V ∗,

and an arbitrary orthonormal basis (fn) ⊆ L2([0, T ]×B, ρ), where γn are as in Definition
3.2.

Proof. By Itô’s isometry we obtain

N
∑

n=1

γn〈IF fn, v∗〉 =

N
∑

n=1

∫

[0,T ]×B

fn(t, u)M(dt, du)

∫

[0,T ]×B

〈F (s, v), v∗〉fn(s, v) ρ(ds, dv)

=

∫

[0,T ]×B

N
∑

n=1

〈〈F, v∗〉, fn〉L2(ρ)fn(t, u)M(dt, du)

→

∫

[0,T ]×B

〈F (t, u), v∗〉M(dt, du) in L2(Ω, P ) for N → ∞.

(b) ⇒ (a): In this case the assumption yields

N
∑

n=1

γn〈IF fn, v∗〉 → 〈Y, v∗〉 in L2(Ω, P )

for a V -valued random variable Y . Consequently, the function F is stochastically inte-
grable.
(a) ⇒ (b): There exists a V -valued random variable Y such that

〈Y, v∗〉 =

∫

[0,T ]×B

〈F (t, u), v∗〉M(dt, du)
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for every v∗ ∈ V ∗ and therefore

〈Y, v∗〉 =

∞
∑

n=1

γn〈v
∗, IF fn〉 in L2(Ω, P ),

which completes the proof.

In Section 4 the next lemma will be useful in addition to Theorem 3.6.

Lemma 3.7. Let F : [0, T ] × B → V be a V -weakly L2([0, T ] × B, ρ) function and (fn)
be an orthonormal basis of L2([0, T ]×B, ρ). If a V -valued random variable Y exists such

that

〈Y, v∗〉 =

∞
∑

n=1

γn〈IF fn, v∗〉 in L2(Ω, P )

for all v∗ in a sequentially weak* dense subspace of V ∗, then IF is M -radonifying and

Y =

∫

[0,T ]×B

F (t, u)M(dt, du) a.s.

Proof. The proof follows [18]. Let v∗ ∈ V ∗ and let (v∗m) be a sequence in V ∗ such that
v∗m converges weakly* to v∗ and 〈Y, v∗m〉 =

∑∞
n=1 γn〈IF fn, v∗m〉 a.s. for all m. The adjoint

operator I∗F : V ∗ → L2([0, T ]× B, ρ) is continuous with respect to the weak* topologies,
so I∗F v∗m → I∗F v∗ weakly* and hence weakly in L2([0, T ]×B, ρ). Then there exist convex
combinations w∗

m of v∗k with k > m such that ‖I∗F w∗
m − I∗F v∗‖L2(ρ) → 0 and w∗

m → v∗

weakly* in V ∗ as m → ∞. Consequently, 〈Y, w∗
m〉 → 〈Y, v∗〉 a.s. andE ∣∣∣

∣

∣

〈Y, w∗
m〉 −

∞
∑

n=1

γn〈IF fn, v∗〉

∣

∣

∣

∣

∣

2

= E ∣∣∣
∣

∣

∞
∑

n=1

γn〈IF fn, w∗
m − v∗〉

∣

∣

∣

∣

∣

2

=

∞
∑

n=1

〈IF fn, w∗
m − v∗〉2

=

∞
∑

n=1

〈fn, I∗F (w∗
m − v∗)〉2 = ‖I∗F (w∗

m − v∗)‖2
L2(ρ) → 0.

For a subsequence we obtain 〈Y, w∗
mℓ

〉 →
∑∞

n=1 γn〈IF fn, v∗〉 a.s., so that 〈Y, v∗〉 =
∑∞

n=1 γn〈IF fn, v∗〉 a.s. Thus IF is M -radonifying.

4 Cauchy problem

In this section we apply our previous results to a stochastic Cauchy problem with respect
to a martingale-valued measure M . In order to avoid technicalities we assume that the
square mean measure ρ is time-homogeneous, i.e. ρ(ds, du) = ds ν(du) for a measure ν.
We consider

dY (t) = AY (t) dt +

∫

B

G(u)M(dt, du), t ∈ [0, T ],

Y (0) = y0,

(4.1)

where A is the generator of a C0-semigroup (T (t))t>0 on V and G : B → V a function
which is V -weakly in L2([0, T ]×B, ρ). Here we interpret G also as a function on [0, T ]×B
which is constant in the first variable. The initial condition y0 is assumed to be an element
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of V . The function G models the influence of the noise depending on its size. We use the
set B in order to include martingale-valued measures which have a nonempty forbidden
set, see the next section.

The paths of a solution turn out to have some regularity property.

Definition 4.1. A V -valued process (X(t) : t > 0) is called weakly Bochner regular if
for every sequence (Hn)n∈N of functions Hn ∈ C([0, T ], V ∗) we have:

sup
s∈[0,T ]

‖Hn(s)‖V ∗ → 0 ⇒

∫ T

0

|〈X(s), Hnk
(s)〉| ds → 0 a.s. for k → ∞,

for a subsequence {Hnk
}k∈N ⊆ {Hn}n∈N.

Note that if X has a.s. Bochner integrable paths on [0, T ] the process X is also weakly
Bochner regular.

Definition 4.2. A V -valued process (Y (t, y0))t∈[0,T ] is called a weak solution of (4.1) on
[0, T ] if it is weakly progressively measurable and weakly Bochner regular and for every
v∗ ∈ D(A∗) and t ∈ [0, T ] we have, almost surely,

〈Y (t, y0), v
∗〉 = 〈y0, v

∗〉 +

∫ t

0

〈Y (s, y0), A
∗v∗〉 ds +

∫

[0,t]×B

〈G(u), v∗〉M(ds, du). (4.2)

Note that the condition on G yields the existence of the latter integral with respect
to M .

Theorem 4.3. The following are equivalent:

(a) there exists a weak solution (Y (t, y0))t∈[0,T ] of (4.1) on [0, T ];

(b) the function (s, u) 7→ T (s)G(u) is stochastically integrable on [0, T ]×B with respect

to M .

In this situation, the solution is represented by

Y (t, y0) = T (t)y0 +

∫

[0,t]×B

T (t − s)G(u)M(ds, du) for t ∈ [0, T ]

almost surely.

Proof. Due to the linearity of equation (4.1) we may assume y0 = 0 and we write Y (t) :=
Y (t, 0).

(a) ⇒ (b): We begin to establish for f ∈ C1([0, T ]) the integration by parts formula

∫ t

0

f ′(s)

∫

[0,s]×B

〈G(u), v∗〉M(dr, du) ds (4.3)

= f(t)

∫

[0,t]×B

〈G(u), v∗〉M(dr, du) −

∫

[0,t]×B

〈G(u), f(s)v∗〉M(ds, du).
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For a simple function of the form G = g ⊗ 1C with C ∈ B(U) ∩ B and g ∈ V we obtain

∫ t

0

∫

[0,s]×B

〈G(u), f ′(s)v∗〉M(dr, du) ds

=

∫ t

0

〈g, f ′(s)v∗〉

∫

[0,s]×C

M(dr, du) ds

= M(t, C)〈g, f(t)v∗〉 −

∫

[0,t]×C

〈g, f(s)v∗〉M(ds, du)

= f(t)

∫

[0,t]×B

〈G(u), v∗〉M(dr, du) −

∫

[0,t]×B

〈G(u), f(s)v∗〉M(ds, du),

where we applied in the second last line the integration by parts formula for Lebesgue-
Stieltjes integrals. This result can be generalized to an arbitrary V -weakly L2([0, T ] ×
B, ρ) function G by approximation with simple functions. Next we can follow the lines
in [18] and show that for all v∗ ∈ D(A∗) we have, almost surely,

〈Y (t), v∗〉 =

∫

[0,t]×B

〈T (t − s)G(u), v∗〉M(ds, du). (4.4)

For that, let f ∈ C1([0, T ]) and v∗ ∈ D(A∗) and observe that integration by parts and
equation (4.3) yield

∫ t

0

f ′(s)〈Y (s), v∗〉 ds

=

∫ t

0

f ′(s)

(
∫ s

0

〈Y (r), A∗v∗〉 dr

)

ds +

∫ t

0

f ′(s)

∫

[0,s]×B

〈G(u), v∗〉M(dr, du) ds

= f(t)

∫ t

0

〈Y (s), A∗v∗〉 ds −

∫ t

0

f(s)〈Y (s), A∗v∗〉 ds

+ f(t)

∫

[0,t]×B

〈G(u), v∗〉M(dr, du) −

∫

[0,t]×B

〈G(u), f(s)v∗〉M(ds, du).

By multiplying (4.2) with f(t) and putting F = f ⊗ v∗ we therefore obtain

〈Y (t), F (t)〉 =

∫ t

0

〈Y (s), F ′(s) + A∗F (s)〉 ds +

∫

[0,t]×B

〈G(u), F (s)〉M(ds, du). (4.5)

We can find a sequence Fn ∈ span{f ⊗ w∗ : f ∈ C1([0, t]), w∗ ∈ D(A∗)} such that
Fn converges to F := T ∗(t − ·)v∗ in C1([0, t], V ∗) ∩ C([0, t], D(A∗)). The weak Bochner
regularity implies that

∫ t

0

∣

∣〈Y (s), F ′
nk

(s) + A∗Fnk
(s)〉

∣

∣ ds → 0 a.s. for k → ∞, (4.6)
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for some subsequence. For the second integral in (4.5) we have for Hn := Fn − F :

E

∣

∣

∣

∣

∣

∫

[0,t]×B

〈G(u), Hn(s)〉M(ds, du)

∣

∣

∣

∣

∣

2

=

∫

[0,t]×B

〈G(u), Hn(0) +

∫ s

0

H ′
n(r) dr〉2 ρ(ds, du)

6 2

∫

[0,t]×B

〈G(u), Hn(0)〉2ρ(ds, du) + 2t

∫ t

0

∫

[r,t]×B

〈G(u), H ′
n(r)〉2ρ(ds, du) dr

6 2c2 ‖Hn(0)‖2 + 2c2t

∫ t

0

‖H ′
n(r)‖

2
dr

→ 0 for n → ∞, (4.7)

where we used in the last inequality the estimate in Remark 3.5. Together (4.6) and
(4.7) imply that (4.5) holds true for F , which results in equality (4.4). As in the proof of
Theorem 3.6 it follows from (4.4) that 〈Y (t), v∗〉 =

∑∞
n=1 γn〈v∗, IF fn〉 for all v∗ ∈ D(A∗),

where F (s, u) = T (t − s)G(u). Since D(A∗) is weak* sequentially dense in V ∗, Lemma
3.7 establishes assertion (b).

(b)⇒ (a) As the function (s, u) 7→ T (t − s)G(u) is stochastically integrable we can
define

Y (t) :=

∫

[0,t]×B

T (t − s)G(u)M(ds, du)

for all t ∈ [0, T ]. We start to verify that Y is weakly Bochner regular. For Hn ∈
C([0, T ], V ∗) we have by Remark 3.5

E

(

∫ T

0

|〈Y (t), Hn(t)〉| dt

)2

= E

(

∫ T

0

∣

∣

∣

∣

∣

∫

[0,t]×B

〈T (t − r)G(u), Hn(t)〉M(dr, du)

∣

∣

∣

∣

∣

dt

)2

6 T

∫ T

0

∫

[0,t]×B

〈T (t − r)G(u), Hn(t)〉2 ρ(dr, du) dt

= T

∫ T

0

∫

[0,t]×B

〈T (r)G(u), Hn(t)〉2 dr ν(du) dt

6 T

∫ T

0

c2 ‖Hn(t)‖2 dt,

which proves that Y is weakly Bochner regular.
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By Fubini’s theorem we obtain
∫ t

0

〈Y (s), A∗v∗〉 ds =

∫ t

0

∫

[0,s]×B

〈T (s − v)G(u), A∗v∗〉M(dv, du) ds

=

∫

[0,t]×B

∫ t

v

〈T (s − v)G(u), A∗v∗〉 ds M(dv, du)

=

∫

[0,t]×B

〈G(u), T ∗(t − v)v∗ − v∗〉M(dv, du)

= 〈Y (t), v∗〉 −

∫

[0,t]×B

〈G(u), v∗〉M(dv, du).

The application of Fubini’s theorem is justified because
∫ t

0

∫

[0,s]×B

(〈T (s − r)G(u), A∗v∗〉)2 dr ν(du) ds < ∞. (4.8)

A proof of Fubini’s theorem for the special case of Poisson random measures can be
found in Theorem 5 in [3] which can be generalized easily to the case of martingale-
valued measures. Finally, there is for each C ∈ B(U) a modification of the martingale
(M(t, C) : t > 0) with cadlag paths and thus, each of these martingales is measurable.
Consequently, for each v∗ ∈ V ∗ the stochastic process (〈Y (t), v∗〉 : t > 0) is measurable
and thus, also progressively measurable because it is also adapted, see [13].

5 Integration relative to Lévy Processes

By means of the stochastic integration with respect to martingale-valued measures we
can define a stochastic integral for Banach space valued functions with respect to Lévy
processes in Banach spaces. Such an integral for Wiener processes is contained in [18].
Therefore we will focus on integration with respect to the ‘jumps’ of the Lévy process
and then combine both integrals in Section 7 after establishing a Lévy-Itô decomposition
in Section 6.

Let (L(t) : t > 0) be a Lévy process with values in a separable Banach space U and
define

N(t, Λ) :=
∑

s∈[0,t]

1Λ(∆L(s))

for every Λ ∈ B(U \{0}) bounded from below. Together with the Lévy measure ν(Λ) :=
E[N(1, Λ)] the compensated Poisson random measure is defined by

Ñ(t, Λ) := N(t, Λ) − tν(Λ).

This defines a martingale-valued measure on U with the forbidden set C = {0} and
E[Ñ(t, Λ)2] = tν(Λ), see Example 2.2. To keep our notation from the previous sections
we define ρ(dt, du) := dt ν(du).

Remark 5.1. Formally, a Lévy measure on a Banach space is defined in the following
way [11, Section 5.4]. A symmetric, σ-finite measure µ on B(U \{0}) is called a Lévy

measure, if the function

ϕ : U∗ → R, ϕ(u∗) = exp

(

∫

U\{0}

(cos(〈u, u∗〉) − 1)µ(du)

)
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is the characteristic function of a measure on B(U). An arbitrary σ-finite measure µ is
called a Lévy measure if µ + µ̄ with µ̄(Λ) := µ(−Λ) is a Lévy measure.

In contrast to the finite dimensional case, the condition
∫

U\{0}

min{1, ‖u‖2}µ(du) < ∞

is in general neither necessary nor sufficient for a σ-finite measure µ on B(U\{0}) to be a
Lévy measure, see [5] and [10]. To be precise, if and only if U is of cotype 2, this integral
is finite for every Lévy measure.

For the measure ν defined above for a Lévy process it can be proved that ν is a Lévy
measure according to the above definition.

The integration with respect to N is defined as the Poisson integral

∫

[0,T ]×B

F (t, u)N(dt, du) :=
∑

06s6T

F (s, ∆L(s))1B(∆L(s))

for every measurable function F : [0, T ]×U → V and set B ∈ B(U) bounded from below.
This integral is finite because the Lévy process has càdlàg paths.

We proceed with the integration with respect to Ñ . For a function F : [0, T ]×B → V
with B ∈ B(U) which is stochastically integrable with respect to Ñ we have introduced
in Definition 3.1 the integral

∫

[0,T ]×B

F (t, u) Ñ(dt, du).

Note, that only on sets B bounded from below the Poisson random measure Ñ is finite
and thus, only in this case the integral is well defined according to our Definition 3.1. In
a moment we will extend the integration domain. For a Pettis integrable integrand, the
stochastic integral with respect to Ñ can be expressed by the Poisson integral.

Proposition 5.2. If B is a set in B(U) bounded from below then every function F :
[0, T ] × B → V which is Pettis integrable with respect to ρ, is stochastically integrable
with respect to Ñ and we have

∫

[0,T ]×B

F (t, u) Ñ(dt, du) =

∫

[0,T ]×B

F (t, u)N(dt, du) −

∫

[0,T ]×B

F (t, u) dt ν(du),

where the integrals on the right hand side are a Poisson and a Pettis integral, respectively.

Proof. Define Y to be the right hand side, which exists a.s. As both integrals commute
with functionals in V ∗, we obtain by [2, p.206]

〈Y, v∗〉 = 〈

∫

[0,T ]×B

F (t, u)N(dt, du), v∗〉 − 〈

∫

[0,T ]×B

F (t, u) dt ν(du), v∗〉

=

∫

[0,T ]×B

〈F (t, u), v∗〉N(dt, du) −

∫

[0,T ]×B

〈F (t, u), v∗〉 dt ν(du)

=

∫

[0,T ]×B

〈F (t, u), v∗〉 Ñ(dt, du).

Therefore, F is stochastically integrable on [0, T ]×B and the required equality holds.
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For the pathwise decomposition and also for dealing with differential equations, we
need the stochastic integration on the set

D := {u ∈ U : 0 < ‖u‖ < 1},

which is not bounded from below. We extend the integral as follows. Let (fn) be an
orthonormal basis of L2([0, T ]×D, ρ). As in the proof of [2, Thm. 2.4.11] one can verify
that for

γn,k :=

∫

[0,T ]×Dk

fn(t, u) Ñ(dt, du)

and Dk := {u ∈ U : 1
k 6 ‖u‖ < 1}, the sequence (γn,k)k∈N converges in L2(Ω, P ) for

k → ∞. We denote the limit by

γn :=

∫

[0,T ]×D

fn(t, u) Ñ(dt, du) := lim
k→∞

∫

[0,T ]×Dk

fn(t, u) Ñ(dt, du) in L2(Ω, P ).

More generally, for every function f ∈ L2([0, T ] × D, ρ) we define

∫

[0,T ]×D

f(t, u) Ñ(dt, du) := lim
k→∞

∫

[0,T ]×Dk

f(t, u) Ñ(dt, du) in L2(Ω, P ). (5.1)

Now, because the integral with respect to Ñ on D is well defined for every real function
f ∈ L2([0, T ]× D, ρ) Definition 3.1 reads as before when replacing the set B by D. The
same applies to Definition 3.2 and also to the definition of the operator IF in Lemma
3.4.

Summarizing, for a V -weakly L2([0, T ] × D, ρ) function F : [0, T ] × D → V the
operator IF is Ñ -radonifying for the set D if there exists an orthonormal basis (fn) ⊆
L2([0, T ]× D, ρ) and a V -valued random variable Y such that

〈Y, v∗〉 =

∞
∑

n=1

γn〈IF fn, v∗〉 in L2(Ω, P ) for all v∗ ∈ V ∗, (5.2)

where γn :=
∫

[0,T ]×D fn(t, u) Ñ(dt, du).

Furthermore, Theorem 3.6 may be formulated analogously for the set D. Indeed, as
for every function f ∈ L2([0, T ] × D, ρ) we have

E

∣

∣

∣

∣

∣

∫

[0,T ]×D

f(t, u) Ñ(dt, du)

∣

∣

∣

∣

∣

2

= lim
k→∞

E

∣

∣

∣

∣

∣

∫

[0,T ]×Dk

f(t, u) Ñ(dt, du)

∣

∣

∣

∣

∣

2

=

∫

[0,T ]×D

|f(t, u)|2 ρ(dt, du),

it follows also here that

N
∑

n=1

γn〈v
∗, IF fn〉 =

∫

[0,T ]×D

N
∑

n=1

〈〈F, v∗〉, fn〉L2(ρ)fn(t, u) Ñ(dt, du)

→

∫

[0,T ]×D

〈F (t, u), v∗〉 Ñ(dt, du) for N → ∞ in L2(Ω, P ).
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Hence, the proof can be completed as in Theorem 3.6. In addition, a stochastically
integrable function F : [0, T ]× D → V satisfies:

〈

∫

[0,T ]×D

F (t, u) Ñ(dt, du), v∗〉 =

∫

[0,T ]×D

〈F (t, u), v∗, 〉Ñ(t, du)

= lim
k→∞

∫

[0,T ]×Dk

〈F (t, u), v∗〉 Ñ(t, du) in L2(Ω, P ).

6 Lévy-Itô decomposition

In this section we apply our previous results to obtain a pathwise decomposition of the
Lévy process. For this purpose, let V = U . We are led to consider the stochastic inte-
grability of the function IdD : D → U , IdD(u) = u. If the function IdD is stochastically
integrable we denote for simplicity

∫

D

u Ñ(t, du) :=

∫

[0,T ]×D

u Ñ(dt, du)

and use analogous notations for the Poisson integral with respect to N . The condition
that IdD is U -weakly in L2([0, T ] × D, ρ) is satisfied according to Proposition 5.4.5 in
Linde [11], which asserts

sup
‖u∗‖61

∫

D

〈u, u∗〉2 ν(du) < ∞. (6.1)

Moreover, we even have stochastic integrability of IdD.

Proposition 6.1. The function IdD is stochastically integrable with respect to Ñ .

Proof. We follow here arguments in [10]. Let t > 0 be fixed. The Poisson integral

Jn(t) :=

∫

Dn

u N(t, du) =
∑

s∈[0,t]

∆L(s)1Dn
(∆L(s))

for Dn = {u ∈ U : 1
n 6 ‖u‖ < 1} is a random variable with the compound Poisson

distribution

PJn(t)(Λ) = e−tν(Dn)
∞
∑

k=0

tk

k!
ν∗k(Λ ∩ Dn) for all Λ ∈ B(U).

By Proposition 5.2 the random variables

In(t) :=

∫

Dn

u Ñ(t, du) =

∫

Dn

u N(t, du) − t

∫

Dn

u ν(du)

are well-defined for all n ∈ N and have the distributions

PIn(t) = PJn(t) ∗ δxn
with xn := −t

∫

Dn

u ν(du)

and the characteristic functions

ϕIn(t)(u
∗) = E

[

ei〈In(t),u∗〉
]

= exp

(

t

∫

Dn

K(u, u∗) ν(du)

)

for u∗ ∈ U∗,
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where K(u, u∗) := exp (i〈u, u∗〉) − 1 − i〈u, u∗〉 [11, Rem. below Thm. 5.3.11]. By [11,
Cor. 5.4.6] the sequence {PIn(t) : n ∈ N} is tight and because the characteristic functions
ϕIn(t)(u

∗) are convergent for every u∗ ∈ U∗ by [11, Proof of Thm. 5.4.8] it follows by [11,
Prop. 1.8.2] that the laws of In(t) converge weakly to a probability measure on U . Since
In(t) equals the sum of the mutually independent random variables

∫

Dn\Dn−1
u N(t, du)−

t
∫

Dn\Dn−1
u ν(du) the Itô-Niso Theorem [20, Thm. V.2.3] implies that In(t) converges a.s.

to a random variable I(t). Consequently, we have for all u∗ ∈ U∗:

〈In(t), u∗〉 → 〈I(t), u∗〉 a.s.

But on the other hand, we have

〈In(t), u∗〉 =

∫

Dn

〈u, u∗〉 Ñ(t, du) →

∫

D

〈u, u∗〉 Ñ(t, du) in L2(Ω, P ),

due to (6.1). Therefore, we obtain

〈I(t), u∗〉 =

∫

D

〈u, u∗〉 Ñ(t, du) a.s. for all u∗ ∈ U∗,

which shows the stochastic integrability of IdD.

A Lévy process L = (L(t) : t > 0) is said to have jumps bounded by a constant c > 0
if

sup
t>0

‖∆L(t)‖ 6 c.

A Lévy process L with bounded jumps is called centered if E[L(t)] = 0 for all t > 0.

Proposition 6.2. If L := (L(t) : t > 0) is a centered Lévy process with jumps bounded

by 1 then there is a version (I(t) : t > 0) of

∫

[0,T ]×D

u Ñ(ds, du)

which has the following properties:

(a) I := (I(t) : t > 0) is a Lévy process.

(b) B(t) := L(t) − I(t) defines a Wiener process B := (B(t) : t > 0) on U .

(c) I and B are independent.

Proof. Let us first fix u∗ ∈ U∗ with ‖u∗‖ = 1. As Lu∗(t) := 〈L(t), u∗〉 defines a Lévy
process the Lévy-Itô decomposition for finite-dimensional processes ([2, Thm. 2.4.16])
yields

Lu∗(t) = au∗t + σ2
u∗Bu∗(t) +

∫

[0,t]×(−1,0)∪(0,1)

β Ñu∗(ds, dβ)

+

∫

[0,t]×(−∞,−1]∪[1,∞)

β Nu∗(ds, dβ),

where au∗ ∈ R, σ2
u∗ ∈ R+, Bu∗ is a standard real-valued Wiener process and Nu∗ is a

Poisson random measure and Ñu∗ its compensated Poisson random measure.
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For C ∈ B(R\{0}) one obtains

Nu∗(t, C) =
∑

06s6t

1C(∆Lu∗(s))

=
∑

06s6t

1C(〈∆L(s), u∗〉)

=
∑

06s6t

1(u∗)−1(C)(∆L(s))

= N(t, (u∗)−1(C)),

which allows to conclude

Lu∗(t) = αu∗t + σ2
u∗Bu∗(t) +

∫

[0,t]×(−1,0)∪(0,1)

β Ñu∗(ds, dβ)

+

∫

[0,t]×(−∞,−1]∪[1,∞)

β Nu∗(ds, dβ)

= αu∗t + σ2
u∗Bu∗(t) +

∫

[0,t]×Du∗

〈u, u∗〉 Ñ(ds, du) +

∫

[0,t]×Dc
u∗

\{0}

〈u, u∗〉N(ds, du)

with Du∗ := {u ∈ U : 0 < |〈u, u∗〉| < 1}. Because Dc
u∗ \{0} ⊆ Dc and the support of

N(s, ·) is in D for all s > 0 we have also supp Ñ(s, ·) ⊆ D and

Lu∗(t) = αu∗t + σ2
u∗Bu∗(t) +

∫

[0,t]×Du∗

〈u, u∗〉 Ñ(ds, du)

= αu∗t + σ2
u∗Bu∗(t) +

∫

[0,t]×D

〈u, u∗〉 Ñ(ds, du) +

∫

[0,t]×Du∗\D

〈u, u∗〉 Ñ(ds, du)

= αu∗t + σ2
u∗Bu∗(t) +

∫

[0,t]×D

〈u, u∗〉 Ñ(ds, du).

The constant αu∗ can be calculated from the scalar decomposition in the following way,

αu∗ = −E[

∫

|β|>1

β Nu∗(1, dβ)] = −E[

∫

Dc
u∗

\{0}

〈u, u∗〉N(1, du)] = 0,

which yields

Lu∗(t) = σ2
u∗Bu∗(t) +

∫

[0,t]×D

〈u, u∗〉 Ñ(ds, du).

The same representation follows for arbitrary u∗ ∈ U∗ by means of considering u∗/ ‖u∗‖.
Consequently, we obtain for all u∗ ∈ U∗,

〈B(t), u∗〉 = 〈L(t) − I(t), u∗〉 = σ2
u∗Bu∗(t),

where (Bu∗(t) : t > 0) is a real-valued Wiener process. Hence B is a Gaussian process.
By applying the 2-dimensional Lévy-Itô decomposition to ((〈L(t), u∗〉, 〈L(t), v∗〉) :

t > 0) we obtain that Bu∗ is the first component of a 2-dimensional Gaussian process
((Bu∗(t), Bv∗(t)) : t > 0) with independent increments. In particular, for all u∗, v∗ ∈ U∗

and all 0 6 s 6 t the random variables 〈B(s), u∗〉 and 〈B(t)−B(s), v∗〉 are independent.
Therefore, the σ-algebras generated by {〈B(s), u∗〉 : u∗ ∈ U∗} and {〈B(t) − B(s), u∗〉 :
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u∗ ∈ U∗} are independent for all 0 6 s 6 t, which yields the independence of the
increments of B as these σ-algebras coincide with the σ-algebras generated by B(s) and
B(t)−B(s), respectively. Now we can choose a continuous version of B, which has thus
been identified as a Wiener process with values in U .

In the same way one verifies that I is a stochastic process with independent, stationary
increments. Because the process L has càdlàg paths and B has continuous paths, I has
also a version with càdlàg paths which is therefore a Lévy process.

Applying the decomposition for the two dimensional Lévy process ((〈L(t), u∗〉, 〈L(t), v∗〉) :
t > 0) for some u∗, v∗ ∈ U∗ yields that 〈I, u∗〉 and 〈L− I, v∗〉 and therefore I and L− I
are independent.

In the sequel we will choose the version of
∫

[0,T ]×D uÑ(t, du) which has càdlàg paths.

Theorem 6.3. For every Lévy process (L(t) : t > 0) there exist a constant b ∈ U and a
Wiener process B := (B(t) : t > 0) with values in U such that

L(t) = bt + B(t) +

∫

D

u Ñ(t, du) +

∫

‖u‖>1

u N(t, du) for all t > 0 a.s.,

where the first integral is the stochastic integral with respect to Ñ .

Moreover, the Wiener process B and (N(t) : t > 0) are independent.

Proof. We define the random variable

Y (t) :=

∫

[0,t]×{u : ‖u‖>1}

u N(ds, du) for t > 0.

Then

Z(t) := L(t) − Y (t) − E[L(t) − Y (t)] = L(t) − Y (t) − tE[L(1) − Y (1)] for t > 0

defines a centered Lévy process (Z(t) : t > 0) with jumps bounded by 1.
As the compensated Poisson random measure of Z coincides with Ñ on the set D,

Proposition 6.2 implies that

B(t) := Z(t) −

∫

[0,t]×D

u Ñ(ds, du)

defines a Wiener process (B(t) : t > 0) with values in U .
The independence of B and N can be proved as in the proof of Proposition 6.2 by

the analogous result for finite-dimensional Lévy processes and by using the fact that in
separable Banach spaces the Borel σ-algebra coincides with the cylindrical σ-algebra.

7 Cauchy problem driven by a Lévy process

In order to analyze stochastic differential equations driven by Lévy processes with values
in a separable Banach space U , the pathwise decomposition of Theorem 6.3 allows to
consider random perturbations which differ in the continuous and jump part of the Lévy
process. Thus we assume for a given Lévy process L = (L(t) : t > 0) the decomposition

L(t) = bt + B(t) +

∫

D

u Ñ(t, du) +

∫

‖u‖>1

u N(t, du),
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where b is a constant in U , (B(t) : t > 0) is a Wiener process with values in U and
(N(t) : t > 0) is the associated Poisson process with the compensated Poisson random
measure Ñ . The measure ρ denotes as before the mean square measure of Ñ .

We consider stochastic differential equations on a separable Banach space V driven
by the Lévy process L = (L(t) : t > 0) of the following form for t ∈ [0, T ],

dY (t) = AY (t) dt + F dB(t) +

∫

D

G(u) Ñ(dt, du) +

∫

‖u‖>1

H(u)N(dt, du)

Y (0) = y0.

(7.1)

Here A is the generator of a C0 semigroup (T (t))t>0 on V and F : U → V is a linear
bounded operator and the initial condition y0 is in V . The function G : U → V is
assumed to be V -weakly in L2([0, T ] × D, ρ) and H : U → V is assumed to be Borel-
measurable. Both functions are interpreted as before as functions on [0, T ] × B which
are constant in the first variable.

Definition 7.1. A V -valued process (Y (t, y0))t∈[0,T ] is called a weak solution of (7.1) on
[0, T ] if it is weakly progressively measurable and weakly Bochner regular and for every
v∗ ∈ D(A∗) and t ∈ [0, T ] we have, almost surely,

〈Y (t, y0), v
∗〉 = 〈y0, v

∗〉 +

∫ t

0

〈Y (s, y0), A
∗v∗〉 ds + 〈FB(t), v∗〉

+

∫

[0,t]×D

〈G(u), v∗〉 Ñ(ds, du) +

∫

[0,t]×{u : ‖u‖>1}

〈H(u), v∗〉N(ds, du).

(7.2)

In the following theorem we derive a representation of the solution of (7.1). The
Gaussian part of the Lévy process L gives rise to a stochastic integral with respect to the
Banach space valued Wiener process (B(t) : t > 0). This integral is to be understood in
the sense of van Neerven and Weis in [18] to which we refer here.

Theorem 7.2. The following are equivalent:

(a) there exists a weak solution (Y (t, y0))t∈[0,T ] of (7.1) on [0, T ];

(b) the function t 7→ T (t)F is stochastically integrable with respect to B and the function

(t, u) 7→ T (t)G(u) is stochastically integrable on [0, T ] × D with respect to Ñ .

In this situation, the solution is represented by

Y (t, y0) = T (t)y0 +

∫ t

0

T (t − s)F B(ds)

+

∫

[0,t]×D

T (t − s)G(u) Ñ(ds, du) +

∫

[0,t]×{u : ‖u‖>1}

T (t − s)H(u)N(ds, du)

almost surely for all t ∈ [0, T ].

Proof. By linearity we may assume y0 = 0.
(a) ⇒ (b): The integration by parts formula (4.3) can be extended to the set D and

therefore may be applied to Ñ . Hence
∫ t

0

f ′(s)

∫

[0,s]×D

〈G(u), v∗〉 Ñ(dr, du) ds

= f(t)

∫

[0,t]×D

〈G(u), v∗〉Ñ(dr, du) −

∫

[0,t]×D

〈G(u), f(s)v∗〉 Ñ(ds, du),
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and we can read out a similar formula in [18] for B

∫ t

0

f ′(s)〈FB(s), v∗〉 ds = f(t)〈FB(t), v∗〉 −

∫ t

0

〈FB(ds), f(s)v∗〉

for f ∈ C1([0, T ],R). Similarly, for the Poisson integral we obtain for H : U → V Borel
measurable that

∫ t

0

f ′(s)

∫

[0,s]×{u : ‖u‖>1}

〈H(u), v∗〉N(dr, du) ds

=

∫ t

0

f ′(s)
∑

06r6t

〈H(∆L(r)), v∗〉1{u : ‖u‖>1}(∆L(r))1[0,s](r) ds

=
∑

06r6t

1{u : ‖u‖>1}(∆L(r))

∫ t

r

〈H(∆L(r)), f ′(s)v∗〉 ds

=
∑

06r6t

1{u : ‖u‖>1}(∆L(r))(〈H(∆L(r)), f(t)v∗〉 − 〈H(∆L(r)), f(r)v∗〉)

= f(t)

∫

[0,t]×{u : ‖u‖>1}

〈H(u), v∗〉N(dr, du)

−

∫

[0,t]×{u : ‖u‖>1}

〈H(u), f(s)v∗〉N(ds, du).

Thus we can proceed as in the proof of Theorem 4.3 to obtain

〈Y (t), v∗〉 =

∫ t

0

〈T (t − s)FB(ds), v∗〉 +

∫

[0,t]×D

〈T (t − s)G(u), v∗〉 Ñ(ds, du)

+

∫

[0,t]×{u : ‖u‖>1}

〈T (t − s)H(u), v∗〉N(ds, du)

(7.3)

for all v∗ ∈ D(A∗). The first integral defines by

Z : V ∗ → L2(Ω, P ), Z(v∗) :=

∫ t

0

〈T (t − s)FB(ds), v∗〉

a cylindrical random variable which induces a symmetric cylindrical measure. The first
integral is independent of the other integral terms in (7.3) by Theorem 6.3 and therefore
it follows from Proposition 3.4 in [20, Ch. VI] that this cylindrical measure can be
extended to a Radon measure on B(U). Consequently, the cylindrical random variable
Z is induced by a random variable Y : Ω → V (see [20, Thm. VI.3.1]) which yields,
that s 7→ T (t − s)F is stochastically integrable with respect to the Wiener process B.
Equation (7.3) implies that s 7→ T (t− s)G(u) is stochastically integrable with respect to
Ñ .

(b) ⇒ (a) The argument in the proof of Theorem 4.3 can be generalized to this
situation.

Example 7.3. Heat equation with Lévy noise. Let d ∈ N and let O be a nonempty
bounded open subset of Rd. Consider the heat equation on O with Dirichlet boundary
conditions,

dy(t, x) = ∆u(t, x) dt + σ(x) dL(t), (t, x) ∈ [0,∞) ×O,

y(t, x) = 0, (t, x) ∈ [0,∞) × ∂O,

y(0, x) = y0(x), x ∈ O,
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where σ, y0 : O → R are given, and where (L(t) : t > 0) is a Lévy process in R. Let
p > 2, take V = Lp(O), and assume σ, y0 ∈ Lp(O). The Laplace operator ∆ with
Dirichlet boundary conditions generates a strongly continuous semigroup (T (t))t>0 on V

with generator A, which has domain W 1,p
0 (O) [22, Section 5.10]. More generally, we can

consider a Lévy process L = (Li)i∈N in U = ℓ2, where ℓ2 denotes the space of square
summable real sequences. Let σi ∈ Lp(O), i ∈ N, and consider

dy(t, x) = ∆u(t, x) dt +

∞
∑

i=1

αiσi(x) dLi(t), (t, x) ∈ [0,∞) ×O, (7.4)

with Dirichlet boundary conditions and initial condition y0 ∈ Lp(O). Here αi ∈ R are
such that (αi‖σi‖Lp)i∈N ∈ ℓ2.

Consider the Lévy-Itô decomposition of L as in Theorem 6.3. The maps F, G, H :
U → V defined by F (u) = G(u) = H(u) =

∑

i αiuiσi for u = (ui)i∈N ∈ ℓ2, are Borel
and (7.4) leads to

dY (t) = (AY (t) + b) dt + F dB(t) +

∫

D

G(u) Ñ(dt, du) +

∫

‖u‖>1

H(u)N(dt, du). (7.5)

Due to [18, Theorem 4.7] the function T (·)F (·) is stochastically integrable with respect
to B. If we assume that G is Bochner integrable with respect to ν on D, then (t, u) 7→
T (t)G(u) is stochastically integrable with respect to Ñ . Indeed, for m > n and Dm,n :=
[0, T ]× (Dn\Dm) Proposition 5.2 yields that

E

∥

∥

∥

∥

∥

∫

Dm,n

T (s)G(u) Ñ(ds, du)

∥

∥

∥

∥

∥

2

6 2E

∥

∥

∥

∥

∥

∫

Dm,n

T (s)G(u)N(ds, du)

∥

∥

∥

∥

∥

2

+ 2

∥

∥

∥

∥

∥

∫

Dm,n

T (s)G(u) ρ(ds, du)

∥

∥

∥

∥

∥

2

6 2E

(

∫

Dm,n

‖T (s)G(u)‖N(ds, du)

)2

+ 2

(

∫

Dm,n

‖T (s)G(u)‖ ρ(ds, du)

)2

6 2E

(

‖T (s)G(u)‖ Ñ(ds, du) −

∫

Dm,n

‖T (s)G(u)‖ ρ(ds, du)

)2

+ 2

(

∫

Dm,n

‖T (s)G(u)‖ ρ(ds, du)

)2

6 4M

∫

Dm,n

‖G(u)‖2 ρ(ds, du) + 6M

(

∫

Dm,n

‖G(u)‖ ρ(ds, du)

)2

,

where M = sups∈[0,T ] ‖T (s)‖2. Hence

Y (t) := lim
n→∞

∫

[0,t]×Dn

T (s)G(u) Ñ(ds, du)

exists in the Bochner space L2(Ω, V ), since
∫

D
‖u‖2ν(du) < ∞ by [5]. Then by (5.1),

∫

[0,t]×D

〈T (s)G(u), v∗〉 Ñ(ds, du) = 〈Y (t), v∗〉 a.s.
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It follows from Theorem 7.2 that there exists a weak solution of (7.5) and therefore
of (7.4). A typical choice of σi would be an orthonormal basis in L2(O) consisting of
eigenfunctions of ∆. If d 6 2 or p 6 2d/(d − 2), then the Sobolev embedding theorem
yields that W 1,2

0 (O) is contained in Lp(O) and

‖w‖Lp 6 C‖w‖W 1,2 for all w ∈ W 1,2
0 (O),

for some constant C. If −λi are the corresponding eigenvalues, then

‖σi‖Lp 6 C‖σi‖W 1,2 = C

(
∫

O

σ2
i + ∇σi · ∇σi dx

)1/2

C
√

1 + λi .

According to Weyl’s theorem,

lim
n→∞

1

n
λd/2

n =
(4π)d/2Γ(d

2 + 1)

|O|
,

from which an appropriate choice of αi can be computed.
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