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Plan of first lecture

m Historical remarks and motivation
m The basic notions: states, measurements, channels
m Current topics in Quantum Statistics

m State estimation; Quantum Cramér-Rao



Plan of second lecture

m Local asymptotic normality for i.i.d. states
m Quantum Cramér-Rao revisited

m [Local asymptotic normality for quantum Markov chains]



Plan of third lecture

m Quantum learning, sparsity
m Bell inequalities, quantum non-locality

m The measurement problem: the new eventum mechanics



Plan of third lecture

m Quantum learning, sparsity
m Bell inequalities, quantum non-locality

m The measurement problem: the new eventum mechanics



Quantum mechanics up to the 60's

m Q.M. predicts probability distributions of measurement outcomes
m Perform measurements on huge ensembles

m Observed frequencies = probabilities

Old Paradigm

E. Schrodinger

[“Are there quantum jumps ?”, British J.Phil. Science 1952]

“We are not experimenting with single particles, any
more than we can raise Ichtyosauria in the zoo.

We are scrutinizing records of events long after they
have happened.”




Are there quantum jumps ?

m First experiments with individual quantum systems
m Measurements with stochastic outcomes

m Stochastic Schrodinger equations



Influx of mathematical ideas in the 70’s

)

E. B. Davies V. P. Belavkin A. S. Holevo C. W. Helstrom

m Probability
what is the nature of quantum noise ?

m Filtering Theory
what happens to the quantum system during measurement ?

m Information Theory
how to encode, transmit and decode quantum information ?

m Statistics
what do we learn from measurement outcomes ?



Quantum Information and Technology

New Paradigm

Emerging fields:

m Quantum Information Processing
m Quantum Computation and Cryptography
m Quantum Probability and Statistics

m Quantum Filtering and Control

m Quantum Engineering and Metrology



State estimation in quantum engineering

Multiparticle entanglement of trapped ions

[Hafner et al, Nature 2005]

Experiment validation: statistical ‘reconstruction’ of the quantum state

m 4% — 1 = 65535 parameters to estimate (8 ions)
m 10 hours measurement time

m weeks of computer time (‘maximum likelihood")



System identification for complex dynamics

Photosynthesis: energy from light is transferred to a reaction center

215 —104.1 51 —43 47 —151 =78

—104.1  220.0 326 7.1 5.4 3.3 0.8

5.1 32.6 0.0 —46.8 1.0 =8.1 5.1

H=| -43 7.1 —46.8 125.0 =70.7 —14.7 —61.5

4.7 54 1.0 =70.7 450.0 89.7 25
—15.1 83 —8.1 —14.7 89.7 330.0 327
-7.8 08 51 —61.5 =25 32.7 280.0,

J. Adolphs and T. Renger, Biophys. J. 91, 2778 (2006)

m Complex system in noisy environment

m Theoretical modelling in parallel with statistical ‘system
identification’

m Find appropriate preparation and measurement designs



Quantum Filtering and Control

m Observe and control quantum systems in real time
m Dynamics governed by Quantum Stochastic Differential equations

m Need for effective low dimensional dynamical models (e.g. ‘Gaussian
approx.’)



Quantum mechanics as a probability theory

m States

m Observables



Quantum mechanics as a probabilistic theory

m States

Observables

m Measurements

Channels

m Instruments



Quantum states
m Complex Hilbert space of ‘wave functions’ H = C9, L2(R)...
m State = preparation: ‘density matrix’ p on H
> p=p* (selfadjoint)

> p >0 (positive)
» Tr(p) = 1 (normalised)

m Pure state: one dimensional projection Iy, = [¢) (| with ||| =1
m Mixed state: convex combination of pure states p = >, qilly,

m Natural distances: 7 := p; — p»

|7l == Te(|r])  |I7]13 := Te(+3),  h(p1, p2) == 1Tr( pi”pzpi“)



Example: spin (qubit) states

m Any density matrix p on C? is of the form

R | 1+r n—irn \ 1
p(’)-—2<rx+;ry 11, )‘z(”’x"ﬁry"ﬁ’z"z)’

—»

m p(7) is pure if and only if |F] =1

=3

m Bloch sphere representation

17l <1



Quantum observables

m Observable: selfadjoint operator A on H

m Spectral Theorem (diagonalisation):

A= /U(A)CR aM(da) (A= EJ: a;l))

m Probabilistic interpretation: measuring A gives random outcome
A € {a}

P,[A = aj] = pj = Tr(pM;)

® Quantum and classical expectations

Te(pf(A)) = Y f(a)Te(pMy) = Y f(a))p; = Eo(f(A))

J J



Example: spin components

m Components of spin in x, y, z directions are given by the Pauli
matrices

m Let p =1 (1+ 75) then

Pyloi =+1] = (1+r)/2

m Different spin components are incompatible: o0, — 0,0, = 2i0,



Indirect measurements

m Most real measurements are

> indirect
> extended in time

m 3 steps
> couple state p with ‘environment’ in state 0: p = pQ o
> interaction entangles systems 1 & 2: p® o = U(p® o)U*

> measure environment observable A =73".a;ll;

PP[A:a;] = Trl&g(U(p(X)O')U*l@n,')

= Trie(p®@o U (1@ M)U) = Tr(pM;)

m Positive, normalised linear map: p — {p; = Tr(pM;)}



General measurements

Definition

m Naimark's Theorem
Any measurement can be realised indirectly by ‘usual’
projection measurement on the environment




Quantum Instrument

m Measure B =} b;Qjand A=3", a;P;

]P’[B = bj &A = a;] = TI‘(U(p Q O')U* Qj ® P,')
= Tr(U(p® [9) (W)U Q @ |ei)(eil)

Tr(VipV/" Q) = piTr(pi Q)

where V; := (ej, Uy) are the Kraus operators with >, V*V; =1

m Conditional state p; = VipV/*/p;



Quantum Channels

p

o

Definition

Stinespring-Kraus Theorem




Summary of quantum probability

States are the analogue of probability distributions

m Observables are the analogue of random variables

Dualities: B(H) = T1(H)* and L>®(, L, u) = LY(Q, X, p)*
m Measurements are quantum-to-classical randomisations p — P,
m Channels are quantum-to-quantum randomisations p — C(p)

m Instruments are quantum-to-mixed (classical and quantum)
randomisations



Quantum Statistics

m The 70's
m Some current topics

m State estimation



Quantum Statistics in the 70’s

m Helstrom, Holevo, Belavkin, Yuen, Kennedy...
m Formulated and solved first quantum statistical decision problems

> quantum statistical model Q = {py : 0 € ©}
> decision problem (estimation, testing)

> find optimal measurement (and estimator)

m Quantum Gaussian states, covariant families, state discrimination...

m Elements of a (purely) quantum statistical theory
» Quantum Fisher Information
» Quantum Cramér-Rao bound(s)

» Holevo bound (now known to be the asymptotic quantum
Cramér-Rao bound)



Asymptotics in state estimation

0 M® . X® O

m (Asymptotically) optimal measurements and rates for d = 2

[Gill and Massar, P.R.A. 2002] [Bagan et al. (incl. Gill), P.R.A. 2006]
[Hayashi and Matsumoto 2004] [Gill, 2005]

m Local asymptotic normality for d < oo
[Guta and Kahn, C.M.P. 2009]



Quantum Homodyne Tomography

m |.1.D. samples from Radon transform of the Wigner function
[Vogel and H. Risken., P.R.A. 1989]

nature

Putting the

[Breitenbach et al, Nature 1997]

m Estimation of infinite dimensional states (non-parametric)
[Artiles Guta and Gill, J.R.S.S. B, 2005] [Butucea, Guta and Artiles, Ann.Stat. 2007]



State estimation and compressed sensing

m {Ay:=1 A, ..., Ap_1} basis in M(CY)

m State p is characterised by Fourier coefficients a; := Tr(pA;)

m Often p is known to be ‘sparse’ (Rank(p) = r < d)

m How many (and which) observables are sufficient to estimate p ?

m Similar to the matrix completion problem (Netflix)

[Candes and Recht, Found. Comp. Math. 2008]



State estimation and compressed sensing
Theorem [Gross 2009]

m The proof uses a Bernstein inequality for matrix valued r.v.

[Ahlswede and Winter, IEEE Trans.Inf. Th. 2002]

m
Pl Xl > *] <2de~/4m 52 = IE(X?)|
i=1




Asymptotics in state discrimination

m Two hypotheses p®" and oc®"
m Test M, = {Al,na A27,-, =1- Al,n}
m Error probabilities

a(M,) = Tr(p®"(1 — A1n)), B(M,) = Tr(0®”A1,,,)



Asymptotics in state discrimination

m Two hypotheses p®" and o®"
m Test M, = {A]_’,,, A2,n =1- Al,n}
m Error probabilities

a(M,) = Tr(p®"(1 - Al,n)), B(M,) = Tr(0®nAl,n)

Quantum Stein Lemma

[Hiai and Petz, C.M.P. 1991] [Ogawa and Nagaoka IEEE Trans. Inform. 2000]



Asymptotics in state discrimination

m Two hypotheses p®" and o®"
m Test M, = {A]_’,,, A2,n =1- Al,n}
m Error probabilities

a(M,) = Tr(p®"(1 - Al,n)), B(M,) = Tr(0®nAl,n)

Quantum Chernoff bound

[Nussbaum and Szkola, Ann. Stat. 2009] [Audenaert et al C.M.P. 2008]



Estimation of Quantum Channels

e

e MMN M, | ~X~PYy, ba

e

m Fast(er) estimation rates (n~2) for entangled input states

[Kahn, P.R.A. 2007]

m Applications in Quantum Metrology
[Giovanetti et al, Science 2004]



Quantum Cloning and Quantum Benchmarks

m Quantum no-cloning Theorem
[381 papers on arXiv.org]

m Measure and prepare scheme vs teleportation
[Hammerer et al P.R.L. 2005] [Owari et a/ N.J.P. 2008]

p N X B .

PX



Quantum state estimation

m Set-up
m Example: spin rotation model
® Quantum Cramér-Rao bound

m Quantum Gaussian states



Set-up of quantum estimation problems

m Quantum statistical model over ©:

Q:{pg : 96@}

m Estimation procedure: measure state py and devise estimator
6 =0(R)

M R~PM 0

Po

m Measurement design:

» which classical model PM) = {]P’(GM) 10 € ©} is ‘best’ ?
> trade-off between incompatible observables

» optimal measurement depends on statistical problem



Example: estimating the direction of the spin vector

z

m One-dim. model: (small) rotation of | 1)

x

) := exp (iuox) | 1) = cos(u)| 1) +sin(u)[ L)~

m ‘Most informative’ spin observable is o,

E(oy) = sin(2u) = 2u

m Two parameter model [, ) = exp(i(uyox — ucoy))| 1)

m Optimal measurements for u, and u, are incompatible: [0y, 0,] # 0



Quantum Cramér-Rao bound(s)*

Theorem [Helstrom, Holevo, Belavkin]

m Helstrom's Quantum Fisher information matrix

H(6)i, := Tr(peLo,i © Lo ;)
m Symmetric logarithmic derivatives: %g—f =ppo Ly

*= several inequivalent C.R. bounds exist depending on symmetrisation



Proof (projection valued measurements)

m Hilbert spaces L?(py) and L?(R,Pp)
(A,B)o :=Tr(psAo B)  (f(X),g(X))s = Eo(f(X)g(X))

m Fisher informations

H(6)

Tr(poL3) = || Loll3
1M @) = Ee(2(X)) = ||€s(X)|2

m Isometry

I:2(R,Pg) — L*(pe)
f(X) — f(X)

Eo(f(X)g(X)) = Tr(pof (X) 0 g(X)) = (f(X),&(X))o



Proof for projection valued measurements

m The projection of Ly onto L2(R,Py) is £9(X)

Indeed for every f € L?(py)

(). (k)0 = i) =10 (2 7(X)) = (F(X) Lol

= [l4615 < IILoll

Bound achieved (locally) at 6y by

Lo,
H(6o)

X =61 +



Trade-off between parameters

m One-dimensional model: C.R. bound can be achieved asymptotically

1. measure fraction i < n of systems to obtain rough estimator 0y

2. measure L) ==L, ®1® @1+ - +1018 - ® Ly,

3. set 0, 1= 0o + LY /H(6o)

m Multi-dimensional model: H(6) is achievable iff

Tr(po[Lo,j, Lo,i]) =0, Vi<i,j<k

m Trade-off between estimation of different coordinates

m Optimal measurement depends on loss function (Holevo bound) and
asymptotic risk is not simply expressible in terms of some quantum
information matrix



Optimal estimation using local asymptotic normality

[\
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m Sequence of |.1.D. quantum statistical models Q, = {p3" : 0 € ©}
m Q, converges (locally) to simpler Gaussian shift model Q

m Optimal measurement for limit Q can be pulled back to Q,



Quantum Gaussian states

m Quantum ‘particle’ with canonical observables Q, P on H = L3(R)

QP - PR =11 (Heisenberg's commutation relations)

m Centred Gaussian state ¢

v

1
Tr (® exp(—ivQ — iuP)) = exp (—2 (u v)V < u >)
with ‘covariance matrix’ V satisfying the uncertainty principle
Tr(CDQZ) Tr(¢Q o P)

Det(V) = >
TH(®QoP)  Ti(®P?)

FNg-



Examples

m Vaccum state |0)
V = Diag(3, 3)

m Thermal equilibrium state ®(s)
V = Diag(3, 3)

m Squeezed state |0, ¢)

. -
V = Diag(%-, %)

0,€)

o

o

o



Quantum Gaussian shift model(s)

Displacement operator D(u, v) := exp(ivQ — iuP)

m Coherent (laser) state
0, v) = D(u, v)\0)

m Displaced thermal state
®(u,v; s) = D(u,v)P(s)D(u, v)*




Optimal measurement for Gaussian shift

m Oscillator (Q, P) in state |u, v)

m Oscillator (Q', P’) in vacuum state |0)

(Q+,Py)
m Noisy coordinates commute: [Q4, P_]=0 [
@n
Qe = Q=xQ / (©-.r)
P. = P+P [
@.P)

m Heterodyne measurement (Q., P_) gives estimator
(8,9) ~ N((u; v),1)

Theorem




Outlook

Statistics is more and more employed in quantum experiments

m Remarkable coherence between quantum and classical statistics

Trade-off between estimation of different parameters

Optimal measurement depends on decision problem

Madalin Guta’'s Quantum Statistics course

Madalin Guta’'s Lunteren lectures
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