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What is the chance it’s
just a coincidence?

® DNA match

® Finger print match

® Handwriting match

® | ocations and times of mobile phone calls

® ..andsoon...

P(coincidence|Hdefence), or perhaps
P(coincidence|Hdefence): P(coincidence|Hprosecution)



Example |

® VVe have a data-base of Y-chromosome
DNA profiles
(pretend it’s a random sample)

® We have a crime, and we have a suspect

® Profile of DNA found at crime scene
matches DNA profile of suspect, doesn’t
occur in data-base



Example 2

Mobile phone co-location
Phone | is anonymous, connected to crime
Phone 2 is not anonymous

Phones | and 2 seem to be in the same
places at the same times



Example |
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Defence position

® Defence: suspect and perpetrator (donor)
are different.

® What is chance that if we pick two people
from population, they have same, not yet
observed, profile?

® Good-type estimator:( 2x379/N) x |I/N

N=12797

# distinct profiles: 2489
# singletons: 1397

# pairs: 379



Prosecution position

® Suspect and perpetrator are the same

® What is chance that if we pick one person
from population, he’ll have a not yet
observed profile?

® Good-type estimator: 1397/N

N=12797

# distinct profiles: 2489
# singletons: 1397

# pairs: 379



Likelihood ratio

® ((2x379/N) x I/IN):( 1397/N)
= 2x379/ 12797 x 1397

~ | : 400 000
- Conventional approaches:
#;istinct profiles: 2489 1712798 (prosecution)
# singletons: 1397 2/12799 (defence)

# pairs: 379



ESTIMATED
likelihood ratio

® ((2x379/N)x |/N) : ( 1397/N)
= 2x379/ 12797 x 1397

~ | : 400 000

N=12797
# distinct profiles: 2489

# singletons: 1397
# pairs: 379



How accurate is this!?
Should we care!?

® Why we should care: new technologies give
initially rather small new data-bases!

® c.g. mitochondrial DNA



® Proposal: estimate underlying distribution,
estimate distribution of quantities like
previous by plug-in

® The naive estimator of the underlying
distribution might not be a good idea...

® [he non-parametric maximum likelihood
estimator is different and seems to be a lot
better...



Problem
® Underlying data:

X ~ multinomial (N;p)
(X1,X2,...) ~ multinomial (N; p1,p2,...), p1=p2= ...

® Observed data:
Y = sort(X)
(sort = monotone ordering = sort in decreasing order)

® Problem: estimate p = sort(p)

® Naive estimator: Y/N (sorted empirical)

® Missing data: map from observed data categories
(ordered by observed relative frequency) to true
categories (ordered by true probability)



Previous work

® Alon Orlitsky and collaborators
introduce “hi-profile estimator” = NPMLE

® Compute with EM + Metropolis-Hastings
(MH within EM)

® Outline proof of consistency
(“incomplete” to put it kindly
— yet in my opinion quite brilliant)

® Many “small data” examples
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Canonical 1) Py Reference
1 any distribution Trivial
11,111, 111, ... (1) Trivial

12, 123, 1234, ... O Trivial
112, 1122, 1112,

11122, 111122 (1/2,1/2) [12]
11223, 112233, 1112233 | (1/3,1/3,1/3) [13]
111223, 1112223, (1/3,1/3,1/3) Corollary 5
1123, 1122334 (1/5,1/5,...,1/5) | [12]
11234 (1/8,1/8,...,1/8) | [13]
11123 (3/5) [15]
11112 (0.7887..,0.2113..) [12]
111112 (0.8322..,0.1678..) [12]
111123 (2/3) [15]
111234 (1/2) [15]
112234 (1/6,1/6,...,1/6) | [13]
112345 (1/13,...,1/13) [13]
1111112 (0.857..,0.143..) [12]
111122 (273,1/3) [12]
1112345 3/7) [15]
1111234 4/7) [15]
1111123 (3/7) [15]
1111223 (L5, 452,222 ) | Corollary 7
1123456 (1/19,...,1/19) [13]
1112234 (1/5,1/5,...,1/5)7 | Conjectured

TABLE 1

PML DISTRIBUTIONS OF ALL PATTERNS OF LENGTH < 7




Anevski, Gill, Zohren

Estimating a probability mass function with
unknown labels

Dragi Anevski, Richard Gill, Stefan Zohren,
Lund University, Leiden University, Oxford University

® Study sieved NPMLE estimator

® Proof of consistency

® Computation by SA-MH-EM
(stochastic approximation for interleaved
Metropolis-Hastings - EM)



SA-MH-EM
I= conditional expectation of X/N given observed data Y

® Re-sample X from law of X given Y under p,
e.g. by Metropolis-Hastings

® Thew = (1—)/)To|d+)/X/N

® Replace p by mle of p based on T = isotonic
regression of T (“pool adjacent violators™)

® y=1y=k, k = iteration step

Kuhn and Lavielle, 2004 (it converges...)



Does this work!?

® Almost! MLE often doesn’t exist!

® Fix |:enlarge parameter space

® >ipi < | (before:dipi =1)

® Fix 2: reduce (sieve) enlarged parameter space
® p=(p1,--px), K< 0

® hk=¢€>0

(Orlitsky et al. already use Fix |)



Results

Estimating a probability mass function with
unknown labels

Dragi Anevski, Richard Gill, Stefan Zohren,
Lund University, Leiden University, Oxford University

: (not sieved) NPMLE

Theorem 1 Let 0 = 0" be the mazimum likelihood estimator. Then for
any 0 > 0

1
e
V3n
where € = 0/(4r) and r = r(0,0) such that ) ", 0; <J/4.

P (|16 — 0|, > 6) < 7T\/§_”§(1 +o0(1)) as n — oo



Results I: (not sieved) NPMLE

A

Theorem 1 Let 0 = 0" be the mazimum likelihood estimator. Then for

any 0 > 0

P[0 =0l > 6) < —e™VE T (1+0(1)) as n— oo

\fn
where € = 0 /(4r) and r =r(0,06) such that Y~ . ,0; < /4.

Theorem 2 Let O, = {6 : 0, = [(x)z™"} for kK > 1 fized and with | some
function slowly varying at infinity. Then, if 0 € O,

W — o)) S

as n — OoQ.

Remark: naive estimator is root n consistent!



Results 2: sieved NPMLE

Theorem 3 Let Pgyy be the sieved ML estimator defined in (13). Then for
any 0 > 0

1
Q\fn

as n — 0o, where € = 6/(4r) and r = r(P,d) such that ).~ ., 0; <6/4.

Pp(||Psarr, — Py > 6) < eV F (e oMY (1 4 o(1))

Theorem 4 Let ©,5 = {0 : 0, = o(x¥ Y2 7" as & — oo} for v >
0,8 >0 fized. Then, if 0 € ©,3,

n®l0 — 6l =3 0

as n — oo, with a < 1/4.

Remark: naive estimator is root n consistent!



Tools

e Kiefer-Dvoretsky-VVolfowitz

Pr(sup|Fn(:1:) — F(z)| > e) < 2¢ %€’
reR

® Monotone ordering is contraction mapping
(wrt sup norm)

® Hardy-Ramanujan: number of partitions of n
grows as 1 oy

—e"V 73




Prelimary steps

® By Kiefer-Wolfowitz, empirical relative frequencies are
close to true probabilities, in sup norm, ordering
known

® By contraction property, same is true after monotone
reordering of empirical

® |.Naive estimator is close to the truth (with large
probability)

® 2. Naive estimator is far from any particular distant
non-truth (with large probability)



Change of notation!

Key lemma
P, Q probability measures; p, g densities

® Find event A depending on P and 0
® P(A) = 1- &l
® Q) < eforall Q:d(Q,P) = 0

® Hence P(p/g = 1) = 1-2¢
if d(Q,P) = 0

Application:

P, Q are probability distributions of data,
depending on parameters 0, ¢ respectively

A is event that Y/n is within 0 of 8 (sup norm)
dis L; distance between 0 and ¢



Proof outline

® By key lemma, probability MLE is any particular
g distant from (true) p is very small

® By Hardy, there are not many g to consider

® Therefore probability MLE is far from p is small

® Must be very careful — sup norm on data, L,

norm on parameter space, truncation of
parameter vectors...



Conclusions

® VWe have consistency but not with the
expected rate (but our proof is very crude)

® We did not yet study behaviour of functionals
of estimated distribution

® More work needs to be done on computation
(SA-MH-EM)

We still don’t know if the whole thing is a good idea, either
in theory or in practice — but at least we made a start



Example 2

® Colocation analysis of mobile phone call
data records



Colocation analysis

® Prosecution alleges that members of small

terrorist gang use several mobile phones,
both “hidden” and “public”

® Mobile calls link one of hidden networks to
crime

® Colocation of phones links hidden
networks to one another and finally to
public phones



Colocation analysis

® [wo phones colocate if they are never used
far apart in space close together in time

® NB cell phone records:
® which cell towers
® which phone called which phone

® when



Colocation analysis

® continued on other slides



Conclusions

® “Forensic statistics” (statistics in crime
Investigation, statistics in crime
prosecution) is doing statistics in the most
alien environment imaginable

® The standard paradigmas don’t work

® Big challenges for statisticians...



