What is the chance that the match is a coincidence?

Richard Gill

Mathematical Institute, University Leiden

27 September 2013

What is the chance that the match is a coincidence?

Part I: joint work with Stefan Zohren (Oxford/Rio), Dragi Anevski (Lund)

Part 2: joint work with Helene van Eijck (Leiden)

What is the chance it's just a coincidence?

- DNA match
- Finger print match
- Handwriting match
- Locations and times of mobile phone calls
- ... and so on ...

```
P(coincidence|H<sub>defence</sub>), or perhaps
P(coincidence|H<sub>defence</sub>): P(coincidence|H<sub>prosecution</sub>)
```

Example 1

- We have a data-base of Y-chromosome DNA profiles (pretend it's a random sample)
- We have a crime, and we have a suspect
- Profile of DNA found at crime scene matches DNA profile of suspect, doesn't occur in data-base

Example 2

- Mobile phone co-location
- Phone I is anonymous, connected to crime
- Phone 2 is not anonymous
- Phones I and 2 seem to be in the same places at the same times

Defence position

- Defence: suspect and perpetrator (donor) are different.
- What is chance that if we pick two people from population, they have same, not yet observed, profile?
- Good-type estimator: (2x379 / N) x I/N

```
N=12797
# distinct profiles: 2489
# singletons: 1397
# pairs: 379
```

Prosecution position

- Suspect and perpetrator are the same
- What is chance that if we pick one person from population, he'll have a not yet observed profile?
- Good-type estimator: I397/N

```
N=12797
# distinct profiles: 2489
# singletons: 1397
# pairs: 379
```

Likelihood ratio

```
• ((2\times379 / N) \times I/N):(1397/N)
= 2 \times 379 / 12797 \times 1397
\approx I: 400 000
```

```
N=12797
# distinct profiles: 2489
# singletons: 1397
# pairs: 379
```

Conventional approaches: 1/12798 (prosecution) 2/12799 (defence)

ESTIMATED likelihood ratio

```
• ((2\times379 / N) \times I/N):(1397/N)
= 2 \times 379 / 12797 \times 1397
\approx I: 400 000
```

N=12797
distinct profiles: 2489
singletons: 1397
pairs: 379

How accurate is this? Should we care?

- Why we should care: new technologies give initially rather small new data-bases!
- e.g. mitochondrial DNA

- Proposal: estimate underlying distribution, estimate distribution of quantities like previous by plug-in
- The naive estimator of the underlying distribution might not be a good idea...
- The non-parametric maximum likelihood estimator is different and seems to be a lot better...

Problem

Underlying data:

```
X \sim \text{multinomial } (N; p)
(X_1, X_2,...) \sim \text{multinomial } (N; p_1, p_2,...), p_1 \geq p_2 \geq ...
```

Observed data:

```
Y = sort(X)
(sort = monotone ordering = sort in decreasing order)
```

- Problem: estimate p = sort(p)
- Naive estimator: Y/N (sorted empirical)
- Missing data: map from observed data categories (ordered by observed relative frequency) to true categories (ordered by true probability)

Previous work

- Alon Orlitsky and collaborators introduce "hi-profile estimator" = NPMLE
- Compute with EM + Metropolis-Hastings (MH within EM)
- Outline proof of consistency
 ("incomplete" to put it kindly
 yet in my opinion quite brilliant)
- Many "small data" examples

The Maximum Likelihood Probability of Unique-Singleton, Ternary, and Length-7 Patterns

Jayadev Acharya ECE Department, UCSD Email: jayadev@ucsd.edu Alon Orlitsky
ECE & CSE Departments, UCSD
Email: alon@ucsd.edu

Shengjun Pan CSE Department, UCSD Email: s1pan@ucsd.edu

The Maximum Likelihood Probability of Unique-Singleton, Ternary, and Length-7 Patterns

Jayadev Acharya ECE Department, UCSD Email: jayadev@ucsd.edu Alon Orlitsky
ECE & CSE Departments, UCSD
Email: alon@ucsd.edu

Shengjun Pan CSE Department, UCSD Email: s1pan@ucsd.edu

Canonical $\overline{\psi}$	$\widehat{P}_{\overline{\psi}}$	Reference
1	any distribution	Trivial
11, 111, 111,	(1)	Trivial
12, 123, 1234,	()	Trivial
112, 1122, 1112, 11122, 111122	(1/2, 1/2)	[12]
11223, 1112233, 1112233	(1/3, 1/3, 1/3)	[13]
111223, 1112223,	(1/3, 1/3, 1/3)	Corollary 5
1123, 1122334	$(1/5, 1/5, \dots, 1/5)$	[12]
11234	$(1/8, 1/8, \dots, 1/8)$	[13]
11123	(3/5)	[15]
11112	(0.7887, 0.2113)	[12]
111112	(0.8322, 0.1678)	[12]
111123	(2/3)	[15]
111234	(1/2)	[15]
112234	$(1/6, 1/6, \dots, 1/6)$	[13]
112345	$(1/13,\ldots,1/13)$	[13]
1111112	(0.857, 0.143)	[12]
1111122	(2/3, 1/3)	[12]
1112345	(3/7)	[15]
1111234	(4/7)	[15]
1111123	(5/7)	[15]
1111223	$\left(\frac{1}{\sqrt{7}}, \frac{\sqrt{7}-1}{2\sqrt{7}}, \frac{\sqrt{7}-1}{2\sqrt{7}}\right)$	Corollary 7
1123456	$(1/19, \dots, 1/19)$	[13]
1112234	$(1/5, 1/5, \dots, 1/5)$?	Conjectured

Anevski, Gill, Zohren

Estimating a probability mass function with unknown labels

Dragi Anevski, Richard Gill, Stefan Zohren, Lund University, Leiden University, Oxford University

- Study sieved NPMLE estimator
- Proof of consistency
- Computation by SA-MH-EM
 (stochastic approximation for interleaved
 Metropolis-Hastings EM)

SA-MH-EM

T= conditional expectation of X/N given observed data Y

- Re-sample X from law of X given Y under p,
 e.g. by Metropolis-Hastings
- $T_{\text{new}} = (1-\gamma)T_{\text{old}} + \gamma X/N$
- Replace p by mle of p based on T = isotonic regression of T ("pool adjacent violators")
- $\gamma = \gamma_k = k^{-1}$, k = iteration step

Kuhn and Lavielle, 2004 (it converges...)

Does this work?

- Almost! MLE often doesn't exist!
- Fix I: enlarge parameter space
 - $\sum_i p_i \leq I$ (before: $\sum_i p_i = I$)
- Fix 2: reduce (sieve) enlarged parameter space
 - $p=(p_1,...p_K), K < \infty$
 - $p_K \ge \epsilon > 0$

(Orlitsky et al. already use Fix 1)

Results

Estimating a probability mass function with unknown labels

Dragi Anevski, Richard Gill, Stefan Zohren, Lund University, Leiden University, Oxford University

I: (not sieved) NPMLE

Theorem 1 Let $\hat{\theta} = \hat{\theta}^{(n)}$ be the maximum likelihood estimator. Then for any $\delta > 0$

$$P^{n,\theta}(||\hat{\theta} - \theta||_1 > \delta) \le \frac{1}{\sqrt{3}n} e^{\pi\sqrt{\frac{2n}{3}} - n\frac{\epsilon^2}{2}} (1 + o(1)) \quad as \quad n \to \infty$$

where $\epsilon = \delta/(4r)$ and $r = r(\theta, \delta)$ such that $\sum_{i=r+1}^{\infty} \theta_i \leq \delta/4$.

Results I: (not sieved) NPMLE

Theorem 1 Let $\hat{\theta} = \hat{\theta}^{(n)}$ be the maximum likelihood estimator. Then for any $\delta > 0$

$$P^{n,\theta}(||\hat{\theta} - \theta||_1 > \delta) \le \frac{1}{\sqrt{3}n} e^{\pi\sqrt{\frac{2n}{3}} - n\frac{\epsilon^2}{2}} (1 + o(1)) \quad as \quad n \to \infty$$

where $\epsilon = \delta/(4r)$ and $r = r(\theta, \delta)$ such that $\sum_{i=r+1}^{\infty} \theta_i \leq \delta/4$.

Theorem 2 Let $\Theta_{\kappa} = \{\theta : \theta_x = l(x)x^{-\kappa}\}$ for $\kappa > 1$ fixed and with l some function slowly varying at infinity. Then, if $\theta \in \Theta_{\kappa}$,

$$n^{1/4}||\hat{\theta}^{(n)} - \theta|| \stackrel{a.s.}{\to} 0$$

as $n \to \infty$.

Remark: naive estimator is root n consistent!

Results 2: sieved NPMLE

Theorem 3 Let \hat{P}_{SML} be the sieved ML estimator defined in (13). Then for any $\delta > 0$

$$\mathbb{P}_{P}(||\hat{P}_{SML} - P||_{1} > \delta) \le \frac{1}{2\sqrt{3}n} e^{\pi\sqrt{\frac{2n}{3}}} (e^{-n(\epsilon + \frac{1}{n})^{2}/2} + e^{-n(\epsilon - \frac{1}{n})^{2}/2}) (1 + o(1))$$

as $n \to \infty$, where $\epsilon = \delta/(4r)$ and $r = r(P, \delta)$ such that $\sum_{i=r+1}^{\infty} \theta_i \le \delta/4$.

Theorem 4 Let $\Theta_{\nu,\beta} = \{\theta : \theta_x = o(x^{\nu-1/2}e^{-\beta x^{\nu+1/2}}) \text{ as } x \to \infty\}$ for $\nu > 0, \beta > 0$ fixed. Then, if $\theta \in \Theta_{\nu,\beta}$,

$$n^{\alpha} ||\hat{\theta}_{(s)}^{(n)} - \tilde{\theta}|| \stackrel{a.s.}{\longrightarrow} 0$$

as $n \to \infty$, with $\alpha < 1/4$.

Remark: naive estimator is root n consistent!

Tools

Kiefer-Dvoretsky-Wolfowitz

$$\Pr\Bigl(\sup_{x\in\mathbb{R}}\lvert F_n(x) - F(x)
vert>arepsilon\Bigr) \leq 2e^{-2narepsilon^2}$$

- Monotone ordering is contraction mapping (wrt sup norm)
- Hardy-Ramanujan: number of partitions of n grows as $\frac{1}{4n\sqrt{3}}e^{\pi\sqrt{\frac{2n}{3}}}$

Prelimary steps

- By Kiefer-Wolfowitz, empirical relative frequencies are close to true probabilities, in sup norm, ordering known
- By contraction property, same is true after monotone reordering of empirical
 - I. Naive estimator is close to the truth (with large probability)
 - 2. Naive estimator is far from any particular distant non-truth (with large probability)

Change of notation!

Key lemma

P, Q probability measures; p, q densities

- ullet Find event A depending on P and δ
 - $P(A) \geq 1 \varepsilon$
 - $Q(A) \le \varepsilon$ for all $Q: d(Q,P) \ge \delta$
 - Hence $P(p/q \ge 1) \ge 1-2\varepsilon$ if $d(Q,P) \ge \delta$

Application:

P, Q are probability distributions of data, depending on parameters θ , ϕ respectively A is event that Y/n is within δ of θ (sup norm) d is L_1 distance between θ and ϕ

Proof outline

- By <u>key lemma</u>, probability MLE is any particular
 q distant from (true) p is very small
- By <u>Hardy</u>, there are not many q to consider
- Therefore probability MLE is far from p is small
- Must be very careful sup norm on data, L₁ norm on parameter space, truncation of parameter vectors...

Conclusions

- We have consistency but not with the expected rate (but our proof is very crude)
- We did not yet study behaviour of functionals of estimated distribution
- More work needs to be done on computation (SA-MH-EM)

We still don't know if the whole thing is a good idea, either in theory or in practice – but at least we made a start

Example 2

 Colocation analysis of mobile phone call data records

Colocation analysis

- Prosecution alleges that members of small terrorist gang use several mobile phones, both "hidden" and "public"
- Mobile calls link one of hidden networks to crime
- Colocation of phones links hidden networks to one another and finally to public phones

Colocation analysis

- Two phones colocate if they are never used far apart in space close together in time
- NB cell phone records:
 - which cell towers
 - which phone called which phone
 - when

Colocation analysis

continued on other slides

Conclusions

- "Forensic statistics" (statistics in crime investigation, statistics in crime prosecution) is doing statistics in the most alien environment imaginable
- The standard paradigmas don't work
- Big challenges for statisticians...