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1 Probability measures on metric spaces

When we study curves in spaces of probability measures we will be faced with continuity
and other regularity properties and therefore with convergence of probability measures.
The probability measures will be defined on the Borel o-algebra of a metric space. Since
we want to be able to apply the results to probability measures on a Hilbert space, it is
not too restrictive to assume separability and completeness but we should avoid assuming
compactness of the metric space.

We will consider Borel probability measures on metric spaces, narrow convergence of
such measures, a metric for narrow convergence, and Prokhorov’s theorem on compactness
relative to the narrow convergence.



1.1 Borel sets

Let (X,d) be a metric space. The Borel o-algebra (o-field) B = B(X) is the smallest o-
algebra in X that contains all open subsets of X. The elements of B are called the Borel
sets of X.

The metric space (X,d) is called separable if it has a countable dense subset, that is,
there are 1,29, ... in X such that {z1,zs,...} = X. (A denotes the closure of A C X.)

Lemma 1.1. If X is a separable metric space, then B(X) equals the o-algebra generated
by the open (or closed) balls of X.

Proof. Denote

A := o-algebra generated by the open (or closed) balls of X.

Clearly, A C B.

Let D be a countable dense set in X. Let U C X be open. For x € U take r > 0, r € QQ
such that B(x,r) C U (B(z,r) open or closed ball with center x and radius r) and take
Yz € DN B(x,r/3). Then « € B(ys,7/2) C B(x,r). Set ry := r/2. Then

U= U{B(ym,rm) cx e U},
which is a countable union. Therefore U € A. Hence B C A. O

Lemma 1.2. Let (X,d) be a separable metric space. Let C C B be countable. If C separates
closed balls from points in the sense that for every closed ball B and every x € X \ B there
exists C € C such that B C C and x ¢ C, then the o-algebra generated by C is the Borel
o-algebra.

Proof. Clearly o(C) C B, where o(C) denotes the o-algebra generated by C. Let B be a
closed ball in X. Then B = (({C € C : B C C}, which is a countable intersection and
hence a member of o(C). By the previous lemma we obtain B C o(C). O

If f:S5 — T and Ag and Ap are og-algebras in S and T, respectively, then f is called
measurable (w.r.t. Ag and Ar) if

FUA) ={zeS: f(z) e A} € Ag for all A€ Ar.

Proposition 1.3. Let (X,d) be a metric space. B(X) is the smallest o-algebra with respect
to which all (real valued) continuous functions on X are measurable (w.r.t. B(X) and B(R)).
(See [10, Theorem 1.1.7, p. 4].)

1.2 Borel probability measures

Let (X,d) be a metric space. A finite Borel measure on X is a map p : B(X) — [0,00)
such that

() =0, and
Ay, Ag, ... € B mutually disjoint = pu(U;2, Bi) = > ooy 1(Bi)-

w is called a Borel probabiliy measure if in addition p(X) = 1.
The following well known continuity properties will be used several times.



Lemma 1.4. Let X be a metric space and i a finite Borel measure on X. Let Ay, Ao, ...
be Borel sets.

(1) If Ay C Ay C -+ and A =J;2, A;, then p(A) = limy, oo u(Ay).
(2) If A1 D Ay D -+ and A =()2,, then p(A) = lim,, o pu(Ay).
The next observation is important in the proof of Theorem 1.13 (the Portmanteau theorem).

Lemma 1.5. If p is a finite Borel measure on X and A is a collection of mutually disjoint
Borel sets of X, then at most countably many elements of A have nonzero pu-measure.

Proof. For m > 1, let A, :={A € A: u(A) > 1/m}. For any distinct Ay,..., A € A, we

have
k

w(X) > (| A)) = (A1) + - + p(Ag) > k/m,
=1

hence A,;, has at most mu(X) elements. Thus
{Ac A p(A) >0} = An
m=1

is countable. O

Ezample. If p is a finite Borel measure on R, then u({t}) = 0 for all except at most
countably many t € R.

Proposition 1.6. Any finite Borel measure on X is regular, that is, for every B € B

w(B) = sup{u(C):C C B, C closed}  (inner regular)
= inf{u(U) :U D B, U open} (outer regular).

Proof. Define the collection R by

w(A) =sup{u(C): C C A, Cclosed} and

AER — u(A) =inf{u(C): U D A, U open}.

We have to show that R contains the Borel sets. step 1: R is a o-algebra:
€ R. Let A € R,let € > 0. Take C closed and U open with C € A C U and
w(A) < pu(C)+e, p(A) > u(U) —e. Then U¢ C A° C C°, U°€ is closed, C° is open, and

(A% = p(X) = p(A) > p(X) = pu(C) — e
u(A€) = p(X) = p(A) < w(X) — p(U) +e = p(U°) +e.

Hence A° € R.
Let A1, As,... € R and let € > 0. Take for each i

U; open , C; closed with
C,CcAcCU, ' ‘
w(U;) — u(Aq) < 27%, u(A;) — pu(Ci) < 27%/2.



Then |J; C; € U; 4; € U, Ui and |J, U; is open, and

M(UUi) - M(UAi) < M(DUi \@Ai)

Further, p(US2, Ci) = limy,_o0 (Y, Ci), hence for some large k, u(lJ2, Ci)—p(UF_, C;) <
£/2. Then C := Ule Ci C U2, Ai, C is closed, and

u(lJ 4) - u(C) <

=
C8

UC +¢e/2
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< ZM(Ai \Ci) +¢/2
- Z (M(Ai) - M(Q‘)) +e/2<¢e/2+¢/2.

Hence |J;2, A; € R. Thus R is a o-algebra.

step2: R contains all open sets: We prove: R contains all closed sets. Let A C X be
closed. Let U, == {x € X : d(z,A) < 1/n} = {z € X : Ja € Awithd(a,z) < 1/n},
n =1,2,.... Then U, is open, Uy D Uy D ---, and ()72, U; = A, as A is closed. Hence
wu(A) = limy, oo u(U,,) = inf,, u(Uy,). So

p(A) <inf{p(U) : U D A, U open} < inf u(Un) = p(A).

Hence A € R.
Conclusion: R is a g-algebra that contains all open sets, so R D B. O

Corollary 1.7. If u and v are finite Borel measures on the metric space X and p(A) = v(A)
for all closed A (or all open A), then p=v.

A finite Borel measure p on X is called tight if for every £ > 0 there exists a compact set
K C X such that pu(X \ K) < ¢, or, equivalently, u(K) > p(X) —e. A tight finite Borel
measure is also called a Radon measure.

Corollary 1.8. If u is a tight finite Borel measure on the metric space X, then
w(A) =sup{u(K): K C A, K compact}

for every Borel set A in X.



Proof. Take for every € > 0 a compact set K. such that u(X \ K.) <e. Then
WA L) = (AN KE) > p(A) — p(KE) > p(A) — &
and

wWANK,) = sup{u(C):C C K.NA, C closed}
< sup{u(K): K C A, K compact},

because each closed subset contained in a compact set is compact. Combination completes
the proof. O

Of course, if (X, d) is a compact metric space, then every finite Borel measure on X is tight.
There is another interesting case. A complete separable metric space is sometimes called a
Polish space.

Theorem 1.9. If (X, d) is a complete separable metric space, then every finite Borel mea-
sure on X s tight.

We need a lemma from topology.

Lemma 1.10. If (X,d) is a complete metric space, then a closed set K in X is compact
if and only if it is totally bounded, that is, for every e > 0 the set K is covered by finitely
many balls (open or closed) of radius less than or equal to €.

Proof. =) Clear: the covering with all e-balls with centers in K has a finite subcovering.

<) Let (x,), be a sequence in K. For each m > 1 there are finitely many 1/m-balls
that cover K, at least one of which contains x,, for infinitely many n. For m = 1 take a
ball By with radius < 1 such that Ny := {n : z, € By} is infinite, and take nq € Ny. Take
a ball By with radius < 1/2 such that Ny := {n > ny : 2, € Ba N By} is infinite, and take
ng € Ny. Take Bs, radius < 1/3, N3 := {n > ny : z,, € B3N By N By} infinite, ng € Nj.
And so on.

Thus (zp,)r is a subsequence of (x,), and since z,, € By for all £ > k, (zy, ) is a
Cauchy sequence. As X is complete, (z,), converges in X and as K is closed, the limit is
in K. So (x,), has a convergent subsequence and K is compact. O

Proof of Theorem 1.9. We have to prove that for every £ > 0 there exists a compact set K
such that u(X \ K) <e. Let D = {aj,as,...} be a countable dense subset of X. Then for
each 6 > 0, Uy~ B(ag,d) = X. Hence pu(X) = limy, oo u(Up—; Blag,d)) for all § > 0. Let
€ > 0. Then there is for each m > 1 an n,, such that

Nm

M( U Bla, 1/m)) > p(X) — 27,
k=1
Let
[o.¢] Nm
K = ﬂ U B(ag,1/m).
m=1k=1
Then K is closed and for each § > 0,
Nom, Nm,
K c | Bla,1/m) c | Blax,9)
k=1 k=1



if we choose m > 1/§. So K is compact, by the previous lemma. Further,

VK = (U U B ym)) < 3 u(x0 U Bla1/m)
m=1 k=1 m=1 k=1
= 3 () = (U Blaw1/my) < 3 27 =,
m=1 k=1 m=1

1.3 Narrow convergence of measures

Let (X,d) be a metric space and denote
Cyp(X) :={f: X — R: f is continuous and bounded}.
Each f € Cp(X) is integrable with respect to any finite Borel measure on X.

Definition 1.11. Let u, p1, pio, . . . be finite Borel measures on X. We say that the sequence
(1i)i converges narrowly to p if

/fd,ul-—>/fd,uasi%ooforallfGCb(X).

We will simply use the notation p; — p. (There is at most one such a limit u, as follows from
the metrization by the bounded Lipschitz metric, which is discussed in the next section.)

Narrow convergence can be described by means of other classes of functions than the
bounded continuous ones. Recall that a function f from a metric space (X,d) into R
is called lower semicontinuous (Ls.c.) if for every x,x1,xs,... with x; — x one has

f(x) < liminf f(z;)

71— 00

and upper semicontinuous (u.s.c.) if

f(@) > limsup f(x;).

i—00

The limits here may be oo or —oo and then the usual order on [—00, 00] is considered. The
indicator function of an open set is l.s.c. and the indicator function of a closed set is u.s.c.

Proposition 1.12. Let (X,d) be a metric space and let p, i1, pi2, ... be Borel probability
measures on X. The following four statements are equivalent:

(a) pi — p, that is, [ fdp; — [ fdu for every f € Cp(X)
(b) [ fdwi — [ fdu for every bounded Lipschitz function f: X — R

(¢) iminf; .o [ fdp; > [ fdp for every l.s.c. function f: X — R that is bounded from
below

(¢’) limsup, o [ fdw; < [ fdp for every u.s.c. function f : X — R that is bounded from
above.



Proof. (a)=(b) is clear.
(b)=-(c): First assume that f is bounded. Define for n € N the Moreau-Yosida approx-
imation
folz) == inf |f(y) + nd(z,y)|, z€X.
yeX

Then clearly inf f < fo < f1 < fo <--- < f, so that, in particular, f, is bounded for each
n. Further, f,, is Lipschitz. Indeed, let u,v € X and observe that for y € X we have

falw) = (F() +nd(v.y)) < (&) +ndwy) = () +nd(v.p))

<
< nd(u,v).

If we take supremum over y we obtain f,(u) — fn(v) < nd(u,v). By changing the role of u
and v we infer

[fn(u) = fn(v)] < nd(u,v),

so fp is Lipschitz.
Next we show that lim,,_.o fn(x) = f(z) for all z € X. For x € X and n > 1 there is a
Yn € X such that

fn(‘r) > f(yn) + nd(z, yn) - 1/” > inff + nd(x7yn) -1, (1)
nd(z,yn) < fo(z) —inf f+1 < f(z) —inf f +1 for all n,

hence y,, — x as n — oo. Then (1) yields

liminf f, () > liminf £ (y,) > /().

n—oo

as f is L.s.c. Since f,(z) < f(z) for all n, we obtain that f,(z) converges to f(x).
Due to the monotone convergence, [ fodu 1 [ fdu. As f > fa,

liminf/fd,uiZliminf/fndpi:/fn du

i—00

for all n, by (b). Hence liminf; . [ fdu; > [ fdu.
If f is not bounded from above, let m € N and truncate f at m: fAm = z —
min{ f(z), m}. The above conclusion applied to f A m yields,

/f/\mdugliminf/f/\mduiSliminf/fdui

and [ fdp=limp e [ fAmdu <liminf; o [ fdu;.
(¢)<(c’): multiply by —1.
(c)=(a): if f is continuous and bounded, we have (c) both for f and —f. O

Narrow convergence can also be described as convergence on sets.

Theorem 1.13 (Portmanteau theorem). Let (X, d) be a metric space and let pu, pi1, f12, - - .
be Borel probability measures on X. The following four statements are equivalent:

(a) w; — w (narrow convergence)



(b) liminf; o p;(U) > p(U) for all open U C X

(b’) limsup;_, ., 1i(C) < p(C) for all closed C C X

(c) ui(A) — u(A) for every Borel set A in X with u(0A) =0. (HereDA = A\ A°.)
Proof. (a)=-(b): If U is open, then the indicator function 1y of U is l.s.c. So by the previous

proposition,

liminf 41, (U) :liminf/]lUdui > /]lUd,u:u(U).

(b)=(b’): By complements,

limsup p;(C) = limsup <Mi(X) - ,ui(Cc)) =1 —liminf p;(C°)

1—00 1—00 i—00

= pu(C°) = p(X) = u(C) = pu(0).

v

(b’)=(b): Similarly.

(b)+(b")=>(c): A° C A C A, A° is open and A is closed, so by (b) and (b’),
lim sup 1 (A) < u(A) = p(AU dA)

p(A) + p(0A) = u(A),

lim inf j:(A°) > p(A%) = (A \ DA)

u(A) — p(0A) = u(A),

lim sup p;(A)

lim inf p;(A)

IV IV IA A

hence p;(A) — p(A).
(c)=(a): Let g € Cp(X). Idea: we have [ fdu; — [ fdp for suitable simple functions;
we want to approximate g to get fgd,ul- — fgd,u.
Define
v(E) :=p({z: g(z) € E}) = u(¢g"'(E)), E Borel set in R.

Then v is a finite Borel measure (probability measure) on R and if we take a < —||g||co,
b> ||g]lcc, then (R \ (a,b)) = 0. As v is finite, there are at most countably many « with
v({a}) > 0 (see Lemma 1.5). Hence for € > 0 there are to,...,t, € R such that

(i) a=ty<ty <---<ty=h,
(ii) tj—tj_1<€,j:1,...,m,
(i) v({t;}) = 0,1, p(fz: gle) = ;) =0, j=0,...,m.

Take
Aj={r e X itj <glo) <tj} =g (ti.ty), =1,
Then A; € B(X) for all j and X = |Jj”; A;. Further,

A; C{x:tj—1 < g(x) <t;} (since this set is closed and D 4;),
D{z:tj1 < g(x) <t;} (since this set is open and C A;),

SO

p04)) = p(A;\ A7) < p({z = glx) = tj-1 or g(x) = t;})
= p({z:gla) =t;- 1})+u({x g(z) =t;}) =0+0



Hence by (e), pui(A;) — u(A;) asi — oo for j=1,...,m. Put

m
h = th—l]lAja
=1

then h(z) < g(x) < h(z) + ¢ for all z € X. Hence

I/gdu@-— gdu| = !/(g—h)duﬁ/hdui—/(g—h)du—/hdul
[1o=aps+1 [ nan— [naul+ [1g-nlay

< o0 + 1ty (i Ag) — () )|+ ep(X).
j=1

—

IN

It follows that limsup; .. | [gdp; — [gdu| < 2e. Thus [gdu; — [gdp as i — oco. O

1.4 The bounded Lipschitz metric

Let (X, d) be a metric space. Denote
P = P(X) := all Borel probability measures on X.

We have defined the notion of narrow convergence in P. We will show next that narrow
convergence is induced by a metric, provided that X is separable. This results goes back
to Prokhorov [11]. Instead of Prokhorov’s metric, we will consider the ”bounded Lipschitz
metric” due to Dudley [4], as it is easier to work with. (See also [5, 15].) Denote

BL(X,d) :={f : X — R: f is bounded and Lipschitz}.

Define for f € BL(X,d)
If1IBL = [Iflloo + Lip(f),

where
[ flloo := sup | f(z)]
rzeX

and

Lip(f):= sup Lf (@) = fly)l

z,yeX, r#y d(%,y) - lnf{L : |f($) B f(y)’ S Ld(x’y) vay S X}

Then | - ||pr, is @ norm on BL(X, d). Define for p,v € P(X)

dpr(p,v) == sup{\/fd,u—/fdyl: f € BL(X,d), ||fllsL < 1}.

The function dgy, is called the bounded Lipschitz metric on P (induced by d), which makes
sense because of the next theorem.

Theorem 1.14 (Dudley, 1966). Let (X,d) be a metric space.

(1) dpy, is a metric on P = P(X).



(2) If X is separable and pu, py, o, ... € P, then
pi — p (narrowly) <= ppL(pi, p) — 0.

Proof. (See [5, Theorem 11.3.3, p. 395].)
(1): To show the triangle inequality, let u,v,n € P(X) and observe that

[ ran= [ran <) [ran= [gavi+ [gav- [ ran vsenrixa,

so dpr.(p,n) < dL(p,v) + dpL(v,n). Clearly, dpL(p,v) = dpL(v, ) and dpr(p, p) = 0. If
dpr(p,v) =0, then [ fdp = [ fdv for all f € BL(X,d). Therefore the constant sequence
Iy [ty . .. converges narrowly to v and v,v,... converges to u. The Portmanteau theorem
then yields v(U) < p(U) and pu(U) < v(U) hence u(U) = v(U) for any open U C X. By
outer regularity of both u and v it follows that u = v. Thus dgy, is a metric on P.

(2): If dpr,(pi, ) — 0, then [ fdu; — [ fdu for all f € BL(X,d) with || f|lg, <1 and
hence for all f € BL(X,d). With the aid of Proposition 1.12 we infer that p; converges
narrowly to p.

Conversely, assume that p; converges narrowly to p, that is, [ fdu; — [ fdu for all
f € Cp(X). Denote

B:={f €BL(X,d) : || flsL < 1}.

In order to show that dpy,(ui, 1) — 0 we have to show that f fdu; converges uniformly in
f € B. If X were compact, we could use the Arzela-Ascoli theorem and reduce to a finite
set, of functions f. As X may not be compact, we will first call upon Theorem 1.9.

Let X be the completion of the metric space (X,d). Every f € B extends uniquely to
an f: X — R with ||f|gr = ||f||sL- Also u extends to X:

a(A) :=p(AnX), AC X Borel.

Let € > 0. By the lemma, there exists a compact set K C X such that i(K) > 1 — .
The set G := { f |k : f € B} is equicontinuous and uniformly bounded, so by the Arzela-
Ascoli theorem (see [5, Theorem 2.4.7, p. 52]) it is relatively compact in (C(K),| - ||co)-
Hence there are f1,..., f;, € B such that

Vf € B 3¢ such that || f|x — filxllso < € (2)

(the e-balls around the f; cover B). Take N such that

’/fzduz /fzd/i’<5

fork=1,...,N and i > N. Let f € B and choose a corresponding ¢ as in (2). Denote
K. ={z € X : dist(z, K) < €},

which is an open set in X. (Here dist(z, K) := inf{d(z,y): y € K}.) For x € K., take
y € K with d(z,y) < €, then

|[f(@) = fel@)] < |f(z) ~ fo)l+1fy) - fg(y)l + | fe(y) = fo(=)]
< Lip(f)d(z,y) + € + Lip(fe)d(y, v)
<

3e.

10



Further, X \ K. is closed, so

limsup (X \ Ko) < p(X \ Ke) < (X \ K) = (X \K) < e

i—00

so there is an M with p;(X \ K¢) < e for all i > M. Hence for i > N VvV M,

[ saw [ saul < 1 [ geaw— [ geanl+ [ 1= At )
X X X X K.
[ 1= A+
X\K.
< 5+65+/ 2d,ui+/ 2dp
X\K- X\Ke
< 1le,
hence dpr,(ui, ) < 1le for ¢ > N vV M. Thus, dpy,(ui, 1) — 0 as i — oo. O

Proposition 1.15. Let (X,d) be a separable metric space. Then P = P(X) with the
bounded Lipschitz metric dgy, is separable.

Proof. Let D :={aq,as,...} be a countable set in X. Let

M = {a10, + -+ apba, : v1,...,a, € QN[0,1], 1,2,...}

H M»
||

(Here ¢, denotes the Dirac measure at a € X: 0,(A4) = 1 if a € A, 0 otherwise.) Clearly,
M C P and M is countable.
Claim: M is dense in P. Indeed, let u € P. For each m > 1, U;Z, B(a;,1/m) = X.

Take k,,, such that
km

w(|J Blaj,1/m)) =1 —1/m.
j=1
Modify the balls B(a;,1/m) into disjoint sets by taking A" := B(a1,1/m), AT* := B(a;,1/m)\
[UZ] Bai,1/m)|,5=2,...,km. Then A", ... , A7 are disjoint and J]_; A7* = U/, B(ai,1/m)
for all j. In particular, M(U§21 AT') > 1—1/m, so

Z/‘ el—1/m,1].

We approximate

p(AT)ay + - - + u(AR, )ay,,

by
fim = 00, + -+ af! b,

where we choose o' € [0,1] N Q such that zj paoft =1 and
km
> (AT — o] < 2/m.
j=1

11



(First take ; € [0,1] N Q with Z?Zl 18 — w(AT")| < 1/2m, then 3, 8; € [1 —3/2m,1 +
1/2m). Take ozj = B3/ 6 € [0,1]NQ, then > ;a; =1 and Z?:ﬂﬁj —aj| =1 -

1/, Bl 325 85 = |22 85 — 1 < 3/2m, so 5 oy — p(AT)| < 1/2m +3/2m = 2/m.)
Then for each m, Wy € M. To show: p,, — w in P, that is, u, — p narrowly. Let
g € BL(X,d). Then

km

Jove o] = [$aruer - o
< %M(A;”)g(aj)—/gdu‘-i‘@/m) sup |g(a;)|
j=1 !
km
< | [ stetap du— [ gan]+ @/mlgle
j=1
km
< ELNy@Myﬂhgmh/ﬂwmﬂqﬂwmmu
< }:sm>waj g(@)lp(A >+umuw(LJAmC)+cvmwmwa

g})m (1/m)u( A7) + (3/m) lglloc

< (3/m)HgHBL-
Hence [ gdpm — [ gdu as m — oo. Thus, pim, — . U

Conclusion. If (X, d) is a separable metric space, then so is P(X) with the induced bounded
Lipschitz metric. Moreover, a sequence in P(X) converges in metric if and only if it con-
verges narrowly and then in both senses to the same limit.

1.5 Measures as functionals

Let (X, d) be a metric space. The space of real valued bounded continuous functions C}(X)
endowed with the supremum norm || - || is a Banach space. It is sometimes convenient to
apply functional analytic results about the Banach space (Cy(X), || - ||oo) to the set of Borel
probability measures on X. We will for instance need the Riesz representation theorem
in the proof of Prokhorov’s theorem. Let us consider the relation between measures and
functionals.

Recall that a linear map ¢ : Cp(X) — R is called a bounded functional if

()] < M|fll for all f € CGy(X)
for some constant M. The space of all bounded linear functionals on Cj(X) is denoted by
Cp(X) :={p: Cy(X) — R: @ is linear and bounded}
and called the (Banach) dual space of Cp(X). A norm on Cy(X)" is defined by
lell = sup{le(f)] : £ € Co(X), Iflle <1}, ¢ € C(X).

12



A functional ¢ € Cy(X)' is called positive if ¢(f) > 0 for all f € Cp(X) with f > 0.
For each finite Borel measure p on a metric space (X,d), the map ¢, defined by

oulf) :=/fdu, feCy(X),

is linear from C(X) to R and

ou(PI < [ 171dp < 17 lon(X),
Hence ¢, € Cy(X)'. Further, ||p,|| < p(X) and since ¢, (1) = p(X) = ||1||oopt(X) we have

[ppll = p(X).

Moreover, ¢,, is positive.

Conversely, if X is compact, then Cy(X) = C(X) ={f : X — R : f is continuous} and
every positive bounded linear functional on C'(X) is represented by a finite Borel measure
on X. The truth of this statement does not depend on X being a metric space. Therefore
we state it in its usual general form, although we have not formally defined Borel sets, Borel
measures, Cy(X), etc. for topological spaces that are not metrizable. We denote by 1 the
function on X that is identically 1.

Theorem 1.16 (Riesz representation theorem). If (X, d) is a compact Hausdor(f space
and ¢ € C(X)' is positive (that is, o(f) > 0 for every f € C(X) with f >0) and (1) =1,
then there exists a unique Borel probability measure u on X such that

o(f) = [ £du forall € CCX)

(See [13, Theorem 2.14, p. 40].)

Let us next observe that narrow convergence in P(X) corresponds to weak™ convergence
in Cy(X)'. The weak* topology on Cy(X)' is the coarsest topology such that the function
© — @(f) on Cp(X) is continuous for every f € Cp(X)'. A sequence 1,2, ... in Cp(X)’
converges weak* to ¢ in Cp(X)" if and only if

wi(f) — p(f) asi— oo forall f e Cy(X).
If w, pq, po, . . . are Borel probability measures on X, it is immediately clear that
pi — pnarrowly in P(X) <= ¢, — ¢, weak* in Cy(X)’,

where, as before, ¢, (f) = [ fdu; and ¢, (f) = [ fdu, f € Cp(X), i > 1.
For the next two theorems see [6, Exercise V.7.17, p. 437] and [14, Theorem 8.13].

Theorem 1.17. If (X,d) is a metric space, then
Cy(X) is separable <= X is compact.

Theorem 1.18. If X is a separable Banach space, then {¢ € X': |lp| < 1} is weak™
sequentially compact.

13



Consequently, if (X,d) is a compact metric space, then the closed unit ball of Cy(X)’
is weak™ sequentially compact. In combination with the Riesz representation theorem we
obtain the following statements for sets of Borel probability measures.

Proposition 1.19. Let (X,d) be a metric space. If (X,d) is compact, then (P(X),dpy) is
compact, where dgy, is the bounded Lipschitz metric induced by d. (Note that any compact
metric space is separable.)

Proof. Assume that (X,d) is compact. Then Cp(X) = C(X) = {f : X — R: f is
continuous}. The unit ball B’ := {p € Cp(X)": [l¢]| < 1} of Cp(X) is weak* sequen-
tially compact. As (P(X),dpL) is a metric space, sequentially compactness is equivalent to
compactness. Let (i), be a sequence in P(X) and let

on(f) ::/fd,un7 n € N.

Then ¢, € B for all n. As B’ is weak™ sequentially compact, hence there exists a ¢ € B’ and
a subsequence (¢, )i such that ¢,, — ¢ in the weak* topology. Then for each f € Cy(X)
with f >0,
o(f) = lm ¢n,(f) 20,
k—o0

so ¢ is positive. Further, ¢(1) = limy_,o ¢p, (1) = 1. Due to the Riesz representation
theorem there exists a u € P(X) such that o(f) = [ fdufor all f € C(X) = Cp(X). Since
n, — ¢ weak®, it follows that i, — p narrowly. Thus P(X) is sequentially compact. O

1.6 Prokhorov’s theorem

Let (X,d) be a metric space and let P(X) be the set of Borel probability measures on X.
Endow P(X) with the bounded Lipschitz metric induced by d.

In the study of limit behavior of stochastic processes one often needs to know when a se-
quence of random variables is convergent in distribution or, at least, has a subsequence that
converges in distribution. This comes down to finding a good description of the sequences
in P(X) that have a convergent subsequence or rather of the relatively compact sets of
P(X). Recall that a subset S of a metric space is called relatively compact if its closure S is
compact. The following theorem by Yu.V. Prokhorov [11] gives a useful description of the
relatively compact sets of P(X) in case X is separable and complete. Let us first attach a
name to the equivalent condition.

Definition 1.20. A set I' of Borel probability measures on X is called tight if for every
€ > 0 there exists a compact subset K of X such that

w(K)>1—¢ foral pel.

(Also other names and phrases are in use instead of ‘T" is tight’: ‘T" is uniformly tight’, ‘T
satisfies Prokhorov’s condition’, ‘T" is uniformly Radon’, and maybe more).

Remark. We have shown already: if (X, d) is a complete separable metric space, then {u}
is tight for each € P(X) (see Theorem 1.9).

Theorem 1.21 (Prokhorov, 1956). Let (X,d) be a complete separable metric space and
let T be a subset of P(X). Then the following two statements are equivalent:

14



(a) T is compact in P(X).
(b) T is tight.

Let us first remark here that completeness of X is not needed for the implication (b)=(a).
The proof of the theorem is quite involved. We start with the more straightforward impli-
cation (a)=(b).

Proof of (a)=(b). Claim: If Uy, Us,... are open sets in X that cover X and if € > 0, then
there exists a £ > 1 such that

k
p({JUi) >1-¢ forall peT.
i=1
To prove the claim by contradiction, suppose that for every k > 1 there is a pj € I' with
Mk(Ule U;j) <1—e. AsT'is compact, there is a pu € I' and a subsequence with iy, — p.
For any n > 1, |Ji , U; is open, so

Ui)

-

p((JU:) < liminf g (

J—00

-
Il
—_
-
Il
—_

< liminf g, (

J—0

Ui)fl—&

C =

.
I
_.

But 2, Ui = X, so u(U;—, Ui) — u(X) =1 as n — oo, which is a contradiction. Thus
the claim is proved.

Now let € > 0 be given. Take D = {aj,as,...} dense in X. For every m > 1 the open
balls B(a;,1/m), i =1,2,..., cover X, so by the claim there is a k,, such that

km
,u< U B(aj;, 1/m)> >1—e27™ forall pel.
1=1

Take

oo km

K = ﬂ UE(ai,l/m).

m=11i=1

Then K is closed and for each 6 > 0 we can take m > 1/§ and obtain K C Uf;"l B(a;,9), so
that K is totally bounded. Hence K is compact, since X is complete. Moreover, for each
uwel

wxv ) = (U

IN
(]
=
L—

m=1 i=1

= Z (1 - u(@?(a,, 1/m)))
m=1 i=1

< i e27M=¢
m=1



Hence T’ is tight. O

The proof that condition (b) implies (a) is more difficult. We will follow the proof from
[10], which is based on compactifications. We have shown already that if X is compact,
then P(X) is compact (see Proposition 1.19). In that case (a) trivially holds. In the cases
that we want to consider, X will not always be compact. We can reduce to the compact
case by considering a compactification of X.

Lemma 1.22. If (X,d) is a separable metric space, then there exist a compact metric space
(Y,0) and a map T : X — 'Y such that T is a homeomorphism from X onto T(X).

(T is in general not an isometry. If it were, then X complete = T'(X) complete = T'(X) C Y
closed = T'(X) compact, which is not true for, e.g., X =R.)

Proof. Let Y :=[0,1]N = {(&)2, : & € [0,1] Vi} and

8&m) =Y 270G —nl,  &meY.
=1

Then § is a metric on Y, its topology is the topology of coordinatewise convergence, and
(Y,0) is compact.
Let D = {a1,as,...} be dense in X and define

a;(z) := min{d(z,a;),1}, reX, i=1,2,....
Then for each k, ay : X — [0, 1] is continuous. For z € X define
T(@) = (aue)) 2y € V.
Claim: for any C' C X closed and x ¢ C' there exist € > 0 and i such that
ai(z) <e/3, ai(y) >2¢/3 forallye C.

To prove the claim, take ¢ := min{d(z,C),1} € (0,1]. Take ¢ such that d(a;,z) < /3.
Then «;(z) < e/3 and for y € C' we have

ai(y) = min{d(y,a;),1} > min{(d(y,z) — d(z,a;)), 1}

min{(d(z,C) —¢/3),1}

>
> min{2¢/3,1} = 2¢/3.

In particular, if  # y then there exists an i such that «;(z) # «;(y), so T is injective.
Hence T': X — T'(X) is a bijection. It remains to show that for (x,), and z in X:

T, — v <= T(x,) —T(x).

If z,, — z, then o;(x,) — «;(zx) for all 7, so §(T(z,),T(x)) — 0 as n — oo.

Conversely, suppose that z,, / . Then there is a subsequence such that « & {z,,, Zn,,...}.
Then by the claim there is an 4 such that o;(x) < ¢/3 and «;(xy, ) > 2¢/3 for all k, so that
a;i(zp,) # ai(z) as k — oo and hence T'(x,,, ) 4 T(z). O

We can now complete the proof of Prokhorov’s theorem.
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Proof of (b)=(a). We will show more: If (X,d) is a separable metric space and I' C P(X)
is tight, then T is compact. Let I' C P(X) be tight. First observe that I is tight as well.
Indeed, let € > 0 and let K be a compact subset of X such that p(K) > 1—¢ forall peT.
Then for every u € I there is a sequence (piy,), in I' that converges to p and then we have
p(K) = limsup,, o, pin(K) > 1 —¢.

Let (f1n)n be a sequence in I'. We have to show that it has a convergent subsequence.
Let (Y,d) be a compact metric space and T': X — Y be such that 7" is a homeomorphism
from X onto T(X). For B € B(Y), T~'(B) is Borel in X. Define

Un(B) := un(T"Y(B)), BeBY), n=1,2,....

Then v € P(Y) for all n. AsY is a compact metric space, P(X) is a compact metric space,
hence there is a v € P(Y) and a subsequence such that v,, — v in P(Y). We want to
translate v back to a measure on X. Set Yy := T'(X).

Claim: v is concentrated on Yj in the sense that there exists a set E € B(Y) with
ECYyand v(E)=1.

If we assume the claim, define

I/Q(A) = V(A N E), Ae B(Yo)

(Note: A € B(Yy) = ANE Borel in E = AN E Borel in Y, since E is a Borel subset of
Y.) The measure vy is a finite Borel measure on Yj and 1y(E) = v(E) = 1. Now we can
translate vy back to

u(A) == (T(A) = n((T71)71(4)), A€ B(X).

Then p € P(X). We want to show that p,, — pin P(X). Let C be closed in X. Then T'(C)
is closed in T(X) = Yp. (T(C') need not be closed in Y.) Therefore there exists Z C Y closed
with ZNYy=T(C). Then C ={z € X :T(z) e T(C)} ={r € X : T(x) € Z} =T 1(2),
because there are no points in 7'(C) outside Yy, and Z N E =T(C) N E. Hence

limsup pip, (C) = limsupuvy,, (Z)
k—o0 k—o0
< v(Z2)

V(ZNE) +v(ZNE°) = v(T(C)NE) +0
— W (T(C)) = p(C).

S0 fin, — M. B

Finally, to prove the claim we use tightness of I'. For each m > 1 take K, compact in
X such that u(K,,) >1—1/m for all p € I". Then T'(K,,) is a compact subset of ¥ hence
closed in Y, so

v(T'(Ky)) > limsup vy, (T(Kp))
k—oo
> limsup pp, (Kpyn) > 1—1/m.
k—o0
Take E :=J;._1 Ky. Then E € B(Y) and v(E) > v(K,,) for all m, so v(E) = 1. O
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Ezample. Let X =R, p,(A) :=n"A(AN[0,n]), A € B(R). Here A denotes Lebesgue mea-
sure on R. Then p, € P(R) for all n. The sequence (i), has no convergent subsequence.
Indeed, suppose pip, — i, then

W(NN)) < liminf p((—N, V)
= liminf n~*\([0, N]) = liminf N/n = 0,

n—oo n—oo
so u(R) = supys>q u((—=N,N)) = 0. There is leaking mass to infinity; the set {u, : n =
1,2,...} is not tight.

1.7 Disintegration

Let (X,dx) and (Y,dy) be separable complete metric spaces. On the Cartesian product
Z = X xY we define the metric dz((x,y), (2’,vy")) := dx(x,2’) + dy(y,y’). Then (Z,dz)
is a separable complete metric space. There are two natural o-algebras in Z related to
Borel sets: the Borel g-algebra Bz of Z, which is generated by all open sets of Z, and the
o-algebra Bx ® By generated by the rectangles A x B with A € Bx and B € By. The
collections {A: A XY € Bz} and {B: X x B € Bz} are o-algebras containing the open
sets in X and Y, respectively. Therefore, for every Borel sets A in X and B in Y, the set
AxB=AxYNX xBisin Bz. Hence Bx ® By C Bz. The seperability of Z yields
that Bx ® By = Bz. Indeed, let D be a dense subset of Z and let U be any open set of
Z. For every z € U we can find an (a,,b,) € D and positive rational numbers € and ¢ such
that the rectangle R, := B(a,,e) x B(b,,d) contains z and is contained in U. Then U is
the union of R, (z € U) and as there are at most countably many of such R, we obtain
U € Bx ® By.

If u € P(X) and v € P(Y), then n = p ® v is the unique measure n on Bx ® By such
that

n(A x B) = u(A)v(B), forall Ae Bx, B < By.

Clearly, n(Z) =1, so n € P(Z). Further, by Fubini,

/Xxyf(x,y)dn(x,y)Z/X (/Yf(x,y)dy(y)> du(),

for all Borel measurable functions f: Z — [0, co].

We are looking for such a statement for more general measures 7 on the product space
Z. Given a measure on the product space Z, can we write an integral with respect to that
measure as repeated integration, first with respect to the y-variable and then with respect
to x? For n € P(Z), we call the measures

w(A) :=n(AxY) and v(B):=n(X xB), AecBx, B¢c By,

the marginals of n. Suppose that n is absolutely continuous with respect to p ® v, that is,
(L ®@v)(C) = 0 implies n(C) = C for every Borel set C' in Z. Then the Radon-Nikodym
theorem says that there exists a Borel measurable function h : Z — [0, 00) such that

/ f(y) dy(z, y) = / fl@,y)h(z,y) A ® v)(,y)
A Z
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and therefore

| 1w dante.y) - /(/fa:y (,9) d(y ))du(w)

for every positive Borel measurable function f. If we let

vy (B) ::/Bh(a:,y)du(y):/YILXXBh(x,y)dV(y), r e X,

then v, is a Borel measure on Y for each = and

.., tennen = [ ([ e ) o

for every Borel function f: X xY — [0,00]. The latter formula is called the disintegration
formula. If there would exist a Borel set A in X with p(A) > 0 such that v,(Y) > 1 for all
x € Aor vy (Y) <1 forall z € A, then

) = [1ain= [ ( / nAXy@,y)dum(y)) a(z) > p(A)

or u(A) < u(A), which is impossible. Hence v, is a probability measure for p-almost all z.
The existence of such a family of measures (v;)zex is not restricted to the case that n
is absolutely continuous with respect to the product measure of its marginals.

Theorem 1.23. Let (X,dx) and (Y,dy) be two separable complete metric spaces. Let
nePX xY) and u(A) =n(AxY) for A C X Borel. Then for every x € X there exists
a vy, € P(Y) such that

(i) x — vy(B) : X — R is Bx-measurable for every B € By, and

(ii) flx,y)dn(z,y) / (/ fz,y) dvg( )) du(x) for every Borel measurable f :
XXY
X xY —[0,00].

The above disintegration theorem for product spaces is a special case of the next theo-
rem. The set Z plays the role of the product X xY and the map « the role of the coordinate
projection on X. As we do not have the second coordinate space Y anymore, the measures
v, will be measures on the whole space Z, but concentrated on 7~ 1({z}).

Theorem 1.24. Let (Z,dyz) and (X,dx) be separable complete metric spaces, letmw: Z — X
be a Borel map, let n € P(Z), and let pu(A) := n(r~1(A)), A C X Borel. Then for every
x € X there exists a vy € P(Z) such that

(i) vy is concentrated on w({z}), that is, v.(Z \ 7= ({x})) = O for p-almost every
x e X,

(ii) x — vy(C): X — R is Borel measurable for every Borel C C Z, and

(i) [ fGant) = | ( / 1({$})f(2)dvm(2)> e

A proof can be found in [5, Section 10.2, p. 341-351]
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1.8 Borel probability measures with respect to weak topologies

We wish to apply the theory of probability measures on metric spaces to measures on Hilbert
spaces endowed with their weak topology. However, the weak topology is in general not
metrizable. We will define a metric that induces the weak topology on norm bounded sets
and compare the induced Borel o-algebras and narrow convergences. The metric will even
be given by an inner product. We will need several theorems concerning weak topologies on
Banach spaces. We begin by recalling the definitions of weak topology and weak™ topology.

Let X be a Banach space and let X’ be its Banach dual space. The weak topology of X
is the smallest (coarsest) topology on X such that every ¢ € X’ is continuous with respect
to this topology. Then

z, — x weakly <=  @(x,) — p(z) for all p € X"

The weak* topology of X' is the smallest topology on X’ such that every map ¢ — ¢(x) is
continuous for all x € X. Then

on — p weak* <<= @,(z) = ¢(x) for all z € X.
The weak and weak* topologies are weaker than the norm topologies of X and X', respec-
tively.

Theorem 1.25. Let X be a Banach space. The weak* topology on {p € X': |l¢| <1} is a

metric topology (that is, induced by a metric) if and only if X is separable.
(See [6, Theorem V.5.1, p. 426].)

Theorem 1.26. Let X be a Banach space. Then the weak topology on {x € X: ||z|| < 1}
is a metric topology if and only if X' is separable.
(See [6, Theorem V.5.2, p. 426].)

Corollary 1.27. If X is a separable Hilbert space, then the weak topology on {z € X: ||z| <
1} is a metric topology.

Corollary 1.28. If X is a separable Hilbert space and S C X is bounded, then

(i) S is weakly closed <= S is weakly sequentially closed;

(ii) S is weakly compact <= S is weakly sequentially compact.

Theorem 1.29. Let X be a Banach space. Every weakly convergent sequence is bounded.
(See [14, Lemma 8.15, p. 190].)

Theorem 1.30. If X is a Hilbert space, then every bounded sequence in X has a weakly
convergent subsequence.
(See [14, Theorem 8.16, p. 191].)

Let (X, (,)) be a separable Hilbert space and denote its norm by |z| = (z,z)/2. Fix an
orthonormal basis (e, ), in X. Define

e}

9= sl eleny), my € X, )

n=1

and |z|5 == (x, )22 Then (, ) is an inner product on X. It does definitely depend on the
basis as is for instance seen by exchanging e; and es. We will show that (,), induces the
weak topology on bounded subsets of (X, (,)).
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Proposition 1.31. Let S be a bounded subset of (X, (,)) and let (z;); be a sequence in S
and x € S. Then the following three statements are equivalent:

(a) x; — x weakly, that is, (x;,y) — {(x,y) for ally € H;

(b) (x;,en) — (x,en) for all n;

(c) |z;i — x|w — 0.
Proof. (a)=(c): For every n, (x; — x,e,) — 0 and |(z; — z,e,)| < |z; — x| < M for all i, as
S is bounded. Hence by Lebesgue’s dominated convergence theorem,

1
|25 — 2l =Y =5l — x,en)]> — 0.

(e)=(b): [z; — z,em)|> < m? Yooy nQ\(x z,e,)? — 0 as i — oo.
(b)=(a): Let y € H, |z;| < M for all i, |z| < M, e > 0. Take N € N such that

N
ly = (.en)en| < 2/(4M).
n=1
Then
N N
[ = o)l < Vs — 2 ) (s enden)| + s = al [y = Z<y,en>en! <e
for i large. 0

Corollary 1.32. On a bounded subset of (X,(,)), the weak topology and the topology of
(,)w coincide.

Proof. Both topologies are metric topologies on bounded sets and the convergence of se-
quences coincides according to the previous proposition. O

Let

B(X) = Borel g-algebra of (X, (,))
B(X,w) = Borel o-algebra of X with respect to the weak topology
B(X,w) = Borel g-algebra of (X, (,)x)

Proposition 1.33. The three Borel o-algebras coincide: B(X) = B(X,w) = B(X,w).

Proof. For R > 0, the ball Bg := {z € X: |z| < R} is weakly sequentially compact, hence
weakly compact (since the weak topology is a metric topology on bounded sets), hence
weakly closed.

o B(X,w) C B(X,w): If S C X is weakly closed, then S N Bp is weakly closed (in Bg)
and Bp is bounded, so S N By is w-closed in Br. Also,

Br = {zeX:|x|<R}={x: ) |(z,en)] <R}

n=1
[%S) N
= Nz Y lwea)? < R}
N=1 n=1
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is w-closed, since x +— ZnN:1 |(x, en)|? is w-continuous for all N. Hence SN By is w-closed.
Then S =UX_, 5N By, € B(X,w).

e B(X) CB(X,w): Ifae X and R > 0, then {z € X: |z — a|] < R} is weakly compact
hence in B(X,w). As X is separable, B(X) is the o-algebra generated by the closed (or
open) balls of X, so B(X) C B(X,w).

o B(X,w) C B(X): Let S C X be w-closed. Then S N B,, is w-closed in B, hence
weakly closed in B,,. As B, is weakly closed, S N B,, is weakly closed in X, hence closed in
(X,(,)). Thus, S=U, SN B, € B(X). O

It follows that P(X) = P(X,w) = P(X,w) as sets. The narrow convergences, however,
are different. Under additional assumptions, some relations between the narrow conver-
gences can be proved. We include two such results and sketches of their proofs. First we
need to introduce cylindrical functions.

Definition 1.34.

CX(RY) = {p:R% - R: every derivative of order k exists for all k
and ¢ = 0 outside a compact set}.

Recall that X is a separable Hilbert space with a fixed orthonormal basis (ey,)s,.

Cyl(X) = {f:X —R:3deN, Jpec CXR?) such that
f(z) =v((z,e1),...,(z,eq)) Vo € X}.

The elements of Cyl(X) are called smooth cylindrical functions on X.

Proposition 1.35. Fvery f € Cyl(X) is Lipschitz, everywhere differentiable in Fréchet
sense, and continuous with respect to the weak topology of X as well as {,) (with the same

fized basis (en)n ).
Proof. Let f(x) = p({z,e1),...,(x,eq)). Let g(t) := f(x + t(x —y)). Then

() = F(W)l = 19(0) = g(1)| < sup |g'(t)]

t€[0,1]
and

d
GO = 1Y (Dio)({a +ty — ), ey — z,e:)]

1

7/
d
< D IDi¢llsoly — x| < Mly — =],
i=1

so f is Lipschitz. To see that f is Fréchet differentiable at x,

[f(@+h) = fl@) = Dip({z,e1),...., (&, ea) (b ei)lr
i=1

< o((her), ..., (h,eq)) < o(|h]).

So f is Fréchet differentiable. The continuities are clear. O
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Lemma 1.36. Let X be a separable Hilbert space, (e,)n an orthonormal basis of X, and
(,)w defined by (3). Then:

(1) if K is weakly compact in X, then K is compact with respect to (,)w;
(2) if I CP(X) is weakly tight in the sense that
Ve >0 3dR. > 0 such that u(Br.) > 1—c VueT,
then I' is tight in P(X,w) (here Br = {z € X: |z| < R});

(3) let (pn)n C P(X) be a sequence such that {p,: n € N} is weakly tight; then p,
converges narrowly to p in P(X,w) if and only if

lim [ f(z)dp,(z) = /f(a:) dp(x) for all f € Cyl(X).

n—oo

Proof. (1): K is weakly compact implies that K is bounded in (X, (,)). Hence the weak
topology on K is the same as the w-topology, so K is also w-compact.

(2): Bpg is bounded in (X, (,)) and weakly compact, hence w-compact.

(3): =: Suppose that {u,: n} is weakly tight and u, — p narrowly in P(X,w). Let
f € Cyl(X). Then f is bounded and f is continuous with respect to @, so [ f du, — [ fdu.

<: Suppose that {u,: n} is weakly tight and [ fdu, — [ fdu for all f € Cyl(X).
By (2) and Prokhorov’s theorem, every subsequence of (i) has a subsubsequence that
converges narrowly in P(X,w) to some measure in P(X). If all these limit measures

are equal, then (u,), converges to this measure. We check that p,, — v narrowly in
P(X,w) implies that v = p. As f € Cyl(X) is bounded and w-continuous, we have

[ fdpn, — [fdv,so [ fdu= [ fdv forall f e Cyl(X). If f(z) = p((z,e1),..., (z, eq)),
with ¢ € C®(R%) then the equality reads

/gp((:ﬂ,q),...,<x,ed>)du(z):/Xg0(<:v,61>,...,(aj,ed>)dy(z).

By means of a Stone-Weierstrass approximation argument, it follows that

/Xw((a:,el>,...,<x,ed>)d,u(a:) = /Xw((a:,el>, ooz eq)) dv(z)

for all ¢ € C.(R?). The latter equality actually holds for all ¢/ € C},(X), as can be seen
with the aid of Lebesgue’s dominated convergence theorem. Now let g € Cp(X) and define

d

gd(<$, 61>’ AR <xv ed>) = Q(Z<$a €i>€¢)

=1

for z € X and d € N. Then g4(z) — g(x) as d — oo for all z. By Lebesgue’s dominated
convergence theorem,

/X o) dn(w) = [ glz)du(a),

X
SO f = V. ]
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Theorem 1.37. Let j: [0,00) — [0,00) be continuous, strictly increasing and surjective.
(For instance, j(x) = zP, 1 < p < 00.) Let pin, pp € P(X) such that p, — p and in P(X, w)
and

n—oo

tim [ ) () — /X §(lal) du < oo,
Then py, — p in P(X, (,)).

Proof. Claim: For every ¢ > 0 there exists an R > 0 such that py(Bg) > 1 — ¢ for all n.
Suppose not: for every R > 0 there exists an n such that ., (B%) > e. Then

/X i) dn(@) > /B 302 )
> j(R)un(BR) > j(R)e,

which becomes arbitrary large as R — oco. Thus we have a contradiction with finiteness of
sup,, [y (2] dan (o).

Claim: The map z — j(|z|) is w-l.s.c. Let (z;); and x in X be such that |z; — z|o — 0.
As x — j(]z|) is bounded below, « := liminf;_, j(|z;|) exists. For £ > 0, the set Ly4c :=
{y: j(ly]) < a+¢e} = {y: ly| <7 H(a+¢e)} is weakly compact hence weakly closed (since
bounded) hence w-closed. Therefore z € L4 and hence j(|z|) < o = liminf; o j(|2;]).
Thus j(| - |) is w-Ls.c.

Let

H = {h: X — R: 34, B > 0 such that |h(z)| < A+ Bj(|z]) Vz € X

and /hduna/hdu}.

We will show that Cy,(X) C H.

Claim: H is a vector space, j(| - |) € H, and 1 € H.

Claim: If ||k, — hl|xo — 0 and h,, € H for all n, then h € H. Each h,, is continuous
and there are A,, and B,, such that |h,(z)| < A,, + B,j(|z|) for all z, so h is continuous
and |h(x)| < |h(z) = hp(x)| + |hn(x)| < (An + 1) + Byj(|z]) for an n with |h, — h|s < 1.

Moreover,
[ =il +1 [ fnion = [ hnl +1 [ = [ g

[ i~ [
||hm—h||oo+|/hmdun—/hmdu|+||hm—h||oo —0

IN

IN

if first n — oo and then m — oo.
Let
A:={h € H: his w-ls.c.}.
Claim: f,g € Aimplies f+g€ A, f € Aand A > 0 implies Af € A, and j(| - |) € A.
Claim: If f,g: X — R are continuous, w-1.s.c., there exist A, B > 0 such that |f(z)| V

lg(z)] < A+ Bj(|z|) for all z, and f+ g € A, then both f € A and g € A We
have to show that [ fdu, — [ fdu (and the same for g). By w-lower semicontinuity,

[ fdp <liminf, [ fdu, and [gdu <liminf, [gdun, so [(f + ¢)dp < lminf [ fdu, +
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liminf [ gdu, < limsup [ fdu, + liminf [ gdu, < lim [(f + g)dpn, = [(f + g)dy, so
ffdﬂn - ffd,u~

Claim: f,g € A implies fV g € A and f A g € A. This follows from the previous claim
and the identity f+g=fVg+ fAg.

Recall the Moreau-Yosida approximations: if f € Cy(X) and

)
fi(@) = inf () + Kz~ o).

then fj is Lipschitz, inf f < f1 < fo < -+ < f, and f(x) = limg_ o fx(x). Let D be a
countable dense subset of X. Then fi(x) = inf,ep (f(y) + klx — y|>, so there exists a

sequence y; such that fi(z) = inf; (f(yl) + k|z — yz|> Let

m

i=1

and
D:=Dy—Dy=1{f—g: f,g€ Do}

Claim: For every bounded Lipschitz function h: X — R we have
/ hdy = sup{/fd,u:fGD, f<h}
X
= inf{/fdu: feD, f>h}

Choose a countable dense subset D = {aj,as,...} of X. Let L and M be such that
|h(z)| < M for all x and |h(z) — h(y)| < Lz — y| for all z,y € X. For n € N, choose N
such that

u( NU Blas, 1/n)> >1-1/(Mn)
i=1

and
Nn

Falw) = N\ (h(ai) + L|z — a¢|> AM, z€cX.
i=1

Then f,, € D and for x € B(a;,1/n),

[fn(2) = W) < [fn(x) = flai)| + [h(a;) — h(z)| < 2L/n.

For z € X,
hai) + Llz — a)] > h(a) + [h(x) = h(a)| > h(z),

so fn > h. Further, f,(z) < M for all z. By Lebesgue,

J 1 = [ P MU Bl 1)

/(h+2L/n)dp+ 1/n < /hd,u+ (2L +1)/n.

IN
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Now do the same for —h.

Claim: If f =2+ (a+ Bz —y|) ANy € A for every a € R, 3,7 > 0, and y € X, then
pn, — pin P(X, |-|). If such functions f are in A, then [ fdu, — [ fdu and they are also
in D. Hence for bounded Lipschitz f: X — R,

liminf/hdun > sup liminf/fd,un

nee fep, f<h "o

= sup /fd,u:/hd,u.
feD, f<h

Similarly for —h.
It remains to show that x — f(z)(a + Sl —y|) Ay € A. We can rewrite such an f as
flz) = (ﬁ]a: — y[) A(y—a)+a. If vy —a <0, then this function is constant, hence in A.

Thus we may assume that f(z) = |z —y| Ay for some y € X and v > 0.

Claim: If f € A, §: R — R is uniformly continuous, bounded, and increasing, then
fof e A We may assume (by uniform approximation) that € is Lipschitz, increasing,
bounded, and (by scaling) has Lipschitz constant < 1. Then also x +— = — 6(z) is Lipschitz
and increasing, so # o f and f — 6 o f are w-l.s.c. Their sum is in A, hence 6 o f € A and
f—0ofeA

Claim: x + |z| Ay € A. Consider 0(s) = j~!(s)> Ay? if s > 0 and 0(s) = 0 if s < 0.
Then 0o j(|-|) € A, so z— j71((|z])? Ay2 = |z| Ay? € A. With 0(s) = /s if s > 0 and
0(s) =0if s <0, it follows that = — || Ay € A.

Claim: z — |z—y|Avy € A. (Sketch of proof:) The function g, ,(z) = (=€) V(—2(z,y)+
lyl? ) Am € A, 6;m > 0. So gy pmp = <(\x!2 AYE+ gom(z) V O) i ANk e A k>0, With
v >+ k m >k,

g tmi() = Tol) 1= (ol + (~26.0) + W) v (-0) v0) " nk € A

and
li = inf =z -yl ANk
glm gé,k(m) l}gNgé,k(x) [z — |

for all z € X. It follows that

timsup [ (Ja=yIAk) dien(@) < Bimsup | Gula) du@) = [ Fogduta) = [ Gple) o).

n—oo n—oo

O

1.9 Transport of measures

Let X7 and X5 be separable metric spaces, let u € P(X1), and let 7: X7 — X5 be a Borel
map, or, more generally, a g-measurable map. Define rxp € P(X3) by

rup(A) = pu(r~t(A)), A C X, Borel

The measure 74 is called the image measure of p under r or the push forward of u through
r.
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Lemma 1.38. (1) le flr(z))du(x) = fX2 f(y)drypu(y) for every bounded Borel func-
tion f: Xo — R.

2) If v is absolutely continuous with respect to w, then ru is absolutely continuous with
#
respect 10 Ty (1.

(3) If s: Xo — X3 is Borel, where X3 is a separable metric space, then (s o r)upn =
Sg(rappe).

(4) If r is continuous, then ryu: P(X1) — P(X2) is continuous with respect to narrow
convergence.

Proof. (1): By definition of 74 the statement is clear for simple functions and then follows
by approximation.

(2): If ryp(A) =0, then pu(r=1(A)) =0, so rgv(A) = v(r-1(A)) = 0.

(3): (sor)uu(A) = p((sor)~H(A)) = p({z: s(r(z)) € A}) = rupu(s™!(A)) = sy (run)(A).
(4): If py, — p in P(X7), then for every open U C X5 the set r~1(U) is open in X1, so

liminfry(U) = liminf u,(r~1(U))
> p(r i) = rg(U).
SO Ty fin — [ O

Lemma 1.39. Let r,,r: X1 — Xo be Borel maps such that r,, — r uniformly on compact
subsets of X1. Let (fin)n be a tight sequence in P(X1) that converges to p. Ifr is continuous,

then (rn)4fin — T4/0.

Proof. Let f € Cy(X2). For K C X7 compact, we have for, — for uniformly on K. Let
e > 0. Choose a compact K C X such that p, (X1 \ K) >1— (¢/2)||f|lec for all n. Then

[ oradun = [ forau
<\ [ forndi [ forduml+| [fordm~ [fordu

S2||f|!oo/tn(X1\K)+|/K(f0rn—f07“)dun|+|/fordun—/fo7“dul
§€+H(forn—fOT)\KHooH/fordun—/fordu\~

The second and third term converge to 0 as n — oco. U

Lemma 1.40. Let X, X1, Xo,..., XN be separable metric spaces, let r': X — X; be contin-
uous maps, and letr :=r'@---@rN: X — X7 x---x Xn be such thatril(Kl X Kpn) is
compact whenever Kq,..., Ky are compact. If T' C P(X) is such that T'; := r%(l’) 18 tight
in P(X;) for all i, then T is tight in P(X)

Proof. Denote for 1 <i¢ < N and p e, y; := rf#,u. Let € > 0. Then there exist compact
K; C X; such that u;(X; \ K;) < e/N for all 4 € I and all i. So u(X \ (r)) 1 (K;)) < ¢/N
and

PO\ )6 < D70 ()7 () < e
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for all p € I'. Also, ﬂl L) 7HK) =7 YKy x -+ x Ky) is compact. O

Let (X1,dy),...,(Xn,dn) be separable metric spaces and let X = X7 x -+ x Xy with
its metric defined by d((z1,...,2n), (Y1,...,yn)) = di(z1,y1) + - - + dn(z N, yn). Denote
the coordinate projections by (acl, cxN) =z and (2, 2n) = (@), I
uw e P(X), then the measures u’ := 7 #u and pil = 7r 11 are called the margmals of u.
For measures u’ € P(X;), define the set of multiple plans with marginals u* by

Dty p1N) = {p € P(Xy x - x Xy): w%,u:,ui, i=1,...,N}

For N =2, € T'(ut, 2) is called a transport plan between p' and 2.
Ezample. Let X1 = Xo = {1,2} and p'({1}) = p*({2}) = 1/2, u? = p'. Then I'(p!, p?)
{mp: 0 < p < 1/2}, where n,p({(1,1)}) = 77p({(2’2)}) = pand n,({(1,2)}) = n,({(2,1)})
1/2 —p.

If given two-dimensional marginals are compatible, we can find a three-dimensional
measure with these marginals.

Lemma 1.41. Let X1, Xo, X3 be complete separable metric spaces and let y'2 € P(X1 x X5)
and v'3 € P(X1 x X3).

(1) Ifﬂ'#")/l2 = 7r71¢713 = p! for some ul 6 P(Xl), then there exists a pu € P(X1 x X9 x X3)
such that 7131#2/; =12 and 7r =1

(2) Suppose 752 € P(X2), 73 € P(X3), and pig, € P(Xa2 x X3), x1 € X1, are such that
fy% dut, that is,

[ 1 ) = [ ( f(ml,wz)dv%f(m2)> dpi (a1),
X1 Xo
V Borel f: X1 x X9 — [0, 00,

and, similarly, B = [yBdu! and p= [ pg, dp' € P(X1 x X9 x X3). Then ﬂ;f,u =
~+2 and 7r 2=~ if and only if py, € D(712,727) for p-a.e. z1 € X;.

Proof (1): By the disintegration theorem, there are families of measures v1? € P(X,) and
713 € P(X3), z1 € X1, such that

/f x1,22) dy' P (21, 22) = /(/f 901,$2)d’711(902)> dpt (1)

and a similar equation with 3 instead of 2. Define
w@= [ ([ tzlorana) a6 o)) o)
X1 X2><X3
Then pu € P(X; X X9 x X3) and
x5 ) = [ ([ aen) aite) = [ an=a2ax)
A B AxB
for Borel sets A C X7 and B C X5. A similar equations holds with 3 instead of 2.
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(2): If 71';#2,[1, =~'2 and Tr#”,u = 13, then

YAxB) = mfp(Ax B)=p((x'?)"(Ax B))

= / </ ]l(7r12)l(AxB)(thz,ws)dﬂm(m,w:s)) dp*(z1)
X1 XQXXS
= [ (@) A B dut(e)
1

= / 7"71@&2/1'3[:1("4 X B) dll’Ll(xl)
X3
and

/f(.%'l,l'g)d"}/u - /fdﬂ'%f,u
= /fo7r12d,u:/f(3317x2)dﬂ(3717m27m3)

— /Xl </f(m1,x2)duxl($2,$3)> dp' (1)
- /X1 (/f(xl,xg)dwiuxl(x2)> dpt (1)
_ /Xl (/fdﬂ;Ml) dp.

12

By the uniqueness part of the disintegration theorem, 7,7 = ﬂi,uwl for pl-ae. 1 € X;.

Similarly, 75’ = 71'3’ég Loy -
Conversely, suppose ﬂ'iﬂxl = ’YE and W%,uml = 7;:15 for p'-a.e. x1. Then

/f(gcl,nlcg)dfy12 = /X1 (/f(arhxz)d’yif) dp'
_ /X (/f(a:l,xg)dﬂium> !

= /f(mlny)dﬂ-i,ua

so 12 = Wi,u. U

2 Optimal transportation problems

Optimal transportation problems aim to minimize costs or energy needed to transport mass
from a given initial state to a given final state. We will consider the Monge and Kantorovich
optimal transportation problems in metric spaces and discuss existence and uniqueness of
optimal transportation plans.

2.1 Introduction

In order to have an economical interpretation in mind, we begin by explaining a simple
instance of a transportation problem. Suppose a certain amount of milk is available in
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three distribution centers and should be transported to five supermarkets. Let v; be the
amount available at the jth center and p; be the amount needed at the ith supermarket. We
may scale such that Z?’:1 v; =1 and 2?21 p; = 1. Let ¢;; denote the costs of transporting
one unit milk from center j to supermarket i. How to transport the milk for minimal costs?

The first formulation of the problem is due to Monge (1781). Assume that supermarket
i gets all its milk from one distribution center, say r(i) € {1,2,3}. As the jth center
has to send out all of its milk we have v; = Zi:r(i):j ;. We want to find the map
r:4{1,2,3,4,5} — {1,2,3} such that the total costs 2?21 Cir(s)ii are minimal. In other
words, we want to solve

5
min{) ¢ i 71 {1,2,3,4,5} — {1,2,3} such that v; = Y p;}.
i=1 iir(i)=j

Solving the problem comes down to drawing arrows from j in {1,2,3} to ¢ € {1,2,3,4,5}
in a most cost effective way. (Each i is reached by exactly one arrow.)

The second formulation is more general and due to Kantorovich (1942). We now allow
each supermarket to receive milk from more than one distribution center. Let «;; be the
amount sent from j to ¢. We want to solve

min{z ¢ijYij: vij = 0 such that Z%‘j =vj, Z*yij = iU}
1,J i J

Solving the problem comes down to filling the matrix (vy;;);; with the given row and column
sums in the most cost effective way.

We can make an important observation about the structure of an optimal matrix (v;;).
Suppose that (v;;) is a transportation plan with minimal costs and suppose that the two
entries v;; and e are strictly positive. Then we should have c;; + cxr < cip + cg;. Indeed,
we would otherwise be able to decrease the costs by decreasing v;; and 74, both with the
amount « := min{~;;, Y} and increasing ~;, and Ykj both by a. This observation will lead
to the notion of c-monotonicity of the support of an optimal transportation plan.

There is a dual point of view to the Kantorovich problem. Of course the supermarkets
and distribution centers do not want to pay for the transportation of the milk, but they
have to in order to receive or get rid of their supplies. Let us denote the amount that
supermarket ¢ is willing to pay per unit by ¢; and the amount that distribution center j
is willing to pay per unit by v;. As they will never pay more than needed, it is clear that
@i +1; < ¢;5. The total amount that they pay equals Y. @i+ ; Yjv;. It turns out that
the maximal total amount that is acceptable for them to pay

5 3
max{> @ipi + Y_ it @i + 15 < cij}
i=1 j=1
equals the minimal total costs
min{) " cijvijc Y =vi, Y vig = i}
ij Vi J

Under the assumption that ¢;; > 0 for all 7+ and j, the Kantorovich problem has a
solution. There may be several solutions, as is easily seen in the extreme case that c;; = c11
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for all ¢ and j. The Monge problem, however, may not have a solution. For instance, if the
distributions x4 and v are uniform, that is 11 = v, = v3 =1/3 and p3 = --- = us = 1/5,
then there is no map r: {1,2,3,4,5} — {1,2,3} such that rypu = v.

Let us next consider Monge’s and Kantorovich’s problems in metric spaces. Let X and
Y be two separable complete metric spaces and let p € P(X) and v € P(Y). Recall that
we endow the product space X x Y with the metric d((z,v), (z/,v)) := dx (z,2") +dy (y,y’)
and that we denote the coordinate projections by 7% (x,y) = = and 7Y (z,y) = y for all
ze€ XandyeVY. Let ¢ X x X — [0,00) be Borel measurable. We can now formulate
Monge’s problem as

min{/ c(z,r(x))dp(z): 7 X — Y a Borel map such that ryp = v},

where r4 denotes the image measure of y under 7. Recall that

D(u,v) = {7 € P(X x V): (x¥) gy = p and (x) oy = v}

is the set of transportation plans. The Kantorovich problems reads

min{/ c(z,y)dy(z,y): v € I'(p,v)}.

The dual problem to the Kantorovich problem is

max{/gpd,u—i— /wdu: o € LY (), ¢ € LY'(v), o(x) +¥(y) < c(z,y) Yo € XVy e Y}

Definition 2.1. The measure n € I'(u, v) is called optimal for c if

[ edn=min{ [ cwy) dr(a ) 3 € Do)

(possibly oo = 00).

Definition 2.2. For a function ¢: X — [—o00, o0], the c-transform of ¢ is defined by

) = inf (cw.y) —p()).  yeY.

The c-transform of a function ¢: Y — [—o0, 00] is

UH(a) = inf (elwy) ~0().  wEX.

yey

Here we use the convention that inf ) = oo, inf oo = oo, inf(—oc0) = —o0, and the infimum
of a set that is not bounded below is —oo.

The support of an optimal transportation plan has a structure that is described in the
following definition.

Definition 2.3. A set S C X x Y is called c-monotone if

n n

> elwoqy i) =Y ol vi)

i=1 i=1

for every (x;,y;) € S,i=1,...,n, and every permutation o of {1,...,n}.
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2.2 Existence for the Kantorovich problem

The existence of an optimal measure for the Kantorovich problem is a consequence of
Prokhorov’s theorem. The next lemma is actually contained in Lemma 1.38 and Lemma
1.40, but for convenience we include an explicit proof.

Lemma 2.4. Let X and Y be separable complete metric spaces and let p € P(X) and
vePY). Then I'(u,v) is a compact subset of P(X xY).

Proof. Notice that X x Y is also separable and complete. We first show that I'(p,v) is
tight. As X and Y are separable and complete, the measures 4 and v are tight. Let € > 0.
Choose compact sets K C X and L C Y such that u(K) > 1—¢/2 and v(L) > 1 —¢/2.
Then K x L is compact in X x Y and for v € I'(u, v),

VX XY\ K xL) < A(X\K)xY)+5(X x (Y\ L))
— WX\ K)+p(Y\L) < /2422

Hence T'(p, v) is tight. By Prokhorov’s theorem, I'(, v) is relatively compact in P(X x Y).

It remains to show that I'(u, v) is closed in P(X xY'). Let (v, )n be a sequence in I'(, )
and n € P(X xY) be such that v, — 1 narrowly. Due to the Portmanteau theorem we
have for any C' C X closed,

n(C xY) > limsupn,(C xY)

n—oo

= limsup u(C) = u(C)

n—oo

and for U C X open,

nUxY) < linniigfnn(U xY)

~ liminf u(U) = u(0).
Let C' C X be closed and let
Up = {x € X: dist(z,C) < 1/m}, m>1

Then each Uy, is open and (1,51 Uy = C and (51 (Un X Y) = C' x Y. Hence

n(CxY) = lim n(UnxY)
Jim 1 (Un) = p(C).

IN

Thus, n(C x Y) = u(C). Hence p is the marginal on X of 7. In a similar way we can show
that the marginal of n on Y is v and therefore n € I'(u, v). O

Theorem 2.5. Let X and Y be separable complete metric spaces, let p € P(X) and v €
P(Y). Let c: X xY — [0,00) be continuous. Then there exists n € I'(u,v) such that

/cdn - min{/cd’y: v eT(u,v)}.
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Proof. Write o := min{ [ ¢dy: v € I'(u,v)}. If @ = o0, then n = p ® v € I'(u,v) satisfies
[ ¢dn = oo = a. Otherwise, for n > 1, take a v,, € I'(u,v) with

/cdnn <a+1/n.

By the previous lemma, I'(u,v) is compact. Hence there exists n € I'(u,v) and a subse-
quence eta,, — nas k — oco. For k > 1 and m > 1 we have [c¢Amdn,, < [cdn,, <
a+ 1/ny. Hence

/cdn:%iﬂmoo cAmdn:%iinwklln;O cAmdny,, <o
O

Remark. The previous theorem is a special instance of a general principle: a l.s.c. function
on a compact metric space has a minimum. The above lemma says that I'(u, ) is a compact
metric space. The map n— [ c¢dn is Ls.c. due to Proposition 1.12(c).

2.3 Characterization of optimal plans

The next theorem characterizes optimal transportation plans. We begin with a lemma.

Lemma 2.6. Let X and Y be separable complete metric metric spaces, p € P(X), v €
P(Y), and n € I'(u,v). Then there exists a p-full Borel set A C X such that

Vre AJyeY: (x,y) € suppn.

Further, pu(m* (suppn)) = 1 and v(7¥ (suppn)) = 1.

Proof. The set S := suppn is closed hence Borel. As X x Y is separable and complete, 1
is tight, so
1 =n(S) =sup{n(K): K C S, K compact}

Choose K,, C S compact such that n(K,) > 1 — 1/n, for n > 1. Then 7% (K,) is compact
in X and pu(r*(K,)) = n(K,) > 1—1/n. Hence A := |, K, is a p-full Borel set in X. If
r € A then z € 7% (K,,) for some n, so (z,y) € K,, C S for some y € Y. O

Theorem 2.7. Let X and Y be separable complete metric spaces, u € P(X), v € P(Y),
and c¢: X xY — [0,00) continuous.

(1) Ifn € T(u,v) is optimal for ¢ and [ cdn < oo, then
suppn :={z € X x Y: n(U) > 0 for every neighborhood U of z}

1$ a c-monotone set.
(2) If n e T'(u,v) is such that

— suppn s c-monotone, and

— ,u<{ac € X: [y ez, y)dv(y) < oo}) >0, and
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— u<{y eY: [yclz,y)du(z) < oo}) >0
then n is optimal for c.

(3) In the situation of (2), one also has

min{/cd'y:fyef(,u,y)}
=maX{/<pdu+/wdw ¢ €L (w), veL'(v),
p(r) +9(y) < c(a y)v<:c,y)exxy}

and the mazimum at the right hand side is attained at
p(z) = inf { > im0 (C(xi-i-layi) - C(@“z‘,yi)): peEN, zp =z,
(z4,y;) € suppn, i = 1,...,p}

for any choice of (xg,yo) € suppn and ¥ = ¢°.
Proof. (1): (See [7, Theorem 2.3].) Suppose that suppn is not c-monotone. Then there are
n € N and a permutation o of {1,...,n} such that the function

n

flur, ..o tn,v1,y. .. 0p) 1= Z <c(u0(i),vi) — c(ui,vi))

i=1

is strictly negative at some (x1,...,Zn,y1,...,Yn) with (x;,y;) € suppn. We will construct
a more cost efficient measure than 7 and thus show that 7 is not optimal for c.

As f is continuous, we can choose Borel neighborhoods U; of x; and V; of y; such that
flug, ... up,v1,...,0n) <0 foru; € Uy and v; € Vi, i =1,...,n. As (x4,y;) € suppm,

A:=minn(U; x V;) >0

Define n; € P(X xY) by

1

_— C X x Y Borel.
n(UixV) n(U; x Vi)ynWwW), W CX x ore

772(W) =
Consider
Z=(XxY)"
and p € P(Z) given by
pP=m®&: &Ny

LetTr 27— XbedeﬁnedbyTr (U, V1, vy Up, Up) = U andTriY: Z—»Ybywiy(ul,vl,...
v;. Recall that 7% ® 77] denotes the map (uy,vi,...,up,vy) — (u;,v;). Define

n

yo= 77—22(# @1y )up + = Z ®7T)

= n——Zm —Z Toiy O T} )b

=1
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Then

n — n(U; x V;)
1 n
=1

for every Borel set W C X x Y. So v is a positive Borel measure. It is easy to check that
v € P(X xY). Further, for A C X Borel,

(W(i((z)(gﬂ'zy)#p(AXY) = p({(ulavla"'vunyvn) GZ (UO.(Z'),U@') GAXY})
= p({(u1,v1,... un,vp) € Z: ug(iy € A})
= na(z)(A X Y)?

SO

n

WAXY) = n(AxY)—gzm<Axy>+gz< 7 @) )gp(A X Y)

=1
= __anAXY Zna(z AXY (A)

and similarly v(X x B) = v(B) for B C Y Borel. Hence v € I'(p, v).
Finally,

[ et @nipo= [ el @)} () an

SO

/cdfy

N
[ean+2 > [ (el () = ¥ (1ol () dot)

= fean+2 [ P )X () () () A2
T JUL XV XX U X Vi

< /cdn,

since p is concentrated on Uy x V| x --- x U, x V,, and f < 0 on this set. Thus we have
that ~ is more cost efficient than 7, so that n is not optimal.

(2) and (3): Let S := suppn, which is a c-monotone subset of X x Y. Fix (zg,y0) € S
(n(S) = 1 so S is non-empty) and let ¢ be defined as above. The proof is divided into
several claims, clustered by topic. We first establish some properties of ¢, then of ¥ = €,
and then we show that ¢ and v are L! functions. Then we derive some more connections
between ¢, 1 and 7, and finally we conclude the proof.

Define

wq(x) := inf { i ( c(riv1,yi) — C(l“z‘,yz‘)>2

=0

Tp1 =, (¥,y:) €5, i=1,....,p, 1Sp§q}.
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Clearly ¢q(z) | ¢(z) for all z € X.
Claim Al: ¢, is upper semicontinuous for each ¢. Suppose u; — u in X. Let € > 0.
Then

p—1
pq(u) = c(z,yp) — c(@p, yp) + Z (C(wz‘ﬂ,yz) - C(xz‘,yz‘)> — £
i=0
for some p < ¢ and (z;,y;) € S. Then
p—1
‘Pq(uk) S C(Uk, yp) - C(.fp, yp) + Z (c(xi-f-h yl) - C(ﬂj’i7 yl))7
i=0
SO
p—1
hiﬂ sup pq(ug) < c(u,yp) — c(zp, yp) + Z (C(xz‘ﬂ,yz‘) - C(iﬂi,yi))
— i=0

< @q(u) +e.

Hence ¢, is u.s.c.

Claim A2: ¢ is Borel measurable. We know that ¢, is u.s.c. hence Borel and ¢, — ¢
pointwise.

Claim A3: ¢(xzp) = 0. On one hand, choose (z1,y1) = (x0,y0) € S. Then p(zy) <
c(xo,y1) — c(z1,y1) + e(x1,y0) — c(xo,y0) = 0. On the other hand, as S is c-monotone, for

(xi,yi) S S, 1=1,...,p,
P P
c(@o(i), vi) > Y clai, vi),
=0 =0
in particular with the permutation o(i) =i+ 1 for 0 < i < p— 1 and o(p) = 0. So, with
the notation x,11 = o,

M-

I
=)

(C(xiJrlayi) - C(Cﬂi,yi)) >0,

50 ¢(zg) > 0. Hence ¢(xg) = 0.
Claim A4: o(u) < ¢(x) + c(u,y) — c(z,y) for all w € X and (x,y) € S. For any p € N
and (z;,y;) € S,i=1,...,p, we have
pu) < ppra(u)

< c(u,y) — c(z,y) + Z (C(ﬂcz‘+1,yz‘) - C($i7yi))a
i=0

where z,11 = . So, by taking infimum over {(z;,y;): 0 < i < p},
p(u) < c(u,y) = c(z,y) + ().
Claim A5: ¢ > —oo0 on 7X(S), so ¢ > —o0 p-a.e. If (z,y) € S, then by Claim A4,
plx) = plzo) — c(ro,y) + c(z,y)

c(z,y) — c(xo,y) € R.
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By the previous lemma we obtain u(7*(5)) =
Claim B1: Let ¢ := ¢° Then ¢(z) + ¢¥(y) = c(x,y) for all (z,y) € S. Indeed, by
definition,

From the definition of ¥ we find with v = x also ¥ (y) < c(z,y) — p(z).
By Claim A5 it follws that ¢(y) € R for v-a.e. y € Y.
Claim B2: v is v-measurable. Due to Claim B1,

b 1s(@.) = (c@,y) - (@) ) 1s(z,y) for all (z,y) € X x ¥
and (z,y) — c(x,y) — ¢(x) is a Borel map by Claim A2. Hence (z,y) — ¥(y)lg(z,y)

is n—measurable By disintegration, there exist n, € P(X), y € Y, such that y —
[x [(z,y)dny(x) is v-measurable and

/Xxyf(wy)dnxy /</fwydny >dV(y)

for every Borel function f: X x Y — [0,00]. The set S = supp is closed and therefore a
Borel set. From the disintegration formula with f = 1g we obtain that

/ Is(z,y)dny(xz) =1 for v-almost every y.
X

+
If we apply now the disintegration to f(z,y) = (c(ac, y) — <p(x)> 15(y) for some Borel set
B CY, then

+ X X = c\T — X * X
wHts@n i) = [ (den) = el) diwy

= [ ([ (et = @) " dnfe) ) vty

XxB

and

U Wls) ity — [ ( / w+<y>ns<x,y>dny<m>) au(y)

_ /Bz/z+(y) </X ls(w,y)dny(w)> dv(y).
It follows that

o) ([ 1@ an@) = [ (o) - o) "anlo) for ey ey,

XxB

SO

v (y) = /x <c(x,y) - go(x))+ dny(z) for v-ae. yevY.
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Hence 9T is v-measurable. Similarly, ¢~ is v-measurable and thus v is v-measurable.
Claim C1: ¥t (y) < c(z,y)+¢~ () for all (z,y) € S. Asc > 0, we have c(z,y)+¢~ (z) >

0. Also c(z,y) + ¢~ () = c(x,y) — ¢(x) = ¢(y). Hence c(z,y) + ¢~ (z) = ¢ (y).
Claim C2: ¢t € L'(u) and o+ € L'(v). By assumption, j(A) > 0, where

A= {x € X: /Yc(x,y)dv(y) < oo}.

Choose z € A such that v({y: (z,y) € S}) = 1. Then ¢ < ¢(z,-) + ¢~ (z) v-a.e. onY (by
Claim C1), so

/Yw* dv < /Y <C(x,y) + 90‘(96)> dv(y) < oo,

since € A and ¢~ (z) € R (by Claim A5). Similarly, o™ (z) < c(x,y) + ¥~ (y) for
(xz,y) € S and there exists a y s.t. u({z: (z,y) € S}) =1, ¥~ (y) € R (Claim Blbis), and
Jx clx,y) du(z) < oo, so

/@*dué/ (z,y) du(z /¢ ) dp(z
X X

Claim C3: [y c(x,y)dn < co. We have

| ean = [ (e@)+ o) antay)
= /gpdu+/¢d1/
< /<p+d,u—|—/w+du<oo.
Claim C4: ¢ € L'(u) and v € L'(v). For (z,y) € S we have

o(x) = c(z,y) —p(y) > clz,y) — T (y)
> —c(z,y) — ¢t (y),

so ¢~ (z) < c(z,y) + T (y). Hence

[ean = [e @ty < [ (o) + v 0) ditay)

= /cd77—|—/¢+du<oo.

So [|pldp < [T du+ [ du < oo. Similarly, [ |¢|dv < oo.
Claim D1: ¢(z) + ¢ (y) < c¢(z,y) for all (z,y) € X x Y. We have

Wly) = inf (clu,y) - () < c(,y) - o).

ueX

Claim D2: For v € T'(u,v),



() dp(z) + / (y) dv(y)

(¢(@) + ¥ W) dn(, )

xY

(e(@) + %)) dn(a.y)

cdn:/ cdn.
XxY

Conclusion: From D2 we see that 7 is optimal for ¢, that is,

min{/ cdy: v e I'(p, V)} :/ cdn.
XxY XxY

I
—— o T

Further,

maX{/fdu+/gdv: feLNp), ge L'(v), f(z)+g(y) < c(z,y) V(z,y) € X x Y}

— [e@du@) + [0 dvty) = [ ean

Finally, we have ¢ = ¢ by definition of 1. O

Definition 2.8. The function ¢ as defined in (3) of the previous theorem for some choice
of (zg,y0) € suppn is called a Kantorovich potential associated to suppn.

We give some more properties of Kantorovich potentials.

Proposition 2.9. Let n € I'(u,v) be optimal for ¢ and let ¢ be a Kantorovich potential
associated to suppn. Then:

(1) w(z) +o(y) = c(x,y) for all (x,y) € suppn;
(2) p“(x) = p(x) for every x € A:={u € X: Jy € Y with (x,y) € suppn}.

Proof. (1): This fact has been proved in Claim B1 of the previous theorem.
(2): Let z € A. We have

@*(x) = inf (c(a:, v) - goc<y>),

= i2f (ew) — ).

Let y € Y. Then c(z,y) — ¢°(y) > c(x,y) — (c )forallueX so (with u = x)
c(z,y) — ¢°(y) > ¢(x). Hence ¢°“(z) > ¢(x). Conversely, since z € A, there exists ay € Y
such that ¢°(y) = c(z,y) —(x). Then ¢*(z) < c(z,y)~¢°(y) = (. y)— (clz,y)~¢(x)) =
().

O

Remark. The conditions in Theorem 2.7 that

o [cdn< oo,
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. ,u<{x € X: [y ez, y)dr(y) < oo}> > 0, and

. 1/<{y eY: [yc(x,y)du(z) < oo}) >0,

are implied by the stronger condition that [c¢du® v < oo, as is easily seen with the aid of
Fubini.

2.4 Uniqueness and the Monge problem
We will now address the questions
e When is the optimal transportation plan 7 of the Kantorovich problem unique?

e When does the optimal 7 solve the Monge problem, that is, n = (i ® r)4u for some
Borel map r : X — Y7 (Recall, i(x) = x for all z € X.)

We begin with a sloppy sketch of the argument and then prove a preliminary version of a
theorem on uniqueness and the Monge problem. Subsequently, we list some ingredients on
convex functions and approximate differentiation and then prove a more general theorem.

We will consider the case that X = Y = R¢ and c(z,y) = h(x — y) for some strictly
convex function h.

Suppose 1 € I'(u,v) is optimal for ¢ and that ¢(z,y) = h(x — y) with h differentiable.
We want to find a Borel map 7: X — Y such that n = (i ® r)gp, that is, n(W) =
u({x: (z,r(x)) € W}) for Borel sets W C X x Y. In other words, we want to show that 7
is concentrated on the graph of a Borel map. We will try to find for each « € X a unique
point y with (x,y) in the support of 7.

Let ¢ be a Kantorovich potential associated to suppn. For (z,y) € suppn we have

p(x) + ¢°(y) = h(z —y). Since p°(y) = infuex (h(u —y) - w(u)> = Mz —y) = p(x), the
function u — h(u —y) — ¢(u) attains its minimum at v = x. Hence, if ¢ is differentiable at
x7

Vh(z —y) = Vp(z).
If u — Vh(u) is invertible, we obtain z —y = (Vh) "1 (Vy(x)), so

y=a—(Vh) ™ (Ve(z)).

Hence for = such that ¢ is differentiable at = there is exactly one y with (z,y) € suppn.
Thus we can take

r(z) ==z — (Vh) 1 (Ve(z)).

The main mathematical problems to make the argument work are the differentiability of
o and the Borel measurability of . We will not be able to obtain everywhere differentiability
of . Instead we will impose conditions that yield that ¢ is locally Lipschitz and then use
Rademacher’s theorem to conclude its Lebesgue almost everywhere differentiability. We
need the map r at least u-a.e. defined and therefore require that p is absolutely continuous
with respect to the Lebesgue measure on R

Recall that a map f : R® — R™ is called differentiable at = € R? if there exists a linear
operator L,: R — R™ such that for every € > 0 there is a § > 0 with

flx+u) = f(u) = Lou

Tl <e forall u e R? with 0 < ||ul| < 4.
u
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If m = 1, then L, is represented by a vector, which is denoted by V f(z), that is, L,u =
(Vf(z),u).

Denote the Lebesgue measure on R¢ by £¢.

Theorem 2.10 (Rademacher). Let f: R? — R be locally Lipschitz. Then f is differen-
tiable L% -almost everywhere. Moreover, D = {x € R%: fdifferentiable at x} is a Borel set

and .
- Vfix) ifze D
0 otherwise

is a Borel map from R? to R?.

Now we are in a position to prove a theorem on uniqueness for the Kantorovich problem
and existence for the Monge problem. More sophisticated statements are given in Theorem
2.21.

Theorem 2.11. Consider X =Y = R%. Let ¢(x,y) = h(z —y), =,y € RY, where h: R —
[0,00) is differentiable, locally Lipschitz, and such that Vh from R® to its range is bijective
with a Borel measurable inverse. Let p,v € P(R?) be such that

o [yuy bz —y)dy(z,y) < oo for some vy € I'(p,v),
o u({z e xs fyha -y duly) < ) >0,

. y<{y eY: [y h(x—y)du(z) < oo}) >0,
and such that
o 1 is absolutely continuous with respect to L,
e supp v is bounded.
Then:
(1) there is a unique n € I'(u,v) that is optimal for c;

(2) n is induced by an optimal transport map, that is, there exists a Borel map r: R? — R
such that n = (1 ® 1) pp;

(3) the map r of (2) satisfies
r(z) =z — (Vh)"H(Ve“(x)) for p-a.e. z € RY,
where ¢ is a Kantorovich potential associated to supp.

Proof. Let A1 C X be a p-full Borel set such that for all x € A; there is a y € Y such that
(x,y) € suppn, ¢(x) = p(z) (use Proposition 2.9), and ¢(x) € R.
Take R > 0 such that suppr C B(0, R). Then for z € Ay,

¢(x) = inf (C(wvy)—wc(ﬂc)),

y€B(0,R)
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since

pla) = @)= inf (czy) ()

< yeg(lg,m <0(ar,y) - soc(y)> = ()

Next we show that ¢“¢ is locally Lipschitz. Indeed, Let » > 0. Then h is L-Lipschitz
on B(0,R + r) for some L, since h is Locally Lipschitz. Let z1,22 € B(0,7). Let € > 0
and choose y € B(0,R) such that ¢°(y) > —oo (we have ¢¢ € L'(v)) and ¢“(xq) >
c(x,y) — ¢°(y) —e. Then

IN

c(w1,y) = ¢°(y) — (0(1’2’ y) = ¢ ) - 5)
= Nz —y) —hlz2—y) +e
< Lijzy — 2] +¢,

(1) — p*“(22)

as x; +y € B(0,r + R), end hence
¢“(21) — ¢™(22) < L1 — 22 .

Thus, by interchanging the role of z1 and z, |p“(x1) — p““(x2)| < L||x1 — 22|

Let As be an L%full Borel set such that ¢° is differentiable at every x € Ay (by
Rademacher’s theorem). Then Ay is also p-full, as p is absolutely continuous with rspect
to £%. Let A:= A; N Ay. Then A is a p-full Borel set and for every z € A we have

e there is a y € R? with (z,y) € suppn and therefore y € B(0, R) and ¢(z) + ¢*(y) =
h(l’ - y)?

o p(z) = ¢™(x),

e o(x) € R and ¢ is differentiable at x.

Let x € A. There exists y such that (z,y) € suppn. Consider such a y. The function
u— h(u —y) — p“(u) then attains its minimum ¢¢(y) at u = = and is differentiable at z.

So
Vh(z —y) — Ve(z) = 0.

Hence V(z) is in the range of Vh and z —y = (Vh) "1 (Vp(z)), so
y =~ (Vh)" (Ve™(2)). (4)

pefine (Vh) " (Vo(x)) z €A
T — - “Cx x €
r@) = { 0 i zd A

Due to Rademacher’s theorem and the assumptions on h, we infer that r: R — R? is a
Borel map. Moreover, we have (x,r(z)) € suppn for all € A, as follows from (4). Further,
in the arguments preceding (4) y is an arbitrary element of R? with (z,%) € suppn and
thus we obtain that for z € A,

(z,y) € suppn <=y =r(x).
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Consequently,
n({z € A: (z,7(x))}) = n(suppn \ (A xY)) = 1.
Next we claim that
n=(®r)uu.
For a proof, let U x V C RY x RY with U C R? and V C R? Borel. Then

WU xV) = 9(UxV 0 {@r@): e X})
= W((Uﬁ {z:r(z) € V}) x Y)

= wUn{x: (x,r(x)) € U x V})
= (Z ®T)#,U,(U X V)

Finally, we address uniqueness of 7. Suppose 11,72 € I'(u,v) are both optimal for c.
Then also 7 := %771 + %?72 € I'(u,v) is optimal for c¢. By the first part of the proof given
above, we obtain Borel maps 71, 7: R* — R? such that

m=0G@@r)gp and n=(IQr)su.

As 1 is absolutely continuous with respect to 1, we have

m({(m,r(x)): T € Rd}> =1.

Then
n1<{(m,r(z)): T € Rd} N {(m,rl(m)): x € Rd}) =1,

m ({(x,r(a:)) zeRYr(z) = Tl(x)}) -1

Hence r = r; p-a.e. and, consequently, m = (i ® 71)gp = (i ® r)gp = 1. Therefore
n = 2. O

The conditions in the previous theorem can be relaxed. In particular the condition that
the support of v be bounded and the differentiability of h. An interesting setting is where
h is strictly convex. The extension of the result requires some preliminaries on convex
functions and approximate differentiability.

Definition 2.12. A set S C R? is said to have density 1 at z € R? if there exists a Lebesgue
measurable set V' C S with
L4V N B(x,0))
oo L4(B(x,9))

=1,

where £¢ denotes the Lebesgue measure on R,
Definition 2.13. Let Q C R? be open and let f: O — R™. Let z € Q.

(1) A point z € R™ is called the approzimate limit of f at x if for every € > 0 the set
{y € Q: |f(y) — z| < ¢} has density 1 at x; notation:

f(@) = f(y)-

43



(2) f is approzimately continuous at z if f(x) exists and f(z) = f(z).

(3) a linear map L: R? — R™ is the approzimate differential of f at x if f(z) exists and
for every € > 0 the set

£ (y) = f(a) = L{y — )|
yeQ\{z}: <e
weats) v —al }
has density 1 at z. (There is at most one such an L.) Notation: V f(z) := L.
Lemma 2.14. Let Q C R? be open, f: Q — R™, and x € Q.

(1) f(a:) exists if and only if there exists a g:  — R™ which is continuous at x and such
that {f = g} :={z € Q: f(z) = g(z)} has density 1 at x.

(2) Vf(x) exists if and only if there exists a g: Q@ — R which is differentiable at = and
such that {f = g} has density 1 at x.

Theorem 2.15 (Denjoy). If Q C R? is open and f:Q — R™ is Lebesgue measurable,
then f exists L% almost everywhere on Q and f = f L% almost everywhere on €.

Corollary 2.16 (Lebesgue). Every Lebesque messurable set S of RY has density 1 at
L%-almost every point of S.

Definition 2.17. Let X be a vector space. A function h: X — R is called strictly conver
if
h(Ax + (1 = XN)y) < Mr(z)+ (1= MNh(y) forall z,y € X, x #y, 0 <A <1,

and conver if we have < in the above inequality instead of <.
A simple proof of the next lemma is given in [12].
Lemma 2.18. If h: R* — R is convex, then h is locally Lipschitz.
Definition 2.19. Define for a convex function h: R4 — R,
Oh(z) == {€ e R%: h(u) — h(z) > (€,u —z) for all u € R}, z € R4
Lemma 2.20. Let h: R — R be strictly convex. Then:

(1) if h is differentiable at x € R? then for every € € R% we have

€ dh(zx) < &=Vh(x);

(2) for every & € R? there is at most one x € R? such that & € Oh(x); denote (Oh)~1(€) :=
x with domain D((0h)™');

(3) (0h)~': D((0h)™') — R is a Borel map.
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Proof. (1): =: For z € R? we have (with u =2 +tz and u = 2 — t2)
h(z +tz) — h(x) > t(£, z) and h(z — tz) — h(z) > —t(¢, 2),

SO

t t
for t > 0. If we let t | 0 we obtain (Vh(x), z) = (£, z).
«<: Let u € R%. We have
h(x +t(u —x)) — h(x) _ h((1 —t)x + tu) — h(z)
t t
< %(1 — )h(z) + h(u) %h(m)
— h(u) - h(a),

soast | 0, (Vh(z),u —z) < h(u) — h(x).
(2): Suppose £ € Oh(z1) and € Oh(z2) and z1 # 3. With u = Azg + (1 — A)zy,
0 < A <1, we have Ah(z2) + (1 — AN)h(z1) > h(u), so

)\( ) = Ah(x2) + (1= Nh(z1) — hz1) > h(u) — h(z)

> (§u—z1) = M 22 — 71).

Similarly, h(z1) — h(z2) > (€, 21 — x2), which yields a contradiction.
(3): Let R > 0 and consider h: B(0, R) — R. Let

Sp = {€ e R%: 3z € B(0, R) such that & € dh(z)}.
Then (0h)~! maps Sg into B(0, R). Its graph
Gr:={(& z) € R? x B(0,R): £ € Oh(x)}
is closed. Indeed, if (&, zy) € Gr and &, — £ and z,, — z, then x € B(0, R),
h(u) — h(xy) > (€, u — xy) for all u € RY,

o h(u) — h(z) > (&,u — x) for all u € R? (as h is locally Lipschitz), hence ¢ € dh(x) and
therefore (§,z) € Gpg.

Consequently, (0h)~!: Sg — B(0, R) is continuous. Indeed, if &, — & in Sg, let (&, )k
be a subsequence. Then x,, := (0h)"1(&,,) is a sequence in B(0, R), which is compact.
Hence z,,, — z in B(0, R) for some subsubsequence and some = € B(0,R). As Gp is
closed, (£,z) € GR, hence x = (0h)71(£). So (ah)_l(ﬁnw) — (Oh)~1(€). That is, every
subsequence of ((Oh)~1(£,)), has a subsubsequence that converges to (Oh)~1(¢). Hence
(Oh) 1 (£n) — (9h)1(£).

Thus (8h)~! is continuous on Sk and hence Borel on Sg. Since [y Sy equals the
domain of (9h)~! | (Oh)~! is Borel (just look at inverse images). O

Theorem 2.21. Consider X =Y = R% Let ¢(x,y) = h(z —y), =,y € R?, where h: R —
[0,00) is strictly convex. Let p,v € P(RY) be such that
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o [yuyclx,y)dy(z,y) < oo for some v € T(u,v),
. u({x € X: [, clx,y)dr(y) < oo}) >0,

3 u<{y eY: [y c(r,y)du(z) < oo}) >0,
and such that
o 1 is absolutely continuous with respect to L£7.
Then:
(1) there is a unique n € I'(u,v) that is optimal for c;

(2) n is induced by an optimal transport map, that is, there exists a Borel map r: R? — R
such that n = (1 ® 1) pp;

(3) the map r of (2) satisfies
r(z) =z — (Oh) Y (Vp(x)) for p-a.e. z € RY,
where o is a Kantorovich potential associated to suppn.

Proof. Let A1 C X be a p-full Borel set such that for all x € A there exists a y € suppn

and “(z) = p(z).
Step 1. For R > 0 so large that there exists a y € B(0, R) with ¢°(z) > oo, define

x):= inf (cx, — € >, z e R4
pr(z) = inf (d@y)—¢ W)
Then pr(x) < co and pr(x) > ¢*“(x) = ¢(z) > —oo for all z € A;.

Claim: @p is locally Lipschitz. Let r > 0 and choose L > 0 such that h is L-Lipschitz on
B(0,r+ R). Let x1, 29 € B(0,r). Let € > 0 and choose y € B(0, R) such that ¢°(y) > —oco
and pr(zr2) > c(z,y) — ¢°(y) —e. Then

er(e) = er(s) < clwry) —¢°(y) = (clza,y) - ¢°(v) —¢)
= h(xy—y)—h(zea —y)+e
< Llzy — z2| +e.

So pr(x1) — ¢(2) < Lllzy — @2f|. Thus |pr(z1) — pr(22)| < Loy — a2

Let Ay C X be a £%full hence p-full Borel set such that ¢ is differentiable at every
x € Ay for all N € N (by Rademacher’s theorem).

Claim: For every = € A; there exists an Ry > 0 such that x € {¢ = pr} and there
exists a y € B(0, R) such that ¢(z) + ¢°(y) = h(z — y) for all R > Ry. Let © € A;. Then
o(x) = ¢°(x) and there exists a y € RY such that p(x) +¢°(y) = h(z —y). So for R > ||y|,

p(z) = ¢“(z) < pr(z) < h(z —y) — ¢°(y) = (),
soz € {¢ = pr}

Step 2. Claim: There exists a p-full Borel set A C R? such that for all z € A there
exists an IV such that
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e re{p=9pn}
e there exists y € B(0, N) with pn(z) + ¢°(y) = h(x — y)

e oy is differentiable at z for all n € N, ¢ is approximately differentiable at z, and
V() = Von (z).

Indeed, as ¢ is Borel and ¢p is locally Lipschitz, {¢ = ¢n} is a Lebesgue measurable
set. Due to Lebesgue’s theorem (or Denjoy), {¢ = ¢y} has density 1 at £%a.e. point of

{¢ = ¢n}. Let
Ty = {z € R%: {¢ = oy} has density 1 at z}.

Then ey In is a p-full Lebesgue set. Hence there is a p-full Borel set A3 € X with
A3 € (yenIn (use [8, Theorem 13.B, p. 55]). Let

A=A NAyN A;s.

For z € A, choose N with the first two properties. As x € As, ¢y is differentiable at x and
{¢ = ¢n} has density 1 as = € As. It follows that ¢ is approximately differentiable at x
and Vo (z) = Von(z).

Step 3. Let z € A. Take N and y € B(0,N) such that z € {¢ = ¢n} and pn(x) +
©°(y) = h(x —y). As ¢n is differentiable at z, h is differentiable at © — y and u +—
h(x —y) — pn(u) attains its minimum ¢“(y) at v = x. So Von(z) = Vh(zr —y). Hence
V(z) = Ven(z) is in the domain of (9h)~! and (9h)~'(Ven(z)) = 2 — y. Moreover, for
any y € Y with pn(z) + ¢°(y) = h(z — y) we find

y =1~ (0h) " (Ve(x)).

Define (oh) 1(~ @)
x — (0h) " (Vo(x reA
r(z): {0 x & A.

Claim: r is Borel. The set Vi :={z € V: p(z) = ¢n(x)} is Borel and |y Vv = V. On
Vv, Vo = Vpn. As oy is locally Lipschitz, z — Vn(z) is Borel, so 2 — V() is Borel.
Thus, r is Borel.

The rest of the proof is as before in Theorem 2.11. O

2.5 Regularity of the optimal transport map

Next we will show a (very weak) regularity theorem for the optimal transport map r. We
begin with two lemmas.

Lemma 2.22. Let g: R? — R be differentiable and Vg: R — R% Lipschitz with Lipschitz

constant C. Then
C

— Sl

z = g(x)
is concave (that is, —g+ S| - ||? is convex).

Proof. Let z € R and u € R?. We show that
C
£(t) 1= gl + tu) — S la + tu?
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is concave. We have f'(t) = (Vg(x + tu),u) — C{x + tu,u). Hence for t; < to,

fi(t2) = f'(t1) = (Vg(z +tau) — Vg(x + tu),u) — C((t2 — t1)u, u)

< Vgl + tou) — Vg( + tiu)|| ul] — Ot — t1)|[ul®
< Otz —ta)l[ull® = Ct2 — t1)[ul® = 0,
so f’ is decreasing, hence f concave. O

Lemma 2.23 (Aleksandrov). Let g: R? — R be conver. Then Vg exists L%-a.e. and Vg
is differentiable in L%-a.e. point of its domain.

Theorem 2.24. Consider X =Y =R, ¢(z,y) = h(z—y), z,y € R, where h: R — [0, 00)
is differentiable, locally Lipschitz, and such that Vh from R® to its range is bijective, locally
Lipschitz, and with a differentiable inverse (e.g., h(z) = ||z||?). Let p,v € P(R?) be such
that

[ ne—pane vy <
XxY
and such that

o 1 is absolutely continuous with respect to L4

e suppv is bounded.

Let n € T'(u,v) be optimal for ¢ and r: R? — R? a Borel map such that n = (i @ r)gu.
Then r is p-a.e. equal to a p-a.e. differentiable function.

Proof. Let ¢ be a Kantorovich potential associated to suppn. Let R > 0 be such that
suppv C B(0, R). Let A; C R? be a p-full set such that

vz € R? 3y € R such that (z,y) € supp7n and ¢°(x) = ().

Then

p@)= it (h—9) - W) = ele).

Further, we have that ¢ is locally Lipschitz hence p-a.e. differentiable and
r(z) =2 — (Vh) Y (Vp(z)) for p-ae. x € R

By assumption, (Vh)~! is differentiable. It remains to show that V< is differentiable.
Let » > 0 and let C be the Lipschitz constant of Vh on B(0,7 + R). Then, by the
lemma, z — h(z —y) — ¢°(y) — $||z||? is concave on B(0,r) for all y € B(0,R). Hence
z — ¢°(z) — 3[|z||? is concave on B(0, R), since it is an infimum of concave functions.
Consequently, by Aleksandrov, Vo is differentiable at £%a.e. point of its domain and
hence at p-a.e. point of its domain. Thus z — x — (Vh) "1 (V®(x)) is p-a.e. differentiable
and r equals this map u-a.e. O
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