
1 Multiplication of integers

1.1 Addition and multiplication of integers

Given integers a, b ∈ Z we will want to compute a + b and a × b.
For simplicity we will not bother with signs and consider positive
integers.

1 1
6 5 5 3 6

7 9 2 +
6 6 3 2 8

We have to apply a ‘single digit addition with carry’ for every
digit in the longest number. The time this algorithm takes to com-
plete is a function in the length N of the input. For this algorithm
this is the sum of the lengths of the two numbers (note: this is
roughly log10 a + log10 b). Although the exact time in seconds re-
quired depends on the computer, the complexity class is uniquely
defined (given the model of computation). Usually the model of
computation will be either that of a Multitape Turing Machine or a
Random Access Machine. An algorithm generally has the same time
complexity in both models. We will not worry about such details
and take a more intuitive approach to the machine.

Definition 1.1. For a function f ∈ C = Map(R≥0,R≥0) we define

O(f) =
{
g ∈ C

∣∣∣ lim sup
x→∞

g(x)

f(x)
<∞

}
.

The complexity of addition is in O(N), which is optimal. The al-
gorithm depends on the base of the numbers, but the complexity is
the same for all choices.

Multiplication is more tricky. An algorithm is the following: (See
figure). With 10 additions compute the following in time O(N).
Then apply O(N) additions for a total complexity of O(N2).
Two goals:

1



1 · 1337 = 1337
2 · 1337 = 2674
3 · 1337 = 4011
4 · 1337 = 5348

...
9 · 1337 = 12033

4 2 0
1 3 3 7 ×
0 0 0 0

2 6 7 4
5 3 4 8 +
5 6 1 5 4 0

1. Reduce number of multiplications needed.
2. Find faster multiplication algorithm.

1.2 Complex number multiplication

Computing

(a+ bi)× (c+ di) := (a× c− b× d) + (b× c+ a× d)i

takes 4 multiplications and 2 additions. However, with

s = c× (a+ b)

t = a× (d− c)
u = b× (c+ d)

we get
(a+ bi)× (c+ di) = (s− u) + (s+ t)i

which is 3 multiplications and 5 additions.

1.3 Karatsuba multiplication

We will compute a × b for integers a and b given in base B (often
B = 2 or B = 10). Let m = Bk for some small k for which a, b ≤ m2.
Thus without computation we may write

a = a1m+ a0 and b = b1m+ b0.

2



for 0 ≤ a0, a1, b0, b1 < m. Think writing

65536 = 65 · 103 + 536.

Then

(ma1 + a0)× (mb1 + b0)

= m2(a1 × b1) +m(a1 × b0 + a0 × b1) + a0 × b0
= m2A+m[(a1 + a0)× (b1 + b0)−A−B] +B

Giving 3 multiplications and 6 additions. The multiplication is done
on numbers half the length and can be done inductively. The result-
ing complexity is

len(a)

len(b)

≈ N2 · ( 3
4 )log2N = N2 ·N log2(3/4) = N log2 3.

1.4 Polynomial multiplication

Effectively, Karatsuba treated the integers as linear polynomials in
m = Bk. We have a general strategy:

1. Write a = A(m) and b = B(m) as polynomials A and B for
appropriate m.

2. Compute A×B.
3. Evaluate A×B at m.

The first and last step are fast because the numbers are represented
in base B, roughly O(N). It suffices to find a fast algorithm for
multiplying polynomials.

3



1.5 Fourier transform

Let R be a commutative ring with primitive n-th root of unity ζ and
n ∈ R∗. (Think R = C or R = Z/wZ for some w)

Definition 1.2. We define the Fourier transform

Fζ : Rn → Rn

(ai)i 7→
( n−1∑

k=0

akζ
jk
)
j
.

Recall that

n−1∑

k=0

ζjk =

{
n if j = 0

0 otherwise
.

It follows that

Lemma 1.3. We have Fζ ◦ Fζ−1 = n and Fζ is invertible.

Remark 1.4. For a,w ∈ Z we may decide a ∈ (Z/wZ)∗ and if so
compute b ∈ Z such that ab ≡ 1 mod w in linear time. We use
the extended Euclidean algorithm (Algebra 1) to solve the equation
ab+ wc = gcd(a,w) for b, c ∈ Z.

Definition 1.5. For a, b ∈ Rn we define their involution

a ∗ b =
( ∑

i+j≡k (n)

ai · bj
)
k

This operation resembles multiplication of polynomials.

Proposition 1.6. Let R[X]d = {f ∈ R[X] | deg(f) < d}. For
d ≤ n we have a natural inclusion C : R[X]d → Rn. If 2d ≤ n + 1,
then

C(f · g) = C(f) ∗ C(g).

4



Proof. As can be seen in the picture, the additional terms in the
sum are all zero.

f 0

g

0

Proposition 1.7. For a, b ∈ Rn we have

F(a ∗ b) = F(a) · F(b).

Suppose now that we can efficiently compute F .

Algorithm 1.8 (Schönhage–Strassen). Let a, b ∈ Z>0 be repre-
sented in base B in ` digits.

1. (*) Choose d, k ∈ Z>0 such that dk ≥ ` and write m = Bk.
2. Write

a = A(m) =
d−1∑

i=0

aim
i and similarly b = B(m)

with 0 ≤ ai, bi < m and A,B ∈ Z[M ].
3. (*) Choose w, n ∈ Z>0 with w ≥ dm2 and n ≥ 2d − 1, and
ζ ∈ Z/wZ an n-th root of unity.

4. Compute Â = Fζ(A) and B̂ = Fζ(B) as elements of (Z/wZ)n.

5. Compute C = F−1(Â · B̂).
6. Lift C to C ∈ Z[M ] with coefficients in {0, . . . , w − 1}.
7. Evaluate C(m).

The choice of w is such that the unique lift of C indeed equals
A ·B. Namely, the coefficients of A ·B are less than dm2.

(*3) If we take n ≥ 2d−1 prime or a power of two, and w = 2n+1
(Fermat number), then 2 ∈ Z/wZ is an n-th root of unity: 2n ≡ −1

5



so ord(2) | 2n and clearly ord(2) > n. This algorithm has been
improved several times simply by coming up with smaller constants
w and n.

(*1) We want w to be small so that naive multiplication is suffi-
cient modulo w. We take k ∈ Θ(log `) = Θ(logN), so that w ∈ O(`3)
and multiplication takes O(log log `) time. It suffices to show that
the Fourier transform can be done in O(` log `) multiplications, so
that the resulting complexity is O(N logN log logN).

1.6 Cooley–Tukey algorithm

This algorithm was originally formulated by Gauss and later inde-
pendently discovered by Cooley and Tukey.

Suppose that n is a power of two.

Definition 1.9. Consider functions E ,O : Rn → Rn given by

E(a) =
( n/2−1∑

k=0

a2kζ
2ki
)
i

and O(a) =
( n/2−1∑

k=0

a2k+1ζ
2ki
)
i
.

First note that

F(a) = E(a) + (ζ2i)i · O(a). (1)

Secondly, we have

E(a)i = E(a)i+n/2 and O(a)i = O(a)i+n/2. (2)

since ζ2 is an (n/2)-th root of unity. Thus it suffices to compute
the first n/2 coefficients of E(a) and O(a). However, this is just a
(n/2)-dimensional Fourier transform:

E(a)0,1,...,n/2−1 = Fζ2(a0, a2, . . . , an−2) (3)

O(a)0,1,...,n/2−1 = Fζ2(a1, a3, . . . , an−1) (4)

Thus the n-dimensional Fourier transform can be computed as two
(n/2)-dimensional Fourier transformations, n additions and 2n mul-
tiplications in R. The entire algorithm requires O(n log n) multipli-
cations. Hence the complexity is O(n log n · log2 w).

6



1.7 Harvey–van der Hoeven

In 2021 Harvey and van der Hoeven published a O(N logN) algo-
rithm, which can be proven to be optimal. It uses multi-dimensional
Fourier transforms and approximate computation in C.

7


