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What is the chance it’s 
just a coincidence?

• DNA match

• Finger print match

• Handwriting match

• Locations and times of mobile phone calls

•  ... and so on ...

P(coincidence|Hdefence),   or perhaps
P(coincidence|Hdefence): P(coincidence|Hprosecution)



Example 1

• We have a data-base of  Y-chromosome 
DNA profiles                                        
(pretend it’s a random sample)

• We have a crime, and we have a suspect

• Profile of DNA found at crime scene 
matches DNA profile of suspect, doesn’t 
occur in data-base



Example 2

• Mobile phone co-location

• Phone 1 is anonymous, connected to crime

• Phone 2 is not anonymous

• Phones 1 and 2 seem to be in the same 
places at the same times
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N=12797
# distinct profiles: 2489
# singletons: 1397
# pairs: 379

Example 1



Defence position

• Defence: suspect and perpetrator (donor) 
are different. 

• What is chance that if we pick two people 
from population, they have same, not yet 
observed, profile?

• Good-type estimator: ( 2x379 / N )  x  1/N

N=12797
# distinct profiles: 2489
# singletons: 1397
# pairs: 379



Prosecution position

• Suspect and perpetrator are the same

• What is chance that if we pick one person 
from population, he’ll have a not yet 
observed profile?

• Good-type estimator: 1397/N

N=12797
# distinct profiles: 2489
# singletons: 1397
# pairs: 379



Likelihood ratio

• ( (2x379 / N ) x  1/N) : ( 1397/N )                      
=  2 x 379 / 12797 x 1397                             
≈ 1 :  400 000

N=12797
# distinct profiles: 2489
# singletons: 1397
# pairs: 379

Conventional approaches:
1/12798 (prosecution)

2/12799 (defence)



ESTIMATED
likelihood ratio

• ( (2x379 / N ) x  1/N) : ( 1397/N )                      
=  2 x 379 / 12797 x 1397                             
≈ 1 :  400 000

N=12797
# distinct profiles: 2489
# singletons: 1397
# pairs: 379



How accurate is this?
Should we care?

• Why we should care: new technologies give 
initially rather small new data-bases!

• e.g. mitochondrial DNA



• Proposal: estimate underlying distribution, 
estimate distribution of quantities like 
previous by plug-in

• The naive estimator of the underlying 
distribution might not be a good idea...

• The non-parametric maximum likelihood 
estimator is different and seems to be a lot 
better...



Problem
• Underlying data:                                                         

X ~ multinomial (N;p)                                               
(X1,X2,...) ~ multinomial (N; p1,p2,...),   p1≥p2≥ ...

• Observed data:                                                         
Y = sort(X)                                                              
(sort = monotone ordering = sort in decreasing order)

• Problem: estimate p = sort(p)

• Naive estimator: Y/N (sorted empirical)

• Missing data: map from observed data categories 
(ordered by observed relative frequency) to true 
categories (ordered by true probability)



• Alon Orlitsky and collaborators                          
introduce “hi-profile estimator” = NPMLE

• Compute with EM + Metropolis-Hastings                         
(MH within EM)

• Outline proof of consistency            
(“incomplete” to put it kindly                                                 
– yet in my opinion quite brilliant)

• Many “small data” examples

Previous work



6x7, 2x6, 17x5, 51x4, 86x3, 138x2, 123x1 , 77xO
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elements and a continuous interval. For example, a distribution
P may assign probability p(a) to an element a, p(b) to an
element b, and 1 - p(a) - p(b) to the interval [2, 3].

If P is sampled independently with replacement then

P(7jj) P( {x : = 7jj } )

is the probability that the sample has pattern For example,
the distribution P above assigns to the pattern 121 probability

P(121) = P(aba) + P (bab)+ P ({xyx : x E {a ,b} ,y E [2, 3]})

= p2(a)(1 - p(a)) + p2(b)(1 - p(b)).

Note that the pattern probability is determined by just the
multi set of discrete probabilities, hence P can be identified
with a vector in the monotone simplex

200 400 600 800 1000 P {(Pl ,P2, .. . ) : PI P2 .. . 0, LPi ::::; I}.
Fig. I. SML and PML reconstruction of uniform distribution over 500
symbols from 1000 samples

derived in [12].
Another simple group of patterns are the ternary patterns,

consisting of three distinct symbols, for example 121232. The
PML distribution of some ternary patterns follows from results
proven earlier. But so far not all ternary patterns have known
PML's. In this paper we determine the PML of all previously
unknown ternary patterns.

One of the most interesting applications of PML is to
determine the underlying distribution's support size. The sup-
port size is of interest in many applications and is useful in
simulations. Several bounds on the support size have been
proven in [12]. We extend known bounds to show that if only
one symbol in the sample appears once, then the PML support
size is at most twice the number of distinct symbols.

We can apply the results described above to establish the
PML distribution of many simple patterns, in particular we
extend the set of patterns with known PML distributions to all
but one pattern of length at most seven .

II. NOTATION

The pattern of a sequence X xl is the integer
sequence obtained by replacing each symbol x in x by the
number of distinct symbols up to (and including) x's first
appearance. For example, = 123141 51231.

We denote the length of a pattern by n and its number
of distinct symbols by m. The multiplicity of an integer
in a pattern tjj is the number J.1,p of times appears in 7jj.
For example, for 12314151231, n = 11, m = 5, III = 5,
112 = J.13 = 2, and 114 = 115 = 1.

For simplicity, if a number repeats consecutively i times,
we abbreviate it as For example, we may write the pattern
11222111 as 122313 . A pattern of the form 1/1 12/12 . . · m 11=
with J.1l ... J.1m is canonical. Clearly every pattern has
a canonical pattern with the same multiplicities. For example,
the canonical pattern of 123223 is 13223.

We now define pattern probabilities. To be most general, we
consider mixed distributions that assign probability to discrete

We call q 1 - L Pi, the continuous part of P. The
maximum -likelihood (PML) probability of a pattern tjj is

P;;;(7jj) max P(7jj) ,
'f/ PE P

the highest probability assigned to tjj by any
and its maximum-likelihood (PML) distribution P1fJ
distribution achieving this highest probability. We let k = k1fJ
denote the discrete support size of P1fJ.

Observe that every distribution assigns the same probability
to a pattern as it does to its canonical form . Hence the two
have the same PML distribution. From now on we therefore
consider without loss of generality only canonical patterns.

III. R ESULTS

A pattern is binary if, like 11122, it has m 2. Theorem
11 in [12] shows that all binary patterns have k = 2, and the
PML distribution can then be determined.

A pattern is uniform if, as in 121323, all multiplicities J.1 i are
equal. A pattern is quasi-uniform if the square of the difference
between any two multiplicities is at most their sum, namely for
all i , j, (ll i -llj)2 ::::; J.1 i +llj ' For example, the pattern 111223
is quasi-uniform. Note that a binary pattern is quasi -uniform
if (J.1l - J.12)2 ::::; n.

Theorem 11 in [12] shows also that all quasi -uniform binary
patterns have PML The following lemma extends this
result to non-binary patterns when the underlying distribution
is limited to support size m.

Lemma 1: If an m-symbol pattern is quasi-uniform then
among all discrete distributions with support size m, its
probability is maximized by the uniform distribution. •
For example, the lemma implies that among all distributions
over three elements, (k ,k,k) maximizes the probability of
111223.

The support-size restriction assumed in the lemma implies
that it cannot be used to determine the PML distribution on
its own. However, combined with other results that bound the
support size it can be used to derive the PML distribution.
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Abstract-We derive several pattern maximum likelihood
(PML) results, among them showing that if a pattern has only
one symbol appearing once, its PML support size is at most twice
the number of distinct symbols, and that if the pattern is ternary
with at most one symbol appearing once, its PML support size is
three. We apply these results to extend the set of patterns whose
PML distribution is known to all ternary patterns, and to all but
one pattern of length up to seven.

I. INTRODUCTION

Estimating the distribution underlying an observed data
sample has important applications in a wide range of fields,
including statistics, genetics, system design, and compression.

Many of these applications do not require knowing the
probability of each element, but just the collection, or multiset
of probabilities. For example, in evaluating the probability that
when a coin is flipped twice both sides will be observed, we
don't need to know p(heads) and p(tails) , but only the multiset
{p( heads) , p( tails) }. Similarly to determine the probability
that a collection of resources can satisfy certain requests, we
don't need to know the probability of requesting the individual
resources, just the multiset of these probabilities, regardless of
their association with the individual resources. The same holds
whenever just the data "statistics" matters.

One of the simplest solutions for estimating this proba-
bility multiset uses standard maximum likelihood (SML) to
find the distribution maximizing the sample probability, and
then ignores the association between the symbols and their
probabilities. For example, upon observing the symbols @ 1\ @,

SML would estimate their probabilities as p(@) == 2/3 and
p(1\) == 1/3, and disassociating symbols from their probabili-
ties, would postulate the probability multiset {2/3, 1/3}.

SML works well when the number of samples is large
relative to the underlying support size. But it falls short when
the sample size is relatively small. For example, upon observ-
ing a sample of 100 distinct symbols, SML would estimate
a uniform multi set over 100 elements. Clearly a distribution
over a large, possibly infinite number of elements, would better
explain the data. In general, SML errs in never estimating a
support size larger than the number of elements observed, and
tends to underestimate probabilities of infrequent symbols.

Several methods have been suggested to overcome these
problems. One line of work began by Fisher [1], and was
followed by Good and Toulmin [2], and Efron and Thisted [3].
Bunge and Fitzpatric [4] provide a comprehensive survey of
many of these techniques.

A related problem, not considered in this paper estimates the
probability of individual symbols for small sample sizes. This
problem was considered by Laplace [5], Good and Turing [6],
and more recently by McAllester and Schapire [7], Shamir [8],
Gemelos and Weissman [9], Jedynak and Khudanpur [10], and
Wagner, Viswanath, and Kulkarni [11].

A recent information-theoretically motivated method for the
multiset estimation problem was pursued in [12], [13], [14]. It
is based on the observation that since we do not care about the
association between the elements and their probabilities, we
can replace the elements by their order of appearance, called
the observation's pattern. For example the pattern of @ 1\ @ is
121, and the pattern of abracadabra is 12314151231.

Slightly modifying SML, this pattern maximum likelihood
(PML) method asks for the distribution multiset that maxi-
mizes the probability of the observed pattern. For example,
the 100 distinct-symbol sample above has pattern 123...100,
and this pattern probability is maximized by a distribution
over a large, possibly infinite support set, as we would expect.
And the probability of the pattern 121 is maximized, to 1/4,
by a uniform distribution over two symbols, hence the PML
distribution of the pattern 121 is the multiset {1/2, 1/2} .

To evaluate the accuracy of PML we conducted the fol-
lowing experiment. We took a uniform distribution over 500
elements, shown in Figure 1 as the solid (blue) line. We sam-
pled the distribution with replacement 1000 times. In a typical
run, of the 500 distribution elements, 6 elements appeared 7
times, 2 appeared 6 times, and so on, and 77 did not appear at
all as shown in the figure. The standard ML estimate, which
always agrees with empirical frequency, is shown by the dotted
(red) line. It underestimates the distribution's support size by
over 77 elements and misses the distribution's uniformity. By
contrast, the PML distribution, as approximated by the EM
algorithm described in [14] and shown by the dashed (green)
line, performs significantly better and postulates essentially the
correct distribution.

As shown in the above and other experiments, PML's
empirical performance seems promising. In addition, several
results have proved its convergence to the underlying distribu-
tion [13], yet analytical calculation of the PML distribution for
specific patterns appears difficult. So far the PML distribution
has been derived for only very simple or short patterns.

Among the simplest patterns are the binary patterns, con-
sisting of just two distinct symbols, for example 11212. A
formula for the PML distributions of all binary patterns was

978-1-4244-4313-0/09/$25.00 ©2009 IEEE 1135
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An important application of is to estimate the un-
derlying distribution's support size k. Inequality (1) bounds
the support size when the lowest mt;!tiplicity, JLm, is at least
2. The next theorem upper bounds k when JLm == 1 and all
other multiplicities are at least 2, namely exactly one element
appears once, for example as in the pattern 11122334. We call
such patterns unique-singleton. We will later use this result to
establish the PML distribution of ternary patterns.

Theorem 3: For unique-singleton patterns,

In particular, all patterns with JLm > log(m + 1) have PML
distribution with support size m. Combined with the lemma,
we obtain

Corollary 2: The PML distribution of a quasi-uniform
pattern with JLm > log2 (m +1) is uniform over m symbols.•

For example, the pattern 11111222333 is quasi-uniform and
has JLm == 3 > 2 == log2 (m + 1), hence the corollary yields
the previously unknown PML distribution

P11111222333 == (1/3,1/3,1/3).

Theorem 6 in [12] states that

....... m-1
k<m+---

- 2J-Lrn - 2 (1)

ISIr 2009, Seoul, Korea, June 28 - July 3, 2009

Canonical to P-;j) Reference
1 any distribution Trivial
11,111,111, ... (1) Trivial
12, 123, 1234, ... () Trivial
112,1122,1112,

(1/2, 1/2) [12]
11122, 111122
11223, 112233, 1112233 (1/3,1/3,1/3) [13]
111223, 1112223, (1/3,1/3,1/3) Corollary 5
1123, 1122334 (1/5,1/5, ... ,1/5) [12]
11234 (1/8,1/8, ... ,1/8) [13]
11123 (3/5) [15]
11112 (0.7887 ..,0.2113..) [12]
111112 (0.8322 ..,0.1678..) [12]
111123 (2/3) [15]
111234 (112) [15]
112234 (1/6,1/6, ... ,1/6) [13]
112345 (1/13, ... ,1/13) [13]
1111112 (0.857 ..,0.143 ..) [12]
1111122 (2/3, 1/3) [12]
1112345 (3/7) [15]
1111234 (4/7) [15]
1111123 (5/7) [15]

1111223 (1 0-1 0-1) Corollary 70' 20 ' 20
1123456 (1/19, ... ,1/19) [13]
1112234 (1/5,1/5, ... ,1/5)7 Conjectured

TABLE I
PML DISTRIBUTIONS OF ALL PATTERNS OF LENGTH::::; 7

k :S 2(m - 1).
Corollary 6: For all ternary patterns with at most one

• symbol appearing once,

A pattern tt/J is i-uniform if JLi - JLj :S 1 for all i.], namely
all multiplicities are within one from each other as in 1112233.
As shown in [13], all l-uniform patterns have a uniform PML
distribution and can thus be evaluated.

As mentioned earlier, the simplest patterns are binary,
and their PML distribution was in [12], showing in
particular that all of them have k == 2. The next simplest
patterns are ternary, and have m == 3. Three types of ternary
patterns can be addressed by existing results.

1) Uniform (lT2T3T). Of these, 123 has P == (), and all
others have P == (1/3,1/3,1/3) [12].

2) l-uniform (lT2T3T- 1 or 1T2T-13T-l). Of these, 1123
has P == (1/5,1/5,1/5,1/5,1/5), and all others have
P == (1/3,1/3,1/3) [13].

3) Skewed (l T 23). Of these, 1123 is I-uniform and ad-
dressed above, and all others have P == This
result is proved in [15].

It is easy to see that all ternary patterns not covered by these
cases have at most one symbol appearing once, for example
111223 and 111122233. For all those, we show that the PML
distribution has support size 3.

Theorem 4: All patterns with at most one symbol
appearing once have k == 3. •

The theorem allows us to compute the PML distribution of
all ternary patterns. Some follow by an easy combination of
the theorem with Lemma 1.

Corollary 5: P111223 == P1112223 == (1/3,1/3,1/3).
For more complex patterns, the PML distribution can be
obtained by combining the theorem with the Kuhn-Tucker
conditions.

where PI, P2, P3 are solutions to the following three polyno-
mial equations,

PI + P2 + P3 == 1,

"""' J-Ljl -1 J-Lj2 J-Lj3 _ """' J-Lh-1 J-Lj2 J-Lj3c: JLj1Pl P2 P3 - c: JLj1P3 PI P2 .

where the summation is over all six permutations (]1,]2,]3)
of (1,2,3). •

For short patterns we can solve the equations in Corollary 6
and derive the PML distribution. An example is the following
result.

Corollary 7: P _ (1 1- 1- ) •1111223 - 0' -2-' -2- .

Combined with previously known results, the three PML
distributions in Corollaries 5 and 7 yield the PML distri-
butions of all but one pattern of length up to 7. The only
exception is 1112234, which we conjecture to have PML
(1/5,1/5, ... ,1/5) but have not been able to prove yet. The
PML distributions of these patterns are shown in Table I along
with references to where they were shown.

IV. PROOFS

For a probability distribution P == (PI, P2, ... ), let Pi
(PI, ... ,Pi-I, 0, Pi+1, ... ) be the sub-distribution agreeing
with P on all probabilities, except Pi, which is set to O. Note
that the probabilities in Pi, including q, sum to 1 - Pi, hence
if Pi > 0 then Pi is not a distribution but a point inside the
probability simplex P. We let Pi, be normalized Pi so it is a
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Abstract-We derive several pattern maximum likelihood
(PML) results, among them showing that if a pattern has only
one symbol appearing once, its PML support size is at most twice
the number of distinct symbols, and that if the pattern is ternary
with at most one symbol appearing once, its PML support size is
three. We apply these results to extend the set of patterns whose
PML distribution is known to all ternary patterns, and to all but
one pattern of length up to seven.

I. INTRODUCTION

Estimating the distribution underlying an observed data
sample has important applications in a wide range of fields,
including statistics, genetics, system design, and compression.

Many of these applications do not require knowing the
probability of each element, but just the collection, or multiset
of probabilities. For example, in evaluating the probability that
when a coin is flipped twice both sides will be observed, we
don't need to know p(heads) and p(tails) , but only the multiset
{p( heads) , p( tails) }. Similarly to determine the probability
that a collection of resources can satisfy certain requests, we
don't need to know the probability of requesting the individual
resources, just the multiset of these probabilities, regardless of
their association with the individual resources. The same holds
whenever just the data "statistics" matters.

One of the simplest solutions for estimating this proba-
bility multiset uses standard maximum likelihood (SML) to
find the distribution maximizing the sample probability, and
then ignores the association between the symbols and their
probabilities. For example, upon observing the symbols @ 1\ @,

SML would estimate their probabilities as p(@) == 2/3 and
p(1\) == 1/3, and disassociating symbols from their probabili-
ties, would postulate the probability multiset {2/3, 1/3}.

SML works well when the number of samples is large
relative to the underlying support size. But it falls short when
the sample size is relatively small. For example, upon observ-
ing a sample of 100 distinct symbols, SML would estimate
a uniform multi set over 100 elements. Clearly a distribution
over a large, possibly infinite number of elements, would better
explain the data. In general, SML errs in never estimating a
support size larger than the number of elements observed, and
tends to underestimate probabilities of infrequent symbols.

Several methods have been suggested to overcome these
problems. One line of work began by Fisher [1], and was
followed by Good and Toulmin [2], and Efron and Thisted [3].
Bunge and Fitzpatric [4] provide a comprehensive survey of
many of these techniques.

A related problem, not considered in this paper estimates the
probability of individual symbols for small sample sizes. This
problem was considered by Laplace [5], Good and Turing [6],
and more recently by McAllester and Schapire [7], Shamir [8],
Gemelos and Weissman [9], Jedynak and Khudanpur [10], and
Wagner, Viswanath, and Kulkarni [11].

A recent information-theoretically motivated method for the
multiset estimation problem was pursued in [12], [13], [14]. It
is based on the observation that since we do not care about the
association between the elements and their probabilities, we
can replace the elements by their order of appearance, called
the observation's pattern. For example the pattern of @ 1\ @ is
121, and the pattern of abracadabra is 12314151231.

Slightly modifying SML, this pattern maximum likelihood
(PML) method asks for the distribution multiset that maxi-
mizes the probability of the observed pattern. For example,
the 100 distinct-symbol sample above has pattern 123...100,
and this pattern probability is maximized by a distribution
over a large, possibly infinite support set, as we would expect.
And the probability of the pattern 121 is maximized, to 1/4,
by a uniform distribution over two symbols, hence the PML
distribution of the pattern 121 is the multiset {1/2, 1/2} .

To evaluate the accuracy of PML we conducted the fol-
lowing experiment. We took a uniform distribution over 500
elements, shown in Figure 1 as the solid (blue) line. We sam-
pled the distribution with replacement 1000 times. In a typical
run, of the 500 distribution elements, 6 elements appeared 7
times, 2 appeared 6 times, and so on, and 77 did not appear at
all as shown in the figure. The standard ML estimate, which
always agrees with empirical frequency, is shown by the dotted
(red) line. It underestimates the distribution's support size by
over 77 elements and misses the distribution's uniformity. By
contrast, the PML distribution, as approximated by the EM
algorithm described in [14] and shown by the dashed (green)
line, performs significantly better and postulates essentially the
correct distribution.

As shown in the above and other experiments, PML's
empirical performance seems promising. In addition, several
results have proved its convergence to the underlying distribu-
tion [13], yet analytical calculation of the PML distribution for
specific patterns appears difficult. So far the PML distribution
has been derived for only very simple or short patterns.

Among the simplest patterns are the binary patterns, con-
sisting of just two distinct symbols, for example 11212. A
formula for the PML distributions of all binary patterns was

978-1-4244-4313-0/09/$25.00 ©2009 IEEE 1135
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• Study sieved NPMLE estimator

• Proof of consistency

• Computation by SA-MH-EM                   
(stochastic approximation for interleaved 
Metropolis-Hastings - EM)
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Abstract

1 The model

1.1 Introduction

Imagine an area inhabited by a population of animals which can be classified
by species. Which species actually live in the area (many of them previously
unknown to science) is a priori unknown. Let A denote the set of all possible
species potentially living in the area. For instance, if animals are identified by
their genetic code, then the species’ names ↵ are “just” equivalence classes
of DNA sequences. The set of all possible DNA sequences is e↵ectively
uncountably infinite, and for present purposes so is the set of equivalence
classes, each equivalence class defining one “potential” species.

Suppose that animals of species ↵ 2 A form a fraction ✓

↵

� 0 of the total
population of animals. The probabilities ✓

↵

are completely unknown.
[To be completed: very brief (verbal) description of model, sum-

mary of previous work of Orlitsky et al., main results of the paper.]

1.2 The data: a random partition of n

The basic model studied in this paper assumes that
P

↵:✓↵>0 ✓↵ = 1 but we
shall also study an extended model in which it is allowed that

P
↵:✓↵>0 ✓↵ < 1.

In either case, the set of species with positive probability is finite or at most
countably infinite.

1



SA-MH-EM

• Re-sample X from law of X given Y under p, 
e.g. by Metropolis-Hastings

• Tnew = (1–𝛾)Told+𝛾X/N

• Replace p by mle of p based on T = isotonic 
regression of  T (“pool adjacent violators”)

• 𝛾 = 𝛾k = k–1,  k = iteration step

Kuhn and Lavielle, 2004 (it converges...)

T= conditional expectation of X/N given observed data Y



Does this work?

• Almost! MLE often doesn’t exist! 

• Fix 1: enlarge parameter space

• ∑i pi  ≤ 1     (before: ∑i pi  = 1)

• Fix 2:  reduce (sieve) enlarged parameter space

• p=(p1,...pK),  K < ∞

• pK ≥ ε > 0

(Orlitsky et al. already use Fix 1)



Results

||f || = sup
k2N |f(k)| is the supnorm metric, then ||T (f)� T (g)||  ||f � g||,

cf. [1] (see also [4] for a proof of the contraction property for the Lp-norms).
Noting that T (✓) = ✓ since ✓ is decreasing by assumption, and with f̂

(n) =
T (f (n)), this implies that

||f̂ (n) � ✓||1  ||f (n) � ✓||1,

so that {||f̂ (n) � ✓||1 � ✏} ⇢ {||f (n) � ✓||1 � ✏}, and thus

P

n,✓( sup
1xr

|f̂ (n)
x

� ✓

x

| � ✏)  P

n,✓(sup
x

|f̂ (n)
x

� ✓

x

| � ✏)

 2e�n✏

2
/2
. (9)

The analogue argument for a sample from the distribution �, with corre-
sponding empirical distribution F

(n), probability mass function f

(n), and
sorted such f̂

(n) = T (f (n)), gives

P

n,�( sup
1xr

|f̂ (n)
x

� �

x

| � ✏)  2e�n✏

2
/2
.

which is equivalent to

P

n,�( sup
1xr

|f̂ (n)
x

� �

x

| < ✏) � 1� 2e�n✏

2
/2 (10)

Note that

{ sup
1xr

|f̂ (n)
x

� �

x

| < ✏} \ {9i  r : |✓
i

� �

i

| > 2✏} (11)

⇢ {9i  r : |f̂ (n)
i

� ✓

i

| > ✏} = { sup
1xr

|f̂ (n)
x

� ✓

x

| > ✏}

Since the second event in (11) is deterministic, for any � 2 Q
✓,�

, and with an
✏ small enough (see (7)), this together with equation (10) implies

P

n,�( sup
1xr

|f̂ (n)
x

� ✓

x

| > ✏) � P

n,�( sup
1xr

|f̂ (n)
x

� �

x

| < ✏)

� 1� 2e�n✏

2
/2
.

Since � 2 Q
✓,�

is arbitrary, the statement of the lemma follows. 2

Theorem 1 Let ✓̂ = ✓̂

(n)
be the maximum likelihood estimator. Then for

any � > 0

P

n,✓(||✓̂ � ✓||1 > �)  1p
3n

e

⇡

p
2n
3 �n

✏2

2 (1 + o(1)) as n ! 1

where ✏ = �/(4r) and r = r(✓, �) such that

P1
i=r+1 ✓i  �/4.
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Abstract

1 The model

1.1 Introduction

Imagine an area inhabited by a population of animals which can be classified
by species. Which species actually live in the area (many of them previously
unknown to science) is a priori unknown. Let A denote the set of all possible
species potentially living in the area. For instance, if animals are identified by
their genetic code, then the species’ names ↵ are “just” equivalence classes
of DNA sequences. The set of all possible DNA sequences is e↵ectively
uncountably infinite, and for present purposes so is the set of equivalence
classes, each equivalence class defining one “potential” species.

Suppose that animals of species ↵ 2 A form a fraction ✓

↵

� 0 of the total
population of animals. The probabilities ✓

↵

are completely unknown.
[To be completed: very brief (verbal) description of model, sum-

mary of previous work of Orlitsky et al., main results of the paper.]

1.2 The data: a random partition of n

The basic model studied in this paper assumes that
P

↵:✓↵>0 ✓↵ = 1 but we
shall also study an extended model in which it is allowed that

P
↵:✓↵>0 ✓↵ < 1.

In either case, the set of species with positive probability is finite or at most
countably infinite.

1

I: (not sieved) NPMLE



||f || = sup
k2N |f(k)| is the supnorm metric, then ||T (f)� T (g)||  ||f � g||,

cf. [1] (see also [4] for a proof of the contraction property for the Lp-norms).
Noting that T (✓) = ✓ since ✓ is decreasing by assumption, and with f̂

(n) =
T (f (n)), this implies that

||f̂ (n) � ✓||1  ||f (n) � ✓||1,

so that {||f̂ (n) � ✓||1 � ✏} ⇢ {||f (n) � ✓||1 � ✏}, and thus

P

n,✓( sup
1xr

|f̂ (n)
x

� ✓

x

| � ✏)  P

n,✓(sup
x

|f̂ (n)
x

� ✓

x

| � ✏)

 2e�n✏

2
/2
. (9)

The analogue argument for a sample from the distribution �, with corre-
sponding empirical distribution F

(n), probability mass function f

(n), and
sorted such f̂

(n) = T (f (n)), gives

P

n,�( sup
1xr

|f̂ (n)
x

� �

x

| � ✏)  2e�n✏

2
/2
.

which is equivalent to

P

n,�( sup
1xr

|f̂ (n)
x

� �

x
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2
/2 (10)

Note that

{ sup
1xr

|f̂ (n)
x

� �

x

| < ✏} \ {9i  r : |✓
i

� �

i

| > 2✏} (11)

⇢ {9i  r : |f̂ (n)
i

� ✓

i

| > ✏} = { sup
1xr

|f̂ (n)
x

� ✓

x

| > ✏}

Since the second event in (11) is deterministic, for any � 2 Q
✓,�

, and with an
✏ small enough (see (7)), this together with equation (10) implies

P

n,�( sup
1xr

|f̂ (n)
x

� ✓

x

| > ✏) � P

n,�( sup
1xr

|f̂ (n)
x

� �

x

| < ✏)

� 1� 2e�n✏

2
/2
.

Since � 2 Q
✓,�

is arbitrary, the statement of the lemma follows. 2

Theorem 1 Let ✓̂ = ✓̂

(n)
be the maximum likelihood estimator. Then for

any � > 0

P

n,✓(||✓̂ � ✓||1 > �)  1p
3n

e

⇡

p
2n
3 �n

✏2

2 (1 + o(1)) as n ! 1

where ✏ = �/(4r) and r = r(✓, �) such that

P1
i=r+1 ✓i  �/4.
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as n ! 1, cf. [6]. For each possibility of (n1, . . . , nk

) there is a ML estimator
and we let P

n

= {✓̂(1), . . . , ✓̂(p(n))} be the set of all possible ML estimators.
Then

P

n,✓(✓̂ 2 Q
✓,�

) =
X

�2Pn\Q✓,�

P

n,✓(✓̂ = �)


X

�2Pn\Q✓,�

P

n,✓

✓
dP

n,�

dP

n,✓

� 1

◆

 p(n)4e�n✏

2
/2
,

which ends the proof. 2

That ✓̂ is consistent in probability is immediate from Theorem 1, and in
fact we have almost sure consistency:

Corollary 1 The sequence of maximum likelihood estimators ✓̂

(n)
is strongly

1

consistent in L1-norm, i.e.

lim sup
n!1

||✓̂(n) � ✓||1
a.s.! 0

as n ! 1.

Proof. This follows as a consequence of the bound in Theorem 1, by the
characterization X

n

a.s.! 0 ,
P1

n=1 P (|X
n

| > �) < 1 for all � > 0, since

1X

n=1

1p
3n

e

�⇡

p
n(

p
n

✏2

2 �
p

2
3 ) < 1.

2

The above results are for a fixed distribution ✓, and the rate depends,
via ✏ on the distribution. The next result makes the dependence explicit,
and gives a rate for the almost sure convergence as a function of the tail
behaviour of the distribution.

Theorem 2 Let ⇥


= {✓ : ✓
x

= l(x)x�} for  > 1 fixed and with l some

function slowly varying at infinity. Then, if ✓ 2 ⇥


,

n

1/4||✓̂(n) � ✓|| a.s.! 0

as n ! 1.

1
why limsup, don’t we have an ordinary limit here?

12Remark: naive estimator is root n consistent!

Results I: (not sieved) NPMLE



Theorem 3 Let P̂

SML

be the sieved ML estimator defined in (13). Then for

any � > 0

P
P

(||P̂
SML

� P ||1 > �)  1

2
p
3n

e

⇡

p
2n
3 (e�n(✏+ 1

n )2/2 + e

�n(✏� 1
n )2/2)(1 + o(1))

as n ! 1, where ✏ = �/(4r) and r = r(P, �) such that

P1
i=r+1 ✓i  �/4.

Proof. Lemma 2 and the comment after the proof of the lemma implies
that there is a set (note that r is replaced by k

n

)

A = A

n

= { sup
1xkn

|f̌
n

(x)� p(x)|  ✏}

such that

P
P

(A
n

) � 1� 2e�n(✏� 1
n )2/2

,

sup
Q2QP,�

P
Q

(A
n

)  2e�n(✏+ 1
n )2/2

.

Therefore, similarly to the proof of Theorem 1, we obtain

P
P

(
dP

n,�

dP

n,✓

� 1) = 2e�n(✏� 1
n )2/2 + 2e�n(✏+ 1

n )2/2
.

If P̂
SML

is the SML estimator and P
n

= {P̂1, . . . , P̂
p(n)} the set of all possible

SML estimators, then similarly to as in Theorem 1 we obtain

P
P

(P̂
SML

2 Q
P,�

)  p(n)(2e�n(✏� 1
n )2/2 + 2e�n(✏+ 1

n )2/2)

which ends the proof. 2

4 Discussion
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Results 2: sieved NPMLE

Proof. Follows from Theorem 3, analogously to Corollary 2. 2

Note that if ✓ 2 ⇥


, so that ✓

x

= l(x)x� with l(x) a function slowly
varying at infinity and  > 1, then the condition on the cut-o↵ point is

Ce

��n

1/2+⌫ ⇠
nX

i=k(n)+1

✓

i

⇠
nX

i=k(n)+1

i

� = k(n)�

n�k(n)X

i=1

i

�

⇠ k(n)�(n� k(n))�+1

� k(n)�

n

�+1
,

where the last inequality follows since  > 1 and k(n) < n. Clearly there
is no way that we can have the condition of Theorem 3 satisfied if we only
assume ✓ 2 ⇥



.

Theorem 4 Let ⇥
⌫,�

= {✓ : ✓
x

= o(x⌫�1/2
e

��x

⌫+1/2
) as x ! 1} for ⌫ >

0, � > 0 fixed. Then, if ✓ 2 ⇥
⌫,�

,

n

↵||✓̂(n)(s) � ✓̃|| a.s.! 0

as n ! 1, with ↵ < 1/4.

Proof. Assume that ✓ 2 ⇥
⌫,�

. Then the condition on exponentially decreas-
ing tails in Theorem 3 is satisfied. Furthermore, the condition 8� > 0 9r < 1
such that

P1
x=r

✓

x

< �/4, translates to

�/4 � e

��r

1/2+⌫ , r �
✓
� log �/4

�

◆2/(1+2⌫)

.

The dominant part of the exponent in the right hand side of Theorem 3 is
then, replacing � with �/n

↵ for an ↵ to be chosen and with ✏ = �/4r and
r ⇠ (� log �)2/(1+2⌫),

n

1/2 � n✏

2 � 2✏� 1/n ⇠ n

1/2 � n

1�2↵ �

2

(� log �)4/(1+2⌫)
� n

�↵

�

(� log �)2/(1+2⌫)

= n

1/2 � n

1�2↵
c1(�)� n

�↵

c2(�),

which converges to �1 as n ! 1 if 1 � 2↵ > 1/2 and ↵ > 0 i.e. if
0 < ↵ < 1/4. Thus the rate is n↵ for any ↵ < 1/4. 2
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Remark: naive estimator is root n consistent!



Tools

• Kiefer-Dvoretsky-Wolfowitz

• Monotone ordering is contraction mapping        
(wrt sup norm)

• Hardy-Ramanujan:  number of partitions of n 
grows as 

21/12/2011 09:17Partition (number theory) - Wikipedia, the free encyclopedia

Page 7 of 12http://en.wikipedia.org/wiki/Partition_(number_theory)

In 2000, Ken Ono of the University of Wisconsin–Madison proved that there are such congruences for every
prime modulus. A few years later Ono, together with Scott Ahlgren of the University of Illinois, proved that
there are partition congruences modulo every integer coprime to 6.[11]

Partition function formulas

An asymptotic expression for p(n) is given by

This asymptotic formula was first obtained by G. H. Hardy and Ramanujan in 1918 and independently by J.
V. Uspensky in 1920. Considering p(1000), the asymptotic formula gives about 2.4402 × 1031, reasonably
close to the exact answer given above (1.415% larger than the true value).

In 1937, Hans Rademacher was able to improve on Hardy and Ramanujan's results by providing a
convergent series expression for p(n). It is

where

It can be shown that the derivative part of the sum can be simplified. [12] Here, the notation (m, n) = 1
implies that the sum should occur only over the values of m that are relatively prime to n. The function
s(m, k) is a Dedekind sum. The proof of Rademacher's formula involves Ford circles, Farey sequences,
modular symmetry and the Dedekind eta function in a central way.

In January 2011, it was announced that Ono and Jan Hendrik Bruinier, of the Technische Universität
Darmstadt, had developed a finite, algebraic formula determining the value of p(n) for any positive integer
n.[13] [14]

Ferrers diagram
The partition 6 + 4 + 3 + 1 of the positive number 14 can be represented by the following diagram; these
diagrams are named in honor of Norman Macleod Ferrers:



Prelimary steps
• By Kiefer-Wolfowitz, empirical relative frequencies are 

close to true probabilities, in sup norm, ordering 
known

• By contraction property, same is true after monotone 
reordering of empirical

• 1. Naive estimator is close to the truth (with large 
probability)

• 2. Naive estimator is far from any particular distant 
non-truth (with large probability)



Key lemma
P, Q probability measures; p, q densities

• Find event A depending on P and 𝛿

• P(A) ≥ 1– 𝜀 !

• Q(A) ≤ 𝜀 for all Q: d(Q,P) ≥ 𝛿

• Hence P( p/q ≥ 1) ≥ 1–2𝜀                                                           
if d(Q,P) ≥ 𝛿

Application:
P, Q are probability distributions of data, 
depending on parameters 𝜃, 𝜙 respectively
A is event that Y/n is within 𝛿 of 𝜃 (sup norm)
d is L1 distance between 𝜃 and 𝜙

Change of notation!



Proof outline

• By key lemma, probability MLE is any particular 
q distant from (true) p is very small

• By Hardy, there are not many q to consider

• Therefore probability MLE is far from p is small

• Must be very careful – sup norm on data, L1 
norm on parameter space, truncation of 
parameter vectors...



Conclusions
• We have consistency but not with the 

expected rate (but our proof is very crude)

• We did not yet study behaviour of functionals 
of estimated distribution

• More work needs to be done on computation 
(SA-MH-EM)

We still don’t know if the whole thing is a good idea, either 
in theory or in practice – but at least we made a start



Example 2

• Colocation analysis of mobile phone call 
data records



Colocation analysis

• Prosecution alleges that members of small 
terrorist gang use several mobile phones, 
both “hidden” and “public”

• Mobile calls link one of hidden networks to 
crime

•Colocation of phones links hidden 
networks to one another and finally to 
public phones



Colocation analysis

• Two phones colocate if they are never used 
far apart in space close together in time

• NB cell phone records:

• which cell towers

• which phone called which phone

• when



Colocation analysis

• continued on other slides



Conclusions

• “Forensic statistics” (statistics in crime 
investigation, statistics in crime 
prosecution) is doing statistics in the most 
alien environment imaginable

• The standard paradigmas don’t work

• Big challenges for statisticians...


