1 Multiplication of integers

1.1 Addition and multiplication of integers

Given integers a,b € Z we will want to compute a + b and a X b.
For simplicity we will not bother with signs and consider positive
integers.

1 1
6 5 5 3 6
79 2 +
6 6 3 2 8

We have to apply a ‘single digit addition with carry’ for every
digit in the longest number. The time this algorithm takes to com-
plete is a function in the length N of the input. For this algorithm
this is the sum of the lengths of the two numbers (note: this is
roughly log,ya + log,yb). Although the exact time in seconds re-
quired depends on the computer, the complexity class is uniquely
defined (given the model of computation). Usually the model of
computation will be either that of a Multitape Turing Machine or a
Random Access Machine. An algorithm generally has the same time
complexity in both models. We will not worry about such details
and take a more intuitive approach to the machine.

Definition 1.1. For a function f € C = Map(R>o,R>) we define

hffolip % < oo}.

O(f) = {960

The complexity of addition is in O(N), which is optimal. The al-
gorithm depends on the base of the numbers, but the complexity is
the same for all choices.

Multiplication is more tricky. An algorithm is the following: (See
figure). With 10 additions compute the following in time O(N).
Then apply O(N) additions for a total complexity of O(N?).

Two goals:



1-1337 = 1337 4 92 0
2-1337 = 2674 1 3 3 7 x
3-1337 = 4011 0 0 0 0
4-1337 = 5348 2 6 7 4

: 5 3 4 8 +
9-1337 = 12033 5 6 1 5 4 0

1. Reduce number of multiplications needed.
2. Find faster multiplication algorithm.

1.2 Complex number multiplication
Computing
(a+bi) X (c+di):=(axc—bxd)+ (bxc+axd)i

takes 4 multiplications and 2 additions. However, with

s=cx(a+0b)
t=ax(d—rc)
u=">bx (c+d)

we get
(a+0bi) x (c+di) =(s—u)+ (s+1t)i

which is 3 multiplications and 5 additions.

1.3 Karatsuba multiplication

We will compute a x b for integers a and b given in base B (often
B =2or B =10). Let m = B* for some small k for which a,b < m?.
Thus without computation we may write

a=am-+ay and b=0bym + by.



for 0 < ag,ay,bp,by < m. Think writing
65536 = 65 - 10° + 536.
Then

(ma1 + CLo) X (mb1 + bo)
= m2(a1 X bl) —|—m(a1 X bo “+ ag X bl) + ag X bo
:m2A—|—m[(a1—|—a0) X (bl—l—bo) —A—B]—I—B

Giving 3 multiplications and 6 additions. The multiplication is done

on numbers half the length and can be done inductively. The result-
ing complexity is

len(d)

len(a)

~

~ N2. (%)loggN — N2. Nlog2(3/4) — ploga 3

1.4 Polynomial multiplication

Effectively, Karatsuba treated the integers as linear polynomials in
m = B*. We have a general strategy:

1. Write a = A(m) and b = B(m) as polynomials A and B for

appropriate m.

2. Compute A x B.

3. Evaluate A x B at m.
The first and last step are fast because the numbers are represented
in base B, roughly O(N). It suffices to find a fast algorithm for
multiplying polynomials.



1.5 Fourier transform

Let R be a commutative ring with primitive n-th root of unity ¢ and
n € R*. (Think R = C or R = Z/wZ for some w)

Definition 1.2. We define the Fourier transform

‘FC :R" — R"
n—1
(ai)i — (Z aijk> .
k=0 J

Recall that

ni:léjk— n ifj=0
o

P otherwise

It follows that
Lemma 1.3. We have F¢ o Fe—1 = n and F¢ is invertible. Il

Remark 1.4. For a,w € Z we may decide a € (Z/wZ)* and if so
compute b € Z such that ab = 1 mod w in linear time. We use
the extended Fuclidean algorithm (Algebra 1) to solve the equation
ab + we = ged(a, w) for b, c € Z.

Definition 1.5. For a,b € R™ we define their involution
axb= ( Z a; - bj) "
i+j=k (n)
This operation resembles multiplication of polynomials.

Proposition 1.6. Let R[X]; = {f € R[X] | deg(f) < d}. For
d < n we have a natural inclusion C : R[X]q — R™. If2d <n+1,
then

C(f-g) =C(f)*C(g).



Proof. As can be seen in the picture, the additional terms in the
sum are all zero.

Proposition 1.7. For a,b € R" we have
Flaxb)=F(a) - F(b). O
Suppose now that we can efficiently compute F.

Algorithm 1.8 (Schonhage—Strassen). Let a,b € Z-( be repre-
sented in base B in ¢ digits.

1. (*) Choose d, k € Z~¢ such that dk > ¢ and write m = B¥.

2. Write

d—1
a=A(m) = Z a;m'  and similarly b= B(m)
i=0

with 0 < a;,b; < m and A, B € Z[M].
3. (*) Choose w,n € Z~q with w > dm? and n > 2d — 1, and
¢ € Z/wZ an n-th root of unity.
Compute A = F¢(A) and B = F;(B) as elements of (Z/wZ)".
Compute C = F~'(A- B).
Lift C to C € Z[M] with coefficients in {0,...,w — 1}.
Evaluate C'(m).

NSOt

The choice of w is such that the unique lift of C indeed equals
A - B. Namely, the coefficients of A - B are less than dm?.

(*3) If we take n > 2d—1 prime or a power of two, and w = 2" +1
(Fermat number), then 2 € Z/wZ is an n-th root of unity: 2" = —1



so ord(2) | 2n and clearly ord(2) > n. This algorithm has been
improved several times simply by coming up with smaller constants
w and n.

(*1) We want w to be small so that naive multiplication is suffi-
cient modulo w. We take k € ©(log /) = O(log N), so that w € O(¢3)
and multiplication takes O(loglog/) time. It suffices to show that
the Fourier transform can be done in O(¢log¥¢) multiplications, so
that the resulting complexity is O(N log N loglog V).

1.6 Cooley—Tukey algorithm

This algorithm was originally formulated by Gauss and later inde-
pendently discovered by Cooley and Tukey.
Suppose that n is a power of two.

Definition 1.9. Consider functions £, 0 : R — R™ given by

n/2—1 n/2—1

E(a) :( Z azkg%i). and O(a) :< Z a2k+1§2ki)
k=0

k=0 t
First note that

1

F(a) = E(a) + (¢*)i - O(a). (1)
Secondly, we have

E(a)i = E(a)iqn2 and O(a); = O(a);qn /2. (2)

since ¢? is an (n/2)-th root of unity. Thus it suffices to compute
the first n/2 coefficients of £(a) and O(a). However, this is just a
(n/2)-dimensional Fourier transform:

5(a)0,1,...,n/2—1 = -7:§2 (ag,az,...,an—2) (3)
O(a’)O,l ..... n/2—1 :fCQ(a’laaf&"'aan—l) (4)

Thus the n-dimensional Fourier transform can be computed as two
(n/2)-dimensional Fourier transformations, n additions and 2n mul-
tiplications in R. The entire algorithm requires O(n logn) multipli-
cations. Hence the complexity is O(nlogn - log? w).



1.7 Harvey—van der Hoeven

In 2021 Harvey and van der Hoeven published a O(N log N) algo-
rithm, which can be proven to be optimal. It uses multi-dimensional
Fourier transforms and approximate computation in C.



