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1 Probability measures on metric spaces

When we study curves in spaces of probability measures we will be faced with continuity
and other regularity properties and therefore with convergence of probability measures.
The probability measures will be defined on the Borel σ-algebra of a metric space. Since
we want to be able to apply the results to probability measures on a Hilbert space, it is
not too restrictive to assume separability and completeness but we should avoid assuming
compactness of the metric space.

We will consider Borel probability measures on metric spaces, narrow convergence of
such measures, a metric for narrow convergence, and Prokhorov’s theorem on compactness
relative to the narrow convergence.
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1.1 Borel sets

Let (X, d) be a metric space. The Borel σ-algebra (σ-field) B = B(X) is the smallest σ-
algebra in X that contains all open subsets of X. The elements of B are called the Borel
sets of X.

The metric space (X, d) is called separable if it has a countable dense subset, that is,
there are x1, x2, . . . in X such that {x1, x2, . . .} = X. (A denotes the closure of A ⊂ X.)

Lemma 1.1. If X is a separable metric space, then B(X) equals the σ-algebra generated
by the open (or closed) balls of X.

Proof. Denote

A := σ-algebra generated by the open (or closed) balls of X.

Clearly, A ⊂ B.
Let D be a countable dense set in X. Let U ⊂ X be open. For x ∈ U take r > 0, r ∈ Q

such that B(x, r) ⊂ U (B(x, r) open or closed ball with center x and radius r) and take
yx ∈ D ∩B(x, r/3). Then x ∈ B(yx, r/2) ⊂ B(x, r). Set rx := r/2. Then

U =
⋃

{B(yx, rx) : x ∈ U},

which is a countable union. Therefore U ∈ A. Hence B ⊂ A.

Lemma 1.2. Let (X, d) be a separable metric space. Let C ⊂ B be countable. If C separates
closed balls from points in the sense that for every closed ball B and every x ∈ X \B there
exists C ∈ C such that B ⊂ C and x 6∈ C, then the σ-algebra generated by C is the Borel
σ-algebra.

Proof. Clearly σ(C) ⊂ B, where σ(C) denotes the σ-algebra generated by C. Let B be a
closed ball in X. Then B =

⋂{C ∈ C : B ⊂ C}, which is a countable intersection and
hence a member of σ(C). By the previous lemma we obtain B ⊂ σ(C).

If f : S → T and AS and AT are σ-algebras in S and T , respectively, then f is called
measurable (w.r.t. AS and AT ) if

f−1(A) = {x ∈ S : f(x) ∈ A} ∈ AS for all A ∈ AT .

Proposition 1.3. Let (X, d) be a metric space. B(X) is the smallest σ-algebra with respect
to which all (real valued) continuous functions on X are measurable (w.r.t. B(X) and B(R)).
(See [10, Theorem I.1.7, p. 4].)

1.2 Borel probability measures

Let (X, d) be a metric space. A finite Borel measure on X is a map µ : B(X) → [0,∞)
such that

µ(∅) = 0, and
A1, A2, . . . ∈ B mutually disjoint =⇒ µ(

⋃∞
i=1Bi) =

∑∞
i=1 µ(Bi).

µ is called a Borel probabiliy measure if in addition µ(X) = 1.
The following well known continuity properties will be used several times.
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Lemma 1.4. Let X be a metric space and µ a finite Borel measure on X. Let A1, A2, . . .
be Borel sets.

(1) If A1 ⊂ A2 ⊂ · · · and A =
⋃∞

i=1Ai, then µ(A) = limn→∞ µ(An).

(2) If A1 ⊃ A2 ⊃ · · · and A =
⋂∞

i=1, then µ(A) = limn→∞ µ(An).

The next observation is important in the proof of Theorem 1.13 (the Portmanteau theorem).

Lemma 1.5. If µ is a finite Borel measure on X and A is a collection of mutually disjoint
Borel sets of X, then at most countably many elements of A have nonzero µ-measure.

Proof. For m ≥ 1, let Am := {A ∈ A : µ(A) > 1/m}. For any distinct A1, . . . , Ak ∈ Am we
have

µ(X) ≥ µ(

k
⋃

i=1

Ai) = µ(A1) + · · · + µ(Ak) > k/m,

hence Am has at most mµ(X) elements. Thus

{A ∈ A : µ(A) > 0} =

∞
⋃

m=1

Am

is countable.

Example. If µ is a finite Borel measure on R, then µ({t}) = 0 for all except at most
countably many t ∈ R.

Proposition 1.6. Any finite Borel measure on X is regular, that is, for every B ∈ B

µ(B) = sup{µ(C) : C ⊂ B, C closed} (inner regular)

= inf{µ(U) : U ⊃ B, U open} (outer regular).

Proof. Define the collection R by

A ∈ R ⇐⇒ µ(A) = sup{µ(C) : C ⊂ A, Cclosed} and
µ(A) = inf{µ(C) : U ⊃ A, U open}.

We have to show that R contains the Borel sets. step 1: R is a σ-algebra:
∅ ∈ R. Let A ∈ R, let ε > 0. Take C closed and U open with C ⊂ A ⊂ U and
µ(A) < µ(C) + ε, µ(A) > µ(U) − ε. Then U c ⊂ Ac ⊂ Cc, U c is closed, Cc is open, and

µ(Ac) = µ(X) − µ(A) > µ(X) − µ(C) − ε = µ(C c) − ε,
µ(Ac) = µ(X) − µ(A) < µ(X) − µ(U) + ε = µ(U c) + ε.

Hence Ac ∈ R.
Let A1, A2, . . . ∈ R and let ε > 0. Take for each i

Ui open , Ci closed with
Ci ⊂ A ⊂ Ui,
µ(Ui) − µ(Ai) < 2−iε, µ(Ai) − µ(Ci) < 2−iε/2.
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Then
⋃

iCi ⊂
⋃

iAi ⊂
⋃

i Ui and
⋃

i Ui is open, and

µ(
⋃

i

Ui) − µ(
⋃

i

Ai) ≤ µ
(

∞
⋃

i=1

Ui \
∞
⋃

i=1

Ai

)

≤ µ
(

∞
⋃

i=1

(Ui \ Ai)
)

≤
∞
∑

i=1

µ(Ui \ Ai)

=
∞
∑

i=1

(µ(Ui) − µ(Ai)) <
∞
∑

i=1

2−iε = ε.

Further, µ(
⋃∞

i=1Ci) = limk→∞ µ(
⋃k

i=1 Ci), hence for some large k, µ(
⋃∞

i=1Ci)−µ(
⋃k

i=1 Ci) <

ε/2. Then C :=
⋃k

i=1Ci ⊂
⋃∞

i=1Ai, C is closed, and

µ(

∞
⋃

i=1

Ai) − µ(C) < µ(

∞
⋃

i=1

Ai) − µ(

∞
⋃

i=1

Ci) + ε/2

≤ µ
(

∞
⋃

i=1

Ai \
∞
⋃

i=1

Ci

)

+ ε/2

≤ µ
(

∞
⋃

i=1

(Ai \ Ci)
)

+ ε/2

≤
∞
∑

i=1

µ(Ai \ Ci) + ε/2

=
∞
∑

i=1

(

µ(Ai) − µ(Ci)
)

+ ε/2 ≤ ε/2 + ε/2.

Hence
⋃∞

i=1Ai ∈ R. Thus R is a σ-algebra.
step2: R contains all open sets: We prove: R contains all closed sets. Let A ⊂ X be

closed. Let Un := {x ∈ X : d(x,A) < 1/n} = {x ∈ X : ∃ a ∈ A with d(a, x) < 1/n},
n = 1, 2, . . .. Then Un is open, U1 ⊃ U2 ⊃ · · ·, and

⋂∞
i=1 Ui = A, as A is closed. Hence

µ(A) = limn→∞ µ(Un) = infn µ(Un). So

µ(A) ≤ inf{µ(U) : U ⊃ A, U open} ≤ inf
n
µ(Un) = µ(A).

Hence A ∈ R.
Conclusion: R is a σ-algebra that contains all open sets, so R ⊃ B.

Corollary 1.7. If µ and ν are finite Borel measures on the metric space X and µ(A) = ν(A)
for all closed A (or all open A), then µ = ν.

A finite Borel measure µ on X is called tight if for every ε > 0 there exists a compact set
K ⊂ X such that µ(X \K) < ε, or, equivalently, µ(K) ≥ µ(X) − ε. A tight finite Borel
measure is also called a Radon measure.

Corollary 1.8. If µ is a tight finite Borel measure on the metric space X, then

µ(A) = sup{µ(K) : K ⊂ A, K compact}

for every Borel set A in X.
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Proof. Take for every ε > 0 a compact set Kε such that µ(X \Kε) < ε. Then

µ(A ∩Kε) = µ(A \Kc
ε) ≥ µ(A) − µ(Kc

ε) > µ(A) − ε

and

µ(A ∩Kε) = sup{µ(C) : C ⊂ Kε ∩A, C closed}
≤ sup{µ(K) : K ⊂ A, K compact},

because each closed subset contained in a compact set is compact. Combination completes
the proof.

Of course, if (X, d) is a compact metric space, then every finite Borel measure on X is tight.
There is another interesting case. A complete separable metric space is sometimes called a
Polish space.

Theorem 1.9. If (X, d) is a complete separable metric space, then every finite Borel mea-
sure on X is tight.

We need a lemma from topology.

Lemma 1.10. If (X, d) is a complete metric space, then a closed set K in X is compact
if and only if it is totally bounded, that is, for every ε > 0 the set K is covered by finitely
many balls (open or closed) of radius less than or equal to ε.

Proof. ⇒) Clear: the covering with all ε-balls with centers in K has a finite subcovering.
⇐) Let (xn)n be a sequence in K. For each m ≥ 1 there are finitely many 1/m-balls

that cover K, at least one of which contains xn for infinitely many n. For m = 1 take a
ball B1 with radius ≤ 1 such that N1 := {n : xn ∈ B1} is infinite, and take n1 ∈ N1. Take
a ball B2 with radius ≤ 1/2 such that N2 := {n > n1 : xn ∈ B2 ∩ B1} is infinite, and take
n2 ∈ N2. Take B3, radius ≤ 1/3, N3 := {n > n2 : xn ∈ B3 ∩ B2 ∩ B1} infinite, n3 ∈ N3.
And so on.

Thus (xnk
)k is a subsequence of (xn)n and since xn`

∈ Bk for all ` ≥ k, (xnk
)k is a

Cauchy sequence. As X is complete, (xn)n converges in X and as K is closed, the limit is
in K. So (xn)n has a convergent subsequence and K is compact.

Proof of Theorem 1.9. We have to prove that for every ε > 0 there exists a compact set K
such that µ(X \K) < ε. Let D = {a1, a2, . . .} be a countable dense subset of X. Then for
each δ > 0,

⋃∞
k=1B(ak, δ) = X. Hence µ(X) = limn→∞ µ(

⋃n
k=1B(ak, δ)) for all δ > 0. Let

ε > 0. Then there is for each m ≥ 1 an nm such that

µ
(

nm
⋃

k=1

B(ak, 1/m)
)

> µ(X) − 2−mε.

Let

K :=

∞
⋂

m=1

nm
⋃

k=1

B(ak, 1/m).

Then K is closed and for each δ > 0,

K ⊂
nm
⋃

k=1

B(ak, 1/m) ⊂
nm
⋃

k=1

B(ak, δ)

5



if we choose m > 1/δ. So K is compact, by the previous lemma. Further,

µ(X \K) = µ
(

∞
⋃

m=1

(X \
nm
⋃

k=1

B(ak, 1/m))
)

≤
∞
∑

m=1

µ
(

X \
nm
⋃

k=1

B(ak, 1/m)
)

=

∞
∑

m=1

(

µ(X) − µ(

nm
⋃

k=1

B(ak, 1/m))
)

<

∞
∑

m=1

2−mε = ε.

1.3 Narrow convergence of measures

Let (X, d) be a metric space and denote

Cb(X) := {f : X → R : f is continuous and bounded}.

Each f ∈ Cb(X) is integrable with respect to any finite Borel measure on X.

Definition 1.11. Let µ, µ1, µ2, . . . be finite Borel measures on X. We say that the sequence
(µi)i converges narrowly to µ if

∫

f dµi →
∫

f dµ as i→ ∞ for all f ∈ Cb(X).

We will simply use the notation µi → µ. (There is at most one such a limit µ, as follows from
the metrization by the bounded Lipschitz metric, which is discussed in the next section.)

Narrow convergence can be described by means of other classes of functions than the
bounded continuous ones. Recall that a function f from a metric space (X, d) into R

is called lower semicontinuous (l.s.c.) if for every x, x1, x2, . . . with xi → x one has

f(x) ≤ lim inf
i→∞

f(xi)

and upper semicontinuous (u.s.c.) if

f(x) ≥ lim sup
i→∞

f(xi).

The limits here may be ∞ or −∞ and then the usual order on [−∞,∞] is considered. The
indicator function of an open set is l.s.c. and the indicator function of a closed set is u.s.c.

Proposition 1.12. Let (X, d) be a metric space and let µ, µ1, µ2, . . . be Borel probability
measures on X. The following four statements are equivalent:

(a) µi → µ, that is,
∫

f dµi →
∫

f dµ for every f ∈ Cb(X)

(b)
∫

f dµi →
∫

f dµ for every bounded Lipschitz function f : X → R

(c) lim inf i→∞

∫

f dµi ≥
∫

f dµ for every l.s.c. function f : X → R that is bounded from
below

(c’) lim supi→∞

∫

f dµi ≤
∫

f dµ for every u.s.c. function f : X → R that is bounded from
above.
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Proof. (a)⇒(b) is clear.
(b)⇒(c): First assume that f is bounded. Define for n ∈ N the Moreau-Yosida approx-

imation
fn(x) := inf

y∈X
|f(y) + nd(x, y)|, x ∈ X.

Then clearly inf f ≤ f0 ≤ f1 ≤ f2 ≤ · · · ≤ f , so that, in particular, fn is bounded for each
n. Further, fn is Lipschitz. Indeed, let u, v ∈ X and observe that for y ∈ X we have

fn(u) −
(

f(y) + nd(v, y)
)

≤
(

f(y) + nd(u, y)
)

−
(

f(y) + nd(v, y)
)

≤ nd(u, v).

If we take supremum over y we obtain fn(u) − fn(v) ≤ nd(u, v). By changing the role of u
and v we infer

|fn(u) − fn(v)| ≤ nd(u, v),

so fn is Lipschitz.
Next we show that limn→∞ fn(x) = f(x) for all x ∈ X. For x ∈ X and n ≥ 1 there is a

yn ∈ X such that

fn(x) ≥ f(yn) + nd(x, yn) − 1/n ≥ inf f + nd(x, yn) − 1, (1)

so
nd(x, yn) ≤ fn(x) − inf f + 1 ≤ f(x) − inf f + 1 for all n,

hence yn → x as n→ ∞. Then (1) yields

lim inf
n→∞

fn(x) ≥ lim inf
n→∞

f(yn) ≥ f(x),

as f is l.s.c. Since fn(x) ≤ f(x) for all n, we obtain that fn(x) converges to f(x).
Due to the monotone convergence,

∫

fn dµ ↑
∫

f dµ. As f ≥ fn,

lim inf
i→∞

∫

f dµi ≥ lim inf
i→∞

∫

fn dµi =

∫

fn dµ

for all n, by (b). Hence lim inf i→∞

∫

f dµi ≥
∫

f dµ.
If f is not bounded from above, let m ∈ N and truncate f at m: f ∧ m = x 7→

min{f(x),m}. The above conclusion applied to f ∧m yields,

∫

f ∧mdµ ≤ lim inf
i→∞

∫

f ∧mdµi ≤ lim inf
i→∞

∫

f dµi

and
∫

f dµ = limm→∞

∫

f ∧mdµ ≤ lim inf i→∞

∫

f dµi.
(c)⇔(c’): multiply by −1.
(c)⇒(a): if f is continuous and bounded, we have (c) both for f and −f .

Narrow convergence can also be described as convergence on sets.

Theorem 1.13 (Portmanteau theorem). Let (X, d) be a metric space and let µ, µ1, µ2, . . .
be Borel probability measures on X. The following four statements are equivalent:

(a) µi → µ (narrow convergence)
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(b) lim inf i→∞ µi(U) ≥ µ(U) for all open U ⊂ X

(b’) lim supi→∞ µi(C) ≤ µ(C) for all closed C ⊂ X

(c) µi(A) → µ(A) for every Borel set A in X with µ(∂A) = 0. (Here∂A = A \A◦.)

Proof. (a)⇒(b): If U is open, then the indicator function
�

U of U is l.s.c. So by the previous
proposition,

lim inf
i→∞

µi(U) = lim inf
i→∞

∫

�
U dµi ≥

∫

�
U dµ = µ(U).

(b)⇒(b’): By complements,

lim sup
i→∞

µi(C) = lim sup
i→∞

(

µi(X) − µi(C
c)
)

= 1 − lim inf
i→∞

µi(C
c)

≥ 1 − µ(Cc) = µ(X) − µ(Cc) = µ(C).

(b’)⇒(b): Similarly.
(b)+(b’)⇒(c): A◦ ⊂ A ⊂ A, A◦ is open and A is closed, so by (b) and (b’),

lim supµi(A) ≤ lim supµi(A) ≤ µ(A) = µ(A ∪ ∂A)

≤ µ(A) + µ(∂A) = µ(A),

lim inf µi(A) ≥ lim inf µi(A
◦) ≥ µ(A◦) = µ(A \ ∂A)

≥ µ(A) − µ(∂A) = µ(A),

hence µi(A) → µ(A).
(c)⇒(a): Let g ∈ Cb(X). Idea: we have

∫

f dµi →
∫

f dµ for suitable simple functions;
we want to approximate g to get

∫

g dµi →
∫

g dµ.
Define

ν(E) := µ({x : g(x) ∈ E}) = µ(g−1(E)), E Borel set in R.

Then ν is a finite Borel measure (probability measure) on R and if we take a < −‖g‖∞,
b > ‖g‖∞, then ν(R \ (a, b)) = 0. As ν is finite, there are at most countably many α with
ν({α}) > 0 (see Lemma 1.5). Hence for ε > 0 there are t0, . . . , tm ∈ R such that

(i) a = t0 < t1 < · · · < tm = b,
(ii) tj − tj−1 < ε, j = 1, . . . ,m,
(iii) ν({tj}) = 0, i.e., µ({x : g(x) = tj}) = 0, j = 0, . . . ,m.

Take
Aj := {x ∈ X : tj−1 ≤ g(x) < tj} = g−1([tj−1, tj)), j = 1, . . . ,m.

Then Aj ∈ B(X) for all j and X =
⋃m

j=1Aj . Further,

Aj ⊂ {x : tj−1 ≤ g(x) ≤ tj} (since this set is closed and ⊃ Aj),

A◦
j ⊃ {x : tj−1 < g(x) < tj} (since this set is open and ⊂ Aj),

so

µ(∂Aj) = µ(Aj \ A◦
j ) ≤ µ({x : g(x) = tj−1 or g(x) = tj})

= µ({x : g(x) = tj−1}) + µ({x : g(x) = tj}) = 0 + 0.
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Hence by (e), µi(Aj) → µ(Aj) as i→ ∞ for j = 1, . . . ,m. Put

h :=

m
∑

j=1

tj−1
�

Aj
,

then h(x) ≤ g(x) ≤ h(x) + ε for all x ∈ X. Hence

|
∫

g dµi −
∫

g dµ| = |
∫

(g − h) dµi +

∫

hdµi −
∫

(g − h) dµ−
∫

hdµ|

≤
∫

|g − h|dµi + |
∫

hdµi −
∫

hdµ| +
∫

|g − h|dµ

≤ εµi(X) + |
m
∑

j=1

tj−1

(

µi(Aj) − µ(Aj)
)

| + εµ(X).

It follows that lim supi→∞ |
∫

g dµi −
∫

g dµ| ≤ 2ε. Thus
∫

g dµi →
∫

g dµ as i→ ∞.

1.4 The bounded Lipschitz metric

Let (X, d) be a metric space. Denote

P = P(X) := all Borel probability measures on X.

We have defined the notion of narrow convergence in P. We will show next that narrow
convergence is induced by a metric, provided that X is separable. This results goes back
to Prokhorov [11]. Instead of Prokhorov’s metric, we will consider the ”bounded Lipschitz
metric” due to Dudley [4], as it is easier to work with. (See also [5, 15].) Denote

BL(X, d) := {f : X → R: f is bounded and Lipschitz}.

Define for f ∈ BL(X, d)
‖f‖BL = ‖f‖∞ + Lip(f),

where
‖f‖∞ := sup

x∈X
|f(x)|

and

Lip(f) := sup
x,y∈X, x6=y

|f(x) − f(y)|
d(x, y)

= inf{L : |f(x) − f(y)| ≤ Ld(x, y) ∀x, y ∈ X}.

Then ‖ · ‖BL is a norm on BL(X, d). Define for µ, ν ∈ P(X)

dBL(µ, ν) := sup{|
∫

f dµ−
∫

f dν|: f ∈ BL(X, d), ‖f‖BL ≤ 1}.

The function dBL is called the bounded Lipschitz metric on P (induced by d), which makes
sense because of the next theorem.

Theorem 1.14 (Dudley, 1966). Let (X, d) be a metric space.

(1) dBL is a metric on P = P(X).
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(2) If X is separable and µ, µ1, µ2, . . . ∈ P, then

µi → µ (narrowly) ⇐⇒ µBL(µi, µ) → 0.

Proof. (See [5, Theorem 11.3.3, p. 395].)
(1): To show the triangle inequality, let µ, ν, η ∈ P(X) and observe that

|
∫

f dµ−
∫

f dη| ≤ |
∫

f dµ−
∫

f dν| + |
∫

f dν −
∫

f dη| ∀f ∈ BL(X, d),

so dBL(µ, η) ≤ dBL(µ, ν) + dBL(ν, η). Clearly, dBL(µ, ν) = dBL(ν, µ) and dBL(µ, µ) = 0. If
dBL(µ, ν) = 0, then

∫

f dµ =
∫

f dν for all f ∈ BL(X, d). Therefore the constant sequence
µ, µ, . . . converges narrowly to ν and ν, ν, . . . converges to µ. The Portmanteau theorem
then yields ν(U) ≤ µ(U) and µ(U) ≤ ν(U) hence µ(U) = ν(U) for any open U ⊆ X. By
outer regularity of both µ and ν it follows that µ = ν. Thus dBL is a metric on P.

(2): If dBL(µi, µ) → 0, then
∫

f dµi →
∫

f dµ for all f ∈ BL(X, d) with ‖f‖BL ≤ 1 and
hence for all f ∈ BL(X, d). With the aid of Proposition 1.12 we infer that µi converges
narrowly to µ.

Conversely, assume that µi converges narrowly to µ, that is,
∫

f dµi →
∫

f dµ for all
f ∈ Cb(X). Denote

B := {f ∈ BL(X, d) : ‖f‖BL ≤ 1}.
In order to show that dBL(µi, µ) → 0 we have to show that

∫

f dµi converges uniformly in
f ∈ B. If X were compact, we could use the Arzela-Ascoli theorem and reduce to a finite
set of functions f . As X may not be compact, we will first call upon Theorem 1.9.

Let X̂ be the completion of the metric space (X, d). Every f ∈ B extends uniquely to
an f̂ : X̂ → R with ‖f̂‖BL = ‖f‖BL. Also µ extends to X̂ :

µ̂(A) := µ(A ∩X), A ⊆ X̂ Borel.

Let ε > 0. By the lemma, there exists a compact set K ⊆ X̂ such that µ̂(K) ≥ 1 − ε.
The set G := {f̂ |K : f ∈ B} is equicontinuous and uniformly bounded, so by the Arzela-
Ascoli theorem (see [5, Theorem 2.4.7, p. 52]) it is relatively compact in (C(K), ‖ · ‖∞).
Hence there are f1, . . . , fm ∈ B such that

∀f ∈ B ∃` such that ‖f̂ |K − f̂`|K‖∞ < ε (2)

(the ε-balls around the fi cover B). Take N such that

|
∫

X
f` dµi −

∫

X
f` dµ| < ε

for k = 1, . . . , N and i ≥ N . Let f ∈ B and choose a corresponding ` as in (2). Denote

Kε = {x ∈ X : dist(x,K) < ε},

which is an open set in X. (Here dist(x,K) := inf{d(x, y): y ∈ K}.) For x ∈ Kε, take
y ∈ K with d(x, y) < ε, then

|f(x) − f`(x)| ≤ |f(x) − f̂(y)| + |f̂(y) − f̂`(y)| + |f̂`(y) − f`(x)|
< Lip(f̂)d(x, y) + ε+ Lip(f̂`)d(y, x)

< 3ε.
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Further, X \Kε is closed, so

lim sup
i→∞

µi(X \Kε) ≤ µ(X \Kε) ≤ µ(X \K) = µ̂(X̂ \K) ≤ ε,

so there is an M with µi(X \Kε) ≤ ε for all i ≥M . Hence for i ≥ N ∨M ,

|
∫

X
f dµi −

∫

X
f dµ| ≤ |

∫

X
f` dµi −

∫

X
f` dµ| +

∫

Kε

|f` − f |d(µi + µ)

+

∫

X\Kε

|f` − f |d(µi + µ)

< ε+ 6ε +

∫

X\Kε

2 dµi +

∫

X\Kε

2 dµ

≤ 11ε,

hence dBL(µi, µ) ≤ 11ε for i ≥ N ∨M . Thus, dBL(µi, µ) → 0 as i→ ∞.

Proposition 1.15. Let (X, d) be a separable metric space. Then P = P(X) with the
bounded Lipschitz metric dBL is separable.

Proof. Let D := {a1, a2, . . .} be a countable set in X. Let

M := {α1δa1
+ · · · + αkδak

: α1, . . . , αk ∈ Q ∩ [0, 1],

k
∑

j=1

αj = 1, k = 1, 2, . . .}.

(Here δa denotes the Dirac measure at a ∈ X: δa(A) = 1 if a ∈ A, 0 otherwise.) Clearly,
M ⊂ P and M is countable.

Claim: M is dense in P. Indeed, let µ ∈ P. For each m ≥ 1,
⋃∞

j=1B(aj , 1/m) = X.
Take km such that

µ(

km
⋃

j=1

B(aj , 1/m)) ≥ 1 − 1/m.

Modify the balls B(aj, 1/m) into disjoint sets by taking Am
1 := B(a1, 1/m), Am

j := B(aj, 1/m)\
[
⋃j−1

i=1 B(ai, 1/m)
]

, j = 2, . . . , km. ThenAm
1 , . . . , A

m
km

are disjoint and
⋃j

i=1A
m
i =

⋃j
i=1B(ai, 1/m)

for all j. In particular, µ(
⋃km

j=1A
m
j ) ≥ 1 − 1/m, so

km
∑

j=1

µ(Am
j ) ∈ [1 − 1/m, 1].

We approximate
µ(Am

1 )δa1
+ · · · + µ(Am

km
)δakm

by
µm := αm

1 δa1
+ · · · + αm

km
δakm

,

where we choose αm
j ∈ [0, 1] ∩ Q such that

∑km

j=1 α
m
j = 1 and

km
∑

j=1

|µ(Am
j ) − αm

j | < 2/m.
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(First take βj ∈ [0, 1] ∩ Q with
∑km

j=1 |βj − µ(Am
j )| < 1/2m, then

∑

j βj ∈ [1 − 3/2m, 1 +

1/2m]. Take αj := βj/
∑

i βi ∈ [0, 1] ∩ Q, then
∑

j αj = 1 and
∑km

j=1 |βj − αj| = |1 −
1/
∑

i βi|
∑km

j=1 βj = |∑i βj − 1| ≤ 3/2m, so
∑km

j=1 |αj − µ(Am
j )| < 1/2m+ 3/2m = 2/m.)

Then for each m, µm ∈ M. To show: µm → µ in P, that is, µn → µ narrowly. Let
g ∈ BL(X, d). Then

∣

∣

∣

∫

g dµm −
∫

g dµ
∣

∣

∣
=
∣

∣

∣

km
∑

j=1

αm
j g(aj) −

∫

g dµ
∣

∣

∣

≤
∣

∣

∣

km
∑

j=1

µ(Am
j )g(aj) −

∫

g dµ
∣

∣

∣
+ (2/m) sup

j
|g(aj)|

≤
∣

∣

∣

∫ km
∑

j=1

g(aj)
�

Am
j

dµ−
∫

g dµ
∣

∣

∣
+ (2/m)‖g‖∞

≤
∣

∣

∣

km
∑

j=1

∫

(

g(aj)
�

Am
j
− g

�
Am

j

)

dµ−
∫

g
�

(
Skm

j=1
)c dµ

∣

∣

∣
+ (2/m)‖g‖∞

≤
km
∑

j=1

sup
x∈Am

j

|g(aj) − g(x)|µ(Am
j ) + ‖g‖∞µ

(

(
km
⋃

j=1

Am
j )c
)

+ (2/m)‖g‖∞

≤
km
∑

j=1

Lip(g)(1/m)µ(Am
j ) + (3/m)‖g‖∞

≤ (3/m)‖g‖BL .

Hence
∫

g dµm →
∫

g dµ as m→ ∞. Thus, µm → µ.

Conclusion. If (X, d) is a separable metric space, then so is P(X) with the induced bounded
Lipschitz metric. Moreover, a sequence in P(X) converges in metric if and only if it con-
verges narrowly and then in both senses to the same limit.

1.5 Measures as functionals

Let (X, d) be a metric space. The space of real valued bounded continuous functions Cb(X)
endowed with the supremum norm ‖ · ‖ is a Banach space. It is sometimes convenient to
apply functional analytic results about the Banach space (Cb(X), ‖ · ‖∞) to the set of Borel
probability measures on X. We will for instance need the Riesz representation theorem
in the proof of Prokhorov’s theorem. Let us consider the relation between measures and
functionals.

Recall that a linear map ϕ : Cb(X) → R is called a bounded functional if

|ϕ(f)| ≤M‖f‖∞ for all f ∈ Cb(X)

for some constant M . The space of all bounded linear functionals on Cb(X) is denoted by

Cb(X)′ := {ϕ : Cb(X) → R: ϕ is linear and bounded}
and called the (Banach) dual space of Cb(X). A norm on Cb(X)′ is defined by

‖ϕ‖ = sup{|ϕ(f)| : f ∈ Cb(X), ‖f‖∞ ≤ 1}, ϕ ∈ Cb(X)′.
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A functional ϕ ∈ Cb(X)′ is called positive if ϕ(f) ≥ 0 for all f ∈ Cb(X) with f ≥ 0.
For each finite Borel measure µ on a metric space (X, d), the map ϕµ defined by

ϕµ(f) :=

∫

f dµ, f ∈ Cb(X),

is linear from Cb(X) to R and

|ϕµ(f)| ≤
∫

|f |dµ ≤ ‖f‖∞µ(X).

Hence ϕµ ∈ Cb(X)′. Further, ‖ϕµ‖ ≤ µ(X) and since ϕµ(
�
) = µ(X) = ‖ � ‖∞µ(X) we have

‖ϕµ‖ = µ(X).

Moreover, ϕµ is positive.
Conversely, if X is compact, then Cb(X) = C(X) = {f : X → R : f is continuous} and

every positive bounded linear functional on C(X) is represented by a finite Borel measure
on X. The truth of this statement does not depend on X being a metric space. Therefore
we state it in its usual general form, although we have not formally defined Borel sets, Borel
measures, Cb(X), etc. for topological spaces that are not metrizable. We denote by

�
the

function on X that is identically 1.

Theorem 1.16 (Riesz representation theorem). If (X, d) is a compact Hausdorff space
and ϕ ∈ C(X)′ is positive (that is, ϕ(f) ≥ 0 for every f ∈ C(X) with f ≥ 0) and ϕ(

�
) = 1,

then there exists a unique Borel probability measure µ on X such that

ϕ(f) =

∫

f dµ for all f ∈ C(X).

(See [13, Theorem 2.14, p. 40].)

Let us next observe that narrow convergence in P(X) corresponds to weak* convergence
in Cb(X)′. The weak* topology on Cb(X)′ is the coarsest topology such that the function
ϕ → ϕ(f) on Cb(X)′ is continuous for every f ∈ Cb(X)′. A sequence ϕ1, ϕ2, . . . in Cb(X)′

converges weak* to ϕ in Cb(X)′ if and only if

ϕi(f) → ϕ(f) as i→ ∞ for all f ∈ Cb(X).

If µ, µ1, µ2, . . . are Borel probability measures on X, it is immediately clear that

µi → µ narrowly in P(X) ⇐⇒ ϕµi
→ ϕµ weak* in Cb(X)′,

where, as before, ϕµi
(f) =

∫

f dµi and ϕµ(f) =
∫

f dµ, f ∈ Cb(X), i ≥ 1.
For the next two theorems see [6, Exercise V.7.17, p. 437] and [14, Theorem 8.13].

Theorem 1.17. If (X, d) is a metric space, then

Cb(X) is separable ⇐⇒ X is compact.

Theorem 1.18. If X is a separable Banach space, then {ϕ ∈ X ′: ‖ϕ‖ ≤ 1} is weak*
sequentially compact.

13



Consequently, if (X, d) is a compact metric space, then the closed unit ball of Cb(X)′

is weak* sequentially compact. In combination with the Riesz representation theorem we
obtain the following statements for sets of Borel probability measures.

Proposition 1.19. Let (X, d) be a metric space. If (X, d) is compact, then (P(X), dBL) is
compact, where dBL is the bounded Lipschitz metric induced by d. (Note that any compact
metric space is separable.)

Proof. Assume that (X, d) is compact. Then Cb(X) = C(X) := {f : X → R: f is
continuous}. The unit ball B ′ := {ϕ ∈ Cb(X)′: ‖ϕ‖ ≤ 1} of Cb(X)′ is weak* sequen-
tially compact. As (P(X), dBL) is a metric space, sequentially compactness is equivalent to
compactness. Let (µn)n be a sequence in P(X) and let

ϕn(f) :=

∫

f dµn, n ∈ N.

Then ϕn ∈ B′ for all n. As B ′ is weak* sequentially compact, hence there exists a ϕ ∈ B ′ and
a subsequence (ϕnk

)k such that ϕnk
→ ϕ in the weak* topology. Then for each f ∈ Cb(X)

with f ≥ 0,
ϕ(f) = lim

k→∞
ϕnk

(f) ≥ 0,

so ϕ is positive. Further, ϕ(
�
) = limk→∞ ϕnk

(
�
) = 1. Due to the Riesz representation

theorem there exists a µ ∈ P(X) such that ϕ(f) =
∫

f dµ for all f ∈ C(X) = Cb(X). Since
ϕnk

→ ϕ weak*, it follows that µnk
→ µ narrowly. Thus P(X) is sequentially compact.

1.6 Prokhorov’s theorem

Let (X, d) be a metric space and let P(X) be the set of Borel probability measures on X.
Endow P(X) with the bounded Lipschitz metric induced by d.

In the study of limit behavior of stochastic processes one often needs to know when a se-
quence of random variables is convergent in distribution or, at least, has a subsequence that
converges in distribution. This comes down to finding a good description of the sequences
in P(X) that have a convergent subsequence or rather of the relatively compact sets of
P(X). Recall that a subset S of a metric space is called relatively compact if its closure S is
compact. The following theorem by Yu.V. Prokhorov [11] gives a useful description of the
relatively compact sets of P(X) in case X is separable and complete. Let us first attach a
name to the equivalent condition.

Definition 1.20. A set Γ of Borel probability measures on X is called tight if for every
ε > 0 there exists a compact subset K of X such that

µ(K) ≥ 1 − ε for all µ ∈ Γ.

(Also other names and phrases are in use instead of ‘Γ is tight’: ‘Γ is uniformly tight’, ‘Γ
satisfies Prokhorov’s condition’, ‘Γ is uniformly Radon’, and maybe more).

Remark. We have shown already: if (X, d) is a complete separable metric space, then {µ}
is tight for each µ ∈ P(X) (see Theorem 1.9).

Theorem 1.21 (Prokhorov, 1956). Let (X, d) be a complete separable metric space and
let Γ be a subset of P(X). Then the following two statements are equivalent:
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(a) Γ is compact in P(X).

(b) Γ is tight.

Let us first remark here that completeness of X is not needed for the implication (b)⇒(a).
The proof of the theorem is quite involved. We start with the more straightforward impli-
cation (a)⇒(b).

Proof of (a)⇒(b). Claim: If U1, U2, . . . are open sets in X that cover X and if ε > 0, then
there exists a k ≥ 1 such that

µ(

k
⋃

i=1

Ui) > 1 − ε for all µ ∈ Γ.

To prove the claim by contradiction, suppose that for every k ≥ 1 there is a µk ∈ Γ with
µk(
⋃k

i=1 Ui) ≤ 1 − ε. As Γ is compact, there is a µ ∈ Γ and a subsequence with µkj
→ µ.

For any n ≥ 1,
⋃n

i=1 Ui is open, so

µ(
n
⋃

i=1

Ui) ≤ lim inf
j→∞

µkj
(

n
⋃

i=1

Ui)

≤ lim inf
j→∞

µkj
(

kj
⋃

i=1

Ui) ≤ 1 − ε.

But
⋃∞

i=1 Ui = X, so µ(
⋃n

i=1 Ui) → µ(X) = 1 as n → ∞, which is a contradiction. Thus
the claim is proved.

Now let ε > 0 be given. Take D = {a1, a2, . . .} dense in X. For every m ≥ 1 the open
balls B(ai, 1/m), i = 1, 2, . . ., cover X, so by the claim there is a km such that

µ
(

km
⋃

i=1

B(ai, 1/m)
)

> 1 − ε2−m for all µ ∈ Γ.

Take

K :=

∞
⋂

m=1

km
⋃

i=1

B(ai, 1/m).

Then K is closed and for each δ > 0 we can take m > 1/δ and obtain K ⊂ ⋃km

i=1B(ai, δ), so
that K is totally bounded. Hence K is compact, since X is complete. Moreover, for each
µ ∈ Γ

µ(X \K) = µ
(

∞
⋃

m=1

[

km
⋃

i=1

B(ai, 1/m)
]c)

≤
∞
∑

m=1

µ
([

km
⋃

i=1

B(ai, 1/m)
]c)

=
∞
∑

m=1

(

1 − µ
(

km
⋃

i=1

B(ai, 1/m)
))

<

∞
∑

m=1

ε2−m = ε.
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Hence Γ is tight.

The proof that condition (b) implies (a) is more difficult. We will follow the proof from
[10], which is based on compactifications. We have shown already that if X is compact,
then P(X) is compact (see Proposition 1.19). In that case (a) trivially holds. In the cases
that we want to consider, X will not always be compact. We can reduce to the compact
case by considering a compactification of X.

Lemma 1.22. If (X, d) is a separable metric space, then there exist a compact metric space
(Y, δ) and a map T : X → Y such that T is a homeomorphism from X onto T (X).

(T is in general not an isometry. If it were, thenX complete ⇒ T (X) complete ⇒ T (X) ⊂ Y
closed ⇒ T (X) compact, which is not true for, e.g., X = R.)

Proof. Let Y := [0, 1]N = {(ξi)∞i=1 : ξi ∈ [0, 1] ∀i} and

δ(ξ, η) :=
∞
∑

i=1

2−i|ξi − ηi|, ξ, η ∈ Y.

Then δ is a metric on Y , its topology is the topology of coordinatewise convergence, and
(Y, δ) is compact.

Let D = {a1, a2, . . .} be dense in X and define

αi(x) := min{d(x, ai), 1}, x ∈ X, i = 1, 2, . . . .

Then for each k, αk : X → [0, 1] is continuous. For x ∈ X define

T (x) := (αi(x))
∞
i=1 ∈ Y.

Claim: for any C ⊂ X closed and x 6∈ C there exist ε > 0 and i such that

αi(x) ≤ ε/3, αi(y) ≥ 2ε/3 for all y ∈ C.

To prove the claim, take ε := min{d(x,C), 1} ∈ (0, 1]. Take i such that d(ai, x) < ε/3.
Then αi(x) ≤ ε/3 and for y ∈ C we have

αi(y) = min{d(y, ai), 1} ≥ min{(d(y, x) − d(x, ai)), 1}
≥ min{(d(x,C) − ε/3), 1}
≥ min{2ε/3, 1} = 2ε/3.

In particular, if x 6= y then there exists an i such that αi(x) 6= αi(y), so T is injective.
Hence T : X → T (X) is a bijection. It remains to show that for (xn)n and x in X:

xn → x ⇐⇒ T (xn) → T (x).

If xn → x, then αi(xn) → αi(x) for all i, so δ(T (xn), T (x)) → 0 as n→ ∞.
Conversely, suppose that xn 6→ x. Then there is a subsequence such that x 6∈ {xn1

, xn2
, . . .}.

Then by the claim there is an i such that αi(x) ≤ ε/3 and αi(xnk
) ≥ 2ε/3 for all k, so that

αi(xnk
) 6→ αi(x) as k → ∞ and hence T (xnk

) 6→ T (x).

We can now complete the proof of Prokhorov’s theorem.
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Proof of (b)⇒(a). We will show more: If (X, d) is a separable metric space and Γ ⊂ P(X)
is tight, then Γ is compact. Let Γ ⊂ P(X) be tight. First observe that Γ is tight as well.
Indeed, let ε > 0 and let K be a compact subset of X such that µ(K) ≥ 1− ε for all µ ∈ Γ.
Then for every µ ∈ Γ there is a sequence (µn)n in Γ that converges to µ and then we have
µ(K) ≥ lim supn→∞ µn(K) ≥ 1 − ε.

Let (µn)n be a sequence in Γ. We have to show that it has a convergent subsequence.
Let (Y, δ) be a compact metric space and T : X → Y be such that T is a homeomorphism
from X onto T (X). For B ∈ B(Y ), T−1(B) is Borel in X. Define

νn(B) := µn(T−1(B)), B ∈ B(Y ), n = 1, 2, . . . .

Then ν ∈ P(Y ) for all n. As Y is a compact metric space, P(X) is a compact metric space,
hence there is a ν ∈ P(Y ) and a subsequence such that νnk

→ ν in P(Y ). We want to
translate ν back to a measure on X. Set Y0 := T (X).

Claim: ν is concentrated on Y0 in the sense that there exists a set E ∈ B(Y ) with
E ⊂ Y0 and ν(E) = 1.

If we assume the claim, define

ν0(A) := ν(A ∩E), A ∈ B(Y0).

(Note: A ∈ B(Y0) ⇒ A ∩ E Borel in E ⇒ A ∩ E Borel in Y , since E is a Borel subset of
Y .) The measure ν0 is a finite Borel measure on Y0 and ν0(E) = ν(E) = 1. Now we can
translate ν0 back to

µ(A) := ν0(T (A)) = ν0((T
−1)−1(A)), A ∈ B(X).

Then µ ∈ P(X). We want to show that µnk
→ µ in P(X). Let C be closed inX. Then T (C)

is closed in T (X) = Y0. (T (C) need not be closed in Y .) Therefore there exists Z ⊂ Y closed
with Z ∩ Y0 = T (C). Then C = {x ∈ X : T (x) ∈ T (C)} = {x ∈ X : T (x) ∈ Z} = T −1(Z),
because there are no points in T (C) outside Y0, and Z ∩E = T (C) ∩E. Hence

lim sup
k→∞

µnk
(C) = lim sup

k→∞
νnk

(Z)

≤ ν(Z)

= ν(Z ∩E) + ν(Z ∩Ec) = ν(T (C) ∩E) + 0

= ν0(T (C)) = µ(C).

So µnk
→ µ.

Finally, to prove the claim we use tightness of Γ. For each m ≥ 1 take Km compact in
X such that µ(Km) ≥ 1 − 1/m for all µ ∈ Γ. Then T (Km) is a compact subset of Y hence
closed in Y , so

ν(T (Km)) ≥ lim sup
k→∞

νnk
(T (Km))

≥ lim sup
k→∞

µnk
(Km) ≥ 1 − 1/m.

Take E :=
⋃∞

m=1Km. Then E ∈ B(Y ) and ν(E) ≥ ν(Km) for all m, so ν(E) = 1.
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Example. Let X = R, µn(A) := n−1λ(A∩ [0, n]), A ∈ B(R). Here λ denotes Lebesgue mea-
sure on R. Then µn ∈ P(R) for all n. The sequence (µn)n has no convergent subsequence.
Indeed, suppose µnk

→ µ, then

µ((−N,N)) ≤ lim inf
n→∞

µn((−N,N))

= lim inf
n→∞

n−1λ([0, N ]) = lim inf
n→∞

N/n = 0,

so µ(R) = supN≥1 µ((−N,N)) = 0. There is leaking mass to infinity; the set {µn : n =
1, 2, . . .} is not tight.

1.7 Disintegration

Let (X, dX ) and (Y, dY ) be separable complete metric spaces. On the Cartesian product
Z = X × Y we define the metric dZ((x, y), (x′, y′)) := dX(x, x′) + dY (y, y′). Then (Z, dZ)
is a separable complete metric space. There are two natural σ-algebras in Z related to
Borel sets: the Borel σ-algebra BZ of Z, which is generated by all open sets of Z, and the
σ-algebra BX ⊗ BY generated by the rectangles A × B with A ∈ BX and B ∈ BY . The
collections {A: A × Y ∈ BZ} and {B: X × B ∈ BZ} are σ-algebras containing the open
sets in X and Y , respectively. Therefore, for every Borel sets A in X and B in Y , the set
A × B = A × Y ∩ X × B is in BZ . Hence BX ⊗ BY ⊆ BZ . The seperability of Z yields
that BX ⊗ BY = BZ . Indeed, let D be a dense subset of Z and let U be any open set of
Z. For every z ∈ U we can find an (az , bz) ∈ D and positive rational numbers ε and δ such
that the rectangle Rz := B(az, ε) × B(bz, δ) contains z and is contained in U . Then U is
the union of Rz (z ∈ U) and as there are at most countably many of such Rz, we obtain
U ∈ BX ⊗ BY .

If µ ∈ P(X) and ν ∈ P(Y ), then η = µ⊗ ν is the unique measure η on BX ⊗ BY such
that

η(A×B) = µ(A)ν(B), for all A ∈ BX , B ∈ BY .

Clearly, η(Z) = 1, so η ∈ P(Z). Further, by Fubini,

∫

X×Y
f(x, y) dη(x, y) =

∫

X

(
∫

Y
f(x, y) dν(y)

)

dµ(x),

for all Borel measurable functions f : Z → [0,∞].
We are looking for such a statement for more general measures η on the product space

Z. Given a measure on the product space Z, can we write an integral with respect to that
measure as repeated integration, first with respect to the y-variable and then with respect
to x? For η ∈ P(Z), we call the measures

µ(A) := η(A× Y ) and ν(B) := η(X ×B), A ∈ BX , B ∈ BY ,

the marginals of η. Suppose that η is absolutely continuous with respect to µ⊗ ν, that is,
(µ ⊗ ν)(C) = 0 implies η(C) = C for every Borel set C in Z. Then the Radon-Nikodym
theorem says that there exists a Borel measurable function h : Z → [0,∞) such that

∫

Z
f(x, y) dη(x, y) =

∫

Z
f(x, y)h(x, y) d(µ⊗ ν)(x, y)
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and therefore
∫

Z
f(x, y) dη(x, y) =

∫

X

(
∫

Y
f(x, y)h(x, y) dν(y)

)

dµ(x)

for every positive Borel measurable function f . If we let

νx(B) :=

∫

B
h(x, y)dν(y) =

∫

Y

�
X×Bh(x, y) dν(y), x ∈ X,

then νx is a Borel measure on Y for each x and
∫

X×Y
f(x, y) dη(x, y) =

∫

X

(
∫

Y
f(x, y) dνx(y)

)

dµ(x)

for every Borel function f : X × Y → [0,∞]. The latter formula is called the disintegration
formula. If there would exist a Borel set A in X with µ(A) > 0 such that νx(Y ) > 1 for all
x ∈ A or νx(Y ) < 1 for all x ∈ A, then

µ(A) =

∫

�
A×Y dη =

∫

X

(
∫

Y

�
A×Y (x, y) dνx(y)

)

dµ(x) > µ(A)

or µ(A) < µ(A), which is impossible. Hence νx is a probability measure for µ-almost all x.
The existence of such a family of measures (νx)x∈X is not restricted to the case that η

is absolutely continuous with respect to the product measure of its marginals.

Theorem 1.23. Let (X, dX) and (Y, dY ) be two separable complete metric spaces. Let
η ∈ P(X × Y ) and µ(A) = η(A × Y ) for A ⊆ X Borel. Then for every x ∈ X there exists
a νx ∈ P(Y ) such that

(i) x→ νx(B) : X → R is BX-measurable for every B ∈ BY , and

(ii)

∫

X×Y
f(x, y) dη(x, y) =

∫

X

(
∫

Y
f(x, y) dνx(y)

)

dµ(x) for every Borel measurable f :

X × Y → [0,∞].

The above disintegration theorem for product spaces is a special case of the next theo-
rem. The set Z plays the role of the productX×Y and the map π the role of the coordinate
projection on X. As we do not have the second coordinate space Y anymore, the measures
νx will be measures on the whole space Z, but concentrated on π−1({x}).

Theorem 1.24. Let (Z, dZ) and (X, dX ) be separable complete metric spaces, let π : Z → X
be a Borel map, let η ∈ P(Z), and let µ(A) := η(π−1(A)), A ⊆ X Borel. Then for every
x ∈ X there exists a νx ∈ P(Z) such that

(i) νx is concentrated on π−1({x}), that is, νx(Z \ π−1({x})) = 0 for µ-almost every
x ∈ X,

(ii) x 7→ νx(C) : X → R is Borel measurable for every Borel C ⊆ Z, and

(iii)

∫

Z
f(z) dη(z) =

∫

X

(

∫

π−1({x})
f(z) dνx(z)

)

dµ(x).

A proof can be found in [5, Section 10.2, p. 341–351]
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1.8 Borel probability measures with respect to weak topologies

We wish to apply the theory of probability measures on metric spaces to measures on Hilbert
spaces endowed with their weak topology. However, the weak topology is in general not
metrizable. We will define a metric that induces the weak topology on norm bounded sets
and compare the induced Borel σ-algebras and narrow convergences. The metric will even
be given by an inner product. We will need several theorems concerning weak topologies on
Banach spaces. We begin by recalling the definitions of weak topology and weak* topology.

Let X be a Banach space and let X ′ be its Banach dual space. The weak topology of X
is the smallest (coarsest) topology on X such that every ϕ ∈ X ′ is continuous with respect
to this topology. Then

xn → x weakly ⇐⇒ ϕ(xn) → ϕ(x) for all ϕ ∈ X ′.

The weak* topology of X ′ is the smallest topology on X ′ such that every map ϕ→ ϕ(x) is
continuous for all x ∈ X. Then

ϕn → ϕ weak* ⇐⇒ ϕn(x) → ϕ(x) for all x ∈ X.

The weak and weak* topologies are weaker than the norm topologies of X and X ′, respec-
tively.

Theorem 1.25. Let X be a Banach space. The weak* topology on {ϕ ∈ X ′: ‖ϕ‖ ≤ 1} is a
metric topology (that is, induced by a metric) if and only if X is separable.
(See [6, Theorem V.5.1, p. 426].)

Theorem 1.26. Let X be a Banach space. Then the weak topology on {x ∈ X: ‖x‖ ≤ 1}
is a metric topology if and only if X ′ is separable.
(See [6, Theorem V.5.2, p. 426].)

Corollary 1.27. If X is a separable Hilbert space, then the weak topology on {x ∈ X: ‖x‖ ≤
1} is a metric topology.

Corollary 1.28. If X is a separable Hilbert space and S ⊆ X is bounded, then

(i) S is weakly closed ⇐⇒ S is weakly sequentially closed;

(ii) S is weakly compact ⇐⇒ S is weakly sequentially compact.

Theorem 1.29. Let X be a Banach space. Every weakly convergent sequence is bounded.
(See [14, Lemma 8.15, p. 190].)

Theorem 1.30. If X is a Hilbert space, then every bounded sequence in X has a weakly
convergent subsequence.
(See [14, Theorem 8.16, p. 191].)

Let (X, 〈, 〉) be a separable Hilbert space and denote its norm by |x| = 〈x, x〉1/2. Fix an
orthonormal basis (en)n in X. Define

〈x, y〉$ :=
∞
∑

n=1

1

n2
〈x, en〉〈en, y〉, x, y ∈ X, (3)

and |x|$ := 〈x, 〉1/2
$ . Then 〈, 〉$ is an inner product on X. It does definitely depend on the

basis as is for instance seen by exchanging e1 and e2. We will show that 〈, 〉$ induces the
weak topology on bounded subsets of (X, 〈, 〉).
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Proposition 1.31. Let S be a bounded subset of (X, 〈, 〉) and let (xi)i be a sequence in S
and x ∈ S. Then the following three statements are equivalent:

(a) xi → x weakly, that is, 〈xi, y〉 → 〈x, y〉 for all y ∈ H;

(b) 〈xi, en〉 → 〈x, en〉 for all n;

(c) |xi − x|$ → 0.

Proof. (a)⇒(c): For every n, 〈xi − x, en〉 → 0 and |〈xi − x, en〉| ≤ |xi − x| ≤M for all i, as
S is bounded. Hence by Lebesgue’s dominated convergence theorem,

|xi − x|$ =

∞
∑

n=1

1

n2
|〈xi − x, en〉|2 → 0.

(c)⇒(b): |〈xi − x, em〉|2 ≤ m2
∑∞

n=1
1
n2 |〈xi − x, en〉|2 → 0 as i→ ∞.

(b)⇒(a): Let y ∈ H, |xi| ≤M for all i, |x| ≤M , ε > 0. Take N ∈ N such that

|y −
N
∑

n=1

〈y, en〉en| < ε/(4M).

Then

|〈xi − x, y〉| ≤ |〈xi − x,

N
∑

n=1

〈y, en〉en〉| + |xi − x| |y −
N
∑

n=1

〈y, en〉en| < ε

for i large.

Corollary 1.32. On a bounded subset of (X, 〈, 〉), the weak topology and the topology of
〈, 〉$ coincide.

Proof. Both topologies are metric topologies on bounded sets and the convergence of se-
quences coincides according to the previous proposition.

Let

B(X) = Borel σ-algebra of (X, 〈, 〉)
B(X,w) = Borel σ-algebra of X with respect to the weak topology
B(X,$) = Borel σ-algebra of (X, 〈, 〉$)

Proposition 1.33. The three Borel σ-algebras coincide: B(X) = B(X,w) = B(X,$).

Proof. For R > 0, the ball BR := {x ∈ X: |x| ≤ R} is weakly sequentially compact, hence
weakly compact (since the weak topology is a metric topology on bounded sets), hence
weakly closed.

• B(X,w) ⊆ B(X,$): If S ⊆ X is weakly closed, then S ∩BR is weakly closed (in BR)
and BR is bounded, so S ∩BR is $-closed in BR. Also,

BR = {x ∈ X: |x| ≤ R} = {x:
∞
∑

n=1

|〈x, en〉|2 ≤ R}

=
∞
⋂

N=1

{x:
N
∑

n=1

|〈x, en〉|2 ≤ R}
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is $-closed, since x 7→∑N
n=1 |〈x, en〉|2 is $-continuous for all N . Hence S∩BR is $-closed.

Then S = ∪∞
m=1S ∩Bm ∈ B(X,$).

• B(X) ⊆ B(X,w): If a ∈ X and R > 0, then {x ∈ X: |x− a| ≤ R} is weakly compact
hence in B(X,w). As X is separable, B(X) is the σ-algebra generated by the closed (or
open) balls of X, so B(X) ⊆ B(X,w).

• B(X,$) ⊆ B(X): Let S ⊆ X be $-closed. Then S ∩ Bn is $-closed in Bn, hence
weakly closed in Bn. As Bn is weakly closed, S ∩Bn is weakly closed in X, hence closed in
(X, 〈, 〉). Thus, S =

⋃

n S ∩Bn ∈ B(X).

It follows that P(X) = P(X,w) = P(X,$) as sets. The narrow convergences, however,
are different. Under additional assumptions, some relations between the narrow conver-
gences can be proved. We include two such results and sketches of their proofs. First we
need to introduce cylindrical functions.

Definition 1.34.

C∞
c (Rd) := {ϕ : Rd → R: every derivative of order k exists for all k

and ϕ = 0 outside a compact set}.

Recall that X is a separable Hilbert space with a fixed orthonormal basis (en)n.

Cyl(X) := {f : X → R: ∃d ∈ N, ∃ϕ ∈ C∞
c (Rd) such that

f(x) = ϕ(〈x, e1〉, . . . , 〈x, ed〉) ∀x ∈ X}.

The elements of Cyl(X) are called smooth cylindrical functions on X.

Proposition 1.35. Every f ∈ Cyl(X) is Lipschitz, everywhere differentiable in Fréchet
sense, and continuous with respect to the weak topology of X as well as 〈, 〉$ (with the same
fixed basis (en)n).

Proof. Let f(x) = ϕ(〈x, e1〉, . . . , 〈x, ed〉). Let g(t) := f(x+ t(x− y)). Then

|f(x) − f(y)| = |g(0) − g(1)| ≤ sup
t∈[0,1]

|g′(t)|

and

|g′(t)| = |
d
∑

i=1

(Diϕ)(〈x + t(y − x), ei〉)〈y − x, ei〉|

≤
d
∑

i=1

‖Diϕ‖∞|y − x| ≤M |y − x|,

so f is Lipschitz. To see that f is Fréchet differentiable at x,

|f(x+ h) − f(x) −
d
∑

i=1

Diϕ(〈x, e1〉, . . . , 〈x, ed〉)〈h, ei〉|R

≤ o(〈h, e1〉, . . . , 〈h, ed〉) ≤ o(|h|).

So f is Fréchet differentiable. The continuities are clear.
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Lemma 1.36. Let X be a separable Hilbert space, (en)n an orthonormal basis of X, and
〈, 〉$ defined by (3). Then:

(1) if K is weakly compact in X, then K is compact with respect to 〈, 〉$;

(2) if Γ ⊆ P(X) is weakly tight in the sense that

∀ε > 0 ∃Rε > 0 such that µ(BRε) ≥ 1 − ε ∀µ ∈ Γ,

then Γ is tight in P(X,$) (here BR = {x ∈ X: |x| ≤ R});

(3) let (µn)n ⊆ P(X) be a sequence such that {µn: n ∈ N} is weakly tight; then µn

converges narrowly to µ in P(X,$) if and only if

lim
n→∞

∫

f(x) dµn(x) =

∫

f(x) dµ(x) for all f ∈ Cyl(X).

Proof. (1): K is weakly compact implies that K is bounded in (X, 〈, 〉). Hence the weak
topology on K is the same as the $-topology, so K is also $-compact.

(2): BR is bounded in (X, 〈, 〉) and weakly compact, hence $-compact.
(3): ⇒: Suppose that {µn: n} is weakly tight and µn → µ narrowly in P(X,$). Let

f ∈ Cyl(X). Then f is bounded and f is continuous with respect to $, so
∫

f dµn →
∫

f dµ.
⇐: Suppose that {µn: n} is weakly tight and

∫

f dµn →
∫

f dµ for all f ∈ Cyl(X).
By (2) and Prokhorov’s theorem, every subsequence of (µn) has a subsubsequence that
converges narrowly in P(X,$) to some measure in P(X). If all these limit measures
are equal, then (µn)n converges to this measure. We check that µnk

→ ν narrowly in
P(X,$) implies that ν = µ. As f ∈ Cyl(X) is bounded and $-continuous, we have
∫

f dµnk
→
∫

f dν, so
∫

f dµ =
∫

f dν for all f ∈ Cyl(X). If f(x) = ϕ(〈x, e1〉, . . . , 〈x, ed〉),
with ϕ ∈ C∞

c (Rd) then the equality reads

∫

x
ϕ(〈x, e1〉, . . . , 〈x, ed〉) dµ(x) =

∫

X
ϕ(〈x, e1〉, . . . , 〈x, ed〉) dν(x).

By means of a Stone-Weierstrass approximation argument, it follows that

∫

X
ψ(〈x, e1〉, . . . , 〈x, ed〉) dµ(x) =

∫

X
ψ(〈x, e1〉, . . . , 〈x, ed〉) dν(x)

for all ψ ∈ Cc(R
d). The latter equality actually holds for all ψ ∈ Cb(X), as can be seen

with the aid of Lebesgue’s dominated convergence theorem. Now let g ∈ Cb(X) and define

gd(〈x, e1〉, . . . , 〈x, ed〉) = g(

d
∑

i=1

〈x, ei〉ei)

for x ∈ X and d ∈ N. Then gd(x) → g(x) as d → ∞ for all x. By Lebesgue’s dominated
convergence theorem,

∫

X
g(x) dµ(x) =

∫

X
g(x) dν(x),

so µ = ν.
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Theorem 1.37. Let j: [0,∞) → [0,∞) be continuous, strictly increasing and surjective.
(For instance, j(x) = xp, 1 ≤ p <∞.) Let µn, µ ∈ P(X) such that µn → µ and in P(X,$)
and

lim
n→∞

∫

X
j(|x|) dµn(x) →

∫

X
j(|x|) dµ <∞.

Then µn → µ in P(X, 〈, 〉).

Proof. Claim: For every ε > 0 there exists an R > 0 such that µN (BR) ≥ 1 − ε for all n.
Suppose not: for every R > 0 there exists an n such that µn(B

c
R) > ε. Then

∫

X
j(|x|) dµn(x) ≥

∫

B
c
R

j(|x|) dµn(x)

≥ j(R)µn(B
c
R) ≥ j(R)ε,

which becomes arbitrary large as R→ ∞. Thus we have a contradiction with finiteness of
supn

∫

X j(|x|) dµn(x).
Claim: The map x 7→ j(|x|) is $-l.s.c. Let (xi)i and x in X be such that |xi −x|$ → 0.

As x 7→ j(|x|) is bounded below, α := lim inf i→∞ j(|xi|) exists. For ε > 0, the set Lα+ε :=
{y: j(|y|) ≤ α + ε} = {y: |y| ≤ j−1(α + ε)} is weakly compact hence weakly closed (since
bounded) hence $-closed. Therefore x ∈ Lα+ε and hence j(|x|) ≤ α = lim inf i→∞ j(|xi|).
Thus j(| · |) is $-l.s.c.

Let

H :=
{

h: X → R: ∃A,B ≥ 0 such that |h(x)| ≤ A+Bj(|x|) ∀x ∈ X

and

∫

hdµn →
∫

hdµ
}

.

We will show that Cb(X) ⊆ H.
Claim: H is a vector space, j(| · |) ∈ H, and

� ∈ H.
Claim: If ‖hn − h‖∞ → 0 and hn ∈ H for all n, then h ∈ H. Each hn is continuous

and there are An and Bn such that |hn(x)| ≤ An + Bnj(|x|) for all x, so h is continuous
and |h(x)| ≤ |h(x) − hn(x)| + |hn(x)| ≤ (An + 1) + Bnj(|x|) for an n with |hn − h|∞ ≤ 1.
Moreover,

|
∫

hdµn −
∫

hdµ| ≤ |
∫

(hm − h) dµn| + |
∫

hm dµn −
∫

hm dµ| + |
∫

hm dµ−
∫

hdµ|

≤ ‖hm − h‖∞ + |
∫

hm dµn −
∫

hm dµ| + ‖hm − h‖∞ → 0

if first n→ ∞ and then m→ ∞.
Let

A := {h ∈ H: h is $-l.s.c.}.
Claim: f, g ∈ A implies f + g ∈ A, f ∈ A and λ ≥ 0 implies λf ∈ A, and j(| · |) ∈ A.
Claim: If f, g: X → R are continuous, $-l.s.c., there exist A,B > 0 such that |f(x)| ∨

|g(x)| ≤ A + Bj(|x|) for all x, and f + g ∈ A, then both f ∈ A and g ∈ A. We
have to show that

∫

f dµn →
∫

f dµ (and the same for g). By $-lower semicontinuity,
∫

f dµ ≤ lim infn

∫

f dµn and
∫

g dµ ≤ lim infn

∫

g dµn, so
∫

(f + g) dµ ≤ lim inf
∫

f dµn +
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lim inf
∫

g dµn ≤ lim sup
∫

f dµn + lim inf
∫

g dµn ≤ lim
∫

(f + g) dµn =
∫

(f + g) dµ, so
∫

f dµn →
∫

f dµ.
Claim: f, g ∈ A implies f ∨ g ∈ A and f ∧ g ∈ A. This follows from the previous claim

and the identity f + g = f ∨ g + f ∧ g.
Recall the Moreau-Yosida approximations: if f ∈ Cb(X) and

fk(x) := inf
y∈X

(

f(y) + k|x− y|
)

,

then fk is Lipschitz, inf f ≤ f1 ≤ f2 ≤ · · · ≤ f , and f(x) = limk→∞ fk(x). Let D be a

countable dense subset of X. Then fk(x) = infy∈D

(

f(y) + k|x − y|
)

, so there exists a

sequence yi such that fk(x) = infi

(

f(yi) + k|x− yi|
)

. Let

D0 := {x 7→
m
∧

i=1

(

αi + βi|x− y|
)

∧ γi: m ∈ N, αi ∈ R, βi, γi ≥ 0, y ∈ X}

and
D := D0 −D0 = {f − g: f, g ∈ D0}.

Claim: For every bounded Lipschitz function h: X → R we have

∫

X
hdµ = sup{

∫

f dµ: f ∈ D, f ≤ h}

= inf{
∫

f dµ: f ∈ D, f ≥ h}.

Choose a countable dense subset D = {a1, a2, . . .} of X. Let L and M be such that
|h(x)| ≤ M for all x and |h(x) − h(y)| ≤ L|x − y| for all x, y ∈ X. For n ∈ N, choose Nn

such that

µ
(

Nn
⋃

i=1

B(ai, 1/n)
)

≥ 1 − 1/(Mn)

and

fn(x) =

Nn
∧

i=1

(

h(ai) + L|x− ai|
)

∧M, x ∈ X.

Then fn ∈ D and for x ∈ B(ai, 1/n),

|fn(x) − h(x)| ≤ |fn(x) − f(ai)| + |h(ai) − h(x)| ≤ 2L/n.

For x ∈ X,
h(ai) + L|x− ai| ≥ h(ai) + |h(x) − h(ai)| ≥ h(x),

so fn ≥ h. Further, fn(x) ≤M for all x. By Lebesgue,

∫

hdµ ≤
∫

SNn
i=1

B(ai ,1/n)
fn dµ+Mµ((

⋃

B(ai, 1/n))c)

≤
∫

(h+ 2L/n) dµ+ 1/n ≤
∫

hdµ+ (2L+ 1)/n.

25



Now do the same for −h.
Claim: If f = x 7→ (α + β|x − y|) ∧ γ ∈ A for every α ∈ R, β, γ > 0, and y ∈ X, then

µn → µ in P(X, | · |). If such functions f are in A, then
∫

f dµn →
∫

f dµ and they are also
in D. Hence for bounded Lipschitz f : X → R,

lim inf
n→∞

∫

hdµn ≥ sup
f∈D, f≤h

lim inf
n→∞

∫

f dµn

= sup
f∈D, f≤h

∫

f dµ =

∫

hdµ.

Similarly for −h.
It remains to show that x 7→ f(x)(α + β|x− y|) ∧ γ ∈ A. We can rewrite such an f as

f(x) =
(

β|x − y|
)

∧ (γ − α) + α. If γ − α < 0, then this function is constant, hence in A.

Thus we may assume that f(x) = |x− y| ∧ γ for some y ∈ X and γ ≥ 0.
Claim: If f ∈ A, θ: R → R is uniformly continuous, bounded, and increasing, then

θ ◦ f ∈ A. We may assume (by uniform approximation) that θ is Lipschitz, increasing,
bounded, and (by scaling) has Lipschitz constant ≤ 1. Then also x 7→ x− θ(x) is Lipschitz
and increasing, so θ ◦ f and f − θ ◦ f are $-l.s.c. Their sum is in A, hence θ ◦ f ∈ A and
f − θ ◦ f ∈ A.

Claim: x 7→ |x| ∧ γ ∈ A. Consider θ(s) = j−1(s)2 ∧ γ2 if s ≥ 0 and θ(s) = 0 if s < 0.
Then θ ◦ j(| · |) ∈ A, so x 7→ j−1(j(|x|))2 ∧ γ2 = |x| ∧ γ2 ∈ A. With θ(s) =

√
s if s ≥ 0 and

θ(s) = 0 if s < 0, it follows that x 7→ |x| ∧ γ ∈ A.
Claim: x 7→ |x−y|∧γ ∈ A. (Sketch of proof:) The function g`,m(x) = (−`)∨(−2〈x, y〉+

|y|2) ∧m ∈ A, `,m ≥ 0. So gγ,`,m,k :=
(

(|x|2 ∧ γ2 + g`,m(x) ∨ 0
)1/2

∧ k ∈ A, k ≥ 0. With

γ ≥ `+ k2, m ≥ k,

gγ,`,m,k(x) = g`,k(x) :=
((

|x|2 + (−2〈x, y〉 + |y|2) ∨ (−`)
)

∨ 0
)1/2

∧ k ∈ A,

and
lim
`→∞

g`,k(x) = inf
`∈N

g`,k(x) = |x− y| ∧ k

for all x ∈ X. It follows that

lim sup
n→∞

∫

X

(

|x−y|∧k
)

dµn(x) ≤ lim sup
n→∞

∫

X
g`,k(x) dµ(x) =

∫

g`,k dµ(x) =

∫

X
g`,k(x) dµ(x).

1.9 Transport of measures

Let X1 and X2 be separable metric spaces, let µ ∈ P(X1), and let r: X1 → X2 be a Borel
map, or, more generally, a µ-measurable map. Define r#µ ∈ P(X2) by

r#µ(A) := µ(r−1(A)), A ⊆ X2 Borel.

The measure r#µ is called the image measure of µ under r or the push forward of µ through
r.
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Lemma 1.38. (1)
∫

X1
f(r(x)) dµ(x) =

∫

X2
f(y) dr#µ(y) for every bounded Borel func-

tion f : X2 → R.

(2) If ν is absolutely continuous with respect to µ, then r# is absolutely continuous with
respect to r#µ.

(3) If s: X2 → X3 is Borel, where X3 is a separable metric space, then (s ◦ r)#µ =
s#(r#µ).

(4) If r is continuous, then r#: P(X1) → P(X2) is continuous with respect to narrow
convergence.

Proof. (1): By definition of r# the statement is clear for simple functions and then follows
by approximation.

(2): If r#µ(A) = 0, then µ(r−1(A)) = 0, so r#ν(A) = ν(r−1(A)) = 0.
(3): (s◦r)#µ(A) = µ((s◦r)−1(A)) = µ({x: s(r(x)) ∈ A}) = r#µ(s−1(A)) = s#(r#µ)(A).
(4): If µn → µ in P(X1), then for every open U ⊆ X2 the set r−1(U) is open in X1, so

lim inf
n→∞

r#(U) = lim inf
n

µn(r−1(U))

≥ µ(r−1(U)) = r#(U).

So r#µn → µ.

Lemma 1.39. Let rn, r: X1 → X2 be Borel maps such that rn → r uniformly on compact
subsets of X1. Let (µn)n be a tight sequence in P(X1) that converges to µ. If r is continuous,
then (rn)#µn → r#µ.

Proof. Let f ∈ Cb(X2). For K ⊆ X1 compact, we have f ◦ rn → f ◦ r uniformly on K. Let
ε > 0. Choose a compact K ⊆ X1 such that µn(X1 \K) ≥ 1 − (ε/2)‖f‖∞ for all n. Then

|
∫

f ◦ rn dµn −
∫

f ◦ r dµ|

≤ |
∫

f ◦ rn dµn −
∫

f ◦ r dµn| + |
∫

f ◦ r dµn −
∫

f ◦ r dµ|

≤ 2‖f‖∞µn(X1 \K) + |
∫

K
(f ◦ rn − f ◦ r) dµn| + |

∫

f ◦ r dµn −
∫

f ◦ r dµ|

≤ ε+ ‖(f ◦ rn − f ◦ r)|K‖∞ + |
∫

f ◦ r dµn −
∫

f ◦ r dµ|.

The second and third term converge to 0 as n→ ∞.

Lemma 1.40. Let X,X1, X2, . . . , XN be separable metric spaces, let ri: X → Xi be contin-
uous maps, and let r := r1⊗· · ·⊗ rN : X → X1×· · ·×XN be such that r−1(K1 ×· · ·KN ) is
compact whenever K1, . . . ,KN are compact. If Γ ⊆ P(X) is such that Γi := ri

#(Γ) is tight
in P(Xi) for all i, then Γ is tight in P(X)

Proof. Denote for 1 ≤ i ≤ N and µ ∈ Γ, µi := ri
#µ. Let ε > 0. Then there exist compact

Ki ⊆ Xi such that µi(Xi \Ki) < ε/N for all µ ∈ Γ and all i. So µ(X \ (ri)−1(Ki)) < ε/N
and

µ(X \
N
⋂

i=1

(ri)−1(Ki)) ≤
N
∑

i=1

µ(X \ (ri)−1(Ki)) < ε
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for all µ ∈ Γ. Also,
⋂N

i=1(r
i)−1(Ki) = r−1(K1 × · · · ×KN ) is compact.

Let (X1, d1), . . . , (XN , dN ) be separable metric spaces and let X = X1 × · · · ×XN with
its metric defined by d((x1, . . . , xN ), (y1, . . . , yN )) = d1(x1, y1) + · · · + dN (xN , yN ). Denote
the coordinate projections by πi(x1, . . . , xN ) := xi and πi,j(x1, . . . , xN ) := (xi, xj). If

µ ∈ P(X), then the measures µi := πi
#µ and µi,j := πi,j

# µ are called the marginals of µ.

For measures µi ∈ P(Xi), define the set of multiple plans with marginals µi by

Γ(µ1, . . . , µN ) := {µ ∈ P(X1 × · · · ×XN ): πi
#µ = µi, i = 1, . . . , N}.

For N = 2, µ ∈ Γ(µ1, µ2) is called a transport plan between µ1 and µ2.

Example. Let X1 = X2 = {1, 2} and µ1({1}) = µ1({2}) = 1/2, µ2 = µ1. Then Γ(µ1, µ2) =
{ηp: 0 ≤ p ≤ 1/2}, where ηp({(1, 1)}) = ηp({(2, 2)}) = p and ηp({(1, 2)}) = ηp({(2, 1)}) =
1/2 − p.

If given two-dimensional marginals are compatible, we can find a three-dimensional
measure with these marginals.

Lemma 1.41. Let X1, X2, X3 be complete separable metric spaces and let γ12 ∈ P(X1×X2)
and γ13 ∈ P(X1 ×X3).

(1) If π1
#γ

12 = π1
#γ

13 = µ1 for some µ1 ∈ P(X1), then there exists a µ ∈ P(X1×X2×X3)

such that π12
# µ = γ12 and π13

# µ = γ13.

(2) Suppose γ12
x1

∈ P(X2), γ
13
x1

∈ P(X3), and µx1
∈ P(X2 ×X3), x1 ∈ X1, are such that

γ12 =
∫

γ12
x1

dµ1, that is,

∫

f(x1, x2) dγ12(x1, x2) =

∫

X1

(
∫

X2

f(x1, x2) dγ12
x1

(x2)

)

dµ1(x1),

∀ Borel f : X1 ×X2 → [0,∞],

and, similarly, γ13 =
∫

γ13
x1

dµ1 and µ =
∫

µx1
dµ1 ∈ P(X1 ×X2 ×X3). Then π12

# µ =

γ12 and π13
# µ = γ13 if and only if µx1

∈ Γ(γ12
x1
, γ13

x1
) for µ1-a.e. x1 ∈ X1.

Proof. (1): By the disintegration theorem, there are families of measures γ 12
x1

∈ P(X2) and
γ13

x1
∈ P(X3), x1 ∈ X1, such that

∫

f(x1, x2) dγ12(x1, x2) =

∫
(
∫

f(x1, x2) dγ12
x1

(x2)

)

dµ1(x1)

and a similar equation with 3 instead of 2. Define

µ(Z) :=

∫

X1

(
∫

X2×X3

�
Z(x1, x2, x3) d(γ12

x1
⊗ γ13

x1
)(x2, x3)

)

dµ1(x1).

Then µ ∈ P(X1 ×X2 ×X3) and

µ(A×B ×X3) =

∫

A

(
∫

B
dγ12

x1
(x2)

)

dµ1(x1) =

∫

A×B
dγ12 = γ12(A×B)

for Borel sets A ⊆ X1 and B ⊆ X2. A similar equations holds with 3 instead of 2.
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(2): If π12
# µ = γ12 and π13

# µ = γ13, then

γ12(A×B) = π12
# µ(A×B) = µ((π12)−1(A×B))

=

∫

X1

(
∫

X2×X3

�

(π12)−1(A×B)(x1, x2, x3) dµx1
(x2, x3)

)

dµ1(x1)

=

∫

X1

µx1
((π12)−1(A×B)) dµ1(x1)

=

∫

X1

π12
# µx1

(A×B) dµ1(x1)

and
∫

f(x1, x2) dγ12 =

∫

f dπ12
# µ

=

∫

f ◦ π12 dµ =

∫

f(x1, x2) dµ(x1, x2, x3)

=

∫

X1

(
∫

f(x1, x2) dµx1
(x2, x3)

)

dµ1(x1)

=

∫

X1

(
∫

f(x1, x2) dπ2
#µx1

(x2)

)

dµ1(x1)

=

∫

X1

(
∫

f dπ2
#µx1

)

dµ1.

By the uniqueness part of the disintegration theorem, γ12
x1

= π2
#µx1

for µ1-a.e. x1 ∈ X1.

Similarly, γ13
x1

= π3
#µx1

.

Conversely, suppose π2
#µx1

= γ12
x1

and π3
#µx1

= γ13
x1

for µ1-a.e. x1. Then

∫

f(x1, x2) dγ12 =

∫

X1

(
∫

f(x1, x2) dγ12
x1

)

dµ1

=

∫

X1

(
∫

f(x1, x2) dπ2
#µx1

)

dµ1

=

∫

f(x1, x2) dπ2
#µ,

so γ12 = π2
#µ.

2 Optimal transportation problems

Optimal transportation problems aim to minimize costs or energy needed to transport mass
from a given initial state to a given final state. We will consider the Monge and Kantorovich
optimal transportation problems in metric spaces and discuss existence and uniqueness of
optimal transportation plans.

2.1 Introduction

In order to have an economical interpretation in mind, we begin by explaining a simple
instance of a transportation problem. Suppose a certain amount of milk is available in
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three distribution centers and should be transported to five supermarkets. Let νj be the
amount available at the jth center and µi be the amount needed at the ith supermarket. We
may scale such that

∑3
j=1 νj = 1 and

∑5
i=1 µi = 1. Let cij denote the costs of transporting

one unit milk from center j to supermarket i. How to transport the milk for minimal costs?
The first formulation of the problem is due to Monge (1781). Assume that supermarket

i gets all its milk from one distribution center, say r(i) ∈ {1, 2, 3}. As the jth center
has to send out all of its milk we have νj =

∑

i: r(i)=j µi. We want to find the map

r : {1, 2, 3, 4, 5} → {1, 2, 3} such that the total costs
∑5

i=1 ci,r(i)µi are minimal. In other
words, we want to solve

min{
5
∑

i=1

ci,r(i)µi: r : {1, 2, 3, 4, 5} → {1, 2, 3} such that νj =
∑

i: r(i)=j

µi}.

Solving the problem comes down to drawing arrows from j in {1, 2, 3} to i ∈ {1, 2, 3, 4, 5}
in a most cost effective way. (Each i is reached by exactly one arrow.)

The second formulation is more general and due to Kantorovich (1942). We now allow
each supermarket to receive milk from more than one distribution center. Let γij be the
amount sent from j to i. We want to solve

min{
∑

i,j

cijγij : γij ≥ 0 such that
∑

i

γij = νj ,
∑

j

γij = µi}.

Solving the problem comes down to filling the matrix (γij)ij with the given row and column
sums in the most cost effective way.

We can make an important observation about the structure of an optimal matrix (γij).
Suppose that (γij) is a transportation plan with minimal costs and suppose that the two
entries γij and γk` are strictly positive. Then we should have cij + ck` ≤ ci` + ckj. Indeed,
we would otherwise be able to decrease the costs by decreasing γij and γk` both with the
amount α := min{γij , γk`} and increasing γi` and γkj both by α. This observation will lead
to the notion of c-monotonicity of the support of an optimal transportation plan.

There is a dual point of view to the Kantorovich problem. Of course the supermarkets
and distribution centers do not want to pay for the transportation of the milk, but they
have to in order to receive or get rid of their supplies. Let us denote the amount that
supermarket i is willing to pay per unit by ϕi and the amount that distribution center j
is willing to pay per unit by ψj . As they will never pay more than needed, it is clear that
ϕi +ψj ≤ cij . The total amount that they pay equals

∑

i ϕiµi +
∑

j ψjνj. It turns out that
the maximal total amount that is acceptable for them to pay

max{
5
∑

i=1

ϕiµi +

3
∑

j=1

ψjνj : ϕi + ψj ≤ cij}

equals the minimal total costs

min{
∑

ij

cijγij :
∑

γij

= νj,
∑

j

γij = µi}.

Under the assumption that cij ≥ 0 for all i and j, the Kantorovich problem has a
solution. There may be several solutions, as is easily seen in the extreme case that cij = c11
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for all i and j. The Monge problem, however, may not have a solution. For instance, if the
distributions µ and ν are uniform, that is ν1 = ν2 = ν3 = 1/3 and µ1 = · · · = µ5 = 1/5,
then there is no map r : {1, 2, 3, 4, 5} → {1, 2, 3} such that r#µ = ν.

Let us next consider Monge’s and Kantorovich’s problems in metric spaces. Let X and
Y be two separable complete metric spaces and let µ ∈ P(X) and ν ∈ P(Y ). Recall that
we endow the product space X×Y with the metric d((x, y), (x′, y′)) := dX(x, x′)+dY (y, y′)
and that we denote the coordinate projections by πX(x, y) = x and πY (x, y) = y for all
x ∈ X and y ∈ Y . Let c: X × X → [0,∞) be Borel measurable. We can now formulate
Monge’s problem as

min{
∫

c(x, r(x)) dµ(x): r: X → Y a Borel map such that r#µ = ν},

where r# denotes the image measure of µ under r. Recall that

Γ(µ, ν) := {γ ∈ P(X × Y ): (πX)#γ = µ and (πY )#γ = ν}

is the set of transportation plans. The Kantorovich problems reads

min{
∫

c(x, y) dγ(x, y): γ ∈ Γ(µ, ν)}.

The dual problem to the Kantorovich problem is

max{
∫

ϕdµ+

∫

ψ dν: ϕ ∈ L1(µ), ψ ∈ L1(ν), ϕ(x) + ψ(y) ≤ c(x, y) ∀x ∈ X ∀y ∈ Y }.

Definition 2.1. The measure η ∈ Γ(µ, ν) is called optimal for c if
∫

cdη = min{
∫

c(x, y) dγ(x, y): γ ∈ Γ(µ, ν)}

(possibly ∞ = ∞).

Definition 2.2. For a function ϕ: X → [−∞,∞], the c-transform of ϕ is defined by

ϕc(y) = inf
x∈X

(

c(x, y) − ϕ(x)
)

, y ∈ Y.

The c-transform of a function ψ: Y → [−∞,∞] is

ψc(x) = inf
y∈Y

(

c(x, y) − ψ(y)
)

, x ∈ X.

Here we use the convention that inf ∅ = ∞, inf ∞ = ∞, inf(−∞) = −∞, and the infimum
of a set that is not bounded below is −∞.

The support of an optimal transportation plan has a structure that is described in the
following definition.

Definition 2.3. A set S ⊆ X × Y is called c-monotone if

n
∑

i=1

c(xσ(i), yi) ≥
n
∑

i=1

c(xi, yi)

for every (xi, yi) ∈ S, i = 1, . . . , n, and every permutation σ of {1, . . . , n}.
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2.2 Existence for the Kantorovich problem

The existence of an optimal measure for the Kantorovich problem is a consequence of
Prokhorov’s theorem. The next lemma is actually contained in Lemma 1.38 and Lemma
1.40, but for convenience we include an explicit proof.

Lemma 2.4. Let X and Y be separable complete metric spaces and let µ ∈ P(X) and
ν ∈ P(Y ). Then Γ(µ, ν) is a compact subset of P(X × Y ).

Proof. Notice that X × Y is also separable and complete. We first show that Γ(µ, ν) is
tight. As X and Y are separable and complete, the measures µ and ν are tight. Let ε > 0.
Choose compact sets K ⊆ X and L ⊆ Y such that µ(K) ≥ 1 − ε/2 and ν(L) ≥ 1 − ε/2.
Then K × L is compact in X × Y and for γ ∈ Γ(µ, ν),

γ(X × Y \ K × L) ≤ γ((X \K) × Y ) + γ(X × (Y \ L))

= ν(X \K) + µ(Y \ L) ≤ ε/2 + ε/2.

Hence Γ(µ, ν) is tight. By Prokhorov’s theorem, Γ(µ, ν) is relatively compact in P(X ×Y ).
It remains to show that Γ(µ, ν) is closed in P(X×Y ). Let (γn)n be a sequence in Γ(µ, ν)

and η ∈ P(X × Y ) be such that γn → η narrowly. Due to the Portmanteau theorem we
have for any C ⊆ X closed,

η(C × Y ) ≥ lim sup
n→∞

ηn(C × Y )

= lim sup
n→∞

µ(C) = µ(C)

and for U ⊆ X open,

η(U × Y ) ≤ lim inf
n→∞

ηn(U × Y )

= lim inf
n→∞

µ(U) = µ(U).

Let C ⊆ X be closed and let

Um := {x ∈ X: dist(x,C) < 1/m}, m ≥ 1.

Then each Um is open and
⋂

m≥1 Um = C and
⋂

m≥1(Um × Y ) = C × Y . Hence

η(C × Y ) = lim
m→∞

η(Um × Y )

≤ lim
m→∞

µ(Um) = µ(C).

Thus, η(C × Y ) = µ(C). Hence µ is the marginal on X of η. In a similar way we can show
that the marginal of η on Y is ν and therefore η ∈ Γ(µ, ν).

Theorem 2.5. Let X and Y be separable complete metric spaces, let µ ∈ P(X) and ν ∈
P(Y ). Let c: X × Y → [0,∞) be continuous. Then there exists η ∈ Γ(µ, ν) such that

∫

cdη = min{
∫

cdγ: γ ∈ Γ(µ, ν)}.
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Proof. Write α := min{
∫

cdγ: γ ∈ Γ(µ, ν)}. If α = ∞, then η = µ ⊗ ν ∈ Γ(µ, ν) satisfies
∫

cdη = ∞ = α. Otherwise, for n ≥ 1, take a γn ∈ Γ(µ, ν) with

∫

cdηn ≤ α+ 1/n.

By the previous lemma, Γ(µ, ν) is compact. Hence there exists η ∈ Γ(µ, ν) and a subse-
quence etank

→ η as k → ∞. For k ≥ 1 and m ≥ 1 we have
∫

c ∧ mdηnk
≤
∫

cdηnk
≤

α+ 1/nk. Hence

∫

cdη = lim
m→∞

∫

c ∧mdη = lim
m→∞

lim
k→∞

∫

c ∧mdηnk
≤ α.

Remark. The previous theorem is a special instance of a general principle: a l.s.c. function
on a compact metric space has a minimum. The above lemma says that Γ(µ, ν) is a compact
metric space. The map η 7→

∫

cdη is l.s.c. due to Proposition 1.12(c).

2.3 Characterization of optimal plans

The next theorem characterizes optimal transportation plans. We begin with a lemma.

Lemma 2.6. Let X and Y be separable complete metric metric spaces, µ ∈ P(X), ν ∈
P(Y ), and η ∈ Γ(µ, ν). Then there exists a µ-full Borel set A ⊆ X such that

∀x ∈ A ∃y ∈ Y : (x, y) ∈ suppη.

Further, µ(πX(supp η)) = 1 and ν(πY (supp η)) = 1.

Proof. The set S := suppη is closed hence Borel. As X × Y is separable and complete, η
is tight, so

1 = η(S) = sup{η(K): K ⊆ S, K compact}
Choose Kn ⊆ S compact such that η(Kn) ≥ 1 − 1/n, for n ≥ 1. Then πX(Kn) is compact
in X and µ(πX(Kn)) = η(Kn) ≥ 1 − 1/n. Hence A :=

⋃

nKn is a µ-full Borel set in X. If
x ∈ A then x ∈ πX(Kn) for some n, so (x, y) ∈ Kn ⊆ S for some y ∈ Y .

Theorem 2.7. Let X and Y be separable complete metric spaces, µ ∈ P(X), ν ∈ P(Y ),
and c: X × Y → [0,∞) continuous.

(1) If η ∈ Γ(µ, ν) is optimal for c and
∫

cdη <∞, then

suppη := {z ∈ X × Y : η(U) > 0 for every neighborhood U of z}

is a c-monotone set.

(2) If η ∈ Γ(µ, ν) is such that

– supp η is c-monotone, and

– µ
(

{x ∈ X:
∫

Y c(x, y) dν(y) <∞}
)

> 0, and
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– ν
(

{y ∈ Y :
∫

X c(x, y) dµ(x) <∞}
)

> 0,

then η is optimal for c.

(3) In the situation of (2), one also has

min
{

∫

cdγ: γ ∈ Γ(µ, ν)
}

= max
{

∫

ϕdµ+

∫

ψ dν: ϕ ∈ L1(µ), ψ ∈ L1(ν),

ϕ(x) + ψ(y) ≤ c(x, y) ∀(x, y) ∈ X × Y
}

and the maximum at the right hand side is attained at

ϕ(x) = inf
{

∑p
i=0

(

c(xi+1, yi) − c(xi, yi)
)

: p ∈ N, xp+1 = x,

(xi, yi) ∈ supp η, i = 1, . . . , p
}

for any choice of (x0, y0) ∈ supp η and ψ = ϕc.

Proof. (1): (See [7, Theorem 2.3].) Suppose that suppη is not c-monotone. Then there are
n ∈ N and a permutation σ of {1, . . . , n} such that the function

f(u1, . . . , un, v1, . . . , vn) :=
n
∑

i=1

(

c(uσ(i), vi) − c(ui, vi)
)

is strictly negative at some (x1, . . . , xn, y1, . . . , yn) with (xi, yi) ∈ suppη. We will construct
a more cost efficient measure than η and thus show that η is not optimal for c.

As f is continuous, we can choose Borel neighborhoods Ui of xi and Vi of yi such that
f(u1, . . . , un, v1, . . . , vn) < 0 for ui ∈ Ui and vi ∈ Vi, i = 1, . . . , n. As (xi, yi) ∈ suppη,

λ := min
i
η(Ui × Vi) > 0.

Define ηi ∈ P(X × Y ) by

ηi(W ) :=
1

η(Ui × Vi)
η((Ui × Vi) ∩W ), W ⊆ X × Y Borel.

Consider
Z = (X × Y )n

and ρ ∈ P(Z) given by
ρ = η1 ⊗ · · · ⊗ ηn.

Let πX
i : Z → X be defined by πX

i (u1, v1, . . . , un, vn) := ui and πY
i : Z → Y by πY

i (u1, v1, . . . , un, vn) :=
vi. Recall that πX

i ⊗ πY
j denotes the map (u1, v1, . . . , un, vn) 7→ (ui, vj). Define

γ := η − λ

n

n
∑

i=1

(πX
i ⊗ πY

i )#ρ+
λ

n

n
∑

i=1

(πX
σ(i) ⊗ πY

i )#ρ

= η − λ

n

n
∑

i=1

ηi +
λ

n

n
∑

i=1

(πX
σ(i) ⊗ πY

i )#ρ.
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Then

γ(W ) ≥ η(W ) − λ

n

n
∑

i=1

ηi(W )

≥ η(W ) − 1

n

n
∑

i=1

λ

η(Ui × Vi)
η((Ui × Vi) ∩W )

≥ η(W ) − 1

n

n
∑

i=1

η(W ) = 0,

for every Borel set W ⊆ X × Y . So γ is a positive Borel measure. It is easy to check that
γ ∈ P(X × Y ). Further, for A ⊆ X Borel,

(πX
σ(i) ⊗ πY

i )#ρ(A× Y ) = ρ({(u1, v1, . . . , un, vn) ∈ Z: (uσ(i), vi) ∈ A× Y })
= ρ({(u1, v1, . . . , un, vn) ∈ Z: uσ(i) ∈ A})
= ησ(i)(A× Y ),

so

γ(A× Y ) = η(A× Y ) − λ

n

n
∑

i=1

ηi(A× Y ) +
λ

n

n
∑

i=1

(πX
σ(i) ⊗ πY

i )#ρ(A× Y )

= µ(A) − λ

n

n
∑

i=1

ηi(A× Y ) +
λ

n

n
∑

i=1

ησ(i)(A× Y ) = µ(A)

and similarly γ(X ×B) = ν(B) for B ⊆ Y Borel. Hence γ ∈ Γ(µ, ν).
Finally,

∫

X×Y
cd(πX

i ⊗ πY
j )#ρ =

∫

Z
c(πX

i (z), πY
j (z)) dρ,

so
∫

cdγ =

∫

cdη +
λ

n

n
∑

i=1

∫

Z

(

c(πX
σ(i)(z), π

Y
i (z)) − c(πX

i (z), πY
i (z)

)

dρ(z)

=

∫

cdη +
λ

n

∫

U1×V1×···×Un×Vn

f(πX
1 (z), . . . , πX

n (z), πY
1 (z), . . . , πY

n (z)) dρ(z)

<

∫

cdη,

since ρ is concentrated on U1 × V1 × · · · × Un × Vn and f < 0 on this set. Thus we have
that γ is more cost efficient than η, so that η is not optimal.

(2) and (3): Let S := supp η, which is a c-monotone subset of X × Y . Fix (x0, y0) ∈ S
(η(S) = 1 so S is non-empty) and let ϕ be defined as above. The proof is divided into
several claims, clustered by topic. We first establish some properties of ϕ, then of ψ = ϕc,
and then we show that ϕ and ψ are L1 functions. Then we derive some more connections
between ϕ, ψ and η, and finally we conclude the proof.

Define

ϕq(x) := inf
{

p
∑

i=0

(

c(xi+1, yi) − c(xi, yi)
)

:

xp+1 = x, (xi, yi) ∈ S, i = 1, . . . , p, 1 ≤ p ≤ q
}

.
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Clearly ϕq(x) ↓ ϕ(x) for all x ∈ X.
Claim A1: ϕq is upper semicontinuous for each q. Suppose uk → u in X. Let ε > 0.

Then

ϕq(u) ≥ c(x, yp) − c(xp, yp) +

p−1
∑

i=0

(

c(xi+1, yi) − c(xi, yi)
)

− ε

for some p ≤ q and (xi, yi) ∈ S. Then

ϕq(uk) ≤ c(uk, yp) − c(xp, yp) +

p−1
∑

i=0

(

c(xi+1, yi) − c(xi, yi)
)

,

so

lim sup
k→∞

ϕq(uk) ≤ c(u, yp) − c(xp, yp) +

p−1
∑

i=0

(

c(xi+1, yi) − c(xi, yi)
)

≤ ϕq(u) + ε.

Hence ϕq is u.s.c.
Claim A2: ϕ is Borel measurable. We know that ϕq is u.s.c. hence Borel and ϕq → ϕ

pointwise.
Claim A3: ϕ(x0) = 0. On one hand, choose (x1, y1) = (x0, y0) ∈ S. Then ϕ(x0) ≤

c(x0, y1) − c(x1, y1) + c(x1, y0) − c(x0, y0) = 0. On the other hand, as S is c-monotone, for
(xi, yi) ∈ S, i = 1, . . . , p,

p
∑

i=0

c(xσ(i), yi) ≥
p
∑

i=0

c(xi, yi),

in particular with the permutation σ(i) = i + 1 for 0 ≤ i ≤ p − 1 and σ(p) = 0. So, with
the notation xp+1 = x0,

p
∑

i=0

(

c(xi+1, yi) − c(xi, yi)
)

≥ 0,

so ϕ(x0) ≥ 0. Hence ϕ(x0) = 0.
Claim A4: ϕ(u) ≤ ϕ(x) + c(u, y) − c(x, y) for all u ∈ X and (x, y) ∈ S. For any p ∈ N

and (xi, yi) ∈ S, i = 1, . . . , p, we have

ϕ(u) ≤ ϕp+1(u)

≤ c(u, y) − c(x, y) +

p
∑

i=0

(

c(xi+1, yi) − c(xi, yi)
)

,

where xp+1 = x. So, by taking infimum over {(xi, yi): 0 ≤ i ≤ p},

ϕ(u) ≤ c(u, y) − c(x, y) + ϕ(x).

Claim A5: ϕ > −∞ on πX(S), so ϕ > −∞ µ-a.e. If (x, y) ∈ S, then by Claim A4,

ϕ(x) ≥ ϕ(x0) − c(x0, y) + c(x, y)

= c(x, y) − c(x0, y) ∈ R.
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By the previous lemma we obtain µ(πX(S)) = 1.
Claim B1: Let ψ := ϕc. Then ϕ(x) + ψ(y) = c(x, y) for all (x, y) ∈ S. Indeed, by

definition,

ψ(y) = inf
u∈X

(

c(u, y) − ϕ(u)
)

.

We have by Claim A4 that c(u, y) − ϕ(u) ≥ c(x, y) − ϕ(x), so

ψ(y) ≥ c(x, y) − ϕ(x).

From the definition of ψ we find with u = x also ψ(y) ≤ c(x, y) − ϕ(x).
By Claim A5 it follws that ψ(y) ∈ R for ν-a.e. y ∈ Y .
Claim B2: ψ is ν-measurable. Due to Claim B1,

ψ(y)
�

S(x, y) =
(

c(x, y) − ϕ(x)
)

�
S(x, y) for all (x, y) ∈ X × Y

and (x, y) 7→ c(x, y) − ϕ(x) is a Borel map by Claim A2. Hence (x, y) 7→ ψ(y)
�

S(x, y)
is η-measurable. By disintegration, there exist ηy ∈ P(X), y ∈ Y , such that y 7→
∫

X f(x, y) dηy(x) is ν-measurable and

∫

X×Y
f(x, y) dη(x, y) =

∫

Y

(
∫

X
f(x, y) dηy(x)

)

dν(y)

for every Borel function f : X × Y → [0,∞]. The set S = supp η is closed and therefore a
Borel set. From the disintegration formula with f =

�
S we obtain that

∫

X

�
S(x, y) dηy(x) = 1 for ν-almost every y.

If we apply now the disintegration to f(x, y) =
(

c(x, y) − ϕ(x)
)+ �

B(y) for some Borel set

B ⊆ Y , then
∫

X×B
ψ+(y)

�
S(x, y) dη(x, y) =

∫

X×B

(

c(x, y) − ϕ(x)
)+

dη(x, y)

=

∫

B

(
∫

X

(

c(x, y) − ϕ(x)
)+

dηy(x)

)

dν(y)

and
∫

X×B
ψ+(y)

�
S(x, y) dη(x, y) =

∫

B

(
∫

X
ψ+(y)

�
S(x, y) dηy(x)

)

dν(y)

=

∫

B
ψ+(y)

(
∫

X

�
S(x, y) dηy(x)

)

dν(y).

It follows that

ψ+(y)

(
∫

X

�
S(x, y) dηy(x)

)

=

∫

X

(

c(x, y) − ϕ(x)
)+

dηy(x) for ν-a.e. y ∈ Y,

so

ψ+(y) =

∫

X

(

c(x, y) − ϕ(x)
)+

dηy(x) for ν-a.e. y ∈ Y.
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Hence ψ+ is ν-measurable. Similarly, ψ− is ν-measurable and thus ψ is ν-measurable.
Claim C1: ψ+(y) ≤ c(x, y)+ϕ−(x) for all (x, y) ∈ S. As c ≥ 0, we have c(x, y)+ϕ−(x) ≥

0. Also c(x, y) + ϕ−(x) ≥ c(x, y) − ϕ(x) = ψ(y). Hence c(x, y) + ϕ−(x) ≥ ψ+(y).
Claim C2: ϕ+ ∈ L1(µ) and ψ+ ∈ L1(ν). By assumption, µ(A) > 0, where

A :=
{

x ∈ X:

∫

Y
c(x, y) dν(y) <∞

}

.

Choose x ∈ A such that ν({y: (x, y) ∈ S}) = 1. Then ψ+ ≤ c(x, ·) +ϕ−(x) ν-a.e. on Y (by
Claim C1), so

∫

Y
ψ+ dν ≤

∫

Y

(

c(x, y) + ϕ−(x)
)

dν(y) <∞,

since x ∈ A and ϕ−(x) ∈ R (by Claim A5). Similarly, ϕ+(x) ≤ c(x, y) + ψ−(y) for
(x, y) ∈ S and there exists a y s.t. µ({x: (x, y) ∈ S}) = 1, ψ−(y) ∈ R (Claim B1bis), and
∫

X c(x, y) dµ(x) <∞, so

∫

X
ϕ+ dν ≤

∫

X
c(x, y) dµ(x) +

∫

X
ψ−(y) dµ(x) <∞.

Claim C3:
∫

X×Y c(x, y) dη <∞. We have

∫

X×Y
cdη =

∫

(

ϕ(x) + ψ(y)
)

dη(x, y)

=

∫

ϕdµ+

∫

ψ dν

≤
∫

ϕ+ dµ+

∫

ψ+ dν <∞.

Claim C4: ϕ ∈ L1(µ) and ψ ∈ L1(ν). For (x, y) ∈ S we have

ϕ(x) = c(x, y) − ψ(y) ≥ c(x, y) − ψ+(y)

≥ −c(x, y) − ψ+(y),

so ϕ−(x) ≤ c(x, y) + ψ+(y). Hence

∫

ϕ− dµ =

∫

ϕ−(x) dη(x, y) ≤
∫

(

c(x, y) + ψ+(y)
)

dη(x, y)

=

∫

cdη +

∫

ψ+ dν <∞.

So
∫

|ϕ|dµ ≤
∫

ϕ+ dµ+
∫

ϕ− dµ <∞. Similarly,
∫

|ψ|dν <∞.
Claim D1: ϕ(x) + ψ(y) ≤ c(x, y) for all (x, y) ∈ X × Y . We have

ψ(y) = inf
u∈X

(

c(u, y) − ϕ(u)
)

≤ c(x, y) − ϕ(x).

Claim D2: For γ ∈ Γ(µ, ν),

∫

X×Y
cdγ ≥

∫

X×Y

(

ϕ(x) + ψ(y)
)

dγ(x, y)
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=

∫

ϕ(x) dµ(x) +

∫

ψ(y) dν(y)

=

∫

X×Y

(

ϕ(x) + ψ(y)
)

dη(x, y)

=

∫

S

(

ϕ(x) + ψ(y)
)

dη(x, y)

=

∫

S
cdη =

∫

X×Y
cdη.

Conclusion: From D2 we see that η is optimal for c, that is,

min
{

∫

X×Y
cdγ: γ ∈ Γ(µ, ν)

}

=

∫

X×Y
cdη.

Further,

max
{

∫

f dµ+

∫

g dν: f ∈ L1(µ), g ∈ L1(ν), f(x) + g(y) ≤ c(x, y) ∀(x, y) ∈ X × Y
}

=

∫

ϕ(x) dµ(x) +

∫

ψ(y) dν(y) =

∫

cdη.

Finally, we have ψ = ϕc by definition of ψ.

Definition 2.8. The function ϕ as defined in (3) of the previous theorem for some choice
of (x0, y0) ∈ suppη is called a Kantorovich potential associated to suppη.

We give some more properties of Kantorovich potentials.

Proposition 2.9. Let η ∈ Γ(µ, ν) be optimal for c and let ϕ be a Kantorovich potential
associated to supp η. Then:

(1) ϕ(x) + ϕ(y) = c(x, y) for all (x, y) ∈ suppη;

(2) ϕcc(x) = ϕ(x) for every x ∈ A := {u ∈ X: ∃y ∈ Y with (x, y) ∈ suppη}.

Proof. (1): This fact has been proved in Claim B1 of the previous theorem.
(2): Let x ∈ A. We have

ϕcc(x) = inf
y∈Y

(

c(x, y) − ϕc(y)
)

,

ϕc(y) = inf
u∈X

(

c(u, y) − ϕ(u)
)

.

Let y ∈ Y . Then c(x, y) −ϕc(y) ≥ c(x, y) −
(

c(u, y) − ϕ(u)
)

for all u ∈ X, so (with u = x)

c(x, y)−ϕc(y) ≥ ϕ(x). Hence ϕcc(x) ≥ ϕ(x). Conversely, since x ∈ A, there exists a y ∈ Y

such that ϕc(y) = c(x, y)−ϕ(x). Then ϕcc(x) ≤ c(x, y)−ϕc(y) = c(x, y)−
(

c(x, y)−ϕ(x)
)

=

ϕ(x).

Remark. The conditions in Theorem 2.7 that

•
∫

cdη <∞,
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• µ
(

{x ∈ X:
∫

Y c(x, y) dν(y) <∞}
)

> 0, and

• ν
(

{y ∈ Y :
∫

X c(x, y) dµ(x) <∞}
)

> 0,

are implied by the stronger condition that
∫

cdµ⊗ ν <∞, as is easily seen with the aid of
Fubini.

2.4 Uniqueness and the Monge problem

We will now address the questions

• When is the optimal transportation plan η of the Kantorovich problem unique?

• When does the optimal η solve the Monge problem, that is, η = (i ⊗ r)#µ for some
Borel map r : X → Y ? (Recall, i(x) = x for all x ∈ X.)

We begin with a sloppy sketch of the argument and then prove a preliminary version of a
theorem on uniqueness and the Monge problem. Subsequently, we list some ingredients on
convex functions and approximate differentiation and then prove a more general theorem.

We will consider the case that X = Y = Rd and c(x, y) = h(x − y) for some strictly
convex function h.

Suppose η ∈ Γ(µ, ν) is optimal for c and that c(x, y) = h(x − y) with h differentiable.
We want to find a Borel map r: X → Y such that η = (i ⊗ r)#µ, that is, η(W ) =
µ({x: (x, r(x)) ∈ W}) for Borel sets W ⊆ X × Y . In other words, we want to show that η
is concentrated on the graph of a Borel map. We will try to find for each x ∈ X a unique
point y with (x, y) in the support of η.

Let ϕ be a Kantorovich potential associated to supp η. For (x, y) ∈ supp η we have

ϕ(x) + ϕc(y) = h(x − y). Since ϕc(y) = infu∈X

(

h(u − y) − ϕ(u)
)

= h(x − y) − ϕ(x), the

function u 7→ h(u− y)−ϕ(u) attains its minimum at u = x. Hence, if ϕ is differentiable at
x,

∇h(x− y) = ∇ϕ(x).

If u 7→ ∇h(u) is invertible, we obtain x− y = (∇h)−1(∇ϕ(x)), so

y = x− (∇h)−1(∇ϕ(x)).

Hence for x such that ϕ is differentiable at x there is exactly one y with (x, y) ∈ supp η.
Thus we can take

r(x) := x− (∇h)−1(∇ϕ(x)).

The main mathematical problems to make the argument work are the differentiability of
ϕ and the Borel measurability of r. We will not be able to obtain everywhere differentiability
of ϕ. Instead we will impose conditions that yield that ϕ is locally Lipschitz and then use
Rademacher’s theorem to conclude its Lebesgue almost everywhere differentiability. We
need the map r at least µ-a.e. defined and therefore require that µ is absolutely continuous
with respect to the Lebesgue measure on Rd.

Recall that a map f : Rd → Rm is called differentiable at x ∈ Rd if there exists a linear
operator Lx: Rd → Rm such that for every ε > 0 there is a δ > 0 with

∣

∣

∣

∣

f(x+ u) − f(u) − Lxu

‖u‖

∣

∣

∣

∣

< ε for all u ∈ Rd with 0 < ‖u‖ < δ.
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If m = 1, then Lx is represented by a vector, which is denoted by ∇f(x), that is, Lxu =
〈∇f(x), u〉.

Denote the Lebesgue measure on Rd by Ld.

Theorem 2.10 (Rademacher). Let f : Rd → R be locally Lipschitz. Then f is differen-
tiable Ld-almost everywhere. Moreover, D = {x ∈ Rd: fdifferentiable at x} is a Borel set
and

x 7→
{

∇f(x) if x ∈ D
0 otherwise

is a Borel map from Rd to Rd.

Now we are in a position to prove a theorem on uniqueness for the Kantorovich problem
and existence for the Monge problem. More sophisticated statements are given in Theorem
2.21.

Theorem 2.11. Consider X = Y = Rd. Let c(x, y) = h(x − y), x, y ∈ Rd, where h: R →
[0,∞) is differentiable, locally Lipschitz, and such that ∇h from Rd to its range is bijective
with a Borel measurable inverse. Let µ, ν ∈ P(Rd) be such that

•
∫

X×Y h(x− y) dγ(x, y) <∞ for some γ ∈ Γ(µ, ν),

• µ
({

x ∈ X:
∫

Y h(x− y) dν(y) <∞
})

> 0,

• ν
({

y ∈ Y :
∫

X h(x− y) dµ(x) <∞
})

> 0,

and such that

• µ is absolutely continuous with respect to Ld,

• supp ν is bounded.

Then:

(1) there is a unique η ∈ Γ(µ, ν) that is optimal for c;

(2) η is induced by an optimal transport map, that is, there exists a Borel map r: Rd → Rd

such that η = (i⊗ r)#µ;

(3) the map r of (2) satisfies

r(x) = x− (∇h)−1(∇ϕcc(x)) for µ-a.e. x ∈ Rd,

where ϕ is a Kantorovich potential associated to supp η.

Proof. Let A1 ⊆ X be a µ-full Borel set such that for all x ∈ A1 there is a y ∈ Y such that
(x, y) ∈ suppη, ϕcc(x) = ϕ(x) (use Proposition 2.9), and ϕ(x) ∈ R.

Take R > 0 such that supp ν ⊂ B(0, R). Then for x ∈ A1,

ϕ(x) = inf
y∈B(0,R)

(

c(x, y) − ϕc(x)
)

,
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since

ϕ(x) = ϕcc(x) = inf
y∈Rd

(

c(x, y) − ϕc(y)
)

≤ inf
y∈B(0,R)

(

c(x, y) − ϕc(y)
)

= ϕ(x)

Next we show that ϕcc is locally Lipschitz. Indeed, Let r > 0. Then h is L-Lipschitz
on B(0, R + r) for some L, since h is Locally Lipschitz. Let x1, x2 ∈ B(0, r). Let ε > 0
and choose y ∈ B(0, R) such that ϕc(y) > −∞ (we have ϕc ∈ L1(ν)) and ϕcc(x2) ≥
c(x, y) − ϕc(y) − ε. Then

ϕcc(x1) − ϕcc(x2) ≤ c(x1, y) − ϕc(y) −
(

c(x2, y) − ϕc(y) − ε
)

= h(x1 − y) − h(x2 − y) + ε

≤ L‖x1 − x2‖ + ε,

as xi + y ∈ B(0, r +R), end hence

ϕcc(x1) − ϕcc(x2) ≤ L‖x1 − x2‖.

Thus, by interchanging the role of x1 and x2, |ϕcc(x1) − ϕcc(x2)| ≤ L‖x1 − x2‖.
Let A2 be an Ld-full Borel set such that ϕcc is differentiable at every x ∈ A2 (by

Rademacher’s theorem). Then A2 is also µ-full, as µ is absolutely continuous with rspect
to Ld. Let A := A1 ∩A2. Then A is a µ-full Borel set and for every x ∈ A we have

• there is a y ∈ Rd with (x, y) ∈ supp η and therefore y ∈ B(0, R) and ϕ(x) + ϕc(y) =
h(x− y),

• ϕ(x) = ϕcc(x),

• ϕ(x) ∈ R and ϕcc is differentiable at x.

Let x ∈ A. There exists y such that (x, y) ∈ suppη. Consider such a y. The function
u 7→ h(u − y) − ϕcc(u) then attains its minimum ϕc(y) at u = x and is differentiable at x.
So

∇h(x− y) −∇ϕcc(x) = 0.

Hence ∇ϕ(x) is in the range of ∇h and x− y = (∇h)−1(∇ϕcc(x)), so

y = x− (∇h)−1(∇ϕcc(x)). (4)

Define

r(x) :=

{

x− (∇h)−1(∇ϕcc(x)) x ∈ A
0 x 6∈ A.

Due to Rademacher’s theorem and the assumptions on h, we infer that r: Rd → Rd is a
Borel map. Moreover, we have (x, r(x)) ∈ supp η for all x ∈ A, as follows from (4). Further,
in the arguments preceding (4) y is an arbitrary element of Rd with (x, y) ∈ suppη and
thus we obtain that for x ∈ A,

(x, y) ∈ supp η ⇐⇒ y = r(x).
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Consequently,
η({x ∈ A: (x, r(x))}) = η(supp η \ (A× Y )) = 1.

Next we claim that
η = (i⊗ r)#µ.

For a proof, let U × V ⊆ Rd × Rd with U ⊆ Rd and V ⊆ Rd Borel. Then

η(U × V ) = η
(

U × V ∩ {(x, r(x)): x ∈ X}
)

= η
(

(U ∩ {x: r(x) ∈ V }) × Y
)

= µ(U ∩ {x: (x, r(x)) ∈ U × V }
)

= (i⊗ r)#µ(U × V ).

.
Finally, we address uniqueness of η. Suppose η1, η2 ∈ Γ(µ, ν) are both optimal for c.

Then also η := 1
2η1 + 1

2η2 ∈ Γ(µ, ν) is optimal for c. By the first part of the proof given
above, we obtain Borel maps r1, r: Rd → Rd such that

η1 = (i⊗ r1)#µ and η = (i⊗ r)#µ.

As η1 is absolutely continuous with respect to η, we have

η1

({

(x, r(x)): x ∈ Rd
})

= 1.

Then
η1

({

(x, r(x)): x ∈ Rd
}

∩
{

(x, r1(x)): x ∈ Rd
})

= 1,

so
η1

({

(x, r(x)): x ∈ Rd, r(x) = r1(x)
})

= 1.

Hence r = r1 µ-a.e. and, consequently, η1 = (i ⊗ r1)#µ = (i ⊗ r)#µ = η. Therefore
η1 = η2.

The conditions in the previous theorem can be relaxed. In particular the condition that
the support of ν be bounded and the differentiability of h. An interesting setting is where
h is strictly convex. The extension of the result requires some preliminaries on convex
functions and approximate differentiability.

Definition 2.12. A set S ⊆ Rd is said to have density 1 at x ∈ Rd if there exists a Lebesgue
measurable set V ⊆ S with

lim
δ↓0

Ld(V ∩B(x, δ))

Ld(B(x, δ))
= 1,

where Ld denotes the Lebesgue measure on Rd.

Definition 2.13. Let Ω ⊆ Rd be open and let f : Ω → Rm. Let x ∈ Ω.

(1) A point z ∈ Rm is called the approximate limit of f at x if for every ε > 0 the set
{y ∈ Ω: |f(y) − z| ≤ ε} has density 1 at x; notation:

f̃(x) := f(y).
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(2) f is approximately continuous at x if f̃(x) exists and f(x) = f̃(x).

(3) a linear map L: Rd → Rm is the approximate differential of f at x if f̃(x) exists and
for every ε > 0 the set

{

y ∈ Ω \ {x}: ‖f(y) − f̃(x) − L(y − x)‖
‖y − x‖ ≤ ε

}

has density 1 at x. (There is at most one such an L.) Notation: ∇̃f(x) := L.

Lemma 2.14. Let Ω ⊆ Rd be open, f : Ω → Rm, and x ∈ Ω.

(1) f̃(x) exists if and only if there exists a g: Ω → Rm which is continuous at x and such
that {f = g} := {x ∈ Ω: f(x) = g(x)} has density 1 at x.

(2) ∇̃f(x) exists if and only if there exists a g: Ω → Rd which is differentiable at x and
such that {f = g} has density 1 at x.

Theorem 2.15 (Denjoy). If Ω ⊆ Rd is open and f : Ω → Rm is Lebesgue measurable,
then f̃ exists Ld-almost everywhere on Ω and f = f̃ Ld-almost everywhere on Ω.

Corollary 2.16 (Lebesgue). Every Lebesgue messurable set S of Rd has density 1 at
Ld-almost every point of S.

Definition 2.17. Let X be a vector space. A function h: X → R is called strictly convex
if

h(λx+ (1 − λ)y) < λh(x) + (1 − λ)h(y) for all x, y ∈ X, x 6= y, 0 < λ < 1,

and convex if we have ≤ in the above inequality instead of <.

A simple proof of the next lemma is given in [12].

Lemma 2.18. If h: Rd → R is convex, then h is locally Lipschitz.

Definition 2.19. Define for a convex function h: Rd → R,

∂h(x) := {ξ ∈ Rd: h(u) − h(x) ≥ 〈ξ, u− x〉 for all u ∈ Rd}, x ∈ Rd.

Lemma 2.20. Let h: Rd → R be strictly convex. Then:

(1) if h is differentiable at x ∈ Rd then for every ξ ∈ Rd we have

ξ ∈ ∂h(x) ⇐⇒ ξ = ∇h(x);

(2) for every ξ ∈ Rd there is at most one x ∈ Rd such that ξ ∈ ∂h(x); denote (∂h)−1(ξ) :=
x with domain D((∂h)−1);

(3) (∂h)−1: D((∂h)−1) → Rd is a Borel map.
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Proof. (1): ⇒: For z ∈ Rd we have (with u = x+ tz and u = x− tz)

h(x+ tz) − h(x) ≥ t〈ξ, z〉 and h(x− tz) − h(x) ≥ −t〈ξ, z〉,

so
h(x) − h(x− tz)

t
≤ 〈ξ, z〉 ≤ h(x+ tz) − h(x)

t

for t > 0. If we let t ↓ 0 we obtain 〈∇h(x), z〉 = 〈ξ, z〉.
⇐: Let u ∈ Rd. We have

h(x+ t(u− x)) − h(x)

t
=

h((1 − t)x+ tu) − h(x)

t

≤ 1

t
(1 − t)h(x) + h(u) − 1

t
h(x)

= h(u) − h(x),

so as t ↓ 0, 〈∇h(x), u − x〉 ≤ h(u) − h(x).
(2): Suppose ξ ∈ ∂h(x1) and ξ ∈ ∂h(x2) and x1 6= x2. With u = λx2 + (1 − λ)x1,

0 < λ < 1, we have λh(x2) + (1 − λ)h(x1) > h(u), so

λ
(

h(x2) − h(x1)
)

= λh(x2) + (1 − λ)h(x1) − h(x1) > h(u) − h(x1)

≥ 〈ξ, u− x1〉 = λ〈ξ, x2 − x1〉.

Similarly, h(x1) − h(x2) > 〈ξ, x1 − x2〉, which yields a contradiction.
(3): Let R > 0 and consider h: B(0, R) → R. Let

SR := {ξ ∈ Rd: ∃x ∈ B(0, R) such that ξ ∈ ∂h(x)}.

Then (∂h)−1 maps SR into B(0, R). Its graph

GR := {(ξ, x) ∈ Rd ×B(0, R): ξ ∈ ∂h(x)}

is closed. Indeed, if (ξn, xn) ∈ GR and ξn → ξ and xn → x, then x ∈ B(0, R),

h(u) − h(xn) ≥ 〈ξn, u− xn〉 for all u ∈ Rd,

so h(u) − h(x) ≥ 〈ξ, u − x〉 for all u ∈ Rd (as h is locally Lipschitz), hence ξ ∈ ∂h(x) and
therefore (ξ, x) ∈ GR.

Consequently, (∂h)−1: SR → B(0, R) is continuous. Indeed, if ξn → ξ in SR, let (ξnk
)k

be a subsequence. Then xnk
:= (∂h)−1(ξnk

) is a sequence in B(0, R), which is compact.
Hence xnk`

→ x in B(0, R) for some subsubsequence and some x ∈ B(0, R). As GR is

closed, (ξ, x) ∈ GR, hence x = (∂h)−1(ξ). So (∂h)−1(ξnk`
) → (∂h)−1(ξ). That is, every

subsequence of ((∂h)−1(ξn))n has a subsubsequence that converges to (∂h)−1(ξ). Hence
(∂h)−1(ξn) → (∂h)−1(ξ).

Thus (∂h)−1 is continuous on SR and hence Borel on SR. Since
⋃

N SN equals the
domain of (∂h)−1 , (∂h)−1 is Borel (just look at inverse images).

Theorem 2.21. Consider X = Y = Rd. Let c(x, y) = h(x− y), x, y ∈ Rd, where h: Rd →
[0,∞) is strictly convex. Let µ, ν ∈ P(Rd) be such that
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•
∫

X×Y c(x, y) dγ(x, y) <∞ for some γ ∈ Γ(µ, ν),

• µ
({

x ∈ X:
∫

Y c(x, y) dν(y) <∞
})

> 0,

• ν
({

y ∈ Y :
∫

X c(x, y) dµ(x) <∞
})

> 0,

and such that

• µ is absolutely continuous with respect to Ld.

Then:

(1) there is a unique η ∈ Γ(µ, ν) that is optimal for c;

(2) η is induced by an optimal transport map, that is, there exists a Borel map r: Rd → Rd

such that η = (i⊗ r)#µ;

(3) the map r of (2) satisfies

r(x) = x− (∂h)−1(∇̃ϕ(x)) for µ-a.e. x ∈ Rd,

where ϕ is a Kantorovich potential associated to supp η.

Proof. Let A1 ⊆ X be a µ-full Borel set such that for all x ∈ A1 there exists a y ∈ supp η
and ϕcc(x) = ϕ(x).

Step 1. For R > 0 so large that there exists a y ∈ B(0, R) with ϕc(z) >∞, define

ϕR(x) := inf
y∈B(0,R)

(

c(x, y) − ϕc(y)
)

, x ∈ Rd.

Then ϕR(x) <∞ and ϕR(x) ≥ ϕcc(x) = ϕ(x) > −∞ for all x ∈ A1.
Claim: ϕR is locally Lipschitz. Let r > 0 and choose L > 0 such that h is L-Lipschitz on

B(0, r+R). Let x1, x2 ∈ B(0, r). Let ε > 0 and choose y ∈ B(0, R) such that ϕc(y) > −∞
and ϕR(x2) > c(x, y) − ϕc(y) − ε. Then

ϕR(x1) − ϕR(x2) ≤ c(x1, y) − ϕc(y) −
(

c(x2, y) − ϕc(y) − ε
)

= h(x1 − y) − h(x2 − y) + ε

≤ L‖x1 − x2‖ + ε.

So ϕR(x1) − ϕ(x2) ≤ L‖x1 − x2‖. Thus |ϕR(x1) − ϕR(x2)| ≤ L‖x1 − x2‖.
Let A2 ⊆ X be a Ld-full hence µ-full Borel set such that ϕN is differentiable at every

x ∈ A2 for all N ∈ N (by Rademacher’s theorem).
Claim: For every x ∈ A1 there exists an R0 > 0 such that x ∈ {ϕ = ϕR} and there

exists a y ∈ B(0, R) such that ϕ(x) + ϕc(y) = h(x − y) for all R ≥ R0. Let x ∈ A1. Then
ϕ(x) = ϕcc(x) and there exists a y ∈ Rd such that ϕ(x)+ϕc(y) = h(x−y). So for R > ‖y‖,

ϕ(x) = ϕcc(x) ≤ ϕR(x) ≤ h(x− y) − ϕc(y) = ϕ(x),

so x ∈ {ϕ = ϕR}.
Step 2. Claim: There exists a µ-full Borel set A ⊆ Rd such that for all x ∈ A there

exists an N such that
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• x ∈ {ϕ = ϕN}

• there exists y ∈ B(0, N) with ϕN (x) + ϕc(y) = h(x− y)

• ϕN is differentiable at x for all n ∈ N, ϕ is approximately differentiable at x, and
∇̃ϕ(x) = ∇ϕN (x).

Indeed, as ϕ is Borel and ϕN is locally Lipschitz, {ϕ = ϕN} is a Lebesgue measurable
set. Due to Lebesgue’s theorem (or Denjoy), {ϕ = ϕN} has density 1 at Ld-a.e. point of
{ϕ = ϕN}. Let

TN := {x ∈ Rd: {ϕ = ϕN} has density 1 at x}.
Then

⋂

N∈N
TN is a µ-full Lebesgue set. Hence there is a µ-full Borel set A3 ⊆ X with

A3 ⊆ ⋂N∈N
TN (use [8, Theorem 13.B, p. 55]). Let

A := A1 ∩A2 ∩A3.

For x ∈ A, choose N with the first two properties. As x ∈ A2, ϕN is differentiable at x and
{ϕ = ϕN} has density 1 as x ∈ A3. It follows that ϕ is approximately differentiable at x
and ∇̃ϕ(x) = ∇ϕN (x).

Step 3. Let x ∈ A. Take N and y ∈ B(0, N) such that x ∈ {ϕ = ϕN} and ϕN (x) +
ϕc(y) = h(x − y). As ϕN is differentiable at x, h is differentiable at x − y and u 7→
h(x − y) − ϕN (u) attains its minimum ϕc(y) at u = x. So ∇ϕN (x) = ∇h(x − y). Hence
∇̃(x) = ∇ϕN (x) is in the domain of (∂h)−1 and (∂h)−1(∇ϕN (x)) = x − y. Moreover, for
any y ∈ Y with ϕN (x) + ϕc(y) = h(x− y) we find

y = x− (∂h)−1(∇̃ϕ(x)).

Define

r(x) :=

{

x− (∂h)−1(∇̃ϕ(x)) x ∈ A
0 x 6∈ A.

Claim: r is Borel. The set VN := {x ∈ V : ϕ(x) = ϕN (x)} is Borel and
⋃

N VN = V . On
VN , ∇̃ϕ = ∇ϕN . As ϕN is locally Lipschitz, x 7→ ∇ϕN (x) is Borel, so x 7→ ∇̃ϕ(x) is Borel.
Thus, r is Borel.

The rest of the proof is as before in Theorem 2.11.

2.5 Regularity of the optimal transport map

Next we will show a (very weak) regularity theorem for the optimal transport map r. We
begin with two lemmas.

Lemma 2.22. Let g: Rd → R be differentiable and ∇g: Rd → Rd Lipschitz with Lipschitz
constant C. Then

x 7→ g(x) − C

2
‖x‖2

is concave (that is, −g + C
2 ‖ · ‖2 is convex).

Proof. Let x ∈ Rd and u ∈ Rd. We show that

f(t) := g(x+ tu) − C

2
‖x+ tu‖2
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is concave. We have f ′(t) = 〈∇g(x+ tu), u〉 − C〈x+ tu, u〉. Hence for t1 < t2,

f ′(t2) − f ′(t1) = 〈∇g(x + t2u) −∇g(x+ t1u), u〉 − C〈(t2 − t1)u, u〉
≤ ‖∇g(x + t2u) −∇g(x+ t1u)‖ ‖u‖ −C(t2 − t1)‖u‖2

≤ C(t2 − t1)‖u‖2 − C(t2 − t1)‖u‖2 = 0,

so f ′ is decreasing, hence f concave.

Lemma 2.23 (Aleksandrov). Let g: Rd → R be convex. Then ∇g exists Ld-a.e. and ∇g
is differentiable in Ld-a.e. point of its domain.

Theorem 2.24. Consider X = Y = Rd, c(x, y) = h(x−y), x, y ∈ Rd, where h: R → [0,∞)
is differentiable, locally Lipschitz, and such that ∇h from Rd to its range is bijective, locally
Lipschitz, and with a differentiable inverse (e.g., h(x) = ‖x‖2). Let µ, ν ∈ P(Rd) be such
that

∫

X×Y
h(x− y) dµ⊗ ν(x, y) <∞

and such that

• µ is absolutely continuous with respect to Ld

• supp ν is bounded.

Let η ∈ Γ(µ, ν) be optimal for c and r: Rd → Rd a Borel map such that η = (i ⊗ r)#µ.
Then r is µ-a.e. equal to a µ-a.e. differentiable function.

Proof. Let ϕ be a Kantorovich potential associated to supp η. Let R > 0 be such that
suppν ⊆ B(0, R). Let A1 ⊆ Rd be a µ-full set such that

∀x ∈ Rd ∃y ∈ Rd such that (x, y) ∈ suppη and ϕcc(x) = ϕ(x).

Then
ϕcc(x) = inf

y∈B(0,R)

(

h(x− y) − ϕc(y)
)

= ϕ(x).

Further, we have that ϕcc is locally Lipschitz hence µ-a.e. differentiable and

r(x) = x− (∇h)−1(∇̃ϕ(x)) for µ-a.e. x ∈ Rd.

By assumption, (∇h)−1 is differentiable. It remains to show that ∇ϕcc is differentiable.
Let r > 0 and let C be the Lipschitz constant of ∇h on B(0, r + R). Then, by the

lemma, x 7→ h(x − y) − ϕc(y) − C
2 ‖x‖2 is concave on B(0, r) for all y ∈ B(0, R). Hence

x 7→ ϕcc(x) − 2
2‖x‖2 is concave on B(0, R), since it is an infimum of concave functions.

Consequently, by Aleksandrov, ∇ϕcc is differentiable at Ld-a.e. point of its domain and
hence at µ-a.e. point of its domain. Thus x 7→ x− (∇h)−1(∇ϕcc(x)) is µ-a.e. differentiable
and r equals this map µ-a.e.
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