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Chapter

Introduction

Quantum computing is currently a widely researched topic with many
potential applications. A particular application is the variational quan-
tum eigensolver [1], which can solve large eigenvalue problems that are
intractable on classical computers. This requires the estimation of a quan-
tum state from data generated by measurements. This process is known
as quantum state estimation. There are various statistical methods for this
task. There has been success with frequentist methods such as linear inver-
sion [2], and maximum likelihood [3]. Bayesian methods have also been
proposed and have desirable properties, such as providing error bars on
the estimate [4]. A problem in an experimental setting is that preparing
and measuring quantum states does not always go without failure, and
in this thesis the problem of state estimation is explored when there is
uncertainty in the validity of measurement results. In particular, to ex-
plore methods of handling these errors, a methods of moments estimator,
a maximum likelihood estimator, and a Bayesian mean estimator are im-
plemented and compared in the cases with errors and without errors.

In Chapter 2 several concepts from quantum mechanics and quantum
computing are introduced. Chapter 3 will introduce the two frequentist
estimation methods of this thesis, and Chapter 4 discusses the Bayesian
method and how the Metropolis-Hastings algorithm can be used to im-
plement the estimation method. In Chapter 5 the problem of experimental
errors is introduced, and Chapter 6 contains figures comparing the estima-
tors in the case where experimental errors are present, and the case where
they are not. The results are discussed in Chapter 7.






Chapter 2

Preliminary Quantum Mechanics

This chapter will provide some basic concepts from quantum mechanics
needed to understand the origin of the problem in this thesis, and explain
what quantum state estimation is. Most of these concepts can be found in a
textbook on quantum computing. For more information I can recommend
chapter 2 of Quantum Computation and Quantum Information by Nielsen and
Chuang [5]. At the end of this chapter it will be clear that quantum state
estimation boils down to estimating multiple Bernoulli parameters, which
are linked by constraints arising due to physical properties of quantum
states.

2.1 Bra-ket Notation

In quantum mechanics elements in a separable Hilbert space H are usu-
ally denoted using the bra-ket notation. Elements of H are denoted as
“kets” |¢) € H which are seen as column vectors, and the correspond-
ing conjugate transpose of |¢) is denoted by a “bra” in the dual space:
(|¢))" = {(¢| € H' which is seen as a row vector. The standard inner
product can then be written as a matrix multiplication < |¢), |¢p) >=
(lo)Tly) = (p|p) € C and the outer product is denoted by the matrix

product |¢) (y].



10 Preliminary Quantum Mechanics

2.2 Quantum States

Quantum states can be represented by certain elements in Hilbert spaces
known as state vectors.

Definition 1 An element |p) € H is called a state vector if (p|p) = 1.
The set S(H) is the set of state vectors in H.

In this thesis the quantum states are states of qubits, which are represented
by elements of a two dimensional complex Hilbert space, which is isomor-
phic to C2. Tt is common to take {|0),|1)} as an orthonormal basis for a
single qubit. This means that states can be written as |¢) = «|0) + B|1)
such that |a|? + |82 = 1. The state of multiple qubits can be represented
in the tensor product of their respective Hilbert spaces. A system with n
qubits can thus be represented by a space which is isomorphic to C?".

A problem with state vectors is that they fail to capture classical uncer-
tainty of the state. If a system is in state |¢) = «|0) + B|1) with probability
p and in state |¢') = a’|0) + p'|1) with probability p’, one may expect to
represent the combined state by ,/p|¢) + /p’|¢’). But in general this is
not a state, as

(VPO + VP (@' (VPI) +VP1e'))

p(a® + B%) + p'(a"> + B%) + /pp/ (aa’ + BB')
p+p +/pp (aa’ + Bp)

1+ /pp' (e’ + BB'),

which is in general not equal to 1. The correct way to capture both classical
and quantum uncertainty in a state is to use density matrices.

2.3 Density Matrices

Definition 2 A density matrix is a Hermitian positive semidefinite matrix p €
Mat(C?",C?") such that Tr(p) = 1.

A density matrix p represents a pure state if p = |¢)(¢| for some |¢p) €
S(H). Indeed, in this case the state could just be written as a state vector
|¢). Density matrices can also represent mixed states. This becomes clear
after spectral decomposition, p = Y_; p;|¢;) (¢;|, in which the p; should be
interpreted as classical probabilities, i.e., there is a p; chance that the state
is |¢;). Density matrices are thus capable of incorporating classical uncer-
tainty of states in a system. The fact that p is positive semidefinite and has

10



2.4 Pauli Matrices 11

trace 1 ensures that p; > 0and ) ; p; = 1. A measure of how pure or mixed
a density matrix is is its purity, which is defined to be Tr (p?). Pure states

have purity 1, since Tr (|¢)(¢[|¢)(¢]) = Tr (|)(¢]) = (¢|¢) = 1. For a

mixed state of n qubits the purity lies in the interval [Zin, 1). It will turn
out that the performance of the methods for quantum state estimation is
severely impacted by the purity of the to be estimated state.

In conclusion, when considering mixed states, quantum states can be rep-
resented by a subset of a space of Hermitian matrices. A particularly use-
ful basis for this space is discussed in the next section.

2.4 Pauli Matrices

Definition 3 The Pauli matrices are the Hermitian matrices
01 0 i 1 0
x=(10) = (%) 2=(0 %)

They have the following properties:
e X2=Y?2=72=1
e XY =iZ,YZ=iX,and ZX =iY
e Tr(X)=Tr(Y)=Tr(Z) =0

Lemma 1 The set {I, X,Y,Z} is a basis for the 2 x 2 Hermitian matrices over
R. Furthermore, {1y, X,Y,Z}®" is a basis for the 2"" x 2" Hermitian matrices
over R. This basis is known as the Pauli basis.*

Proof 1 To prove the first part, note that 2 x 2 Hermitian matrices are of the form

B a b+ci
H= (b—ci d )

where a,b,c,d € R, so writing H = Y(a +d)I + bX + cY + 3(a — d) shows
that {1, X, Y, Z} spans the space of 2 x 2 Hermitian matrices. Furthermore, solv-
ingall + bX +cY +dZ =0resultsinb=0,c=0,a+d=0,anda—d =0,
which has a,b,c,d = 0 as its only solution, proving that {1, X, Y, Z} is indeed
a basis. The second part follows directly from the definition of the tensor and
Kronecker product.

*Usually the dimension of I is implicit, but I have explicitly written I, to point out
that this is the 2 x 2 identity matrix that appears in the tensor product.

11



12 Preliminary Quantum Mechanics

Since the Pauli matrices have trace 0, a result of Lemma 1 is that every
2 x 2 density matrix can be written as 3 (I + cx X + ¢, Y + c.Z). The factor 3
comes from that fact that Tr (I) = 2 and Tr (p) = 1. In this 2 x 2 case a den-
sity matrix can be represented by the three real scalars cy, ¢y, c;. This easily
generalizes to the case of larger systems, in which a 2" x 2" density matrix
can be written as p = 5 (I + Z?i;l ¢;B;), where B; € {II,, X, Y, Z}®"\ {I}.
The numbering of these B; does not really matter, and for the sake of this
thesis should not be worried about.

The normalizing factor 5 is used for the following nice property.

Lemma 2 Any density matrix p = 5 (I + Zi;l ¢;B;) is such that ¢; € [—1,1]
forallie{1,...,4"—1}.

Proof 2 Letp = 5 (I + Z?l;l c;B;) be a density matrix, and let
jeA{l,...,4"—1}. Note that

1 = 1
Tr (pB]-) =Tr (2_”(Bj + Z% ciBiB]-)) = 2—nTr <c]~B]2> = ¢j,
1=

since foralli € {1,...,4" — 1} \ {j} it holds that Tr (B;B;) = 0, and Tr (B;) =
0.

Let p; and |¢;) be the eigenvalues and corresponding eigenvectors of p, so that
0 = Y pil¢i) (¢pi|. Writing p this way results in

lejl =ITr (0B;) | = | _ piTr (1) (il By) | =

1

| 2 pi(@il Bjlea) | < Y pil{gilBilgi)| < }opi =1,

i

where in the last step the Cauchy-Schwarz inequality is used to bound

(@i1Bjlpi)| </ {ilps) (9] B2 i) = 1.

2.5 Measurements

Definition 4 Let I be a non empty set. A positive-operator valued measure is a
set {P; |i € I} C Mat(C?",C?") such that

[ ] ZiGIP,':]I
o P >0forallicI

12



2.5 Measurements 13

These will be called measurements for short. Applying a measurement
{P; | i € I} on a quantum state p results in an outcome i € I with proba-
bility Tr (oP;). One can check that indeed Y ;c; Tr (oP;) = Tr (p ;1 ) =
Tr(p) = 1. And Tr(pP;) > 0. The state also collapses to a specific state
depending on the outcome according to the Born rule. In this thesis only
the outcome and the fact that the state collapses to something other than p
are important, because the outcomes of the measurements will be used to
estimate the quantum state, and the fact that the state collapses means that
the to be estimated state p has to be prepared again for each measurement.

In this thesis, only a small subset of measurements will be used. The set I
will always be {0, 1}, meaning that each measurement only has two pos-
sible outcomes. The measurements will be based on the Pauli matrices.
Other measurements do exist and can be done experimentally, but it is un-
clear whether doing these provides a real advantage over the simpler ones
presented here.

Lemma 3 For each B € {I,X,Y,Z}*" the set {Bo, B1} = {3(I—B),2(I+
B)} is a measurement.

Proof 3 Clearly, By + By = I. Furthermore, (I £ B)2(I£B) = }(I£2B+
B%) = 1(I & B), so By and By are projections and hence positive semidefinite.

This is the measurement that is meant when the phrase “measuring B” is
used in this thesis.

The following measurements can be done on a single qubit:

(%o, X} = {5(1-X), 3(1+X))
Mon) = (5-Y), S@I+Y))
(7021} = ((1-2), ;T +2)}

As an example, consider the state p = %(1[ + cxX + ¢yY + ¢, Z), where
Cx, Cy, ¢z € [—1,1] according to Lemma 2. It will be clear from this example
that from a mathematical point of view, p defines probability distributions

tTechnically a measurement of I could also be considered, but there is no point since
it always results in 1.

13



14 Preliminary Quantum Mechanics

over the outcomes of the above measurements. Doing a measurement re-
sults in a sample from its respective distribution defined by p. The proba-
bilities of finding the possible outcomes can be found by a direct calcula-
tion. By definition, the probability of finding 1 when measuring X is given

by

Tr (pX1) = Tr  5p(1+ X))

1 1 1 1 1
=Tr (Ep —+ Z]IX + ZLCXXX + ZC]/YX —+ ZCZZX)

1 1 1 1 1
=Tr (Ep) + Tr (Z]IX + ZCXXX —+ ZCyYX + ZCZZX)

1 1 1 1
=Tr (Ep) -I—Tr (ZCXI[) = E + ECx,

where the mentioned properties of the Pauli matrices and the fact that they
have trace 0 is used to obtain the last line.

Evidently when calculating the probability to find 0 when measuring X
the probability Tr (0Xo) = 5 — 3¢« is found. These probabilities can analo-
gously be calculated for the Y and Z measurements which will depend on
their respective coefficients ¢, and c,. These are valid probabilities since
Cx,Cy, Cz € [—1,1]. Doing a measurement on X, Y, or Z and only consider-
ing the outcome is therefore equivalent to sampling a Bernoulli distribu-
tion with parameter % + %Cx,% + %cy, or % + %CZ respectively.

2.6 Quantum State Estimation

In quantum state estimation the goal is to reconstruct the density matrix
that represents the state of a particular system. The necessity of quantum
state estimation comes up in experimental quantum computing, such as
variational quantum eigensolvers [1]. The output of a quantum algorithm
is contained in the state of the system, which is hidden to the experimen-
talist. The state has to be estimated by doing measurements and using
some estimation method to recover the desired information. This section
will show that doing quantum state estimation essentially boils down to
estimating Bernoulli parameters of independent samples from multiple
Bernoulli distributions, where the Bernoulli parameters are linked to each
other by constraints on the parameter space.

It is assumed here that a device is able to consistently produce a state p,

14



2.6 Quantum State Estimation 15

after which any of the measurements mentioned can be done. After this
the state collapses, and the device will create p again from scratch so that
a new measurement can be done. Since it takes time to prepare a state, it
is desirable that estimation methods are efficient so that the state does not
have to be prepared too many times for a good estimate.

As seen in last section, the probabilities of finding an outcome 0 or 1 when
doing different measurements on p depend on the coefficients of p in the
Pauli basis elements corresponding to the measurements. Information on
p can therefore be gained by repeating experiments to estimate the coeffi-
cients. For example, again consider the state p = %(]I +c X + cyY +c.Z).
In the previous paragraph it was calculated that measuring X,Y and Z
results in outcome 1 with probability py = 3 + lc, py = I+ ey and
pz = % + %cz respectively. Doing these measurements on the state cor-
responds to sampling from Bernoulli distributions, where each different
measurement X, Y, or Z, has its own parameter py, py or p;. Quantum
state estimation then seems to be equivalent to estimating Bernoulli pa-
rameters, but this is not entirely true. There is some hidden matrix p =
%(]I + cxX + ¢yY + c;Z), which corresponds to three Bernoulli distribu-
tions with parameters py, py and p.. The goal is to estimate the Bernoulli
parameters from independent samples from their corresponding distribu-
tion so that p can be recovered. The problem is that there is no guaran-
tee that for estimates of the Bernoulli parameters py, p, and p, that the
resulting matrix p = 3(I+ (2px — 1)X + (2p, — 1)Y + (2p. — 1)Z), is pos-
itive semidefinite, and for larger systems it is very unlikely that this naive
approach will lead to a positive semidefinite estimate p. Furthermore, it
will be clear later that there is also no “nice” way of writing the positive
semidefiniteness restriction in terms of the coefficients in the Pauli basis.

When considering larger systems, if the system has n qubits then p is a
2" x 2" matrix and can be written as 5 (I + Z?l;l ¢;B;), where ¢; € [—1,1]
and B; € {[,X,Y,Z}*" by Lemma 1 and Lemma 2. Lemma 3 ensures
that for each i € {1,...4" — 1} there is a measurement which finds out-

come 1 with probability % + %ci and outcome 0 with probability % - %ci,

since Tr <%p(1[ + Bi)> = 3Tr (p) + 3Tr (0B;) = 3 + c;, where the identity
Tr (0B;) = c; is taken from the proof of Lemma 2. The important obser-
vation here is that for an n qubit system, 4" — 1 parameters have to be
estimated in order to reconstruct the density matrix. The problem of re-
constructing p for n qubit systems thus essentially seems the same as for
the 1 qubit case, apart from the fact that there are 4" — 1 measurements and
corresponding Bernoulli distributions instead of just 3. The high dimen-

15



16 Preliminary Quantum Mechanics

sionality however causes the constraint of positive semidefiniteness to be
a lot more complicated. It turns out that for 1 qubit, the coefficients have
to lie in a sphere, but for more qubits this shape gets very complicated.
In fact, satistying these constraints, known as the N-representability con-
straints in quantum chemistry, is proven to be QMA-complete, a quantum
analogue to NP-complete [6].

In conclusion, quantum state estimation is the statistical problem in which
there is a 2" x 2" density matrix p, which corresponds to a set of Bernoulli
parameters {p; | i € {1,...,4" —1}} through the fact that p can be writ-
tenasp = & (I +X* ' (2p; — 1)B;), where B; € {I,X,Y,Z}*". Given
independent samples o7 ...0n, ~ Ber(p;) from each Bernoulli distribu-
tion, the goal is to create estimates p; such that the reconstructed matrix
p=1I+ Z?l;l (2p; —1)B;) is a good estimate to p, and ideally also pos-
itive semidefinite.

Estimates will be evaluated by two metrics, the trace distance between p
and g, and the mean squared error on the estimates p; of p;.

Definition 5 The trace distance between p and p is given by

1(6,0) = 57 (V0 - 00— 1)).

This is a metric also used in other literature [2].
Definition 6 The mean squared error between the Bernoulli parameters of p =
I+ YN 2p —1)By) and p = % (L + X5 1 (2p; — 1)B;) is given by

1 47 —1

5. )\2

i=1

MSE(p,p) =

This metric provides information on how well a method can estimate the
individual parameters.

The following two chapters will present several methods for quantum
state estimation.

16



Chapter 3

Frequentist Methods for Quantum
State Estimation

This chapter will discuss two frequentist methods of quantum state esti-
mation. For the first method there will be some simulation experiments
to show certain shortcomings in order to motivate the direction towards
more complex methods. Here it is assumed that quantum states can con-
sistently be prepared and measured without error. In Chapter 5 it is dis-
cussed how each method can be adapted to provide estimates in a setting
where each measurement result has an individual probability to be wrong.

3.1 Method of Moments Estimator

Assuming there are no measurement errors, the most straightforward way
of estimating a density matrix p = 2 (I + Zi;l ¢;B;) would be to do
measurements for each B;. This corresponds to sampling a Bernoulli dis-
tribution with parameter p; := % + %Ci so that the estimator p; = Nvll’
can be used, where Nj; is the amount of outcomes 1 when measuring
B;, and N; is the total amount of measurements of B;. As stated before
p = L(I+Yi=1""1¢B;) is not guaranteed to be positive semidefinite.
The gravity of this issue can be seen in the results from the following sim-
ulation.

The goal of this experiment is to convince the reader that the method of
moments estimator is not a good estimator if positive semidefinite esti-
mates are desired. In this simulation the probability of successfully ob-

17



18 Frequentist Methods for Quantum State Estimation

taining a positive semidefinite estimate is computed for different sizes of
systems. For each n € {1,2,3,4}, 10000 random density matrices of size
2" x 2" are generated”. The moment estimator ¢ is then calculated based
on 4" - 100 random measurements, and it is counted how many times p is
positive semidefinite. The result of the simulation is shown in Figure 3.1

n | Probability of PSD estimate
1 0.8952

2 0.1157
3

4

0
0

Figure 3.1: This table shows the estimated probability of the method of moments
being positive semidefinite. It shows that as n, the amount of qubits, increases, the
method of moments estimator becomes worse at producing positive semidefinite
results. For n > 3 it is so dramatic that out of 10000 estimates 0 were positive
semidefinite.

The result of the simulation is that for larger density matrices it gets in-
creasingly less likely that the moment estimator produces a positive semidef-
inite estimate, so much so that for n > 3 qubits none of the 10000 estimates
were positive definite. When generating the matrices for larger n they tend
to become less pure, but this is not what causes the difficulty in recon-
structing them. In the next simulation it is shown that density matrices of
lower purity are actually easier to reconstruct.

In this simulation, density matrices for n = 2 are generated and their
purity is calculated. Again, based on 4" - 100 random measurements the
method of moments estimator is calculated, and whether the estimate is
positive semidefinite or not. Afterwards bins of purity are made by di-
viding the difference between the highest purity and lowest purity into 6
equally sized parts. Then for each bin it is calculated how many times a
matrix in this bin was positive semidefinite divided by how many times
a matrix fell in this bin. This will provide information on approximately
what the probability is of successfully obtaining a positive semidefinite
estimate given the purity of the real state. The result can be found in Fig-
ure 3.2

*These are generating by creating a matrix A that has complex standard normally
distributed entries. The matrix A*A/Tr (A*A) is then a density matrix. This fact will be
proven in Lemma 6

18



3.2 Maximum Likelihood Estimation 19

0.7 1

0.6

0.5 1

0.4 -

0.3 -

0.2

Probability of PSD reconstruction

0.1 -

0.0' T T
0.2500 0.3571 0.4643 0.5714 0.6786 0.7857 0.8929

Purity

Figure 3.2: The result of the experiment described above. It shows that the higher
the purity of a state, the lower the probability is that the moment estimator pro-
duces a positive semidefinite estimation. This figure should not be read as a his-
togram, it states that for 70% of the matrices with purity between 0.25 and 0.36
the moment estimator produced a positive semidefinite estimate

In conclusion, this method does not work particularly well if positive semidef-
inite estimates are desired. However, it is definitely debatable if an esti-
mator is “bad” if it does not result in positive semidefinite matrices. In
some applications, an experimentalist is only interested in a few of the co-
efficients of p in the Pauli basis, meaning that only a few of the Bernoulli
parameters in this model are important. More can be read on this in Chap-

ter 7.

3.2 Maximum Likelihood Estimation
Maximum likelihood estimation is a common method in statistics to es-

timate some parameter. Given a data set, it uses the parameter at which
the likelihood is maximized as an estimator for the true value. This thesis

19



20 Frequentist Methods for Quantum State Estimation

only contains discrete random variables, so a simpler definition of likeli-
hood can be used.

Definition 7 Let X be a discrete random variable with probability mass function
po dependent on a parameter 0. The likelihood is a function 6 — L(6; x), where

L(6;%) = pa(x) = P(X = x]0).

The likelihood is a function that maps a parameter 6 to the probability
of it producing data x. Usually, X is a vector of ii.d random variables
(X1,...XN), in which case the likelihood can be written as

N
=T [P(X; = x]6).

i=1

Definition 8 The maximum likelihood estimator (MLE) is Oy g = argmax,L(6; x).

In order to efficiently compute this maximum the derivative of the likeli-
hood has to be known, which is cumbersome since it consists of a big prod-
uct of factors dependent on 6. This can be solved by taking the logarithm
of the likelihood. Since the logarithmic function is increasing, Oy g =
argmax, log £(6; x) is an equivalent definition for the MLE, and the prod-
uct breaks down to a sum when taking the logarithm of L(6; x).

In the problem of quantum state estimation, the log-likelihood is given by
—1N;
Z Z Ol]log pi) + (1 Oi,j) log(1 _Pi)]
i=1 j=1

where 0; j is the outcome of the j—th measurement of B;, and p; = % + %ci.
When doing these simulations in Python, it is efficient to store data in
the format (outcome, label), where the outcome is 0 or 1 and the label
i €{l,...4"—1},is the measurement done to get the outcome. The data
should then be seen as pairs (01,11), (02,12), ... (on,In) where each o; ~
Ber(plj). The log-likelihood can then be written as

N
pio) = ) lolog(py) + (1= o)) log(1 — py )|,
=

where N is now the total amount of data points, so the sum is over all
(outcome, label) pairs, and p;, is the Bernoulli parameter corresponding

to the label ;. This allows an efficient and very intuitive way to evaluate

20



3.2 Maximum Likelihood Estimation 21

the likelihood in Python due to how array indexing works. If outcomes is
an array with N outcomes, labels an array with N corresponding labels,
and p an array storing the 4" — 1 Bernoulli parameters, then the single line

sum(outcomes * log(p[labels]) + (l-outcomes) * log(l-p[labels]))

computes the likelihood.

The following two lemmas argue that the maximum likelihood estimator
is a promising estimator for this problem.

Lemma 4 The negative log-likelihood function is convex.

Proof 4 Differentiating ¢ towards any of the probabilities p; twice results in

O]' 1—0]'

— = -4+ ———5>0,
apiz j:;i Pzz (1—pi)?

so the negative log-likelihood as a function of p = (p1, ..., pan—1) is convex.
Lemma 5 The set of density matrices is convex.

Proof 5 Recall that complex d x d matrix p is positive semidefinite if and only if
x*ox > 0 forall x € C“.
Let p, 0’ be d x d density matrices, x € C% and A € [0,1]. Then

X (Ap+(1=A)p)x=x"Apx+x* (1= A)p'x >0

since p and p' are positive semidefinite, and both A and 1 — A are > 0.
Furthermore, it holds that Tr (Ap + (1 — A)p) = A+ (1 —A) = 1. Thus Ap +
(1 — A)p’ is again a density matrix, proving that the space of density matrices is
convex.

Convex functions on convex sets have a unique maximum, so maximum
likelihood estimation should work. It is however difficult to do numeri-
cally because the boundary of the space of positive semidefinite matrices
is hard to compute. Naively implementing convex optimization, e.g., via
gradient descent [7], would require to check positive semidefiniteness at
each iteration which is roughly of complexity O(23") for a 2" x 2" matrix.

This problem may be averted by parametrizing the space in a different
way, but this has not been implemented for this thesis. An idea to explore
further in future work, would be to use the Cholesky decomposition of
positive semidefinite matrices. The Cholesky decomposition of a positive
semidefinite matrix P is is a unique upper triangular matrix U such that

21



22 Frequentist Methods for Quantum State Estimation

P = U*U. Since it is necessary that a density matrix p has trace 1, a nor-
malizing factor is needed so that p = U*U/Tr (U*U). The idea would then
be to calculate the partial derivatives of the likelihood function towards
the entries of U, since these have no restriction. It turns out however that
working this out on a piece of paper is quite involved, and the end result
may not be computationally tractable nor is it without any additional the-
oretical inspection clear that this would work correctly. A few problems
could be that in “U-space” the maximum is no longer unique since the
normalizing factor undermines the uniqueness that the Cholesky decom-
position provides, and the space or the likelihood as a function of U may
no longer be convex. I think this is a rather interesting problem for future
work.

On a positive note, for small systems the eigenvalues can still be calcu-
lated, so in these cases maximum likelihood can be implemented in the
naive way. The way it is implemented in this thesis uses a form of gradi-
ent descent, in which iteratively steps are made in direction of the gradient
to get to the minimum. In order to stay in the convex space of density ma-
trices, at each iteration it is calculated whether the next step will break
the positivity constraint, and if so, the size of the step is decreased. This
makes it inefficient for large matrices, and can cause it to get stuck close
to the boundary even though the maximum is not yet reached. This script
is not a very good implementation of MLE, but serves its purpose as an
example to show that MLE is not simple to do in this scenario.
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Chapter I

Bayesian methods for Quantum
State Estimation

This chapter will introduce the Bayesian mean estimator, and provide de-
tails on how it can numerically be computed using MCMC methods. In
particular, the Metropolis-Hastings algorithm is discussed, and it is shown
how this algorithm can be applied to the specific problem of quantum state
estimation where the parameter space is the set of positive semidefinite
matrices. This chapter will not go into good choices for priors, these are
left as a subject for further research.

4.1 Bayesian Mean Estimation

In Bayesian mean estimation, the parameter is equipped with a probability
distribution called the prior, which we assume admits a density denoted
by .

Definition 9 The posterior distribution of a parameter 6 € R is given by

_ palo)n0)
PO = T ) (o)

The mean of the posterior can be used as an estimator: § = [ 6p(6|x)do.
Furthermore, the posterior distribution can be used to construct credible
sets, providing justified error bars on the estimate [4].
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In general, computing the required integrals can be intractable, but the
posterior can often be sufficiently well approximated by taking samples
from it using Monte Carlo methods. The particular method used in this
thesis will be the Metropolis-Hastings algorithm.[8]

4.2 Metropolis-Hastings

In Metropolis-Hastings, a Markov chain is constructed which has a sta-
tionary distribution equal to the desired distribution. For Bayesian mean
estimation, it allows sampling the unnormalized posterior distribution to
create an estimate of its mean. Below is the Metropolis-Hastings algo-
rithm, where f(0) is the unnormalized posterior distribution.

Algorithm 1: Metropolis-Hastings

Initialize S = {6y}
fori=1,2,..do
0p ~ q(010;—1)

f(0p)q(6i-1]6p)
Paccept <— m

u ~ Uniform(0,1)

if u < paccept then
| 0 <0,

else
| 0 < 0; 1

end

S« SuU{6;}

end

The algorithm starts off by initializing an array to hold the samples it col-
lects. Afterwards, it starts in state* 6y, where it produces a proposal state
according to the distribution g(6|6p). The distribution g is known as the
proposal distribution. The algorithm proceeds by calculating the proba-
bility paccept by which it should accept this proposal state as the new state.
The next state is either the proposed state with the probability psccept, or it
stays in the the current state with probability 1 — paccepr. The state is saved
as a sample and the loop is repeated until enough samples are collected.
It may take a few iterations before reaching the target distribution, so the
tirst few samples can be thrown away;, so called “burn-in” samples.

Before going into details, notice that when defining f(6) = p(x|0)7(6),

*Here “state” is a state of a Markov chain, not a quantum state
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4.2 Metropolis-Hastings 25

while calculating the acceptance probability J%m any normaliza-

tion factor in f will be canceled, meaning that the posterior distribution
can be sampled without being normalized. Inspecting Definition 9 also
shows that the prior does not have to be normalized anyway, because any
normalizing factor in the numerator would just cancel out the one in the
denominator. This is useful when defining a prior over positive semidefi-
nite matrices, since this removes any worry about properly defining prob-
ability measures over this complicated space.

Also a minor optimization can be made by calculating log paccept using
the log-likelihood. This is numerically easier to compute since for a large
data set of many independent observations the likelihood becomes a huge

product which is often hard to evaluate. The acceptance step then looks
like

Paccept < 10g f(6)) +logq(6i-1(6,) —log f(6i—1) —log 4(6p[6;—1)
u ~ Uniform(0,1)
if u < ePaccert then
\ 0; < 0,
else
| 0 < 0iq
end

While the algorithm promises to work under certain conditions, it does
not always work well under these conditions. Some thought is required to
define a good proposal distribution so that Metropolis-Hastings works ef-
ficiently. Making a graph of the state of the Markov chain at each iteration,
a so called “trace plot”, can help with qualitatively assessing if parameters
were chosen correctly. As a simple example, consider the situation where
there is only one Bernoulli parameter parameter p € (0,1) to be estimated.
The Metropolis-Hastings algorithm will be used to estimate the posterior
distribution of p when given data x,...,x, ~ Ber(p). The log-likelihood
is given by {(p; x) = Y/ [xilog(p) + (1 — x;) log(1 — p)], and in this ex-
ample an unnormalized uniform prior log 7t(p) = 0 is used.
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Figure 4.1: Trace plots for four Metropolis-Hastings runs with different standard
deviations for the proposal distribution q(p;|pi—1) = N (pi-1,0) or starting states.
The red line represents the states that are proposed, while the green line repre-
sents the states that are accepted. The gray horizontal line is the real Bernoulli
parameter p. Trace plots show in which state the Markov chain was at each itera-
tion during the run. They provide visual means to judge whether good parame-
ters where chosen.
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4.2 Metropolis-Hastings 27

In Figure 4.1 the importance of choosing a good proposal distribution
can be seen. When using the normal distribution to generate proposals,
the standard deviation can be thought of as a step size. The first plot,
where ¢ = 0.1, demonstrates how an overlarge step size can cause the
Metropolis-Hastings algorithm to sample a state too often. The proposal
distribution usually proposes states far away from the current state, caus-
ing a lot of proposals to be rejected if the target distribution has relatively
high density in the current state, resulting in the the Markov chain remain-
ing in the same state for long periods of time. This will cause that state to
be sampled too often. The third plot, where ¢ = 0.0025 demonstrates how
a small step size causes the Markov chain to converge to the target distri-
bution very slowly. Even after 500 iterations a state near p = 0.7 is still not
reached. The last plot, where again ¢ = 0.0025, demonstrates how a small
step size can also cause the effect known as bad mixing. Even if the target
distribution is reached with a small step size, the run is still not very good.
Almost every proposed state is accepted and very small steps are made,
causing the chain to be near the same state for many iterations. In order
to still get a good estimation a lot of samples would have to be made to
explore the entire posterior. Therefore, the step size has to be not too large
or too small, and in this case in the second run it can be seen that o = 0.025
works quite well. It converges quickly, is not stuck in the same state for a
long time and mixes well. The importance of burn-in is also seen in this
example, in the first two runs the Markov chain goes through about 50
iterations before reaching a state around p = 0.7. When calculating the
estimate

PBME = mean(samples)

it would be wise to drop the first 60 samples or so, since the Markov chain
is still converging to the posterior distribution. The burn-in varies per
problem, but can usually easily be chosen when looking at trace plots.

The largest inconvenience of Metropolis-Hastings is that the proposal dis-
tribution can be difficult to tune. In this simple model it does not take too
long to tune the proposal distribution, but for higher dimensional prob-
lems it gets increasingly more difficult to get good results. There are theo-
retical results [9] in literature that give information on what efficient pro-
posal distributions are for specific posterior distributions, but the problem
in this thesis is a rather special case. It would definitely be an interesting
problem for future work to find theoretical results on how this particular
problem should be tuned.
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28 Bayesian methods for Quantum State Estimation

4.3 Positive Semidefinite MCMC

While the process of quantum state estimation requires the estimation of
Bernoulli parameters, there is a major difference between the previous ex-
ample and the estimation of a density matrix p, namely that it is desirable
that a positive semidefinite estimate is found.

A solution could be to propose states by adding a normally distributed
vector to all Bernoulli parameters of the previous state, which is essen-
tially the same as the example but p would be a 4" — 1 dimensional vector
instead. After this, to enforce positive semidefiniteness, the eigenvalues
of the corresponding density could be computed, and if any of them are
negative the proposal can immediately be rejected. This however has two
major problems. One of which is the same as in the case of maximum like-
lihood estimation, which is that computing these eigenvalues is compu-
tationally intensive. Even worse, is that for larger systems the proposals
have increasingly lower probability of being positive semidefinite. This
causes a lot of rejections, which are even worse now since it is so compu-
tationally intensive to check these proposals in the first place.

A way of avoiding both problems is to enforce that only positive semidef-
inite matrices are proposed. The following simple lemma will help.

Lemma 6 Forany matrix A € Mat(C",C"), the matrix A*A/Tr(A*A) is her-
mitian, positive semidefinite and has trace 1.

Proof 6 By the identity (A*A)* = (A*)*A* = A*A it is clear that A*A
is hermitian. Furthermore, the fact that (x|A*Ax) = (Ax|Ax) > 0 proves

that A* A is positive semidefinite, and by dividing by its trace it is enforced that
A*A/Tr(A*A) has trace 1.

This lemma creates a recipe for constructing density matrices, which can
be used in the Metropolis-Hastings algorithm. The key is to sample ma-
trices A € Mat(C",C"), treating the likelihood and prior to be functions
of A. Proposals for A can be created by intuitive methods, for example
by adding normally distributed variables to all components, similar to the
one dimensional example from earlier.

Proposing new density matrices this way, which will be called the “root
method”, comes with a few new issues. First of all, every density matrix
p has multiple roots A such that A*A/Tr(A*A) = p, which intuitively
is not good. If the original posterior had a nice peak, the posterior as a
function of A will have a lot of different peaks which is generally harder
to sample as the Metropolis-Hastings algorithm will have a more complex
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distribution to explore. Furthermore, the notion of “step size” is almost
gone due to renormalizing, which makes it difficult to tune the proposal
distribution well. Also, it is not simple to find out how the prior should be
defined on A in order to get the desired prior on p.
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Figure 4.2: Proposals for 4 x 4 density matrices drawn with the root method. The
orange dot is the current state. The scatter plot is a projection of the space of
density matrices onto a plane spanned by two of the fifteen coefficients. On the
left these coefficients are c1 and cy, on the right they are cs and c;. On the top two
figures the current state is chosen to be not to close to the boundary, while on the
bottom the current state is close to the boundary.

A different way of proposing density matrices similar to a density p is
by using Lemma 5, and a particular distribution resembling the complex
Wishart distribution. The idea is to construct another density matrix p’,
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30 Bayesian methods for Quantum State Estimation

and then for a fixed A € (0,1) propose the matrix p* = (1 —A)p + Ap'.
Where the convexity of the space of density matrices ensures that this
is again a density matrix. A good way of constructing p’ is to gener-
ate a random complex vector |¢) = x + iy where x and y are multivari-
ate normally distributed with covariance Re[p], and then compute p’ =
) (p|/Tr (|¢)($|). A visual simulation of this proposal distribution can
ben seen in Figure 4.3. Comparing this figure to Figure 4.2 shows that this
proposal distribution seems to follow the geometry of the space of density
matrices more closely.
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Figure 4.3: Proposals for 4 x 4 density matrices constructed by using convexity,
the orange dot is the current state. On the top two figures the current state is
chosen to be not to close to the boundary, while on the bottom the current state is
close to the boundary.

30



4.3 Positive Semidefinite MCMC 31

This proposal method has the desirable property that it is easier to tune.
The parameter A intuitively serves as a “step size”, and it can be made
smaller or larger to more easily set the desired acceptance rate during the
Metropolis-Hastings algorithm. The implementation of the algorithm in
this thesis automatically tunes the the parameter A during the burn-in to
try to get an acceptance rate of 0.25. This is the ideal acceptance rate for
a normal distribution posterior [9], and it also has decent results in this
different problem. The parameter is tuned by increasing A when the ac-
ceptance ratio is too high, and decreasing it when it is too low.

This proposal method has the undesirable property that it is difficult to
calculate the density associated with this distribution, meaning that the
proposal densities g(p*|p) and g(p|p*) needed for Metropolis-Hastings are
hard to find. In this thesis this problem is ignored, and no proposal densi-
ties are used. This can be somewhat justified by the fact that the algorithm
still performs similar to using the theoretically correct but difficult to tune
root method. An interesting point of research could be to further explore
this proposal distribution and theoretically derive an expression for the
density.
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Chapter 5

Quantum State Estimation with
Experimental Errors

This chapter will introduce the concept of experimental errors and the con-
sequences these have on the methods in Chapter 3 and Chapter 4. With
some probability an experiment fails, and the outcome of a measurement
does not depend on the to be estimated state. Two scenarios will be dis-
cussed, one in which measurements with a high probability of being faulty
are ignored and not used in estimation, called thresholding, and one in
which the actual probability of failure is incorporated into the estimator,
which will be called the “error adapted” estimator.

5.1 Experimental Errors

So far it was assumed that a device could generate a state p consistently
without error. In reality, this is not the case. With some probability the de-
vice fails to produce this state, and instead produces the maximally mixed
state: 1. This state has ¢; = 0 for all i, meaning that measuring B; for
any i will return 0 or 1 with 0.5 probability. Doing a measurement on
this provides no information on p, thus ideally the outcome of these mea-
surements would be ignored when estimating p. It is sadly not possible
to be certain whether the device correctly produced p or the maximally
mixed state. It is however possible to individually create an estimate for
each measurement whether the experiment succeeded or failed, and this
probability can be used to improve the quantum state estimate in a few
different ways. It is assumed that in this case the error estimate given is
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34 Quantum State Estimation with Experimental Errors

actually the real probability that the device failed to create p. Each mea-
surement outcome o0; will have its own probability of being the result of
a failed measurement, so data will be in the form of pairs (0;,/;, €;) where
€j denotes the probability that this particular data point is wrong, i.e., not
received by measuring p.

5.2 Thresholding Estimators

When thresholding, a threshold € is set, and each data point (0]', l]-, e]-) such
that €; > € is ignored, while all other points are accepted and assumed to
be produced by the true state p so that the original methods can be used as
if all data is now correct. These will obviously not work as well as they are
supposed to, since there are still data points not produced by p used in the
estimation of p. There is a bias-variance tradeoff when setting the thresh-
old €, as setting it low will mean that less wrong measurements that cause
bias are used, but using less measurements will cause the variance of the
estimator to be higher. Setting the threshold high will cause the opposite
to happen. Since it is not known what the best threshold is beforehand,
avoiding thresholding may be advantageous.

5.3 Error Adapted Estimators

The estimation methods in this thesis can be adapted to consider the prob-
ability of a measurement failing, so that all measurement results can be
used and no threshold has to be set. When considering a probability €; of
failure of the experiment, conditional probabilities can be used to derive
the probability of finding outcome 0 or outcome 1 on a measurement. The
probability of outcome 1 is

IP(0j = 1) = IP(0; = 1|p was produced )P (p was produced) +

1 1
IP(o; = 1] z_n]I was produced)IP(Z—n]I was produced)
Originally for each measurement B; there was a probability p; := 1 + 1c;
of outcome 1, and measuring the mixed state results in outcome 1 with
probability 0.5, so by filling in the probabilities €; of producing state Zlnll
and (1 — ¢;) of producing p it is found that

1
IP(O] = 1) = (1 — €j)Pl]- + Eé‘]
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5.3 Error Adapted Estimators 35

The moment estimator can be adapted by taking the weighed mean over
over all data points according to their probability of having been produced
by the state p. This can be written as

. st.t.l]-:i Oj(l - 6]) — %6]‘(1 — 6])
& Yjstr=i(1—€)) ’

where the second part in the numerator is deterministic and just serves to
make the estimator unbiased.

Maximum likelihood and the Bayesian methods can be adapted by simply
incorporating the correct probabilities P(0; = 1) = (1 —¢;)p;, + 3€j into
the likelihood. This results in

Up, (0,1,€)) = Ji [oj log ((1 — &)y, + %) +(1—0)log ((1 —e)(1—py) + %)} .

After this change, the methods stay the same. Using the chain rule it can
be proven that the negative log-likelihood function is still convex, so max-
imum likelihood works as expected.
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Chapter 6

Simulation Results

In this chapter each method is evaluated by how it performs without er-
rors, when thresholding errors and when incorporating the probability of
errors in the method. The methods are evaluated by the trace distance of ¢
to the real state p, and the mean squared error of the Bernoulli parameters
of p and p.

In each scenario for each n € {1,2,3,4}, 2000 density matrices of size
2" x 2" are made, half of which are generated so that they are of high
purity, and the other half is of low purity. Then for each density matrix
(4" —1) - 1000 random Pauli measurements are done, and the estimators
are calculated. When simulating measurements, the probabilities of mea-
surement errors occurring were sampled from a fixed distribution with
most of the mass close to 0. The threshold € is set at 0.05, meaning that
about 10% of the measurements are not used. For the Bayesian estimator
an unnormalized uniform prior is used, log 7t(p) = 0.
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Simulation Results

Figure 6.1: Comparisons between the cases where there are no measurement er-
rors, where the measurement errors are thresholded, and where the probability of
errors is incorporated into the method. For each 2" x 2" estimate, 1000 - (4" — 1)
random Pauli measurements are done.
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40 Simulation Results

In Figure 6.1 it can be seen that for each method the error adapted esti-
mator performs at least as well as thresholding, and sometimes slightly
outperforms thresholding.

In Figure 6.2 the performance of the individual methods are compared,
and the major result is that the method of moments estimator beats the
other methods in both mean squared error and trace distance. This out-
performance is larger when estimating states of high purity.

Figure 6.2: A comparison of the performance of the method of moments esti-
mator, maximum likelihood estimation, and Bayesian mean estimation when in-
corporating the measurement error likelihoods into the methods. They are com-
pared in two settings: when estimating states of generally low purity, and when
estimating states of generally high purity.
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likelihood estimation, and Bayesian mean estimation when estimating states of generally
low purity without measurement errors.
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Chapter

Discussion

The results from Figure 6.1 show that adapting the methods to use the
likelihood of failed measurements should be preferred over thresholding,
since it offers a slight performance boost and avoids the problem of having
to set a good threshold. An important point however, is that the assump-
tion that these error likelihoods are exactly known is false in practice, since
these have to be estimated. In further research simulations could be done
in which these error likelihoods are slightly distorted. It can then be tested
if adapting the method to use the slightly wrong error likelihoods will still
outperform thresholding, as one can expect that the performance of the
thresholding estimator will not suffer as much from slightly wrong error
likelihoods, meaning that thresholding might have an advantage here.

The results in Figure 6.2 show that the method of moments estimator pro-
duces the best estimates in terms of mean squared error and trace distance,
even though it ignores positive semidefiniteness. If one wants to estimate
the coefficients of the state as precise as possible and positive semidefinite-
ness is not necessary, the methods of moments estimator should be used.
If the goal is to find out which quantum state a device is actually in, one
would want that the estimate can physically exist. In this case the maxi-
mum likelihood estimator should be used. There is also still a reason to
use the Bayesian Mean estimation, since it provides error bars on the es-
timate. In further research it would be interesting to expand on Bayesian
methods for this specific problem. Exploring how reliable the provided
error bars can be and computing the correct density of the proposal distri-
bution used here are both interesting directions. I personally think there
is a lot of room for improvement here, since knowing that the true state
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is positive semidefinite should intuitively allow for better estimates if the
information is used correctly. Therefore I think that constructing theoreti-
cally sound implementations of Bayesian mean estimation and maximum
likelihood can outperform the methods of moment estimator.
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Chapter

Conclusions

When doing quantum state estimation, the simple method of moments
estimator severely outperforms the maximum likelihood estimator and
Bayesian mean estimator in the way that they are implemented here, but
only if positive semidefinite estimates are not necessary. For all of these es-
timators, adapting them to potential measurement errors in the way that
is proposed in this thesis does offer a slight performance increase over
thresholding.
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