Topics in Analysis 1 – Real Functions

Assignment 1

- 1. **Dini derivatives.** (The right upper, right lower, left upper, and left lower derivatives of a function are sometimes called its four *Dini derivatives*.) Let $f:[0,1] \to \mathbb{R}$ be given by $f(x) = 2^{-n}$ on $(2^{-n}, 2^{-n+1}]$, $n \in \mathbb{N}$, and f(0) = 0.
 - (a) Show that f is increasing.
 - (b) Compute the right upper derivative $D^r f(0)$ and the right lower derivative $D_r f(0)$ of f at 0. (In Royden's book these are denoted by $D^+ f(0)$ and $D_+ f(0)$, respectively.)
 - (c) Does there exist a continuous increasing function f such that $D^r f(0) \neq D_r f(0)$?
 - (d) Construct an increasing function $f: [-1,1] \to \mathbb{R}$ such that none of the four Dini derivatives at 0 are equal.

2. Bounded variation.

- (a) Let $f:[a,b] \to \mathbb{R}$ be a function of bounded variation. Let $c \in (a,b)$. Prove that $\lim_{x\downarrow c} f(x)$ and $\lim_{x\uparrow c} f(x)$ exist. (Hint: try first for an increasing function.)
- (b) Compute for $n \in \mathbb{N}$ the total variation of $f: x \mapsto \sin(1/x)$ on the interval $\left[\frac{1}{n\pi}, \frac{1}{\pi}\right]$. Is f of bounded variation on [0, 1]?
- (c) Let $f:[a,b] \to \mathbb{R}$ and let $V_{[x,y]}(f)$ be the total variation of f on [x,y], where $a \le x < y \le b$. Let $x \in (a,b)$. Prove or disprove each of the following two statements.
 - (i) $\lim_{n\to\infty} V_{[x-1/n,x+1/n]}(f) = 0 \implies f$ is continuous at x;
 - (ii) f is continuous at $x \implies \lim_{n \to \infty} V_{[x-1/n,x+1/n]}(f) = 0$.
- 3. **Derivative of the total variation function.** Let $f : [a, b] \to \mathbb{R}$ be a function of bounded variation and let $V(x) := V_{[a,x]}(f)$ be its total variation on [a,x], for $x \in [a,b]$. Follow the steps below to show that

$$V' = |f'|$$
 a.e.

(a) Let $a = x_0 < x_1 < \cdots < x_m = b$ be a partition of [a, b]. Denote $y_k := f(x_k)$, $k = 0, \ldots, m$. Define a function $g : [a, b] \to \mathbb{R}$ by

for
$$x \in [x_0, x_1]$$
: $g(x) := \begin{cases} f(x) - y_0 & \text{if } y_0 \le y_1, \\ y_0 - f(x) & \text{if } y_0 > y_1, \end{cases}$

and, inductively,

for
$$x \in (x_k, x_{k+1}]$$
: $g(x) := \begin{cases} g(x_k) + (f(x) - y_k) & \text{if } y_k \le y_{k+1}, \\ g(x_k) + (y_k - f(x)) & \text{if } y_k > y_{k+1}. \end{cases}$

Show that

- (i) |q'| = |f'| a.e.;
- (ii) on each $(x_k, x_{k+1}]$, either g f or g + f is constant;
- (iii) the total variation of g on [a, x] equals $V_{[a,x]}(g) = V(x)$ for all $x \in [a, b]$;
- (iv) V g is positive and increasing;
- (v) $g(b) = \sum_{k=0}^{m-1} |f(x_{k+1}) f(x_k)|.$
- (b) Let $\varepsilon > 0$. Show that there exists a partition of [a, b] such that the corresponding function g of (a) satisfies $0 \le V(x) g(x) \le \varepsilon$ for all $x \in [a, b]$.
- (c) Show that there exists a sequence (g_n) of functions on [a,b] such that $0 \le V(x) g_n(x) \le 2^{-n}$, $x \mapsto V(x) g_n(x)$ is increasing, and $|g'_n| = |f'|$ a.e. for every $n \in \mathbb{N}$.

Consider the sequence (g_n) of (c) and let $h_n := V - g_n$, $n \in \mathbb{N}$.

- (d) Show that the sequence (h_n) satisfies:
 - (i) $s(x) := \sum_{n=1}^{\infty} h_n(x)$ exists for all $x \in [a, b]$;
 - (ii) $x \mapsto s_N(x) := \sum_{n=1}^N h_n(x)$ is increasing and $s_{N+1} s_N$ is increasing for each $N \in \mathbb{N}$;
 - (iii) $s_1'(x) \le s_2'(x) \le \cdots \le s'(x)$ for almost every $x \in [a, b]$;
 - (iv) $\lim_{N\to\infty} s'_N(x)$ exists for almost every $x\in[a,b]$.
- (e) Show that V' = |f'| a.e.
- 4. Another application of Vitali's lemma. Follow the steps below to prove the following theorem of Lusin: Let $f:[a,b] \to \mathbb{R}$ be an arbitrary function. Define

$$D := \{x \in (a, b) : f \text{ is differentiable at } x \text{ and } f'(x) = 0\}.$$

Then f(D) is a null set.

- (a) Let $y \in f(D)$, $\varepsilon > 0$, and $\alpha > 0$. Show that there exist an $x \in D$ and a $\delta > 0$ such that
 - $f(u) \in [y \delta \varepsilon, y + \delta \varepsilon]$ for all $u \in (x \delta, x + \delta)$
 - the length of $[y \delta \varepsilon, y + \delta \varepsilon]$ is less than α .
- (b) Find a suitable collection of closed intervals that is a Vitali cover of f(D) and apply Vitali's lemma to show that $m^*(f(D)) = 0$. (Hint: it may help to consider $E = f(D) \cap [-M, M]$, suppose that $m^*(E) > 0$, set $\varepsilon := \frac{1}{2}m^*(E)/(1+b-a)$ and obtain a contradiction.)

— Please hand in before March 4, 2008 —

Onno van Gaans